1
|
Zheng Z, Lin X, Zhao Z, Lin Q, Liu J, Chen M, Wu W, Wu Z, Liu N, Chen H. A vascular endothelial growth factor-loaded chitosan-hyaluronic acid hydrogel scaffold enhances the therapeutic effect of adipose-derived stem cells in the context of stroke. Neural Regen Res 2025; 20:3591-3605. [PMID: 39248177 PMCID: PMC11974663 DOI: 10.4103/nrr.nrr-d-24-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00028/figure1/v/2025-01-31T122243Z/r/image-tiff Adipose-derived stem cell, one type of mesenchymal stem cells, is a promising approach in treating ischemia-reperfusion injury caused by occlusion of the middle cerebral artery. However, its application has been limited by the complexities of the ischemic microenvironment. Hydrogel scaffolds, which are composed of hyaluronic acid and chitosan, exhibit excellent biocompatibility and biodegradability, making them promising candidates as cell carriers. Vascular endothelial growth factor is a crucial regulatory factor for stem cells. Both hyaluronic acid and chitosan have the potential to make the microenvironment more hospitable to transplanted stem cells, thereby enhancing the therapeutic effect of mesenchymal stem cell transplantation in the context of stroke. Here, we found that vascular endothelial growth factor significantly improved the activity and paracrine function of adipose-derived stem cells. Subsequently, we developed a chitosan-hyaluronic acid hydrogel scaffold that incorporated vascular endothelial growth factor and first injected the scaffold into an animal model of cerebral ischemia-reperfusion injury. When loaded with adipose-derived stem cells, this vascular endothelial growth factor-loaded scaffold markedly reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation and substantially restored mitochondrial membrane potential and axon morphology. Further in vivo experiments revealed that this vascular endothelial growth factor-loaded hydrogel scaffold facilitated the transplantation of adipose-derived stem cells, leading to a reduction in infarct volume and neuronal apoptosis in a rat model of stroke induced by transient middle cerebral artery occlusion. It also helped maintain mitochondrial integrity and axonal morphology, greatly improving rat motor function and angiogenesis. Therefore, utilizing a hydrogel scaffold loaded with vascular endothelial growth factor as a stem cell delivery system can mitigate the adverse effects of ischemic microenvironment on transplanted stem cells and enhance the therapeutic effect of stem cells in the context of stroke.
Collapse
Affiliation(s)
- Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Gao W, Li S, Miao Y, Yuan G, Li G, Zhou G, Jia G, Yang X, Jin Y. Selenium nanozyme-crosslinked composite hydrogel for promoting cartilage regeneration in osteoarthritis via an integrated 'outside-in' and 'inside-out' strategy. J Colloid Interface Sci 2025; 693:137612. [PMID: 40252578 DOI: 10.1016/j.jcis.2025.137612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Osteoarthritis (OA), a degenerative joint disease, is characterized by chondrocyte senescence, extracellular matrix (ECM) degradation, and chronic inflammation, with limited regenerative capacity. Current therapies primarily provide symptom relief, therefore highlighting the need for more effective strategies to address OA's multifactorial pathology. This study introduces an innovative selenium nanozyme-crosslinked injectable composite hydrogel (Se/PRP-OGel), which combines selenium nanoparticles (SeNPs) with platelet-rich plasma (PRP) in a biocompatible oxidized chondroitin sulfate-gelatin scaffold (OGel), to address OA through an integrated "outside-in" and "inside-out" strategy. The "outside-in" strategy utilizes SeNPs to scavenge reactive oxygen species (ROS), alleviate oxidative stress, and restore redox balance, thereby reducing extracellular damage and modulating inflammation in the OA microenvironment. Concurrently, the "inside-out" strategy utilizes PRP's bioactive growth factors (e.g., TGF-β, IGF, FGF) to rejuvenate senescent chondrocytes, stimulate proliferation, and enhance ECM synthesis, creating a regenerative microenvironment. The results showed that Se/PRP-OGel demonstrated excellent biocompatibility, reduced ROS levels, mitigated chondrocyte senescence, and balanced ECM homeostasis. Moreover, it promoted cartilage repair, pain relief, and functional restoration in an OA rat model. This dual approach interrupts OA's degenerative cycle and fosters cartilage regeneration, providing a groundbreaking solution for effective cartilage regeneration and OA treatment.
