1
|
Zhu K, Sheng C, Zhang L, Yang Y, Chen X, Jiang T, Song J, Zhang D, Wang X, Zhao H, Sun L, Zhou L, Tao B, Liu J. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Cell Commun Signal 2025; 23:26. [PMID: 39810243 PMCID: PMC11730813 DOI: 10.1186/s12964-024-02021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown. Here, we revealed the indispensable role of a class III histone deacetylase (SIRT5) in the processes of RANKL-induced osteoclast differentiation and activation. SIRT5 expression in osteoclasts was increased during osteoclastogenesis upon stimulation with RANKL. The RANKL-induced signaling activation was suppressed in SIRT5-deficient osteoclasts but enhanced by SIRT5 overexpression. Mice with global or conditional monocytic lineage knockout of SIRT5 had increased bone mass and reduced osteoclast numbers. In the cytoplasm, SIRT5 interacted with the scaffold protein JNK-interacting protein 4 (JIP4) to finely regulate MAPK signaling, which was critical for osteoclast differentiation and activation. Pharmacological inhibition of the catalytic activity of SIRT5 effectively reversed bone loss in ovariectomized mice. Taken together, the results of this study reveal that the SIRT5-JIP4 axis is a novel positive regulator that finely regulates RANKL-induced osteoclast differentiation and suggest that targeting this axis is a therapeutic strategy for preventing osteoporotic bone loss.
Collapse
Affiliation(s)
- Kecheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
ZHANG MINGCAI, CAMPBELL TANNER, FALCON SPENCER, WANG JINXI. Regulatory role of NFAT1 signaling in articular chondrocyte activities and osteoarthritis pathogenesis. BIOCELL 2023; 47:2125-2132. [PMID: 37974562 PMCID: PMC10651080 DOI: 10.32604/biocell.2023.030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/26/2023] [Indexed: 11/19/2023]
Abstract
Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness, and deformity. OA is now considered a whole joint disease; however, the breakdown of the articular cartilage remains the major hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding or reversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development is a critical barrier to progress in OA therapy. Recent studies by the current authors' group and others have revealed that the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulates the expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1 exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. This review mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities of articular chondrocytes and its implication in the pathogenesis of OA.
Collapse
Affiliation(s)
- MINGCAI ZHANG
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - TANNER CAMPBELL
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - SPENCER FALCON
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - JINXI WANG
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
4
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
5
|
Wang M, An M, Fan MS, Zhang SS, Sun Z, Zhao Y, Xiang ZM, Sheng J. FAEE exerts a protective effect against osteoporosis by regulating the MAPK signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:467-478. [PMID: 35180021 PMCID: PMC8865110 DOI: 10.1080/13880209.2022.2039216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CONTEXT Ferulic acid ethyl ester (FAEE) is abundant in Ligusticum chuanxiong Hort. (Apiaceae) and grains, and possesses diverse biological activities; but the effects of FAEE on osteoporosis has not been reported. OBJECTIVE This study investigated whether FAEE can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating mitogen-activated protein kinase (MAPK). MATERIALS AND METHODS We stimulated RAW 264.7 cells with receptor activator of NF-κB ligand (RANKL) followed by FAEE. The roles of FAEE in osteoclast production and osteogenic resorption of mature osteoclasts were evaluated by tartrate resistant acid phosphatase (TRAP) staining, expression of osteoclast-specific genes, proteins and MAPK. Ovariectomized (OVX) female Sprague-Dawley rats were administered FAEE (20 mg/kg/day) for 12 weeks to explore its potential in vivo, and then histology was undertaken in combination with cytokines analyses. RESULTS FAEE suppressed RANKL-induced osteoclast formation (96 ± 0.88 vs. 15 ± 1.68) by suppressing the expression of osteoclast-specific genes, proteins and MAPK signalling pathway related proteins (p-ERK/ERK, p-JNK/JNK and p-P38/P38) in vitro. In addition, OVX rats exposed to FAEE maintained their normal calcium (Ca) (2.72 ± 0.02 vs. 2.63 ± 0.03, p < 0.05) balance, increased oestradiol levels (498.3 ± 9.43 vs. 398.7 ± 22.06, p < 0.05), simultaneously reduced levels of bone mineral density (BMD) (0.159 ± 0.0016 vs. 0.153 ± 0.0025, p < 0.05) and bone mineral content (BMC) (0.8 ± 0.0158 vs. 0.68 ± 0.0291, p < 0.01). DISCUSSION AND CONCLUSIONS These findings suggested that FAEE could be used to ameliorate osteoporosis by the MAPK signalling pathway, suggesting that FAEE could be a potential therapeutic candidate for osteoporosis.
Collapse
Affiliation(s)
- Ming‑Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Meng‑Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Ze‑Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yun‑Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
- Yun‑Li Zhao
| | - Ze-Min Xiang
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
- Ze-Min Xiang
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P. R. China
- CONTACT Jun Sheng
| |
Collapse
|
6
|
Lee SJ, Jang SA, Kim SC, Ryuk JA, Ha H. Lophatherum gracile Bronghiart Suppresses Receptor Activator of Nuclear Factor Kappa-B Ligand-Stimulated Osteoclastogenesis and Prevents Ovariectomy-Induced Osteoporosis. Int J Mol Sci 2022; 23:ijms232213942. [PMID: 36430416 PMCID: PMC9699449 DOI: 10.3390/ijms232213942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lophatherum gracile Bronghiart, used in traditional herbal medicine, has many biological properties including antiviral, antipyretic, antitumor, vasorelaxation, and neutrophilic inflammatory effects. However, its modulatory effects on bone metabolism have not been investigated previously. In this study, we examined the effects of a water extract of the leaves of L. gracile (WELG) on osteoclast differentiation and bone loss, and explored its underlying mechanisms. We found that WELG inhibits osteoclastogenesis by suppressing both receptor activator of nuclear factor-κB ligand (RANKL)-induced early activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB)- and RANKL-induced modulation of the positive and negative regulators of osteoclastogenesis in osteoclast precursors. In vivo study demonstrated that WELG protects against bone loss, weight gain, and fat accumulation without affecting uterine atrophy in an ovariectomy-induced postmenopausal osteoporosis mice model. In addition, photochemical analysis of WELG identified active constituents known to have bone-protective effects. Overall, the results of this study suggest that WELG can be a potential candidate for therapy and prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
- Correspondence: ; Tel.: +82-42-868-9367
| |
Collapse
|
7
|
Wang D, Liu L, Qu Z, Zhang B, Gao X, Huang W, Feng M, Gong Y, Kong L, Wang Y, Yan L. Hypoxia-inducible factor 1α enhances RANKL-induced osteoclast differentiation by upregulating the MAPK pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1227. [PMID: 36544674 PMCID: PMC9761153 DOI: 10.21037/atm-22-4603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
Background Hypoxia (low-oxygen tension) and excessive osteoclast activation are common conditions in many bone loss diseases, such as osteoporosis, rheumatoid arthritis (RA), and pathologic fractures. Hypoxia-inducible factor 1 alpha (HIF1α) regulates cellular responses to hypoxic conditions. However, it is not yet known how HIF1α directly affects osteoclast differentiation and activation. This study sought to. explore the effects of HIF1α on osteoclast differentiation and it's molecular mechanisms. Methods L-mimosine, a prolyl hydroxylase (PHDs) domain inhibitor, was used to stabilize HIF1α in normoxia. In the presence of receptor activator of nuclear factor-kB (NF-kB) ligand (RANKL), RAW264.7 cells were cultured and stimulated by treatment with L-mimosine at several doses to maintain various levels of intracellular HIF1α. The multi-nucleated cells were assessed by a tartrate-resistant acid phosphatase (TRAP) and F-actin ring staining assays. The osteoclast-specific genes, such as Cathepsin K, β3-Integrin, TRAP, c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and matrix metallo-proteinase 9 (MMP9), were analyzed by real time-polymerase chain reaction (RT-PCR). The expression of relevant proteins was analyzed by Western blot. Results L-mimosine increased the content of intracellular HIF1α in a dose-dependent manner, which in turn promoted RANKL-induced osteoclast formation and relevant protein expression by upregulating the mitogen-activated protein kinase (MAPK) pathways. Conclusions Our findings suggest that HIF1α directly increases the osteoclast differentiation of RANKL-mediated RAW264.7 cells in vitro by upregulating the MAPK pathways.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Lin Liu
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Zechao Qu
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Bo Zhang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Xiangcheng Gao
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Wangli Huang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Mingzhe Feng
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Yining Gong
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Lingbo Kong
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Yanjun Wang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Liang Yan
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| |
Collapse
|
8
|
Canalis E, Schilling L, Eller T, Yu J. Role of nuclear factor of activated T cells in chondrogenesis osteogenesis and osteochondroma formation. J Endocrinol Invest 2022; 45:1507-1520. [PMID: 35352320 PMCID: PMC10024159 DOI: 10.1007/s40618-022-01781-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE Nuclear factor of activated T cells (NFATc) are transcription factors that play a function in the immune response and in osteoclast differentiation. In the present work, we define the function of NFATc2 in chondrogenic and osteogenic cells. METHODS Nfatc2loxP/loxP and Nfatc1loxP/loxP;Nfatc2loxP/loxP conditional mice were crossed with Prx1-Cre transgenics to inactivate Nfatc2 singly and with Nfatc1. Femurs and vertebrae were examined by microcomputed tomography (µCT) X-Ray images and histology and analyzed for the presence of osteochondromas. RESULTS µCT demonstrated that Prx1-Cre;Nfatc2∆/∆ female mice had transient osteopenia and male mice did not have a cancellous or a cortical bone phenotype when compared to control mice. In contrast, the dual inactivation of Nfatc1 and Nfatc2 in Prx1-expressing cells resulted in cancellous osteopenia and small bones at 1 month of age in both sexes. Nfatc1;Nfatc2 deleted mice exhibited a ~ 50% decrease in bone volume and connectivity. Total bone area, periosteal and endocortical bone perimeters and femoral length were reduced indicating smaller bones. As the mice matured, the shortening of the femoral length persisted, but the osteopenic phenotype resolved and cancellous femoral bone of 4-month-old Nfatc1;Nfatc2 deleted mice was not different from controls although male mice had vertebral osteopenia. In addition, Nfatc1;Nfatc2 deleted mice displayed distortion of the distal metaphysis and, as they matured, the articular presence of mineralized tumors with the appearance of osteochondromas. CONCLUSION Our studies reveal that NFATc1 and NFATc2 are necessary for optimal bone homeostasis and the suppression of osteochondroma formation.
Collapse
Affiliation(s)
- E Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA.
- Departments of Medicine, UConn Health, Farmington, CT, 06030, USA.
