1
|
Keller M, Saltrick B, Gull L, Reade B. Fifth Metatarsal Fractures. Clin Podiatr Med Surg 2024; 41:391-405. [PMID: 38789160 DOI: 10.1016/j.cpm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Fifth metatarsal features are the most common fractures in the foot. They have a long history that has resulted in many classification systems and little consensus on appropriate treatment. Although there is some agreement among experts, there are also many questions yet to be answered. There is a general consensus that dancer's fractures and zone 1 fractures can generally be treated nonoperatively. There is much more debate about zone 2 and 3 fractures and appropriate treatment guidelines. The authors review the current literature and give the recommendation for treatment based on their experience in a community-based private practice.
Collapse
Affiliation(s)
| | | | - Logan Gull
- Health Alliance Hospital, Kingston, NY, USA
| | | |
Collapse
|
2
|
Cecerska-Heryć E, Goszka M, Gliźniewicz M, Grygorcewicz B, Serwin N, Stodolak P, Słodzińska W, Birger R, Polikowska A, Budkowska M, Rakoczy R, Dołęgowska B. The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets. Int J Mol Sci 2024; 25:3644. [PMID: 38612456 PMCID: PMC11012199 DOI: 10.3390/ijms25073644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Platelets are actively involved in tissue injury site regeneration by producing a wide spectrum of platelet-derived growth factors such as PDGF (platelet-derived growth factor), IGF-1 (insulin-like growth factor), TGF-β1 (transforming growth factor β), FGF (fibroblast growth factor), etc. A rotating magnetic field (RMF) can regulate biological functions, including reduction or induction regarding inflammatory processes, cell differentiation, and gene expression, to determine the effect of an RMF on the regenerative potential of platelets. The study group consisted of 30 healthy female and male volunteers (n = 15), from which plasma was collected. A portion of the plasma was extracted and treated as an internal control group. Subsequent doses of plasma were exposed to RMF at different frequencies (25 and 50 Hz) for 1 and 3 h. Then, the concentrations of growth factors (IGF-1, PDGF-BB, TGF-β1, and FGF-1) were determined in the obtained material by the ELISA method. There were statistically significant differences in the PDGF-BB, TGF-β1, IGF-1, and FGF-1 concentrations between the analyzed groups. The highest concentration of PDGF-BB was observed in the samples placed in RMF for 1 h at 25 Hz. For TGF-β1, the highest concentrations were obtained in the samples exposed to RMF for 3 h at 25 Hz and 1 h at 50 Hz. The highest concentrations of IGF-1 and FGF-1 were shown in plasma placed in RMF for 3 h at 25 Hz. An RMF may increase the regenerative potential of platelets. It was noted that female platelets may respond more strongly to RMF than male platelets.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Bartłomiej Grygorcewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
- Department of Forensic Genetic, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Weronika Słodzińska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Radosław Birger
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| |
Collapse
|
3
|
Koukoulias NE, Germanou E, Koukoulias D, Kannas TM, Dimitriadis T. Percutaneous Intramedullary Application of Stem Cells for Fifth Metatarsal Fractures Treated With a Cannulated Screw. Cureus 2024; 16:e55185. [PMID: 38558576 PMCID: PMC10980830 DOI: 10.7759/cureus.55185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Non-union and refracture of fifth metatarsal fractures are common and devastating complications in the athletic population. Stem cell application at the fracture site, for biologic enhancement, is utilized to address this challenge. We present a simple technique to approach both the endosteum and the periosteum percutaneously, under a local anesthetic, in cases of cannulated screw intramedullary fixation.
Collapse
Affiliation(s)
- Nikolaos E Koukoulias
- Department of Sports Trauma and Orthopaedics, St. Luke's Hospital, Thessaloniki, GRC
| | - Evangelia Germanou
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitris Koukoulias
- Department of Physiotherapy, International Hellenic University, Thessaloniki, GRC
| | - Theodoros M Kannas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Thefilos Dimitriadis
- Department of Sports Trauma and Orthopaedics, St. Luke's Hospital, Thessaloniki, GRC
| |
Collapse
|
4
|
Rao NM, Ligas C. The Ankle Joint: Revision Ankle Fusion Options, Nonunion, Malunion, Protocol for Best Outcome. Clin Podiatr Med Surg 2023; 40:703-710. [PMID: 37716746 DOI: 10.1016/j.cpm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Ankle arthrodesis has been a time-tested procedure for osteoarthritis, avascular necrosis of the talus, deformity correction, and significant trauma of the ankle. Technique guides have created dissection pearls, ease of fixation, and arthroscopic techniques to mitigate complications of the procedure. Major complications, such as nonunion, malunion, or implant infection are the most worrisome and cumbersome complications to handle. The aim of this article is to provide the practicing surgeon evidence to provide innovative management techniques for nonunion, malunion, and infection following primary ankle arthrodesis.