Collapse
Affiliation(s)
- Wenyan Gao
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Shaochun Li
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ya Miao
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Guangfu Yuan
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Gaoyang Li
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| | - Guoqiang Zhou
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Guang Jia
- College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinjian Yang
- College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
3
|
Shen J, Duan X, Xie T, Zhang X, Cai Y, Pan J, Zhang X, Sun X. Advances in locally administered nucleic acid therapeutics. Bioact Mater 2025; 49:218-254. [PMID: 40144794 PMCID: PMC11938090 DOI: 10.1016/j.bioactmat.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Nucleic acid drugs represent the latest generation of precision therapeutics, holding significant promise for the treatment of a wide range of intractable diseases. Delivery technology is crucial for the clinical application of nucleic acid drugs. However, extrahepatic delivery of nucleic acid drugs remains a significant challenge. Systemic administration often fails to achieve sufficient drug enrichment in target tissues. Localized administration has emerged as the predominant approach to facilitate extrahepatic delivery. While localized administration can significantly enhance drug accumulation at the injection sites, nucleic acid drugs still face biological barriers in reaching the target lesions. This review focuses on non-viral nucleic acid drug delivery techniques utilized in local administration for the treatment of extrahepatic diseases. First, the classification of nucleic acid drugs is described. Second, the current major non-viral delivery technologies for nucleic acid drugs are discussed. Third, the bio-barriers, administration approaches, and recent research advances in the local delivery of nucleic acid drugs for treating lung, brain, eye, skin, joint, and heart-related diseases are highlighted. Finally, the challenges associated with the localized therapeutic application of nucleic acid drugs are addressed.
Collapse
Affiliation(s)
- Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xusheng Duan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhao Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Márquez-Mendoza JM, Baranda-Ávila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERα). This work aims to review the effects of miRNAs targeting ERα mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M Márquez-Mendoza
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ávila
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
5
|
Chen H, Zhao D, Liu S, Zhong Y, Wen Y, Chen L. Ginsenoside Rh1 attenuates chondrocyte senescence and osteoarthritis via AMPK/PINK1/Parkin-mediated mitophagy. Int Immunopharmacol 2025; 159:114911. [PMID: 40409109 DOI: 10.1016/j.intimp.2025.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by disruption of extracellular matrix (ECM) homeostasis, chronic inflammation, and upregulation of senescent phenotypes. Ginsenoside Rh1 (Rh1) exerted various pharmacological activities, including anti-inflammatory, anti-cancer, and neuroprotective effects. Herein, we aimed to explore the role and mechanism of Rh1 in OA. In IL-1β-induced OA chondrocytes, Rh1 alleviated the imbalance of ECM and senescence phenotypes. Furthermore, we found that Rh1 mitigated mitochondrial damage and the impaired mitophagy of chondrocytes induced by IL-1β, and these effects could be prevented by Mdivi-1 (a mitophagy inhibitor). Knockdown of PINK1 or Parkin partially abolished Rh1-mediated chondroprotection, indicating that Rh1 exerts its therapeutic effects via PINK1/Parkin-dependent mitophagy. Based on molecular docking, Compound C (an AMPK inhibitor), and AMPK siRNA, we found that Rh1 regulated PINK1/Parkin-mediated mitophagy through AMPK. Besides, Rh1 alleviated OA by promoting AMPK-mediated mitophagy in the anterior cruciate ligament transection (ACLT) rats. In conclusion, Rh1 alleviated OA progress by regulating AMPK/PINK1/Parkin-mediated mitophagy and is a potentially effective therapeutic target for age-related OA.