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA.
| | - L Schilling
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| | - T Eller
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| | - J Yu
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| |
Collapse
|
9
|
Liu H, Gu R, Huang Q, Liu Y, Liu C, Liao S, Feng W, Xie T, Zhao J, Xu J, Liu Q, Zhan X. Isoliensinine Suppresses Osteoclast Formation Through NF-κB Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front Pharmacol 2022; 13:870553. [PMID: 35935862 PMCID: PMC9353689 DOI: 10.3389/fphar.2022.870553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is among the major contributors of pathologic fracture in postmenopausal women, which is caused by the bone metabolic disorder owing to the over-activation of osteoclasts. Inhibition of osteoclast differentiation and maturation has become a mainstream research interest in the prevention of osteoporosis. Isoliensinine (Iso) is a dibenzyl isoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-cancer activities. However, whether it can be used as a potential treatment for osteoporosis remains undiscovered. Here, we investigated whether Iso might suppress the differentiation of osteoclasts in vitro and in vivo to play an anti-osteoporosis role. Our results showed that Iso inhibits the formation of mature multinuclear osteoclasts induced by RANKL, the bone resorption, and the osteoclast-specific genes expression by blocking the nuclear translocation of NF-κB p65, and the effect was in a dosage-dependent way. Furthermore, we investigated the therapeutic effect of Iso on osteoporosis in ovariectomized (OVX) mice. We found that Iso attenuated bone loss in the OVX mice and significantly promoted BS, Conn. DN, Tb.Th, TB.N, and BV/TV Index. All in all, Iso showed a prominent effect of osteoclast inhibition, with great promise for treating osteoporosis.
Collapse
Affiliation(s)
- Huijiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ronghe Gu
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Qian Huang
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
| | - Yun Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Xie
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| | - Xinli Zhan
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| |
Collapse
|
10
|
Jianwei W, Ye T, Hongwei W, Dachuan L, Fei Z, Jianyuan J, Hongli W. The Role of TAK1 in RANKL-Induced Osteoclastogenesis. Calcif Tissue Int 2022; 111:1-12. [PMID: 35286417 DOI: 10.1007/s00223-022-00967-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Wu Jianwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Tian Ye
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Wang Hongwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Li Dachuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Zou Fei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Jiang Jianyuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| | - Wang Hongli
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| |
Collapse
|
11
|
Davidović Cvetko E, Nešić N, Matić A, Milas Ahić J, Drenjančević I. Effects of 8-week increment aerobic exercise program on bone metabolism and body composition in young non-athletes. Eur J Appl Physiol 2022; 122:1019-1034. [PMID: 35141785 DOI: 10.1007/s00421-022-04900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The effects of aerobic exercise on bone metabolism are still unclear. Thus, the main goal of this study was to explore if there was an effect of the short-term aerobic exercise program on the bone remodeling process and if there were sex differences in the effect of the training program on bone metabolism. METHODS Twenty-one participants (men and women) aged 20-23 performed an 8-week aerobic exercise program three times per week in 1-h sessions with increases in the exercise load every 2 weeks. Bone density, bone mineral content and concentration of markers of bone metabolism: osteocalcin, C-terminal procollagen type I peptide, pyridinoline, parathyroid hormone, osteoprotegerin, and the receptor activator of nuclear kappa B ligand by ELISA were measured at the start and at the end of the study, while changes in body composition were assessed by a bioelectric impedance analysis method 6 times during the study. RESULTS The aerobic exercise program increased the concentration of osteocalcin (11.34 vs 14.24 ng/ml), pyridinoline (67.51 vs 73.99 nmol/l), and the receptor activator of nuclear kappa B ligand (95.122 vs 158.15 pg/ml). A statistically significant increase in bone density at neck mean (1.122 vs 1.176 g/cm3) and in bone mineral content at dual femur (33.485 vs 33.700 g) was found in women, while there was no statistically significant change at any site in men. CONCLUSION 8 weeks of the aerobic exercise program with increment in intensity increased some of bone remodeling biomarkers and showed different effects for men and women.
Collapse
Affiliation(s)
- Erna Davidović Cvetko
- Health Studies Department, College of Applied Sciences Lavoslav Ruzicka in Vukovar, Županijska 50, 32000, Vukovar, Croatia
| | - Nebojša Nešić
- Health Studies Department, College of Applied Sciences Lavoslav Ruzicka in Vukovar, Županijska 50, 32000, Vukovar, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia.,Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer Osijek, Trg Svetog Trojstva 3, 31000, Osijek, Croatia
| | - Jasminka Milas Ahić
- Department of Pathophysiology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia.,Department of Internal Medicine, Clinical Hospital Centre Osijek, J. Huttlera 4, 31000, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia. .,Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer Osijek, Trg Svetog Trojstva 3, 31000, Osijek, Croatia.
| |
Collapse
|
12
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
13
|
Wu Z, Li C, Chen Y, Liu Q, Li N, He X, Li W, Shen R, Li L, Wei C, Shao S, Fu F, Ding J, Sun X, Wang D, Yuan G, Su Y, Zhao J, Xu J, Xu R, Xu X, Xu F. Chrysin Protects Against Titanium Particle-Induced Osteolysis by Attenuating Osteoclast Formation and Function by Inhibiting NF-κB and MAPK Signaling. Front Pharmacol 2022; 13:793087. [PMID: 35401243 PMCID: PMC8985127 DOI: 10.3389/fphar.2022.793087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bone homeostasis only exists when the physical function of osteoblast and osteoclast stays in the balance between bone formation and resorption. Bone resorption occurs when the two processes are uncoupled, shifting the balance in favour of bone resorption. Excessive activation of osteoclasts leads to a range of osteolytic bone diseases including osteoporosis, aseptic prosthesis loosening, rheumatoid arthritis, and osteoarthritis. Receptor activator of nuclear factor kappa-B ligand (RANKL) and its downstream signaling pathways are recognized as key mediators that drive the formation and activation of osteoclastic function. Hence, osteoclast formation and/or its function remain as dominant targets for research and development of agents reaching the treatment towards osteolytic diseases. Chrysin (CHR) is a flavonoid with a wide range of anti-inflammatory and anti-tumor effects. However, its effect on osteoclasts remains unknown. In this study, we found the effects of CHR on inhibiting osteoclast differentiation which were assessed in terms of the number and size of TRAcP positive multinucleated osteoclasts (OCs). Further, the inhibitory effects of CHR on bone resorption and osteoclast fusion of pre-OC were assessed by hydroxyapatite resorption pit assay and F-actin belts staining; respectively. Western blotting analysis of RANKL-induced signaling pathways and immunofluorescence analysis for p65 nuclear translocation in response to RANKL-induced osteoclasts were used to analyze the mechanism of action of CHR affecting osteoclasts. Lastly, the murine calvarial osteolysis model revealed that CHR could protect against particle-induced bone destruction in vivo. Collectively, our data strongly suggested that CHR with its promising anti-tumor effects would also be a potential therapeutic agent for osteolytic diseases.
Collapse
Affiliation(s)
- Zuoxing Wu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei He
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Weibin Li
- Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Shen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Li Li
- Pharmaceutic College, Guangxi Medical University, Nanning, China
| | - Chenming Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Siyuan Shao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Fangsheng Fu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiaxin Ding
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaochen Sun
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Dairong Wang
- Department of Orthopedics, Guilin People’s Hospital, Guilin, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yiji Su
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ren Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Orthopedic Surgery, The First Afiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| | - Xin Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| | - Feng Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Department of Subject Planning, Ninth Peoples Hospital Shanghai, Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| |
Collapse
|
14
|
Das BK, Gogoi J, Kannan A, Gao L, Xing W, Mohan S, Zhao H. The Cytoplasmic Dynein Associated Protein NDE1 Regulates Osteoclastogenesis by Modulating M-CSF and RANKL Signaling Pathways. Cells 2021; 11:13. [PMID: 35011575 PMCID: PMC8750859 DOI: 10.3390/cells11010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Cytoskeleton organization and lysosome secretion play an essential role in osteoclastogenesis and bone resorption. The cytoplasmic dynein is a molecular motor complex that regulates microtubule dynamics and transportation of cargos/organelles, including lysosomes along the microtubules. LIS1, NDE1, and NDEL1 belong to an evolutionary conserved pathway that regulates dynein functions. Disruption of the cytoplasmic dynein complex and deletion of LIS1 in osteoclast precursors arrest osteoclastogenesis. Nonetheless, the role of NDE1 and NDEL1 in osteoclast biology remains elusive. In this study, we found that knocking-down Nde1 expression by lentiviral transduction of specific shRNAs markedly inhibited osteoclastogenesis in vitro by attenuating the proliferation, survival, and differentiation of osteoclast precursor cells via suppression of signaling pathways downstream of M-CSF and RANKL as well as osteoclast differentiation transcription factor NFATc1. To dissect how NDEL1 regulates osteoclasts and bone homeostasis, we generated Ndel1 conditional knockout mice in myeloid osteoclast precursors (Ndel1ΔlysM) by crossing Ndel1-floxed mice with LysM-Cre mice on C57BL/6J background. The Ndel1ΔlysM mice developed normally. The µCT analysis of distal femurs and in vitro osteoclast differentiation and functional assays in cultures unveiled the similar bone mass in both trabecular and cortical bone compartments as well as intact osteoclastogenesis, cytoskeleton organization, and bone resorption in Ndel1ΔlysM mice and cultures. Therefore, our results reveal a novel role of NDE1 in regulation of osteoclastogenesis and demonstrate that NDEL1 is dispensable for osteoclast differentiation and function.
Collapse
Affiliation(s)
- Bhaba K. Das
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA 90822, USA; (J.G.); (A.K.); (L.G.); (H.Z.)
| | - Jyoti Gogoi
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA 90822, USA; (J.G.); (A.K.); (L.G.); (H.Z.)
| | - Aarthi Kannan
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA 90822, USA; (J.G.); (A.K.); (L.G.); (H.Z.)
- Department of Dermatology, University of California Irvine, Irvine, CA 92697, USA
| | - Ling Gao
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA 90822, USA; (J.G.); (A.K.); (L.G.); (H.Z.)
- Department of Dermatology, University of California Irvine, Irvine, CA 92697, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (W.X.); (S.M.)