Collapse
Affiliation(s)
- Nilin M Rao
- Foot Specialists of Austin, 1600 West 38th Street, #210, Austin, TX, USA.
| | - Chandler Ligas
- Podiatric Surgery, Silicon Valley Reconstructive Foot and Ankle Fellowship- Palo Alto Medical Foundation, 701 E El Camino Real 1st Floor, Mountain View, CA 94040, USA; Sunnyvale, CA, USA
| |
Collapse
|
5
|
Mazzotti A, Langone L, Artioli E, Zielli SO, Arceri A, Setti S, Leigheb M, Samaila EM, Faldini C. Applications and Future Perspective of Pulsed Electromagnetic Fields in Foot and Ankle Sport-Related Injuries. APPLIED SCIENCES 2023; 13:5807. [DOI: 10.3390/app13095807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Foot and ankle injuries are common in many sports. One of the main athletes issues is the time for sport resumption after trauma. Recently, extensive efforts have been made to speed up the athletes’ return-to-sport and to prevent joint degeneration. Among the conservative treatment options, biophysical stimulation with pulsed electromagnetic fields (PEMFs) is listed. This narrative review aims to outline current applications of PEMFs in main foot and ankle sport-related injuries, in particular in the treatment of bone marrow edema, osteochondral defects, fractures, and nonunions. Despite further high-quality studies on foot and ankle injuries are needed, PEMFs seem to be a valid aid to enhance the endogenous osteogenesis, to resolve the bone marrow edema, to inhibit the joint inflammation, preserving articular cartilage degeneration, and to relieve pain.
Collapse
Affiliation(s)
- Antonio Mazzotti
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Langone
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elena Artioli
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Simone Ottavio Zielli
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alberto Arceri
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | | | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elena Manuela Samaila
- Department of Orthopedics and Trauma Surgery, University of Verona, Surgical Center “P. Confortini”, P.le A. Stefani, 1, 37126 Verona, Italy
| | - Cesare Faldini
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Díaz-Del Cerro E, De la Fuente M. Positive effects of pulsed electromagnetic fields on behavior, immune function, and oxidative and inflammatory state in old mice. Electromagn Biol Med 2023; 42:51-66. [PMID: 37585725 DOI: 10.1080/15368378.2023.2243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The establishment of chronic oxidative and inflammatory stress with aging leads to the deterioration of the nervous and immune systems and, consequently, to the loss of health. The aim of this work was to study the effect of exposure to low-frequency pulsed electromagnetic fields (PEMFs) produced by the NEURALTER® system (15 min/day for 4 weeks) in the behavior, immune functions, and oxidative and inflammatory state of old mice. Female old CD1 mice were divided into three groups: control group, handling control group and Neuralter group. Then, behavioral tests were performed, and peritoneal leukocytes were extracted to analyze function, oxidative and inflammatory parameters. In peritoneal leukocytes from old mice, the effects in vitro of 15 min with NEURALTER® were studied on function and oxidative parameters. The results show that after this type of treatment, old mice had greater coordination and locomotion, better immune function, and an oxidative-inflammatory state. Similarly, the immune function and oxidative state of leukocytes showed an improvement when these cells were exposed directly to the NEURALTER® system. In conclusion, the exposure to low-frequency PEMFs produced by the NEURALTER® system has beneficial effects on health in aging. In addition, this effect is direct, at least in part, on immune cells.
Collapse
Affiliation(s)
- Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre (i+12), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
7
|
Aifantis ID, Ampadiotaki MM, Pallis D, Tsivelekas KK, Papadakis SA, Chronopoulos E. Biophysical Enhancement in Fracture Healing: A Review of the Literature. Cureus 2023; 15:e37704. [PMID: 37206524 PMCID: PMC10191239 DOI: 10.7759/cureus.37704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Bone healing constitutes a complex process involving cellular and pathophysiological mechanisms. Despite progress in osteosynthesis techniques, fracture union continues to be challenging. In some cases, it is not ultimately achieved or is delayed relative to the expected time resulting in economic and social outcomes for the patient and the health system. In addition to surgical treatment, biophysical methods have been developed to assist in fracture healing used in combination or individually. Biophysical stimulation is a non-invasive therapy used in orthopedic practice to increase and enhance tissue's reparative and anabolic activities. This study reviewed the existing literature, including electromagnetic fields, ultrasound, laser, extracorporeal shockwave therapy, and electrical stimulation, and revealed the efficacy of biophysical stimulation for bone healing. This study aims to define if these methods are helpful, especially in cases of non-union. Biophysical stimulation requires care and precision in use to ensure the success expected of it by physicians and patients.
Collapse
Affiliation(s)
| | | | - Dimitrios Pallis
- 2nd Orthopedic Department, KAT Attica General Hospital, Athens, GRC
| | | | | | | |
Collapse
|
8
|
Chen Y, Lu C, Shang X, Wu K, Chen K. Primary cilia: The central role in the electromagnetic field induced bone healing. Front Pharmacol 2022; 13:1062119. [DOI: 10.3389/fphar.2022.1062119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Primary cilia have emerged as the cellular “antenna” that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.