Collapse
Affiliation(s)
- Haitao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Danyang Zhao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Siyi Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yongkang Zhong
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Li W, Shi Z, Jing H, Dou Y, Liu X, Zhang M, Qiu Z, Heger Z, Li N. Streamlined metal-based hydrogel facilitates stem cell differentiation, extracellular matrix homeostasis and cartilage repair in male rats. Nat Commun 2025; 16:4344. [PMID: 40346121 PMCID: PMC12064686 DOI: 10.1038/s41467-025-59725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Xinyi Liu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Mengyao Zhang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Wang D, Zhong Q, Xu Y, Fu J, Xie J, Chen R, Lei M, Tang Z, Mai H, Li H, Shi Z, Zheng S, Cheng H. Injectable visible light cross-linking aldehyde-based methacrylated hyaluronic acid hydrogels enhance cartilage repair via improved BMSC homing and chondrogenic differentiation. Int J Biol Macromol 2025; 307:141857. [PMID: 40058436 DOI: 10.1016/j.ijbiomac.2025.141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Self-repair of articular cartilage defects is a significant challenge that can be addressed using drug-infused hydrogels, which improve injection convenience and provide immediate in situ adhesion. In this study, we developed a hydrogel incorporating Lipo@Kartogenin (KGN) and the cationic functional peptide SKPPGTSS (SKP) linked to aldehyde-based methacrylated hyaluronic acid (AHAMA). The innovative injectable hydrogel responded to visible light, allowing cross-linking under white light (∼30 s) and effective adhesion to cartilage tissue. The hydrogel facilitated the sustained release of KGN and SKP over approximately 28 days as it degraded, thereby promoting the homing and differentiation of endogenous bone marrow-derived mesenchymal stem cells (BMSCs). Transcriptome sequencing showed that Smad4 expression and activation of the TGF-β signaling pathway are fundamental to these processes. In vivo studies in Sprague-Dawley (SD) rats showed that this hydrogel supports optimal hyaline cartilage regeneration within 8 weeks. In conclusion, our visible light-responsive adhesive co-delivery hydrogel effectively recruited native BMSCs to cartilage lesion sites and provided an environment conducive to their differentiation into cartilage, thereby facilitating effective cartilage regeneration. This innovation represents a novel approach to the clinical repair of cartilage defects.
Collapse
Affiliation(s)
- Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yixin Xu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlang Fu
- Department of Orthopedics, Kaiping Central Hospital, Kaiping 529300, China
| | - Jiajun Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanjun Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaowei Zheng
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518000, China; State Key Laboratory of Quality Research in Chinese Medicines, Laboratory of Drug Discovery from Natural Resources and Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Hao W, Chang M, Shi D, Yun C, Li J, Guo H, Lin X. Therapeutic targets in aging-related osteoarthritis: A focus on the extracellular matrix homeostasis. Life Sci 2025; 368:123487. [PMID: 39978589 DOI: 10.1016/j.lfs.2025.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Osteoarthritis (OA) represents a globally prevalent degenerative bone diseases and is the primary contributors to pain and disability among middle-aged and elderly people, thereby imposing significant social and economic burdens. When articular cartilage is in the aging environment, epigenetic modifications, DNA damage and mitochondrial dysfunction lead to cell senescence. Chondrocyte senescence has been identified as a pivotal event in this metabolic dysregulation of the extracellular matrix (ECM). It can affect the composition and structure of ECM, and the mechanical and biological signals transmitted by ECM to senescent chondrocytes affect their physiology and pathology. Over the past few decades, the role of ECM in aging-related OA has received increasing attention. In this review, we summarize the changes of cartilage's major ECM (type II collagen and aggrecan) and the interaction between aging and ECM in OA, and explore therapeutic strategies targeting cartilagae ECM, such as noncoding RNAs, small-molecule drugs, and mesenchymal stem cell (MSC)-derived extracellular vesicles for OA. The aim of this study was to elucidate the potential benefits of ECM-based therapies as novel strategies for the management of OA diseases.