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (W.X.); (S.M.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA 90822, USA; (J.G.); (A.K.); (L.G.); (H.Z.)
| |
Collapse
|
15
|
Wu F, Li B, Hu X, Yu F, Shi Y, Ye L. Wnt7b Inhibits Osteoclastogenesis via AKT Activation and Glucose Metabolic Rewiring. Front Cell Dev Biol 2021; 9:771336. [PMID: 34881243 PMCID: PMC8645835 DOI: 10.3389/fcell.2021.771336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
The imbalance between bone formation and bone resorption causes osteoporosis, which leads to severe bone fractures. It is known that increases in osteoclast numbers and activities are the main reasons for increasing bone resorption. Although extensive studies have investigated the regulation of osteoclastogenesis of bone marrow macrophages (BMMs), new pharmacological avenues still need to be unveiled for clinical purpose. Wnt ligands have been widely demonstrated as stimulators of bone formation; however, the inhibitory effect of the Wnt pathway in osteoclastogenesis is largely unknown. Here, we demonstrate that Wnt7b, a potent Wnt ligand that enhances bone formation and increases bone mass, also abolishes osteoclastogenesis in vitro. Importantly, enforced expression of Wnt in bone marrow macrophage lineage cells significantly disrupts osteoclast formation and activity, which leads to a dramatic increase in bone mass. Mechanistically, Wnt7b impacts the glucose metabolic process and AKT activation during osteoclastogenesis. Thus, we demonstrate that Wnt7b diminishes osteoclast formation, which will be beneficial for osteoporosis therapy in the future.
Collapse
Affiliation(s)
- Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Exogenous adenosine activates A2A adenosine receptor to inhibit RANKL-induced osteoclastogenesis via AP-1 pathway to facilitate bone repair. Mol Biol Rep 2021; 49:2003-2014. [PMID: 34846650 DOI: 10.1007/s11033-021-07017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Adenosine is a purine nucleoside involved in regulating bone homeostasis through binding to A1, A2A, A2B, and A3 adenosine receptors (A1R, A2AR, A2BR, and A3R, respectively). However, the underlying mechanisms by which adenosine and receptor subtypes regulate osteoclast differentiation remain uncertain. This study aims to assess the role of exogenous adenosine and receptor subtypes in receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation and explore the underlying molecular mechanisms. METHODS AND RESULTS The nanofibrous mats incorporated with adenosine exhibited robust ability to facilitate rat critical-size calvarial defect healing with decreased number of osteoclasts. Moreover, exogenous adenosine substantially enhanced the expression of A2AR and suppressed tartrate-resistant acid phosphatase-positive osteoclast formation and expression of osteoclast-related genes Ctsk, NFATc1, MMP9, and ACP5. This enhancement and suppression could be reversed by adding an A2AR antagonist, ZM241385, in RAW264.7 cells. Finally, RNA sequencing showed that the expression of Fos-related antigen 2 (Fra2) was distinctly downregulated through stimulation of adenosine in RAW264.7 cells treated with RANKL. This downregulation was reversed by ZM241385 according to real-time PCR, Western blot, and immunofluorescence analyses. CONCLUSIONS These findings demonstrated that exogenous adenosine binding to A2AR attenuated osteoclast differentiation via the inhibition of activating protein-1 (AP-1, including Fra2 subunit) pathway both in vitro and in vivo.
Collapse
|
17
|
Zhu X, Yuan H, Ningjuan O, Trotman CA, Van Dyke TE, Chen JJ, Shen G. 6-Shogaol promotes bone resorption and accelerates orthodontic tooth movement through the JNK-NFATc1 signaling axis. J Bone Miner Metab 2021; 39:962-973. [PMID: 34191125 PMCID: PMC8595588 DOI: 10.1007/s00774-021-01245-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Corticotomy is widely used in clinical practice to accelerate tooth movement and shorten the duration of orthodontic treatment. It is effective, but an invasive surgery is needed to induce alveolar bone osteopenia that enable rapid tooth movement. In this study, we discovered the potential of 6-shogaol as a more patient-friendly non-invasive alternative to induce transient osteopenia and accelerate tooth movement. MATERIALS AND METHODS The effects of 6-shogaol on the bone marrow macrophages (BMM) proliferation and osteoclast differentiation, and bone resorption were determined in vitro. Sprague-Dawley rats were distributed into three groups: CON, IPinj or Localinj and euthanized at day 28. Micro-CT, histology, immunohistological, and TUNEL analysis were performed to evaluate the tooth movement acceleration effect of 6-shogaol. RESULTS In vitro, 6-shogaol promotes osteoclast differentiation and functional demineralization of alveolar bone. RANKL-induced mRNA expression of osteoclastic-specific genes was significantly higher in the presence of 6-shogaol. A dose-dependent increase in the area of TRAP-positive cells was observed with 6-shogaol treatment. F-actin ring formation and increased bone resorption confirmed that osteoclasts treated with 6-shogaol were mature and functional. 6-shogaol stimulated JNK activation and NFATc1 expression during osteoclast differentiation. In vivo, 6-shogaol promotes alveolar bone transient osteopenia and accelerates orthodontic tooth movement. Alveolar bone mass was reduced, more osteoclasts were observed in bone resorption lacunae on the compression side, and the expression of RANKL and sclerostin were higher than the control group. In conclusion, our results suggest that 6-shogoal accelerates tooth movement by inducing osteopenia by a mechanism similar to surgically induced bone injury.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Hao Yuan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ouyang Ningjuan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carroll Ann Trotman
- Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | | | - Jake Jinkun Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| | - Guofang Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Duan J, Hu X, Li T, Wu G, Dou P, Ouyang Z. Cimifugin Suppresses NF-κB Signaling to Prevent Osteoclastogenesis and Periprosthetic Osteolysis. Front Pharmacol 2021; 12:724256. [PMID: 34658863 PMCID: PMC8511420 DOI: 10.3389/fphar.2021.724256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/16/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Aseptic loosening of prosthesis (ALP) is one of the most common long-term complications of knee and hip arthroplasty. Wear particle-induced osteoclastogenesis and subsequent periprosthetic osteolysis account for the morbidity of ALP. Here, we investigate the potential of cimifugin (CIM), a natural extract from Cimicifuga racemosa and Saposhnikovia divaricata, as a bone-protective drug in the treatment of ALP. Method: First, we performed cell viability and osteoclast formation assays to assess the effect of noncytotoxic CIM on osteoclast differentiation in vitro. Bone slice resorption and F-actin ring immunofluorescence assays were adopted to assess the effects of CIM on bone-resorption function. Then, quantitative real-time polymerase chain reaction (qRT–PCR) analysis was performed to further assess the repressive effects of CIM on osteoclastogenesis at the gene expression level. To elucidate the mechanisms underlying the above findings, Western blot and luciferase reporter gene assays were used to assess the regulatory effects of CIM on the NF-κB and MAPK signaling pathways. Moreover, a Ti particle-induced murine calvarial osteolysis model and subsequent histomorphometric analysis via micro-CT and immunohistochemical staining were used to elucidate the effect of CIM on periprosthetic osteolysis in vivo. Result: CIM dose-dependently inhibited both bone marrow-derived macrophage (BMM)- and RAW264.7 cell-derived osteoclastogenesis and bone resorption pit formation in vitro, which was further supported by the reduced expression of F-actin and osteoclast-specific genes. According to the Western blot analysis, inhibition of IκBα phosphorylation in the NF-κB signaling pathway, not the phosphorylation of MAPKs, was responsible for the suppressive effect of CIM on osteoclastogenesis. Animal experiments demonstrated that CIM alleviated Ti particle-induced bone erosion and osteoclast accumulation in murine calvaria. Conclusion: The current study suggested for the first time that CIM can inhibit RANKL-induced osetoclastogenesis by suppressing the NF-κB signaling pathway in vitro and prevent periprosthetic osteolysis in vivo. These findings suggest the potential of CIM as a therapeutic in ALP.
Collapse
Affiliation(s)
- Juan Duan
- Department of Geriatric Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuantao Hu
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Li
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengcheng Dou
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiao Ouyang
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Xu S, Cao X, Yu Z, He W, Pang Y, Lin W, Chen Z, Guo W, Lu X, Lin C. Nicorandil Inhibits Osteoclast Formation Base on NF-κB and p-38 MAPK Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front Pharmacol 2021; 12:726361. [PMID: 34566650 PMCID: PMC8455841 DOI: 10.3389/fphar.2021.726361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023] Open
Abstract
Osteolytic bone disorders are characterized by an overall reduction in bone mineral density which enhances bone ductility and vulnerability to fractures. This disorder is primarily associated with superabundant osteoclast formation and bone resorption activity. Nicorandil (NIC) is a vasodilatory anti-anginal drug with ATP-dependent potassium (KATP) channel openings. However, NIC is adopted to manage adverse cardiovascular and coronary events. Recent research has demonstrated that NIC also possesses anti-inflammatory peculiarity through the regulation of p38 MAPK and NF-κB signaling pathways. Both MAPK and NF-κB signaling pathways play pivotal roles in RANKL-induced osteoclast formation and bone resorption function. Herein, we hypothesized that NIC may exert potential biological effects against osteoclasts, and revealed that NIC dose-dependently suppressed bone marrow macrophage (BMM) precursors to differentiate into TRAP + multinucleated osteoclasts in vitro. Furthermore, osteoclast resorption assays demonstrated anti-resorptive effects exhibited by NIC. NIC had no impact on osteoblast differentiation or mineralization function. Based on Biochemical analyses, NIC relieved RANKL-induced ERK, NF-κB and p38 MAPK signaling without noticeable effects on JNK MAPK activation. However, the attenuation of NF-κB and p38 MAPK activation was sufficient to hamper the downstream induction of c-Fos and NFATc1 expression. Meanwhile, NIC administration markedly protected mice from ovariectomy (OVX)-induced bone loss through in vivo inhibition of osteoclast formation and bone resorption activity. Collectively, this work demonstrated the potential of NIC in the management of osteolytic bone disorders mediated by osteoclasts.
Collapse
Affiliation(s)
- Shenggui Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenxing Yu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichuan Pang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, National Clinical Research Center of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wang Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weizhong Guo
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiongwei Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengshou Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| |
Collapse
|
20
|
Yasuda K, Matsubara T, Shirakawa T, Kawamoto T, Kokabu S. Protein phosphatase 1 regulatory subunit 18 suppresses the transcriptional activity of NFATc1 via regulation of c-fos. Bone Rep 2021; 15:101114. [PMID: 34401407 PMCID: PMC8353383 DOI: 10.1016/j.bonr.2021.101114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
The transcription factor NFATc1 and its binding partner AP-1 (a complex containing c-fos and c-Jun) play a central role in osteoclast differentiation. NFATc1 and AP-1 promote the expression of target genes such as Acp5, Ctsk and also auto-regulate NFATc1 expression as well. We previously reported that protein phosphatase 1 regulatory subunit 18 (PPP1r18) is a negative regulator of osteoclast bone resorption by inhibiting cell attachment to bone matrix. We also reported that PPP1r18 potentially regulates NFATc1 expression during osteoclast differentiation. To further explore this, in this study we have examined the effect of PPP1r18 on NFATc1 expression and activity by overexpressing PPP1r18 during the early stage of osteoclast differentiation. We found that PPP1r18 suppressed NFATc1 expression through inhibition of the transcriptional activity of NFATc1. Since PPP1r18 does not regulate NFATc1 directly, we next explored the involvement of AP-1. Our data showed that c-fos phosphorylation and nuclear localization were reduced by PPP1r18 overexpression. Further experiments showed that overexpression of c-fos together with PPP1r18 rescued NFATc1 expression and transcriptional activity. Moreover, c-fos activity inhibition by PPP1r18 was canceled by mutation of the phosphatase binding site of PPP1r18. Taken together, PPP1r18-regulated phosphatase activity targets c-fos phosphorylation and suppresses subsequent NFATc1 expression and activity.