Collapse
|
9
|
Yang J, Zhang X, Liang W, Chen G, Ma Y, Zhou Y, Fen R, Jiang K. Efficacy of adjuvant treatment for fracture nonunion/delayed union: a network meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2022; 23:481. [PMID: 35597937 PMCID: PMC9123731 DOI: 10.1186/s12891-022-05407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Fracture nonunion/delayed union seriously affects physical and mental health and quality of life. The aim of this study was to evaluate the relative efficacy of different adjuvant treatments for nonunion/delayed union by network meta-analysis. METHODS A comprehensive search was performed to identify randomized controlled trials (RCTs) evaluating adjuvant treatment in the management of nonunion/delayed union. A network meta-analysis reporting on healing rate, healing time, and adverse effect (AE) outcomes was conducted to assess and compare different interventions. RESULTS Thirty studies were included in the analysis. For the healing rate outcome, bone marrow aspirate (BMA) + autologous cancellous bone (ACB) was found to be significantly better than ACB alone (odds ratio: 0.12; 95% confidence interval: 0.03, 0.59). In the ranking results, BMA+ platelet-rich plasma (PRP) (96%), BMA + ACB (90%), and BMA alone (82%) showed relative advantages in the healing rate. Low-intensity pulsed ultrasonography (LIUS) intervention significantly shortened the healing time compared with ACB (SMD: -9.26; 95% CI: - 14.64, - 3.87). LIUS (100%), BMA + PRP (74%), and bone morphogenetic proteins (BMPs) (69%) have relative advantages. Compared with the control, electromagnetic field (EMF) (OR: 13.21; 95% CI: 1.58, 110.40) and extracorporeal shock wave (ESWT) (OR: 4.90; 95% CI: 1.38, 17.43) had a higher AE risk. CONCLUSIONS Among the current intervention strategies, BMA in combination with PRP and ACB can improve the healing rate of nonunion/delayed union. LIUS can significantly shorten the healing time. EMF and ESWT may have a high risk of AE. However, large-scale, well-designed studies are still needed to confirm the results. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| | - Xiangmin Zhang
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| | - Wangbo Liang
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China.
| | - Guo Chen
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China.
| | - Yanbo Ma
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| | - Yonghua Zhou
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| | - Rong Fen
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| | - Kaichang Jiang
- Department of Orthopedics and Traumatology, Yuxi Municipal Hospital of TCM, 53 Nie er Rd, Yuxi, Yunnan Province, 653100, People's Republic of China
| |
Collapse
|
10
|
Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage. BIOLOGY 2022; 11:biology11030402. [PMID: 35336776 PMCID: PMC8945722 DOI: 10.3390/biology11030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Pulsed electromagnetic fields (PEMFs) are a type of biophysical stimulation that has been shown to be effective in improving bone regeneration and preventing bone loss. Their use dates back to the 1970s, but a gold standard treatment protocol has not yet been defined. PEMF efficacy relies on the generation of biopotentials, which activate several molecular pathways. There is currently no clear understanding of the effects on bone healing and, in addition, there are several animal models relevant to this issue. Therefore, drawing guidelines and conclusions from the analysis of the studies is difficult. In vivo investigations on PEMF stimulation are reviewed in this paper, focusing on molecular and morphological improvements in bone. Currently, there is little knowledge about the biological mechanism of PEMF and its effect on bone healing. This is due to the variability of crucial characteristics of electro-magnetic fields, such as amplitude and exposure frequency, which may influence the type of biological response. Furthermore, a different responsiveness of cells involved in the bone healing process is documented. Heterogeneous setting parameters and different outcome measures are considered in various animal models. Therefore, achieving comparable results is difficult. Abstract Biophysical energies are a versatile tool to stimulate tissues by generating biopotentials. In particular, pulsed electromagnetic field (PEMF) stimulation has intrigued researchers since the 1970s. To date, many investigations have been carried out in vivo, but a gold standard treatment protocol has not yet been defined. The main obstacles are represented by the complex setting of PEMF characteristics, the variety of animal models (including direct and indirect bone damage) and the lack of a complete understanding of the molecular pathways involved. In the present review the main studies about PEMF stimulation in animal models with bone impairment were reviewed. PEMF signal characteristics were investigated, as well as their effect on molecular pathways and osseous morphological features. We believe that this review might be a useful starting point for a prospective study in a clinical setting. Consistent evidence from the literature suggests a potential beneficial role of PEMF in clinical practice. Nevertheless, the wide variability of selected parameters (frequency, duration, and amplitude) and the heterogeneity of applied protocols make it difficult to draw certain conclusions about PEMF effectiveness in clinical implementation to promote bone healing. Deepening the knowledge regarding the most consistent results reported in literature to date, we believe that this review may be a useful starting point to propose standardized experimental guidelines. This might provide a solid base for further controlled trials, to investigate PEMF efficacy in bone damage conditions during routine clinical practice.
Collapse
|
11
|
Fifth Metatarsal Jones Fractures: Diagnosis and Treatment. J Am Acad Orthop Surg 2022; 30:e470-e479. [PMID: 34932521 DOI: 10.5435/jaaos-d-21-00542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/13/2021] [Indexed: 02/01/2023] Open
Abstract
A Jones fracture, located at the metaphyseal-diaphyseal junction of the fifth metatarsal, is at an increased risk for nonunion and continued pain. Even with excellent surgical technique and postoperative management, a delayed union and refracture can occur. These complications in athletes can have deleterious effects on performance and delay return to sport. This article reviews the classification, diagnosis, and treatment considerations for Jones fractures. Treatment options including nonsurgical management, intramedullary screw, and plate fixation will be covered. The authors preferred technique using intramedullary screw fixation will be discussed in depth. Emerging considerations including biologic augmentation, primary bone grafting, and refracture will be examined as well. Ideal rehabilitation protocols, orthoses, and shoe wear suggestions will be given to optimize patient outcomes.