Collapse
Affiliation(s)
- Wan Hao
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Minnan Chang
- Department of Clinical Medicine, Xin Jiang Medical University, Xin Jiang 830011, China
| | - Di Shi
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenxi Yun
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haitao Guo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiao Lin
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City 518063, China.
| |
Collapse
|
9
|
Guo Q, Nan R, Du Y, Wang R, Xie M, Li X, Li K, Xiang T, Zhou S. Hyaluronic acid composite hydrogel with enhanced lubrication and controllable drug release for the mitigation of osteoarthritis. Int J Biol Macromol 2025; 308:142677. [PMID: 40164244 DOI: 10.1016/j.ijbiomac.2025.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Excessive inflammation, overexpressed reactive oxygen species (ROS), degradation of the extracellular matrix, and high friction aggravate osteoarthritis (OA). Intra-articular injection for local drug delivery in the joint cavity enhances drug retention duration for OA treatment. Nevertheless, it remains a challenge to attenuate OA by thoroughly modulating the joint microenvironment, achieving controlled drug release, and enhancing lubrication. This study develops hyaluronic acid (HA) composite hydrogels, infused with gelatin microspheres containing a drug, utilizing dynamic interactions between phenylboronic acid and catechol to modulate the microenvironment by scavenging ROS, facilitating controlled drug release, and improving lubrication to mitigate OA. The composite hydrogels can be injected by intra-articular injection due to the shear-thinning properties, demonstrating broad ROS scavenging capacity and matrix metalloproteinase-9 responsive drug release. Both the in vitro and in vivo experiments prove the protective efficacy of the composite hydrogels against the degradation of cartilage matrix. Additionally, the hydrogels can offer efficient lubrication and effectively attenuate OA. Thus, the injectable HA composite hydrogels demonstrated potential in the management of OA.
Collapse
Affiliation(s)
- Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Nan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuxiao Du
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meiming Xie
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu 610031, China
| | - Xilin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kezhou Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
10
|
Wu L, Xu T, Li S, Sun K, Tang Z, Xu H, Qiu Y, Feng Z, Liu Z, Zhu Z, Qin X. Sequential activation of osteogenic microenvironment via composite peptide-modified microfluidic microspheres for promoting bone regeneration. Biomaterials 2025; 316:122974. [PMID: 39631161 DOI: 10.1016/j.biomaterials.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The osteogenic microenvironment (OME) significantly influences bone repair; however, reproducing its dynamic activation and repair processes remains challenging. In this study, we designed injectable porous microspheres modified with composite peptides to investigate cascade alterations in OME and their underlying mechanisms. Poly l-lactic acid microfluidic microspheres underwent surface modifications through alkaline hydrolysis treatment, involving heterogeneous grafting of bovine serum albumin nanoparticles with stem cell-homing peptides (BNP@SKP) and BMP-2 mimicking peptides (P24), respectively. These modifications well-organized the actions of initial release and subsequent in situ grafting of peptides. Cellular experiments demonstrated varied degrees of chemotactic recruitment and osteogenic differentiation in mesenchymal stem cells. Further biological analysis revealed that BNP@SKP targeted the Ras/Erk axis and upregulated matrix metalloproteinase (MMP)2 and MMP9 expression, thereby enhancing initial chemotaxis and recruitment. In vivo studies validated the establishment of a dynamically regulated OME centered on the microspheres, resulting in increased stem cell recruitment, sequential activation of the differentiation microenvironment, and facilitation of in situ osteogenesis without ectopic ossification. In conclusion, this study successfully fabricated composite peptide-modified microspheres and systematically explored the mechanisms of bone formation through sequential activation of OME via heterogeneous grafting of signaling molecules. This provides theoretical evidence for biomaterials based on microenvironment regulation.