PPP1r18 suppresses osteoclast differentiation. PPP1r18 suppresses c-fos phosphorylation and nuclear localization. PPP1r18 suppresses NFAT via c-fos.
Collapse
Key Words
- Ctsk, cathepsin K
- Dc-stamp, dendrocyte expressed seven transmembrane protein
- GapDH, glyceraldehyde-3-phosphate dehydrogenase
- M-CSF, macrophage colony stimulating factor
- NFATc1
- NFATc1, nuclear factor of activated T cells 1
- Osteoclast
- PP1, protein phosphatase 1
- PPP1r18
- PPP1r18, protein phosphatase 1 regulatory subunit 18
- RANK, receptor activator nuclear factor kappa B
- RANKL, receptor activator nuclear factor kappa B ligand
- Src, Rous sarcoma oncogene
- TRAP, tartrate resistant acid phosphatase
- c-Fos
- c-Jun, Jun proto-oncogene, AP-1 transcription factor subunit
- c-fos, Fos proto-oncogene, AP-1 transcription factor subunit
Collapse
Affiliation(s)
- Kazuma Yasuda
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
- Corresponding authors.
| | - Tomohiko Shirakawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
- Corresponding authors.
| |
Collapse
|
21
|
Ma W, Wang F, You Y, Wu W, Chi H, Jiao G, Zhang L, Zhou H, Wang H, Chen Y. Ortho-silicic Acid Inhibits RANKL-Induced Osteoclastogenesis and Reverses Ovariectomy-Induced Bone Loss In Vivo. Biol Trace Elem Res 2021; 199:1864-1876. [PMID: 32676940 DOI: 10.1007/s12011-020-02286-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
Numerous experiments in vitro and in vivo have shown that an appropriate increase intake of silicon can facilitate the synthesis of collagen and its stabilization and promote the differentiation and mineralization of osteoblasts. In this study, we examined whether ortho-silicic acid restrains the differentiation of osteoclast through the receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK)/osteoprotegerin (OPG) signaling pathway by investigating its effect in vitro and in vivo. Bone marrow macrophage (BMM) cells were isolated and cultured with or without ortho-silicic acid, and then TRAP staining and immunofluorescence were performed to detect the differentiation of osteoclast. The RANKL-induced osteoclast marker gene and protein expression including c-Fos, nuclear factor of activated T cells cl (NFATcl), tumor necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B P50 (NF-κB P50), NF-κB P52, RANK, integrin β3, cathepsin K (CTSK), DC-STAMP, and TRAP were quantitatively detected by western blot and RT-PCR. Ovariectomized (OVX) rats were injected with ortho-silicic acid (OVX+Si group) and normal saline (OVX group), and sham-operated rats were injected with normal saline (Sham group). And micro-CT, H&E, and TRAP staining, ELISA, and western blot were performed. Ortho-silicic acid could inhibit the differentiation of osteoclast, and the marker genes and proteins were decreased. The OVX-induced bone loss could be reversed by ortho-silicic acid. Our finding demonstrated that ortho-silicic acid suppresses RANKL-induced osteoclastogenesis and has potential value as a therapeutic agent for OVX-induced bone loss.
Collapse
Affiliation(s)
- Wenzheng Ma
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Fu'an Wang
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yunhao You
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wenliang Wu
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hai Chi
- Department of traumatic Orthopedics, West Branch of Shandong Provincial Hospital, Jinan, China
| | - Guangjun Jiao
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Zhang
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongming Zhou
- Department of Spine Surgery, Linyi Central Hospital, Linyi, China
| | - Hongliang Wang
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yunzhen Chen
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
22
|
Ning W, Acharya A, Sun Z, Ogbuehi AC, Li C, Hua S, Ou Q, Zeng M, Liu X, Deng Y, Haak R, Ziebolz D, Schmalz G, Pelekos G, Wang Y, Hu X. Deep Learning Reveals Key Immunosuppression Genes and Distinct Immunotypes in Periodontitis. Front Genet 2021; 12:648329. [PMID: 33777111 PMCID: PMC7994531 DOI: 10.3389/fgene.2021.648329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Background Periodontitis is a chronic immuno-inflammatory disease characterized by inflammatory destruction of tooth-supporting tissues. Its pathogenesis involves a dysregulated local host immune response that is ineffective in combating microbial challenges. An integrated investigation of genes involved in mediating immune response suppression in periodontitis, based on multiple studies, can reveal genes pivotal to periodontitis pathogenesis. Here, we aimed to apply a deep learning (DL)-based autoencoder (AE) for predicting immunosuppression genes involved in periodontitis by integrating multiples omics datasets. Methods Two periodontitis-related GEO transcriptomic datasets (GSE16134 and GSE10334) and immunosuppression genes identified from DisGeNET and HisgAtlas were included. Immunosuppression genes related to periodontitis in GSE16134 were used as input to build an AE, to identify the top disease-representative immunosuppression gene features. Using K-means clustering and ANOVA, immune subtype labels were assigned to disease samples and a support vector machine (SVM) classifier was constructed. This classifier was applied to a validation set (Immunosuppression genes related to periodontitis in GSE10334) for predicting sample labels, evaluating the accuracy of the AE. In addition, differentially expressed genes (DEGs), signaling pathways, and transcription factors (TFs) involved in immunosuppression and periodontitis were determined with an array of bioinformatics analysis. Shared DEGs common to DEGs differentiating periodontitis from controls and those differentiating the immune subtypes were considered as the key immunosuppression genes in periodontitis. Results We produced representative molecular features and identified two immune subtypes in periodontitis using an AE. Two subtypes were also predicted in the validation set with the SVM classifier. Three “master” immunosuppression genes, PECAM1, FCGR3A, and FOS were identified as candidates pivotal to immunosuppressive mechanisms in periodontitis. Six transcription factors, NFKB1, FOS, JUN, HIF1A, STAT5B, and STAT4, were identified as central to the TFs-DEGs interaction network. The two immune subtypes were distinct in terms of their regulating pathways. Conclusion This study applied a DL-based AE for the first time to identify immune subtypes of periodontitis and pivotal immunosuppression genes that discriminated periodontitis from the healthy. Key signaling pathways and TF-target DEGs that putatively mediate immune suppression in periodontitis were identified. PECAM1, FCGR3A, and FOS emerged as high-value biomarkers and candidate therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhengyang Sun
- Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Cong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiting Hua
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianhua Ou
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muhui Zeng
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - George Pelekos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Xianda Hu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| |
Collapse
|
23
|
Liu W, Xie G, Yuan G, Xie D, Lian Z, Lin Z, Ye J, Zhou W, Zhou W, Li H, Wang X, Feng H, Liu Y, Yao G. 6'-O-Galloylpaeoniflorin Attenuates Osteoclasto-genesis and Relieves Ovariectomy-Induced Osteoporosis by Inhibiting Reactive Oxygen Species and MAPKs/c-Fos/NFATc1 Signaling Pathway. Front Pharmacol 2021; 12:641277. [PMID: 33897430 PMCID: PMC8058459 DOI: 10.3389/fphar.2021.641277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests bright prospects of some natural antioxidants in the treatment of osteoporosis. 6'-O-Galloylpaeoniflorin (GPF), an antioxidant isolated from peony roots (one of very widely used Oriental medicines, with various anti-inflammatory, antitumor, and antioxidant activities), shows a series of potential clinical applications. However, its effects on osteoporosis remain poorly investigated. The current study aimed to explore whether GPF can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating reactive oxygen species (ROS), and investigate the possible mechanism. After the culture of primary murine bone marrow-derived macrophages/monocytes were induced by the use of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL) and then treated with GPF. Cell proliferation and viability were assessed by Cell Counting Kit-8 (CCK-8) assay. Thereafter, the role of GPF in the production of osteoclasts and the osteogenic resorption of mature osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, podosome belt formation, and resorption pit assay. Western blotting and qRT-PCR examination were performed to evaluate proteins' generation and osteoclast-specific gene levels, respectively. The ROS generation in cells was measured in vitro by 2',7'-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Ovariectomy-induced osteoporosis mouse administered with GPF or vehicle was performed to explore the in vivo potential of GPF, then a micro-CT scan was performed in combination with histological examination for further analysis. GPF suppressed the formation of osteoclasts and podosome belts, as well as bone resorption when induced by RANKL through affecting intracellular ROS activity, MAPKs signaling pathway, and subsequent NFATc1 translocation and expression, as well as osteoclast-specific gene expression in vitro. In vivo study suggested that exposure to GPF prevented osteoporosis-related bone loss in the ovariectomized mice. These findings indicate that GPF attenuates osteoclastogenesis and relieves ovariectomy-induced osteoporosis by inhibiting ROS and MAPKs/c-Fos/NFATc1 signaling pathway. This suggested that GPF may be potentially used to treat bone diseases like periodontitis, rheumatoid arthritis, and osteoporosis associated with osteoclasts.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenyun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Henghui Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| |
Collapse
|
24
|
Kim EN, Kim GR, Yu JS, Kim KH, Jeong GS. Inhibitory Effect of (2 R)-4-(4-hydroxyphenyl)-2-butanol 2- O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside on RANKL-Induced Osteoclast Differentiation and ROS Generation in Macrophages. Int J Mol Sci 2020; 22:ijms22010222. [PMID: 33379346 PMCID: PMC7795186 DOI: 10.3390/ijms22010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
In bone homeostasis, bone loss due to excessive osteoclasts and inflammation or osteolysis in the bone formation process cause bone diseases such as osteoporosis. Suppressing the accompanying oxidative stress such as ROS in this process is an important treatment strategy for bone disease. Therefore, in this study, the effect of (2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (BAG), an arylbutanoid glycoside isolated from Betula platyphylla var. japonica was investigated in RANKL-induced RAW264.7 cells and LPS-stimulated MC3E3-T1 cells. BAG inhibited the activity of TRAP, an important marker of osteoclast differentiation and F-actin ring formation, which has osteospecific structure. In addition, the protein and gene levels were suppressed of integrin β3 and CCL4, which play an important role in the osteoclast-induced bone resorption and migration of osteoclasts, and inhibited the production of ROS and restored the expression of antioxidant enzymes such as SOD and CAT lost by RANKL. The inhibitory effect of BAG on osteoclast differentiation and ROS production appears to be due to the inhibition of MAPKs phosphorylation and NF-κβ translocation, which play a major role in osteoclast differentiation. In addition, BAG inhibited ROS generated by LPS and effectively restores the mineralization of lost osteoblasts, thereby showing the effect of bone formation in the inflammatory situation accompanying bone loss by excessive osteoclasts, suggesting its potential as a new natural product-derived bone disease treatment.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
| | - Ga-Ram Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.H.K.); (G.-S.J.)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
- Correspondence: (K.H.K.); (G.-S.J.)