Collapse
|
12
|
Bezuglov E, Zholinsky A, Chernov G, Khaitin V, Goncharov E, Waśkiewicz Z, Barskova E, Lazarev A. Conservative Treatment of the Fifth Metatarsal Bone Fractures in Professional Football Players Using Platelet-Rich Plasma. Foot Ankle Spec 2022; 15:62-66. [PMID: 34142576 DOI: 10.1177/19386400211017368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Injuries of the metatarsal bones in football are relatively rare and in most cases are localized in the fifth metatarsal. The gold standard of the diagnosis of fractures in this area can be X-rays, which in most cases allows verifying the diagnosis. The treatment tactics depend on the localization of the fracture according to Lawrence and Botte's classification: 3 zones of localization are distinguished. Fractures located in zones 2 and 3 belong to a high-risk group due to delayed consolidation and nonunion and therefore athletes are most often treated with osteosynthesis using intramedullary screws. The minimal recovery time for this type of treatment is at least 8 weeks. This report describes 7 cases of the fifth metatarsal bone fractures, located in zones 2 and 3 in professional football players who were treated with an immobilization boot, cryotherapy, nutritional supplements of calcium and vitamin D, and local injections of platelet-rich plasma, which contains numerous growth factors. The deadline for returning to regular training activities was 43 to 50 days, and there was no relapse of damage within 6 months of follow-up.Levels of Evidence: Level of evidence 4: case report study.
Collapse
Affiliation(s)
- Eduard Bezuglov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Russian Football Union, Moscow, Russian Federation.,Federal Research and Clinical Center of Sports Medicine and Rehabilitation, Federal Medical Biological Agency, Moscow, Russian Federation
| | - Andrey Zholinsky
- Federal Research and Clinical Center of Sports Medicine and Rehabilitation, Federal Medical Biological Agency, Moscow, Russian Federation
| | | | | | - Evgeniy Goncharov
- Russian Medical Academy of Continuous Professional, Moscow, Russian Federation.,Traumatology and Orthopedics Center, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Zbigniew Waśkiewicz
- Institute of Sport Science, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Ekaterina Barskova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,High Performance Sports Laboratory, Moscow Witte University
| | - Artemii Lazarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,High Performance Sports Laboratory, Moscow Witte University.,A.I. Burnazyan Federal Medical and Biophysical Center, Federal Biomedical Agency of Russia, Moscow, Russian Federation
| |
Collapse
|
13
|
Barati M, Darvishi B, Javidi MA, Mohammadian A, Shariatpanahi SP, Eisavand MR, Madjid Ansari A. Cellular stress response to extremely low-frequency electromagnetic fields (ELF-EMF): An explanation for controversial effects of ELF-EMF on apoptosis. Cell Prolif 2021; 54:e13154. [PMID: 34741480 PMCID: PMC8666288 DOI: 10.1111/cpr.13154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Impaired apoptosis is one of the hallmarks of cancer, and almost all of the non‐surgical approaches of eradicating tumour cells somehow promote induction of apoptosis. Indeed, numerous studies have stated that non‐ionizing non‐thermal extremely low‐frequency magnetic fields (ELF‐MF) can modulate the induction of apoptosis in exposed cells; however, much controversy exists in observations. When cells are exposed to ELF‐EMF alone, very low or no statistically significant changes in apoptosis are observed. Contrarily, exposure to ELF‐EMF in the presence of a co‐stressor, including a chemotherapeutic agent or ionizing radiation, can either potentiate or inhibit apoptotic effects of the co‐stressor. In our idea, the main point neglected in interpreting these discrepancies is “the cellular stress responses” of cells following ELF‐EMF exposure and its interplay with apoptosis. The main purpose of the current review was to outline the triangle of ELF‐EMF, the cellular stress response of cells and apoptosis and to interpret and unify discrepancies in results based on it. Therefore, initially, we will describe studies performed on identifying the effect of ELF‐EMF on induction/inhibition of apoptosis and enumerate proposed pathways through which ELF‐EMF exposure may affect apoptosis; then, we will explain cellular stress response and cues for its induction in response to ELF‐EMF exposure; and finally, we will explain why such controversies have been observed by different investigators.
Collapse
Affiliation(s)
- Mojdeh Barati
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ali Mohammadian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Eisavand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Hollenberg AM, Huber A, Smith CO, Eliseev RA. Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair. Sci Rep 2021; 11:19114. [PMID: 34580378 PMCID: PMC8476611 DOI: 10.1038/s41598-021-98625-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Aric Huber
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
- University of Rochester Medical Center, 601 Elmwood Ave, Rm 1-8541, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Goodloe JB, Cregar WM, Caughman A, Bailey EP, Barfield WR, Gross CE. Surgical Management of Proximal Fifth Metatarsal Fractures in Elite Athletes: A Systematic Review. Orthop J Sports Med 2021; 9:23259671211037647. [PMID: 34552993 PMCID: PMC8450619 DOI: 10.1177/23259671211037647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
Background As a result of the high physical demand in sport, elite athletes are particularly prone to fifth metatarsal fractures. These injuries are typically managed surgically to avoid high rates of delayed union and allow for quicker return to play (RTP). Purpose To review studies showing clinical and radiographic outcomes, RTP rates, and complication rates after different surgical treatment modalities for fifth metatarsal fractures exclusively in elite-level athletes. Study Design Systematic review; Level of evidence, 4. Methods A systematic search was conducted within the PubMed, Scopus, and Cochrane databases from January 2000 to January 2020. Inclusion criteria consisted of clinical outcome studies after operative management of fifth metatarsal fractures in elite athletes. Exclusion criteria consisted of nonoperative management, high school or recreational-level athletic participation, nonclinical studies, expert opinions, and case series with <5 patients. Results A total of 12 studies met inclusion and exclusion criteria, comprising 280 fifth metatarsal fractures treated surgically. Intramedullary screw fixation was the most common fixation construct (47.9%), and some form of intraoperative adjunctive treatment (calcaneal autograft, iliac crest bone graft, bone marrow aspirate concentrate, demineralized bone matrix) was used in 67% of cases. Radiographic union was achieved in 96.7% of fractures regardless of surgical construct used. The overall mean time to union was 9.19 weeks, with RTP at a mean of 11.15 weeks. The overall reported complication rate was 22.5%, with varying severity of complications. Refracture rates were comparable between the different surgical constructs used, and the overall refracture rate was 8.6%. Conclusion Elite athletes appeared to have a high rate of union and reliably returned to the same level of competition after surgical management of fifth metatarsal fractures, irrespective of surgical construct used. Despite this, the overall complication rate was >20%. Specific recommendations for optimal surgical management could not be made based on the heterogeneity of the included studies.