Collapse
Affiliation(s)
- Liang Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tao Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ziyang Tang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hui Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Xiaodong Qin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
11
|
Wu Y, Feng Y, Hu F, Zheng X, Ding Y, Liu X, Huo S, Lyu Z. Engineered Stem Cell Clusters for Extracellular Vesicles-Mediated Gene Delivery to Rejuvenate Chondrocytes and Facilitate Chondrogenesis in Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500964. [PMID: 40278049 DOI: 10.1002/advs.202500964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Gene therapy offers an ideal potential treatment strategy for osteoarthritis (OA). However, the safe and efficient delivery of therapeutic genes remains highly challenging because of the inactivation in direct delivery of miRNA, low transfection efficiency, and a short half-life. This study introduced a gene therapy strategy using mesenchymal stem cells (MSCs) as a gene delivery platform and achieved the sustained delivery of therapeutic genes via engineered MSCs-derived extracellular vesicles (EVs). The miRNA-874-3p is combined with an exosome-targeting motif and transfected into bone marrow mesenchymal stem cells (BMSCs). The BMSCsmotif+miR874 are then seeded onto hydrogel microspheres, creating the BMSCmotif+miR874/MS system for OA treatment. In vitro experiments demonstrated that miRNA-874-3p not only alleviated inflammation and oxidative stress-induced damage to chondrocytes by downregulating the NF-κB signaling pathway, thereby rejuvenating chondrocytes, but also promoted chondrogenesis in the inflammatory microenvironment. Furthermore, the engineered BMSCs in the system demonstrated prolonged retention in vivo, thereby enabling the sustained delivery of the therapeutic gene, miRNA-874-3p, over an extended duration. In the rat OA model, BMSCmotif+miR874/MS successfully delivered miRNA-874-3p to the articular cartilage and effectively alleviated cartilage degeneration. In conclusion, this EVs-mediated therapeutic gene delivery approach enables miRNA-based gene therapy a viable alternative to surgery for OA treatment and provides a novel option for gene therapy.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yubo Feng
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200001, China
| | - Fei Hu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xu Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yurun Ding
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xuesong Liu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200001, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200001, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| |
Collapse
|
12
|
Sheng S, Zhao H, Liu L, Chen D, Wu X, Liu C, Ma X, Xu JW, Ji J, Han H, Xu W. MicroRNA-loaded antioxidant nanoplatforms for prevention and treatment of experimental acute and chronic uveitis. Biomaterials 2025; 322:123353. [PMID: 40288314 DOI: 10.1016/j.biomaterials.2025.123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Uveitis, a frequently recurrent inflammatory condition of the uvea, poses a significant risk of visual impairment and blindness, primarily due to the excessive generation of reactive oxygen species (ROS) and the activation of signaling pathways that propagate inflammatory responses. Despite the widespread use of corticosteroid eye drops as a standard treatment, these therapies are hindered by limited efficacy, adverse side effects, and poor ocular bioavailability. To address these challenges, polyethyleneimine (PEI)-modified polydopamine (PDA) carrying microRNA-132-3p (miR-132), namely PEI/PDA@miR-132, was developed to simultaneously neutralize ROS and attenuate inflammation in experimental models of acute and chronic uveitis. Mechanistically, PEI/PDA@miR-132 demonstrated remarkable efficacy by suppressing ROS production, inhibiting the pro-inflammatory polarization of macrophages, and downregulating the IκBα/nuclear factor-kappa B (NF-κB) p65 signaling pathway. These effects culminated in the reduction of pro-inflammatory cytokines and mitigation of apoptosis. Therapeutically, PEI/PDA@miR-132 provided significant relief from hallmark symptoms of uveitis, including iris congestion, inflammatory exudation, and retinal folds, while exhibiting superior retinal safety compared to commercially available dexamethasone. Furthermore, it showcased excellent biocompatibility, positioning it as a promising therapeutic strategy for managing oxidative stress- and inflammation-driven diseases such as acute and chronic uveitis.
Collapse
Affiliation(s)
- Siting Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Huiling Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Lirui Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Dan Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China; Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Chujun Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xinyu Ma
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Jing-Wei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Jian Ji
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China; MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Hung CY, Hsueh TY, Rethi L, Lu HT, Chuang AEY. Advancements in regenerative medicine: a comprehensive review of stem cell and growth factor therapies for osteoarthritis. J Mater Chem B 2025; 13:4494-4526. [PMID: 40042377 DOI: 10.1039/d4tb01769b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Osteoarthritis (OA) is a widely encountered degenerative joint disorder marked by gradual cartilage deterioration, inflammation, and pain, which collectively impose considerable strain on global healthcare systems. While traditional therapies typically offer relief from symptoms, they do not tackle the core pathophysiological aspects of the disease. Regenerative medicine has recently risen as a promising field for addressing OA, capitalizing on the regenerative capabilities of stem cells and growth factors to foster tissue healing and renewal. This thorough review delves into the most recent progress in stem cell and growth factor treatments for OA, covering preclinical studies, clinical trials, and novel technological developments. We discuss the diverse origins of stem cells, such as mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and adipose-derived stem cells (ASCs), underscoring their therapeutic actions and effectiveness in both preclinical and clinical environments. Moreover, we explore contributions of growth factors like transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF) in modifying OA's pathology and enhancing tissue restoration. Additionally, this review discusses the hurdles and constraints tied to current regenerative strategies, including the standardization of cell sources, the refinement of delivery techniques, and considerations for long-term safety. By meticulously assessing the latest research outcomes and technological breakthroughs, this review aims to shed light on the potential of stem cell and growth factor therapies as forthcoming therapeutic options for OA, thereby propelling forward the domain of regenerative medicine and enhancing clinical results for individuals afflicted with this incapacitating ailment.