| |
Collapse
|
25
|
Al‐Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020; 2:668-679. [PMID: 33205007 PMCID: PMC7655096 DOI: 10.1096/fba.2020-00058] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is securely controlled by the dynamic well-balanced actions among osteoclasts, osteoblasts and osteocytes. Osteoclasts are large multinucleated cells that degrade bone matrix and involve in the bone remodelling in conjunction with other bone cells, osteoblasts and osteocytes, the completely matured form of osteoblasts. Disruption of this controlling balance among these cells or any disparity in bone remodelling caused by a higher rate of resorption by osteoclasts over construction of bone by osteoblasts results in a reduction of bone matrix including bone mineral density (BMD) and bone marrow cells (BMCs). The dominating effect of osteoclasts results in advanced risk of bone crack and joint destruction in several diseases including osteoporosis and rheumatoid arthritis (RA). However, the boosted osteoblastic activity produces osteosclerotic phenotype and weakened its action primes to osteomalacia or rickets. On the other hand, senescent osteocytes predominately progress the senescence associated secretory phenotype (SASP) and may contribute to age related bone loss. Here, we discuss an advanced level work on newly identified cellular mechanisms controlling the remodelling of bone and crosstalk among bone cells as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
| | - Abdullah Al Mamun
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| |
Collapse
|
26
|
Water Extract of Agastache rugosa Prevents Ovariectomy-Induced Bone Loss by Inhibiting Osteoclastogenesis. Foods 2020; 9:foods9091181. [PMID: 32858922 PMCID: PMC7555585 DOI: 10.3390/foods9091181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Estrogen deficiency in postmenopausal women causes homeostatic imbalance of bone, resulting in bone loss and osteoporosis. Agastache rugosa, a plant belonging to the Lamiaceae family, is an aromatic herb, and the leaves of this herb are widely used as food ingredients. Extracts of A. rugosa have various bioactivities including anti-HIV integration, anti-inflammatory, and anti-atherogenic properties. However, the beneficial effect of A. rugosa on bone has not been studied. Therefore, we investigated the effects of water extract of A. rugosa (WEAR) on osteoclast differentiation and estrogen deficiency-induced bone loss in ovariectomized (OVX) mice as an animal model for postmenopausal osteoporosis. The oral administration of WEAR remarkably improved OVX-induced trabecular bone loss and fat accumulation in the bone marrow. WEAR suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in osteoclast precursor cells, subsequently inhibiting resorption activity on a bone mimetic surface. WEAR inhibited the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key osteoclastogenic transcription factors, by decreasing RANKL-induced activation of mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB) pathways. We also identified seventeen phytochemicals present in WEAR, including five phenols and twelve flavonoids, and found eleven bioactive constituents that have anti-osteoclastogenic effects. Collectively, these results suggest that WEAR could be used to treat and prevent postmenopausal osteoporosis by suppressing osteoclastogenesis.
Collapse
|
27
|
3-Hydroxyolean-12-en-27-oic Acids Inhibit RANKL-Induced Osteoclastogenesis in Vitro and Inflammation-Induced Bone Loss in Vivo. Int J Mol Sci 2020; 21:ijms21155240. [PMID: 32718089 PMCID: PMC7432734 DOI: 10.3390/ijms21155240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Olean-12-en-27-oic acids possess a variety of pharmacological effects. However, their effects and underlying mechanisms on osteoclastogenesis remain unclear. This study aimed to investigate the anti-osteoclastogenic effects of five olean-12-en-27-oic acid derivatives including 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (AR-1), 3-oxoolean-12-en-27-oic acid (AR-2), 3α-hydroxyolean-12-en-27-oic acid (AR-3), 23-hydroxy-3-oxoolean-12-en-27-oic acid (AR-4), and aceriphyllic acid A (AR-5). Among the five olean-12-en-27-oic acid derivatives, 3-hydroxyolean-12-en-27-oic acid derivatives, AR-3 and AR-5, significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced mature osteoclast formation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, F-actin ring formation, and mineral resorption activity. AR-3 and AR-5 decreased RANKL-induced expression levels of osteoclast-specific marker genes such as c-Src, TRAP, and cathepsin K (CtsK) as well as c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Mice treated with either AR-3 or AR-5 showed significant protection of the mice from lipopolysaccharide (LPS)-induced bone destruction and osteoclast formation. In particular, AR-5 suppressed RANKL-induced phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). The results suggest that AR-3 and AR-5 attenuate osteoclast formation in vitro and in vivo by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and could potentially be lead compounds for the prevention or treatment of osteolytic bone diseases.
Collapse
|
28
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
29
|
Canalis E, Schilling L, Eller T, Yu J. Nuclear factor of activated T cells 1 and 2 are required for vertebral homeostasis. J Cell Physiol 2020; 235:8520-8532. [PMID: 32329053 DOI: 10.1002/jcp.29696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Abstract
The present study defines the function of nuclear factor of activated T cells (NFAT)c1 and NFATc2 in osteoblast function in vivo and in vitro. Nfatc1loxP/loxP , Nfatc2loxP/loxP , and Nfatc1loxP/loxP ;Nfatc2loxP/loxP conditional mice were mated with BGLAP-Cre transgenics to inactivate Nfatc1 and Nfatc2 singly and in combination in osteoblasts. Microcomputed tomography demonstrated that male and female conditionally inactivated Nfatc1, Nfatc2 and dual Nfatc1;Nfatc2 mice had osteopenia at Lumbar 3 (L3) sites when compared to littermate controls. However, the Nfatc1 and Nfatc2 inactivation singly and in combination in Bglap-expressing osteoblasts did not result in an appreciable phenotype at femoral sites. Bone histomorphometry of L3 confirmed the osteopenic phenotype and demonstrated that Nfatc1;Nfatc2 inactivated male mice had a significant decrease in osteoblast number and in osteoblast surface and osteoid surface. The dual downregulation of Nfatc1 and Nfatc2 in bone marrow stromal cells caused a decrease in Alpl and Bglap expression, confirming a role of these transcription factors in osteoblast function. In conclusion, our studies reveal that NFATc1 and NFATc2 are necessary for optimal vertebral, but not femoral, bone homeostasis in vivo and osteoblast differentiation in vitro.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| |
Collapse
|
30
|
Sun Z, Zeng J, Wang W, Jia X, Wu Q, Yu D, Mao Y. Magnoflorine Suppresses MAPK and NF-κB Signaling to Prevent Inflammatory Osteolysis Induced by Titanium Particles In Vivo and Osteoclastogenesis via RANKL In Vitro. Front Pharmacol 2020; 11:389. [PMID: 32300300 PMCID: PMC7142243 DOI: 10.3389/fphar.2020.00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 01/29/2023] Open
Abstract
Wear particles that detach from the surface of prostheses induce excessive activation of osteoclast and immoderate release of inflammatory cytokines that lead to peri-implant osteolysis and aseptic loosening. In this work, we investigated whether magnoflorine, a quaternary aporphine alkaloid extracted from the Chinese herb Magnolia or Aristolochia, could effectively inhibit inflammatory calvarial osteolysis caused by titanium particles in mouse models, inflammatory response as well as osteoclastogenesis in vitro mediated via receptor activator of NF-κB ligand (RANKL). Micro-computed tomography and histological examination of mice treated with magnoflorine revealed fewer resorption pits, less osteoclasts formation and inflammatory cytokine expression. Moreover, in vitro differentiation of osteoclasts and bone resorption as well as titanium particle-induced inflammatory response were dose-dependently inhibited by magnoflorine. These were accompanied by reduced transcription of osteoclast-specific genes encoding tartrate-resistant acid phosphatase (TRAP), V-ATPase d2, c-Fos, cathepsin K, nuclear factor of activated T cells (NFAT) c1, and calcitonin receptor (CTR). Further research on mechanism showed that the inhibition of phosphorylation of TAK1 and subsequent activation of MAPK and NF-κB signaling pathways were found to mediate the suppressive effects of magnoflorine. Collectively, these results suggested that magnoflorine treatment could effectively prevent peri-implant osteolysis due to wear debris as well as other diseases caused by chronic inflammation and excessive osteoclast activation.
Collapse
Affiliation(s)
- Zhenyu Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junkai Zeng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Degang Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Yu X, Zheng F, Shang W, Du Y, Zhen J, Mao Y, Zhang S. Isorhamnetin 3-O-neohesperidoside promotes the resorption of crown-covered bone during tooth eruption by osteoclastogenesis. Sci Rep 2020; 10:5172. [PMID: 32198458 PMCID: PMC7083939 DOI: 10.1038/s41598-020-62107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
Delayed resorption of crown-covered bone is a critical cause of delayed tooth eruption. Traditional herbal medicines may be good auxiliary treatments to promote the resorption of crown-covered bone. This study was carried out to analyse the effect of isorhamnetin 3-O-neohesperidoside on receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclastogenesis in vitro and resorption of the crown-covered bone of the lower first molars in mice in vivo. Isorhamnetin 3-O-neohesperidoside promoted osteoclastogenesis and the bone resorption of mouse bone marrow macrophages (BMMs) and upregulated mRNA expression of the osteoclast-specific genes cathepsin K (CTSK), vacuolar-type H + -ATPase d2(V-ATPase d2), tartrate resistant acid phosphatase (TRAP) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). NFATc1, p38 and AKT signalling was obviously activated by isorhamnetin 3-O-neohesperidoside in osteoclastogenesis. Isorhamnetin 3-O-neohesperidoside aggravated resorption of crown-covered bone in vivo. In brief, isorhamnetin 3-O-neohesperidoside might be a candidate adjuvant therapy for delayed intraosseous eruption.