Collapse
Affiliation(s)
- J Brett Goodloe
- Department of Orthopaedic Surgery and Physical Rehabilitation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William M Cregar
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Alexander Caughman
- Department of Orthopaedic Surgery and Physical Rehabilitation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evan P Bailey
- Department of Orthopaedic Surgery and Physical Rehabilitation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William R Barfield
- Department of Orthopaedic Surgery and Physical Rehabilitation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher E Gross
- Department of Orthopaedic Surgery and Physical Rehabilitation, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
16
|
DNMT1 and miRNAs: possible epigenetics footprints in electromagnetic fields utilization in oncology. Med Oncol 2021; 38:125. [PMID: 34495398 DOI: 10.1007/s12032-021-01574-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Many studies were performed to unravel the effects of different types of Electromagnetic fields (EMFs) on biological systems. Some studies were conducted to exploit EMFs for medical purposes mainly in cancer therapy. Although many studies suggest that the EMFs exposures can be effective in pre-clinical cancer issues, the treatment outcomes of these exposures on the cancer cells, especially at the molecular level, are challenging and overwhelmingly complicated yet. This article aims to review the epigenetic mechanisms that can be altered by EMFs exposures with the main emphasis on Extremely low frequency electromagnetic field (ELF-EMF). The epigenetic mechanisms are reversible and affected by environmental factors, thus, EMFs exposures can modulate these mechanisms. According to the reports, ELF-EMF exposures affect epigenetic machinery directly or through the molecular signaling pathways. ELF-EMF in association with DNA methylation, histone modification, miRNAs, and nucleosome remodeling could affect the homeostasis of cancer cells and play a role in DNA damage repairing, apoptosis induction, prevention of metastasis, differentiation, and cell cycle regulation. In general, the result of this study shows that ELF-EMF exposure probably can be effective in cancer epigenetic therapy, but more molecular and clinical investigations are needed to clarify the safe and specific dosimetric characteristics of ELF-EMF in practice.
Collapse
|
17
|
Abstract
The goal of rehabilitation is to restore function and mobility and reduce pain associated with chronic disease. In human medicine, physical therapy is standard of care for acute and chronic injuries and an integral component of postoperative recovery. Although there is a dearth of evidence-based veterinary medical studies in rehabilitation therapy and modalities for forelimb injuries in dogs, some extrapolation from human medicine can be made and applied. When developing a rehabilitation and therapeutic plan, the biomechanics of the affected limb and timeline of tissue healing of the target tissue and/or joint are important to consider.
Collapse
Affiliation(s)
- Jennifer A Brown
- Florida Veterinary Rehabilitation and Sports Medicine, 11016 North Dale Mabry Highway, #202, Tampa, FL 33618, USA.
| | - Julia Tomlinson
- Twin Cities Animal Rehabilitation & Sports Medicine Clinic, 12010 Riverwood Drive, Burnsville, MN 55337, USA
| |
Collapse
|
18
|
Caliogna L, Medetti M, Bina V, Brancato AM, Castelli A, Jannelli E, Ivone A, Gastaldi G, Annunziata S, Mosconi M, Pasta G. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications. Int J Mol Sci 2021; 22:7403. [PMID: 34299021 PMCID: PMC8303968 DOI: 10.3390/ijms22147403] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
In this article, we provide an extensive review of the recent literature of the signaling pathways modulated by Pulsed Electromagnetic Fields (PEMFs) and PEMFs clinical application. A review of the literature was performed on two medical electronic databases (PubMed and Embase) from 3 to 5 March 2021. Three authors performed the evaluation of the studies and the data extraction. All studies for this review were selected following these inclusion criteria: studies written in English, studies available in full text and studies published in peer-reviewed journal. Molecular biology, identifying cell membrane receptors and pathways involved in bone healing, and studying PEMFs target of action are giving a solid basis for clinical applications of PEMFs. However, further biology studies and clinical trials with clear and standardized parameters (intensity, frequency, dose, duration, type of coil) are required to clarify the precise dose-response relationship and to understand the real applications in clinical practice of PEMFs.