Collapse
Affiliation(s)
- Xijiao Yu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, 250001, People's Republic of China
| | - Fuju Zheng
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, 250001, People's Republic of China
| | - Wenzhi Shang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, 250001, People's Republic of China
| | - Yanmei Du
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, 250001, People's Republic of China
| | - Jinze Zhen
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
| | - Yi Mao
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
| | - Shanyong Zhang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Zavaczki E, Gáll T, Zarjou A, Hendrik Z, Potor L, Tóth CZ, Méhes G, Gyetvai Á, Agarwal A, Balla G, Balla J. Ferryl Hemoglobin Inhibits Osteoclastic Differentiation of Macrophages in Hemorrhaged Atherosclerotic Plaques. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3721383. [PMID: 32184915 PMCID: PMC7063196 DOI: 10.1155/2020/3721383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Intraplaque hemorrhage frequently occurs in atherosclerotic plaques resulting in cell-free hemoglobin, which is oxidized to ferryl hemoglobin (FHb) in the highly oxidative environment. Osteoclast-like cells (OLCs) derived from macrophages signify a counterbalance mechanism for calcium deposition in atherosclerosis. Our aim was to investigate whether oxidized hemoglobin alters osteoclast formation, thereby affecting calcium removal from mineralized atherosclerotic lesions. RANKL- (receptor activator of nuclear factor kappa-Β ligand-) induced osteoclastogenic differentiation and osteoclast activity of RAW264.7 cells were studied in response to oxidized hemoglobin via assessing bone resorption activity, expression of osteoclast-specific genes, and the activation of signalization pathways. OLCs in diseased human carotid arteries were assessed by immunohistochemistry. FHb, but not ferrohemoglobin, decreased bone resorption activity and inhibited osteoclast-specific gene expression (tartrate-resistant acid phosphatase, calcitonin receptor, and dendritic cell-specific transmembrane protein) induced by RANKL. In addition, FHb inhibited osteoclastogenic signaling pathways downstream of RANK (receptor activator of nuclear factor kappa-Β). It prevented the induction of TRAF6 (tumor necrosis factor (TNF) receptor-associated factor 6) and c-Fos, phosphorylation of p-38 and JNK (c-Jun N-terminal kinase), and nuclear translocation of NFκB (nuclear factor kappa-Β) and NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1). These effects were independent of heme oxygenase-1 demonstrated by knocking down HO-1 gene in RAW264.7 cells and in mice. Importantly, FHb competed with RANK for RANKL binding suggesting possible mechanisms by which FHb impairs osteoclastic differentiation. In diseased human carotid arteries, OLCs were abundantly present in calcified plaques and colocalized with regions of calcium deposition, while the number of these cells were lower in hemorrhagic lesions exhibiting accumulation of FHb despite calcium deposition. We conclude that FHb inhibits RANKL-induced osteoclastic differentiation of macrophages and suggest that accumulation of FHb in a calcified area of atherosclerotic lesion with hemorrhage retards the formation of OLCs potentially impairing calcium resorption.
Collapse
Affiliation(s)
- Erzsébet Zavaczki
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltán Hendrik
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Csaba Zsigmond Tóth
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Gyetvai
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anupam Agarwal
- Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Abstract
Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of NF-κB. Although the NF-κB pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.
Collapse
Affiliation(s)
- Inyoung Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Jung Ha Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Kabsun Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Semun Seong
- Departments of Pharmacology and Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Departments of Pharmacology and Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
34
|
Liu Y, Wang Z, Ma C, Wei Z, Chen K, Wang C, Zhou C, Chen L, Zhang Q, Chen Z, He W, Xu J. Dracorhodin perchlorate inhibits osteoclastogenesis through repressing RANKL-stimulated NFATc1 activity. J Cell Mol Med 2020; 24:3303-3313. [PMID: 31965715 PMCID: PMC7131942 DOI: 10.1111/jcmm.15003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti‐cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL‐induced osteoclast formation and resorbed pits of hydroxyapatite‐coated plate in a dose‐dependent manner. D.P also disrupted the formation of intact actin‐rich podosome structures in mature osteoclasts and inhibited osteoclast‐specific gene and protein expressions. Further, D.P was able to suppress RANKL‐activated JNK, NF‐κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast‐related conditions.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chao Ma
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenquan Wei
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chi Zhou
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leilei Chen
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingwen Zhang
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenqiu Chen
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y, Qadri YJ, Souma T, Shinohara ML, Alman BA. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 2020; 22:49-59. [PMID: 31907410 PMCID: PMC6953622 DOI: 10.1038/s41556-019-0437-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomasa Barrientos
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Yarui Diao
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yawar J Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Chen X, Wang C, Qiu H, Yuan Y, Chen K, Cao Z, Xiang Tan R, Tickner J, Xu J, Zou J. Asperpyrone A attenuates RANKL-induced osteoclast formation through inhibiting NFATc1, Ca 2+ signalling and oxidative stress. J Cell Mol Med 2019; 23:8269-8279. [PMID: 31612613 PMCID: PMC6850946 DOI: 10.1111/jcmm.14700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
Imbalance of osteoblast and osteoclast in adult leads to a variety of bone-related diseases, including osteoporosis. Thus, suppressing the activity of osteoclastic bone resorption becomes the main therapeutic strategy for osteoporosis. Asperpyrone A is a natural compound isolated from Aspergillus niger with various biological activities of antitumour, antimicrobial and antioxidant. The present study was designed to investigate the effects of Asperpyrone A on osteoclastogenesis and to explore its underlining mechanism. We found that Asperpyrone A inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner when the concentration reached 1 µm, and with no cytotoxicity until the concentration reached to 10 µm. In addition, Asperpyrone A down-regulated the mRNA and protein expression of NFATc1, c-fos and V-ATPase-d2, as well as the mRNA expression of TRAcP and Ctsk. Furthermore, Asperpyrone A strongly attenuated the RNAKL-induced intracellular Ca2+ oscillations and ROS (reactive oxygen species) production in the process of osteoclastogenesis and suppressed the activation of MAPK and NF-κB signalling pathways. Collectively, Asperpyrone A attenuates RANKL-induced osteoclast formation via suppressing NFATc1, Ca2+ signalling and oxidative stress, as well as MAPK and NF-κB signalling pathways, indicating that this compound may become a potential candidate drug for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Xi Chen
- School of Sports ScienceWenzhou Medical UniversityWenzhouChina
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Chao Wang
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Heng Qiu
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Yu Yuan
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouChina
| | - Kai Chen
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Zhen Cao
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesNanjing UniversityNanjingChina
| | - Jennifer Tickner
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jiake Xu
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jun Zou
- School of KinesiologyShanghai University of SportShanghaiChina
| |
Collapse
|
37
|
Wang J, Chen G, Zhang Q, Zhao F, Yu X, Ma X, Liu M. Phillyrin Attenuates Osteoclast Formation and Function and Prevents LPS-Induced Osteolysis in Mice. Front Pharmacol 2019; 10:1188. [PMID: 31680965 PMCID: PMC6811733 DOI: 10.3389/fphar.2019.01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
As the sole cell type responsible for bone resorption, osteoclasts play a pivotal role in a variety of lytic bone diseases. Suppression of osteoclast formation and activation has been proposed as an effective protective therapy for new bone. In this study, we reported for the first time that phillyrin (Phil), an active ingredient extracted from forsythia, significantly inhibited RANKL-induced osteoclastogenesis and bone resorption in vitro and protected against lipopolysaccharide-induced osteolysis in vivo. Further molecular investigations demonstrated that Phil effectively blocked RANKL-induced activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase, which suppressed the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic 1. Taken together, these data suggested that Phil might be a potential antiosteoclastogenesis agent for treating osteoclast-related bone lytic diseases.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fuli Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
38
|
Li Y, Shi Z, Jules J, Chen S, Kesterson RA, Zhao D, Zhang P, Feng X. Specific RANK Cytoplasmic Motifs Drive Osteoclastogenesis. J Bone Miner Res 2019; 34:1938-1951. [PMID: 31173390 PMCID: PMC6813862 DOI: 10.1002/jbmr.3810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/05/2023]
Abstract
Upon receptor activator of NF-κB ligand (RANKL) binding, RANK promotes osteoclast formation through the recruitment of tumor necrosis factor (TNF) receptor-associated factors (TRAFs). In vitro assays identified two RANK intracellular motifs that bind TRAFs: PVQEET560-565 (Motif 2) and PVQEQG604-609 (Motif 3), which potently mediate osteoclast formation in vitro. To validate the in vitro findings, we have generated knock-in (KI) mice harboring inactivating mutations in RANK Motifs 2 and 3. Homozygous KI (RANKKI/KI ) mice are born at the predicted Mendelian frequency and normal in tooth eruption. However, RANKKI/KI mice exhibit significantly more trabecular bone mass than age- and sex-matched heterozygous KI (RANK+/KI ) and wild-type (RANK+/+ ) counterparts. Bone marrow macrophages (BMMs) from RANKKI/KI mice do not form osteoclasts when they are stimulated with macrophage colony-stimulating factor (M-CSF) and RANKL in vitro. RANKL is able to activate the NF-κB, ERK, p38, and JNK pathways in RANKKI/KI BMMs, but it cannot stimulate c-Fos or NFATc1 in the RANKKI/KI cells. Previously, we showed that RANK signaling plays an important role in Porphyromonas gingivalis (Pg)-mediated osteoclast formation by committing BMMs into the osteoclast lineage. Here, we show that RANKL-primed RANKKI/KI BMMs are unable to differentiate into osteoclasts in response to Pg stimulation, indicating that the two RANK motifs are required for Pg-induced osteoclastogenesis. Mechanistically, RANK Motifs 2 and 3 facilitate Pg-induced osteoclastogenesis by stimulating c-Fos and NFATc1 expression during the RANKL pretreatment phase as well as rendering c-Fos and NFATc1 genes responsive to subsequent Pg stimulation. Cell-penetrating peptides (CPPs) conjugated with RANK segments containing Motif 2 or 3 block RANKL- and Pg-mediated osteoclastogenesis. The CPP conjugates abrogate RANKL-stimulated c-Fos and NFATc1 expression but do not affect RANKL-induced activation of NF-κB, ERK, p38, JNK, or Akt signaling pathway. Taken together, our current findings demonstrate that RANK Motifs 2 and 3 play pivotal roles in osteoclast formation in vivo and mediate Pg-induced osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shenyuan Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Chongqing Key Laboratory of Oral Diseases and Biological Science, Stomatological Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongfeng Zhao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Yang Y, Chung MR, Zhou S, Gong X, Xu H, Hong Y, Jin A, Huang X, Zou W, Dai Q, Jiang L. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. J Biol Chem 2019; 294:15395-15407. [PMID: 31462535 DOI: 10.1074/jbc.ra119.010139] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a central role in cell survival and function. STAT3 has been demonstrated to participate in the maintenance of bone homeostasis in osteoblasts, but its role in osteoclasts in vivo remains poorly defined. Here, we generated a conditional knockout mouse model in which Stat3 was deleted in osteoclasts using a cathepsin K-Cre (Ctsk-Cre) driver. We observed that osteoclast-specific Stat3 deficiency caused increased bone mass in mice, which we attributed to impaired bone catabolism by osteoclasts. Stat3-deficient bone marrow macrophages (BMMs) showed decreased expression of nuclear factor of activated T cells, cytoplasm 1 (NFATc1), and reduced osteoclast differentiation determined by decreases in osteoclast number, tartrate-resistant acid phosphatase activity, and expression of osteoclast marker genes. Enforced expression of NFATc1 in Stat3-deficient BMMs rescued the impaired osteoclast differentiation. Mechanistically, we revealed that STAT3 could drive the transcription of NFATc1 by binding to its promoter. Furthermore, preventing STAT3 activation by using an inhibitor of upstream phosphorylases, AG490, also impaired osteoclast differentiation and formation in a similar way as gene deletion of Stat3 In summary, our data provide the first evidence that STAT3 is significant in osteoclast differentiation and bone homeostasis in vivo, and it may be identified as a potential pharmacological target for the treatment of bone metabolic diseases through regulation of osteoclast activity.
Collapse
Affiliation(s)
- Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Mi Ri Chung
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Siru Zhou
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xinyi Gong
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yueyang Hong
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
40
|
Huang XL, Huang LY, Cheng YT, Li F, Zhou Q, Wu C, Shi QH, Guan ZZ, Liao J, Hong W. Zoledronic acid inhibits osteoclast differentiation and function through the regulation of NF-κB and JNK signalling pathways. Int J Mol Med 2019; 44:582-592. [PMID: 31173157 PMCID: PMC6605660 DOI: 10.3892/ijmm.2019.4207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
It is well known that extensive osteoclast formation plays a key role in osteoporosis in post‑menopausal women and the elderly. The suppression of extensive osteoclastogenesis and bone resorption may be an effective preventive strategy for osteoporosis. Zoledronic acid (ZOL) has been indicated to play an essential role in regulating bone mineral density and has already been used in large clinical trials. However, the effects of ZOL on osteoclastogenesis remain to be fully elucidated. Therefore, the present study aimed to determine the effects of ZOL on osteoclastogenesis, and to explore the corresponding signalling pathways. By using a cell viability assay, as well as in vitro osteoclastogenesis, immunofluorescence and resorption pit assays, we demonstrated that ZOL (0.1‑5 µM) suppressed receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation and bone resorptive activity. Furthermore, western blot analysis and reverse transcription‑quantitative PCR indicated that ZOL inhibited the RANKL‑induced activation of NF‑κB and the phosphorylation of JNK in RAW264.7 cells, and subsequently decreased the expression of osteoclastogenesis‑associated genes, including calcitonin receptor, tartrate‑resistant acid phosphatase and dendritic cell‑specific transmembrane protein. ZOL inhibited osteoclast formation and resorption in vitro by specifically suppressing NF‑κB and JNK signalling. On the whole, the findings of this study indicate that ZOL may serve as a potential agent for the treatment of osteoclast‑associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Lie-Yu Huang
- Department of Medical Psychology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Fang Li
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Chao Wu
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian-Hui Shi
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Wei Hong
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
41
|
I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma. Biosci Rep 2019; 39:BSR20181245. [PMID: 30455393 PMCID: PMC6522735 DOI: 10.1042/bsr20181245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Multiple myeloma (MM) is an incurable hematologic cancer, accompanied by excessive osteoclast formation and inflammatory cytokine secretion. The mechanisms by which bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 regulates osteoclast differentiation and inflammatory cytokine secretion in MM are largely unknown. Methods: The isolated peripheral blood mononuclear cells from normal or patients with MM were treated with receptor activator of NF-κB ligand (RANKL) and M-CSF to induce osteoclast differentiation. RAW 264.7 cells were treated with RANKL. I-BET151 was applied to investigate the effects of BRD4 inhibition on osteoclast formation and inflammatory cytokine secretion. Osteoclast formation was determined by tartrate-resistant acid phosphatase (TRACP) staining. The expression of osteoclast-specific genes TRACP, matrix metalloproteinase-9 (MMP-9), cathepsin K (Ctsk), and c-Src was tested using quantitative real-time PCR. And the level of inflammatory cytokines TNF-α, IL-1β, and IL-6 was assessed by ELISA. Tumor necrosis factor receptor-associated factor 6 (TRAF6), BRD4, nuclear and cytoplasm p65, IκB-α, nuclear factor of activated T cells cytoplasmic (NFATc1), and osteoprotegerin (OPG) expression were measured by Western blotting. RNAi technology was applied to knock down BET family member BRD4. Results: I-BET151 dose-dependently suppressed osteoclast formation, inhibited the levels of osteoclast-specific genes TRACP, MMP-9, Ctsk, and c-Src and inflammatory cytokines TNF-α, IL-1β, and IL-6 secretion in peripheral blood mononuclear cells and RAW 264.7. I-BET151 inhibited the protein levels of BRD4 and NFATc1, increased OPG expression, and suppressed IκB-α degradation and p65 nuclear translocation. Further, the effects of I-BET151 on osteoclast formation, osteoclast-specific genes expression, inflammatory cytokine secretion, and NF-κB inhibition were promoted by BRD4 knockdown. Conclusion: I-BET151 inhibits osteoclast formation and inflammatory cytokine secretion by targetting BRD4-mediated RANKL-NF-κB signal pathway and BRD4 inhibition might be beneficial for MM treatment.
Collapse
|
42
|
Wang CM, Tsai SC, Lin JC, Wu YJJ, Wu J, Chen JY. Association of Genetic Variants of RANK, RANKL, and OPG with Ankylosing Spondylitis Clinical Features in Taiwanese. Mediators Inflamm 2019; 2019:8029863. [PMID: 31015798 PMCID: PMC6446096 DOI: 10.1155/2019/8029863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that leads to spinal ankylosis. The receptor activator of the nuclear factor-kappa (RANK), RANK ligand, and osteoprotegerin (OPG) (RANK/RANKL/OPG) pathway plays critical roles in bone metabolism and the immune system. The current study was aimed at investigating whether six single-nucleotide polymorphisms (SNPs) within the RANK, RANKL, and OPG genes essential for bone homeostasis are associated with AS. Genotype distributions, allele and haplotype frequencies, were compared between 1120 AS patients and 1435 healthy controls and among AS patients with stratification by syndesmophyte formation, onset age, and HLA-B27 positivity. We found that RANKL SNPs were associated with AS syndesmophyte formation. Notably, the RANKL SNP haplotype rs7984870C/rs9533155G/rs9525641C was negatively associated with AS susceptibility and appeared to protect against syndesmophyte formation in AS. Functionally, RANKL promoter SNPs (rs9525641 C/T and rs9533155 G/C) affected DNA-protein complex formation and promoter activity in promoter reporter analyses. The OPG SNP haplotype rs2073618G/rs3102735T was significantly associated with HLA-B27 negativity in AS patients. Furthermore, AS patients with syndesmophyte formation had significantly lower levels of soluble RANKL levels than those without syndesmophyte formation. Our data suggested a role for RANKL in AS susceptibility and severity.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Shu-Chun Tsai
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2 Nankang, Taipei 115, Taiwan
| | - Jing-Chi Lin
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Yeong-Jian Jan Wu
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Jianming Wu
- Associate Professor, Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, USA
| | - Ji-Yih Chen
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| |
Collapse
|
43
|
Narahara S, Sakai E, Kadowaki T, Yamaguchi Y, Narahara H, Okamoto K, Asahina I, Tsukuba T. KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Sci Rep 2019; 9:3523. [PMID: 30837587 PMCID: PMC6401029 DOI: 10.1038/s41598-019-40240-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Kelch repeat and BTB domain-containing protein 11 (KBTBD11) is a member of the KBTBD subfamily of proteins that possess a BTB domain and Kelch repeats. Despite the presence of the Kbtbd11 gene in mammalian genomes, there are few reports about KBTBD11 at present. In this study, we identified the novel protein KBTBD11 as a negative regulator of osteoclast differentiation. We found that expression of KBTBD11 increased during osteoclastogenesis. Small-interfering-RNA-mediated knockdown of KBTBD11 enhanced osteoclast formation, and markedly increased the expression of several osteoclast marker genes compared with control cells. Conversely, KBTBD11 overexpression impaired osteoclast differentiation, and decreased the expression of osteoclast marker genes. Among six major signaling pathways regulating osteoclast differentiation, KBTBD11 predominantly influenced the nuclear factor of activated T cell cytoplasmic-1 (NFATc1) pathway. Mechanistically, KBTBD11 was found to interact with an E3 ubiquitin ligase, Cullin3. Further experiments involving immunoprecipitation and treatment with MG132, a proteasome inhibitor, showed that the KBTBD11–Cullin3 promotes ubiquitination and degradation of NFATc1 by the proteasome. Considering that NFATc1 is an essential factor for osteoclast differentiation, the KBTBD11 and Cullin3 probably regulate the levels of NFATc1 through the ubiquitin-proteasome degradation system. Thus, KBTBD11 negatively modulates osteoclast differentiation by controlling Cullin3-mediated ubiquitination of NFATc1.
Collapse
Affiliation(s)
- Shun Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.,Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Tomoko Kadowaki
- Department of Frontier Life Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Haruna Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.
| |
Collapse
|
44
|
Choi Y, Yoo JH, Lee Y, Bae MK, Kim HJ. Calcium-Phosphate Crystals Promote RANKL Expression via the Downregulation of DUSP1. Mol Cells 2019; 42:183-188. [PMID: 30703868 PMCID: PMC6399012 DOI: 10.14348/molcells.2018.0382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a naturally occurring, irreversible disorder and a major health burden. The disease is multifactorial, involving both physiological and mechanical processes, but calcium crystals have been associated intimately with its pathogenesis. This study tested the hypothesis that these crystals have a detrimental effect on the differentiation of osteoclasts and bone homeostasis. This study employed an osteoblast-osteoclast coculture system that resembles in vivo osteoblast-dependent osteoclast differentiation along with Ca2+-phosphate-coated culture dishes. The calcium-containing crystals upregulated the expression of RANKL and increased the differentiation of osteoclasts significantly as a result. On the other hand, osteoblast differentiation was unaffected. MicroRNA profiling showed that dual-specificity phosphatases 1 (DUSP1) was associated with the increased RANKL expression. DUSP1 belongs to a family of MAPK phosphatases and is known to inactivate all three groups of MAPKs, p38, JNK, and ERK. Furthermore, knockdown of DUSP1 gene expression suggested that RANKL expression increases significantly in the absence of DUSP1 regulation. Microarray analysis of the DUSP1 mRNA levels in patients with pathological bone diseases also showed that the downregulated DUSP1 expression leads to increased expression of RANKL and consequently to the destruction of the bone observed in these patients. These findings suggest that calcium-containing crystals may play a crucial role in promoting RANKL-induced osteoclastogenesis via DUSP1.