Collapse
Affiliation(s)
- Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Marta Medetti
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Alberto Castelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Alessandro Ivone
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.M.); (A.M.B.); (A.C.); (E.J.); (A.I.); (S.A.); (M.M.); (G.P.)
| |
Collapse
|
19
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Alekseeva LI, Byalovsky YY, Zagorodny NV, Ivanova GE, Karateev DE, Konchugova TV, Rakitina IS, Strakhov MA. [Pathophysiological mechanisms of the therapeutic action of alternating electromagnetic fields in the treatment of osteoarticular pathology]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2021; 98:80-90. [PMID: 34223758 DOI: 10.17116/kurort20219803180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of osteoarticular pathology with an alternating electromagnetic field (AEMF) is used today as a promising, non-invasive and safe strategy of physiotherapy. It has been shown that the action of alternating electromagnetic fields on the musculoskeletal system triggers signaling cascades that effectively contribute to the restoration of bone and articular tissue. The pathophysiological mechanisms underlying the cellular and subcellular effects of stimulation by an alternating electromagnetic field during the restoration of bone and articular tissue are considered. It was pointed out the several key signaling pathways involved in the restoration of bone and articular tissue under the influence of electromagnetic fields with an analysis of the potential for therapeutic application of electromagnetic fields alone or in combination with other available therapies.
Collapse
Affiliation(s)
- L I Alekseeva
- V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | - N V Zagorodny
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, Moscow, Russia
| | - G E Ivanova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - D E Karateev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - T V Konchugova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - M A Strakhov
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Abstract
Jones fractures in both elite and recreational athletes are best treated with surgical fixation, given superior results as compared to nonoperative management. While screw specifics remain controversial, intramedullary screw fixation is established as the standard surgical technique. Plate fixation also has shown excellent outcomes. Complications of refracture, nonunion, and delayed union require careful evaluation for contributions of early return to play, implant characteristics, and anatomic/metabolic abnormality. Revision fixation with autograft and biologic augmentation is supported in the literature, with ongoing inquiry to optimizing specific implants and adjuvants.
Collapse
Affiliation(s)
- David J Ruta
- Bellin Health Titletown Sports Medicine and Orthopedics, 1970 S. Ridge Road, Green Bay, WI 54304, USA.
| | - David Parker
- University of Tennessee-Campbell Clinic Orthopaedics, 1400 S. Germantown Road, Germantown, TN 38138, USA
| |
Collapse
|
22
|
Hu H, Yang W, Zeng Q, Chen W, Zhu Y, Liu W, Wang S, Wang B, Shao Z, Zhang Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother 2020; 131:110767. [PMID: 33152929 DOI: 10.1016/j.biopha.2020.110767] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that an exogenous electromagnetic field might be involved in many biologic processes which are of great importance for therapeutic interventions. Pulsed electromagnetic fields (PEMFs) are known to be a noninvasive, safe and effective therapy agent without apparent side effects. Numerous studies have shown that PEMFs possess the potential to become a stand-alone or adjunctive treatment modality for treating musculoskeletal disorders. However, several issues remain unresolved. Prior to their widely clinical application, further researches from well-designed, high-quality studies are still required to standardize the treatment parameters and derive the optimal protocol for health-care decision making. In this review, we aim to provide current evidence on the mechanism of action, clinical applications, and controversies of PEMFs in musculoskeletal disorders.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qianwen Zeng
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - YanBin Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| |
Collapse
|
23
|
Zhang Z, Hu P, Wang Z, Qiu X, Chen Y. BDNF promoted osteoblast migration and fracture healing by up-regulating integrin β1 via TrkB-mediated ERK1/2 and AKT signalling. J Cell Mol Med 2020; 24:10792-10802. [PMID: 32803867 PMCID: PMC7521296 DOI: 10.1111/jcmm.15704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Brain‐derived neurotrophic factor (BDNF) has been reported to participate in fracture healing, whereas the mechanism is still unclear. Since osteoblast migration is important for fracture healing, investigating effects of BDNF on osteoblasts migration may help to reveal its mechanism. Here, MC3T3‐E1 cells were used in vitro while closed femur fracture mice were applied in vivo. Cells migration was assessed with Transwell assay. The protein expression was analysed by immunoblotting. X‐ray and Micro‐CT were performed at different time after fracture. Our results showed that BDNF promoted MC3T3‐E1 cells migration, integrin β1 expression and ERK1/2 and AKT phosphorylation. K252a, a specific inhibitor for TrkB, suppressed BDNF‐induced migration, integrin β1 expression and activation of ERK1/2 and AKT. PD98059 (an ERK1/2 inhibitor) and LY294002 (an AKT inhibitor) both inhibited BDNF‐induced migration and integrin β1 expression while integrin β1 blocking antibody only suppressed cell migration. X‐ray and Micro‐CT analyses showed that the adenoviral carried integrin β1 shRNA group had slower fracture healing at 7 and 21 days, but not 35 days compared to the control group. Thus, we proposed that BDNF stimulated MC3T3‐E1 cells migration by up‐regulating integrin β1 via TrkB mediated ERK1/2 and AKT signalling, and this may help to enhance the fracture healing.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Polu Hu
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xusheng Qiu
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yixin Chen
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
24
|
|
25
|
Lullini G, Cammisa E, Setti S, Sassoli I, Zaffagnini S, Marcheggiani Muccioli GM. Role of pulsed electromagnetic fields after joint replacements. World J Orthop 2020; 11:285-293. [PMID: 32572365 PMCID: PMC7298453 DOI: 10.5312/wjo.v11.i6.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Although the rate of patients reporting satisfaction is generally high after joint replacement surgery, up to 23% after total hip replacement and 34% after total knee arthroplasty of treated subjects report discomfort or pain 1 year after surgery. Moreover, chronic or subacute inflammation is reported in some cases even a long time after surgery. Another open and debated issue in prosthetic surgery is implant survivorship, especially when related to good prosthesis bone ingrowth. Pulsed Electro Magnetic Fields (PEMFs) treatment, although initially recommended after total joint replacement to promote bone ingrowth and to reduce inflammation and pain, is not currently part of usual clinical practice. The purpose of this review was to analyze existing literature on PEMFs effects in joint replacement surgery and to report results of clinical studies and current indications. We selected all currently available prospective studies or RCT on the use of PEMFs in total joint replacement with the purpose of investigating effects of PEMFs on recovery, pain relief and patients’ satisfaction following hip, knee or shoulder arthroplasty. All the studies analyzed reported no adverse effects, and good patient compliance to the treatment. The available literature shows that early control of joint inflammation process in the first days after surgery through the use of PEMFs should be considered an effective completion of the surgical procedure to improve the patient’s functional recovery.