Collapse
Affiliation(s)
- YunJeong Choi
- Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan,
Korea
| | - Ji Hyun Yoo
- Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan,
Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu,
Korea
| | - Moon Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan,
Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan,
Korea
| |
Collapse
|
45
|
LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet 2019; 138:151-166. [PMID: 30661131 DOI: 10.1007/s00439-019-01969-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Previous genome-wide linkage and association studies have identified an osteoporosis-associated locus at 1p36 that harbors SNPs rs34920465 and rs6426749. The 1p36 locus also comprises the WNT4 gene with known role in bone metabolism and functionally unknown ZBTB40/lncRNA ZBTB40-IT1 genes. How these might interact to contribute to osteoporosis susceptibility is not known. In this study, we show that lncRNA ZBTB40-IT1 is able to suppress osteogenesis and promote osteoclastogenesis by regulating the expression of WNT4, RUNX2, OSX, ALP, COL1A1, OPG and RANKL in U-2OS and hFOB1.19 cell lines, whereas ZBTB40 plays an opposite role in bone metabolism. Treatment with parathyroid hormone significantly downregulates the expression of ZBTB40-IT1 in U-2OS cell lines. ZBTB40 can suppress ZBTB40-IT1 expression but has no response to parathyroid hormone treatment. Dual-luciferase assay and biotin pull-down assay demonstrate that osteoporosis GWAS lead SNPs rs34920465-G and rs6426749-C alleles can respectively bind transcription factors JUN::FOS and CREB1, and upregulate ZBTB40 and ZBTB40-IT1 expression. Our study discovers the critical role of ZBTB40 and lncRNA ZBTB40-IT1 in bone metabolism, and provides a mechanistic basis for osteoporosis GWAS lead SNPs rs34920465 and rs6426749.
Collapse
|
46
|
Zhou Y, Zhu W, Zhang L, Zeng Y, Xu C, Tian Q, Deng HW. Transcriptomic Data Identified Key Transcription Factors for Osteoporosis in Caucasian Women. Calcif Tissue Int 2018; 103:581-588. [PMID: 30056508 PMCID: PMC6343666 DOI: 10.1007/s00223-018-0457-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/14/2018] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a prevalent bone metabolic disease, mainly caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Identifying the key transcription factors and understanding the regulatory network influencing osteoclastogenesis will be helpful to explore the potential biological mechanism for osteoporosis. In our study, peripheral blood monocyte (PBM) was used as a cell model for bone mineral density (BMD) research. PBMs serve as progenitors of osteoclasts and produce important cytokines for osteoclastogenesis. In our study, via exon arrays, gene expression profiles of PBMs were analyzed between high versus low hip BMD groups. Transcription factors for differentially expressed genes were then predicted based on the enrichment analysis. We found that 591 genes were differentially expressed between the two BMD groups (nominally significant, raw p value < 0.05). For high BMD subjects, 482 genes were up-regulated and 109 genes were down-regulated. We then found 29 potential transcription factors for up-regulated genes and nine transcription factors for down-regulated genes. Among these transcription factors, HMGA1 and NFKB2 were differentially expressed between high versus low BMD groups. In addition, their regulation types with their target genes were consistent with the information from public databases. Our findings of key transcription factors and their target genes for osteoporosis were further validated by GWAS analysis. Overall, we predicted important transcription factors for osteoporosis. We were also able to infer the regulatory mechanism that exists between transcription factors and target genes in bone metabolism.
Collapse
Affiliation(s)
- Yu Zhou
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Wei Zhu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Yong Zeng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA, 70112, USA.
| |
Collapse
|
47
|
Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. Int J Mol Sci 2018; 19:ijms19113698. [PMID: 30469456 PMCID: PMC6275021 DOI: 10.3390/ijms19113698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Wear particle-induced aseptic prosthetic loosening is a major complication associated with total joint arthroplasty (TJA). A growing body of evidence suggests that receptor activator of nuclear factor κ-B ligand (RANKL)-stimulated osteoclastogenesis and bone resorption are responsible for peri-implant loosening. Thus, agents which attenuate excessive osteoclast differentiation and function have been considered to offer therapeutic potential for prolonging the life of TJA implants. Jatrorrhizine hydrochloride (JH), a major protoberberine alkaloid isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, and antihypercholesterolemic and neuroprotective activities. However, its effects on osteoclast biology remain unknown. Here, we found that JH inhibited RANKL-induced osteoclast formation and bone resorption in vitro and exerted protection against titanium (Ti) particle-induced osteolysis in vivo. Biochemical analysis demonstrated that JH suppressed RANKL-induced activation of MAPKs (p38 and ERK) which down-regulated the production of NFATc1 and NFATc1-regulated osteoclastic marker genes, such as TRAP, CTR and CTSK. Collectively, our findings suggest that JH may be a promising anti-osteoclastogenesis agent for treating periprosthetic osteolysis or other osteoclast-related osteolytic diseases.
Collapse
|
48
|
Izawa T, Hutami IR, Tanaka E. Potential Role of Rebamipide in Osteoclast Differentiation and Mandibular Condylar Cartilage Homeostasis. Curr Rheumatol Rev 2018; 14:62-69. [PMID: 29046162 PMCID: PMC5925868 DOI: 10.2174/1573397113666171017113441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022]
Abstract
Background: Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease that involves changes in subchondral bone and progressive degradation of cartilage. Currently, rebamipide, a gastroprotective drug, is administered to protect gastric mucosa and accelerate ulcer healing. Objectives: Recent studies have shown that rebamipide also attenuates cartilage degeneration by suppressing oxidative damage and inducing homeostasis of the extracellular matrix of articular chondrocytes. Regarding the latter, reduced expression of cathepsin K, NFATc1, c-Src, and integrin β3, and increased expression of nuclear factor-kappa B, have been found to be mediated by the transcription factor, receptor activator of nuclear factor kappa-B ligand (RANKL). Methods: Treatment with rebamipide was also found to activate, mitogen-activated protein kinases such as p38, ERK, and JNK to reduce osteoclast differentiation. Taken together, these results strongly indicate that rebamipide mediates inhibitory effects on cartilage degradation and osteoclastogenesis in TMJ-OA. Results and Conclusion: Here, we highlight recent evidence regarding the potential for rebamipide to affect osteoclast differentiation and TMJ-OA pathogenesis. We also discuss the potential role of rebamipide to serve as a new strategy for the treatment of TMJ-OA.
Collapse
Affiliation(s)
- Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Islamy Rahma Hutami
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|
49
|
PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp Mol Med 2018; 50:1-15. [PMID: 30154485 PMCID: PMC6113271 DOI: 10.1038/s12276-018-0134-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Protein arginine methylation is a novel form of posttranslational modification mediated by protein arginine methyltransferase (PRMTs). PRMT1, a major isoform of the PRMT family, is responsible for various biological functions, including cellular differentiation. Although the important function that PRMT1 plays in various tissues is being increasingly recognized, its role in receptor activation of NF-κB ligand (RANKL)-induced osteoclastogenesis or osteoporosis has not yet been described. Here, we show that PRMT1 is essential for RANKL-induced osteoclastogenesis in vitro and for bone loss in vivo. RANKL treatment increased the expression of PRMT1 and its nuclear localization in bone marrow-derived macrophages (BMDMs) in a c-Jun N-terminal kinase (JNK)-dependent manner. Silencing PRMT1 attenuated RANKL-induced osteoclastogenesis by decreasing tartrate-resistant acid phosphatase (TRAP)-positive cells and inhibiting F-actin ring formation and bone resorption, which was confirmed in a separate experiment using haploinsufficient cells from PRMT1+/- mice. Our results also revealed that PRMT1 regulates the transcription activity of NF-κB by directly interacting with it in RANKL-treated BMDMs. An in vivo study showed that the haploinsufficiency of PRMT1 reduced the enzyme activity of TRAP and increased the bone mineral density in the metaphysis of ovariectomized (OVX) mice. Finally, treatment with estrogen (E2) downregulated the RANKL-induced expression of PRMT1, suggesting that estrogen may exert an inhibitory effect on osteoclastogenesis by suppressing PRMT1 expression. Our results suggest that PRMT1 plays an important role in the progression of osteoporosis and that it might be a good therapeutic target for postmenopausal osteoporosis. A protein that helps trigger bone loss in postmenopausal osteoporosis could be a potential therapeutic target. After the menopause, decreases in estrogen hormone levels can lead to bone diseases including osteoporosis. Osteoporosis occurs when the bone remodeling process breaks down, and bone resorption by cells called osteoclasts outweighs bone formation. In a mouse model of postmenopausal osteoporosis, Jong-Hwan Park at Chonnam National University, Gwangju, South Korea and co-workers identified key players in the progression of the disease. The team focused on factors influencing the RANKL protein, a known controller of bone remodeling. They found that RANKL triggers the formation of osteoclasts via interaction with another protein, PRMT1. Suppression of PRMT1 by estrogen appears to inhibit excessive osteoclast formation, suggesting it could be a potential therapeutic target for treating osteoporosis.
Collapse
|
50
|
Yu J, Zanotti S, Schilling L, Canalis E. Nuclear factor of activated T cells 2 is required for osteoclast differentiation and function in vitro but not in vivo. J Cell Biochem 2018; 119:9334-9345. [PMID: 30010214 DOI: 10.1002/jcb.27212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 01/09/2023]
Abstract
Nuclear factor of activated T cells (NFAT) c2 is important for the immune response and it compensates for NFATc1 for its effects on osteoclastogenesis, but its role in this process is not established. To study the function of NFATc2 in the skeleton, Nfatc2loxP/loxP mice, where the Nfact2 exon 2 is flanked by loxP sequences, were created and mated with mice expressing the Cre recombinase under the control of the Lyz2 promoter. Bone marrow-derived macrophage (BMM) from Lyz2Cre/WT ;Nfatc2Δ/Δ mice cultured in the presence of macrophage-colony stimulating factor and receptor activator of NF-κB ligand exhibited a decrease in the number and size of osteoclasts and a smaller sealing zone when compared to BMMs from Nfatc2loxP/loxP littermate controls. Bone resorption was decreased in osteoclasts from Lyz2Cre/WT ;Nfatc2Δ/Δ mice. This demonstrates that NFATc2 is necessary for optimal osteoclast maturation and function in vitro. Male and female Lyz2Cre/WT ;Nfatc2Δ/Δ mice did not exhibit an obvious skeletal phenotype by microcomputed tomography (μCT) at either 1 or 4 months of age when compared to Nfatc2loxP/loxP sex-matched littermates. Bone histomorphometry confirmed the μCT results, and conditional 4-month-old Lyz2Cre/WT ;Nfatc2Δ/Δ mice did not exhibit changes in parameters of bone histomorphometry. In conclusion, NFATc2 is necessary for optimal osteoclastogenesis in vitro, but its downregulation in the myeloid lineage has no consequences in skeletal remodeling in vivo.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
- Department of Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Lauren Schilling
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
- Department of Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| |
Collapse
|