Collapse
Affiliation(s)
- Giada Lullini
- Laboratorio di Analisi del Movimento e di valutazione funzionale protesi, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Eugenio Cammisa
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefania Setti
- Laboratory of Clinical Biophysics, IGEA S.p.A. Clinical Biophysics, 41012 Carpi (Mo), Italy
| | - Iacopo Sassoli
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | | |
Collapse
|
26
|
Peng L, Fu C, Xiong F, Zhang Q, Liang Z, Chen L, He C, Wei Q. Effectiveness of Pulsed Electromagnetic Fields on Bone Healing: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bioelectromagnetics 2020; 41:323-337. [PMID: 32495506 DOI: 10.1002/bem.22271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/08/2020] [Accepted: 05/10/2020] [Indexed: 02/05/2023]
Abstract
The effect of pulsed electromagnetic field (PEMF) on bone healing is still uncertain and it has not been established as a standardized treatment. The aim of this systematic review and meta-analysis is to evaluate the effect of PEMF on bone healing in patients with fracture. We searched CNKI, Wan Fang, VIP, EMbase, PubMed, CENTRAL, Web of Science, Physiotherapy Evidence Database, and Open Grey websites for randomized controlled trials (published before July 2019 in English or Chinese) comparing any form of PEMF to sham. Reference lists were also searched. Related data were extracted by two investigators independently. The bias risk of the articles and the evidence strength of the outcomes were evaluated. Twenty-two studies were eligible and included in our analysis (n = 1,468 participants). The pooled results of 14 studies (n = 1,131 participants) demonstrated that healing rate in PEMF group was 79.7% (443/556), and that in the control group was 64.3% (370/575). PEMF increased healing rate (RR = 1.22; 95% confidence interval [CI] = 1.10-1.35; I2 = 48%) by the Mantel-Haenszel analysis, relieved pain (standardized mean difference (SMD) = -0.49; 95% CI = -0.88 to -0.10; I2 = 60%) by the inverse variance analysis, and accelerated healing time (SMD = -1.01; 95% CI = -2.01 to -0.00; I2 = 90%) by the inverse variance analysis. Moderate quality evidence suggested that PEMF increased healing rate and relieved pain of fracture, and very low-quality evidence showed that PEMF accelerated healing time. Larger and higher quality randomized controlled trials and pre-clinical studies of optimal frequency, amplitude, and duration parameters are needed. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lihong Peng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Zejun Liang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, P.R. China
| |
Collapse
|
27
|
Abstract
In an era of continual single-sport specialization and year-round training, overuse injuries, including stress injuries of bone, are increasingly common. These injuries can be season- or even career-ending. For many elite and professional athletes, the traditional treatment strategy of immobilization and extended rest from sports participation is often not practical or acceptable. An understanding of modern strategies for evaluating and treating stress fractures is paramount for maintaining athletic participation and optimal athletic performance. This begins with the ability to categorize and stratify bony stress injuries by both severity and risk of fracture progression. Surgical procedures such as open reduction and internal fixation or intramedullary fixation with possible bone grafting remain the standard of care for chronic or severe stress fractures. However, emerging techniques to augment the biologic environment are a minimally invasive adjunct for stimulating and supporting bone healing in elite-level athletes to optimize bone health, expedite recovery, and decrease the risk of nonunion or catastrophic fracture.
Collapse
|
28
|
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:347-368. [PMID: 31565000 PMCID: PMC6746309 DOI: 10.2147/mder.s214152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The potential for using non-ionizing electromagnetic fields (EMF; at frequencies from 0 Hz up to the THz range) for medical purposes has been of interest since many decades. A number of established and familiar methods are in use all over the world. This review, however, provides an overview of applications that already play some clinical role or are in earlier stages of development. The covered methods include modalities used for bone healing, cancer treatment, neurological conditions, and diathermy. In addition, certain other potential clinical areas are touched upon. Most of the reviewed technologies deal with therapy, whereas just a few diagnostic approaches are mentioned. None of the discussed methods are having such a strong impact in their field of use that they would be expected to replace conventional methods. Partly this is due to a knowledge base that lacks mechanistic explanations for EMF effects at low-intensity levels, which often are used in the applications. Thus, the possible optimal use of EMF approaches is restricted. Other reasons for the limited impact include a scarcity of well-performed randomized clinical trials that convincingly show the efficacy of the methods and that standardized user protocols are mostly lacking. Presently, it seems that some EMF-based methods can have a niche role in treatment and diagnostics of certain conditions, mostly as a complement to or in combination with other, more established, methods. Further development and a stronger impact of these technologies need a better understanding of the interaction mechanisms between EMF and biological systems at lower intensity levels. The importance of the different physical parameters of the EMF exposure needs also further investigations.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| | - Myrtill Simkó
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| |
Collapse
|
29
|
Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? Eur J Trauma Emerg Surg 2019; 46:245-264. [PMID: 30955053 DOI: 10.1007/s00068-019-01127-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment. METHODS To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients. RESULTS Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results. CONCLUSION Despite their awareness of EStim's pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients.
Collapse
|
30
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
31
|
Chow CL, Lui TH. Endoscopic Management of Nonunion of the Tuberosity of the Fifth Metatarsal. Arthrosc Tech 2019; 8:e105-e109. [PMID: 30899660 PMCID: PMC6410346 DOI: 10.1016/j.eats.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023] Open
Abstract
Tuberosity avulsion fractures of the fifth metatarsal are common and the lateral band of the plantar aponeurosis as the structure more likely to cause these fractures. Most tuberosity avulsion fractures heal by 8 weeks with conservative treatment. Symptomatic nonunion can occasionally occur. Internal fixation with or without bone graft is the treatment of choice for painful nonunion if conservative treatment fails. The purpose of this Technical Note is to describe the details of endoscopic management of nonunion of the tuberosity of the fifth metatarsal without diastasis. This includes endoscopic release of the nonunion site, debridement of the fibrous tissue, microfracture of the sclerotic bone surfaces, and percutaneous screw fixation.
Collapse
Affiliation(s)
| | - Tun Hing Lui
- Address correspondence to Tun Hing Lui, M.B.B.S.(H.K.), F.R.C.S.(Edin.), F.H.K.A.M., F.H.K.C.O.S., Department of Orthopaedics and Traumatology, North District Hospital, 9 Po Kin Rd, Sheung Shui, NT, Hong Kong SAR, China.
| |
Collapse
|
32
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
33
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
34
|
Romanò CL, Morelli I, Romanò D, Meani E, Drago L. ICS classification system of infected osteosynthesis: Long-term results. Injury 2018; 49:564-569. [PMID: 29361293 DOI: 10.1016/j.injury.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
The best treatment strategy for infected osteosyntheses is still debated. While hardware removal or eventually early device exchange may be necessary in most of the cases, temporary hardware retention until fracture healing can be a valid alternative option in others. Aim of the present study is to report the long-term results of 215 patients with infected osteosyntheses, treated according to the ICS (Infection, Callus, Stability) classification in two Italian hospitals. Patients classified as ICS Type 1 (N = 83) feature callus progression and hardware stability, in spite of the presence of infection; these patients were treated with suppressive antibiotic therapy coupled with local debridement in 18.1% of the cases, and no hardware removal until bone healing. Type 2 patients (N = 75) are characterized by the presence of infection and hardware stability, but no callus progression; these patients were treated as Type 1 patients, but with additional callus stimulation therapies. Type 3 patients (N = 57), showing infection, no callus progression and loss of hardware stability, underwent removal and exchange of the fixation device. Considering only the initial treatment, performed according to the ICS classification, at a minimum 5 years follow up, 89.3% achieved bone healing and 93.5% did not show infection recurrence. The ICS classification appears as a useful and reliable tool to help standardizing the decision-making process in treating infected osteosynthesis with the most conservative approach.
Collapse
Affiliation(s)
- Carlo L Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy
| | - Ilaria Morelli
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy; Residency Program in Orthopaedics and Trauma, University of Milan, Italy.
| | - Delia Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Lorenzo Drago
- Clinical-Chemistry and Microbiology Lab, I.R.C.C.S. Galeazzi Orthopedic Institute, Milan - Laboratory of Clinical Microbiology, Department of Biomedical Sciences for Health, University of Milan, Italy
| |
Collapse
|
35
|
Varner KE, Harris JD. The Proximal Fifth Metatarsal Metadiaphyseal Jones Fracture: Intramedullary Screw vs Plantar Plate. OPER TECHN SPORT MED 2017. [DOI: 10.1053/j.otsm.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Abstract
PURPOSE OF REVIEW This study aimed to review indications, complications, and outcomes of zone II and III fifth metatarsal fractures based on recent literature. RECENT FINDINGS High rates of nonunion, delayed union, and refracture in athletes treated non-operatively. The standard of care is operative treatment in athletes with intramedullary fixation. Operative treatment of zone II and III fractures in athletes will decrease the risk of nonunion and refracture while leading to an earlier return to play.
Collapse
Affiliation(s)
- Michael Le
- Department of Orthopaedics, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC, 28203, USA
| | - Robert Anderson
- OrthoCarolina Foot & Ankle Institute, 2001 Vail Avenue, Suite 200B, Charlotte, NC, 28207, USA.
| |
Collapse
|