Collapse
Affiliation(s)
- Chen-Yuan Hung
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tai-Yuan Hsueh
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Klymiuk MC, Speer J, Marco ID, Elashry MI, Heimann M, Wenisch S, Arnhold S. Determination of the miRNA profile of extracellular vesicles from equine mesenchymal stem cells after different treatments. Stem Cell Res Ther 2025; 16:162. [PMID: 40188160 PMCID: PMC11972531 DOI: 10.1186/s13287-025-04287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common and incurable disease in humans and animals. To gain a better understanding of the pathogenesis and identify potential treatments, miRNAs will be extracted and analysed from extracellular vesicles (EVs) of equine adipose derived mesenchymal stem cells (AdMSCs). METHODS For this purpose we cultivated and pretreated AdMSCs under different conditions: interleukin 1β, shock wave, chondrogenic differentiation, chondrogenic differentiation under hypoxia, or after senescence. After treatment, EVs were harvested from the cell culture supernatants. Next-generation sequencing (NGS) was used to sequence the miRNAs from the EVs. RESULTS A total of 89 miRNAs whose expression was significantly altered compared with that of an untreated negative control were identified. On average, 53 miRNAs were upregulated and 6 miRNAs were downregulated. Among others, the miRNAs eca-miR-101, eca-miR-143, eca-miR-145, eca-miR-146a, eca-miR-27a, eca-miR-29b, eca-miR-93, eca-miR-98, and eca-miR-221 were significantly increased after the stimulations, which, as known anti-inflammatory miRNAs, could be candidates for therapeutic use in the treatment of OA. CONCLUSION These results lay the foundation for further research into the significance and efficacy of these miRNAs so that this knowledge can be improved in further experiments and, ideally, translated into therapeutic use.
Collapse
Affiliation(s)
- Michele C Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Julia Speer
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Manuela Heimann
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
15
|
Nam J, Woo H, Yang J, Kim SJ, Lee KP, Yu JH, Park TJ, Eyun S, Yang S. Blockade of ZMIZ1-GATA4 Axis Regulation Restores Youthfulness to Aged Cartilage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404311. [PMID: 40040621 PMCID: PMC12021034 DOI: 10.1002/advs.202404311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/16/2024] [Indexed: 03/06/2025]
Abstract
Susceptibility to cartilage degeneration increases in an age-dependent manner and older cartilage exhibits increased catabolic factor expression leading to osteoarthritis (OA). While inhibition of cellular senescence can prevent age-related diseases, the understanding of the regulators governing cartilage senescence and the potential for senolytic intervention remains limited. Here, in vitro and in vivo results are reported, demonstrating for the first time that the transcriptional regulator, ZMIZ1, is upregulated in aged and OA cartilage, and that it acts through GATA4 to accelerate chondrocyte senescence and trigger cartilage deterioration. Furthermore, it is shown that K-7174 interferes with the ZMIZ1-GATA4 interaction and effectively hampers cartilage senescence and OA. It is proposed that inhibition of the ZMIZ1-GATA4 axis could be a valuable strategy for eliminating senescent chondrocytes and impeding OA development and that the relevant inhibitor, K-7174, could potentially be developed as a senolytic drug for managing cartilage senescence and age-related degeneration.
Collapse
Affiliation(s)
- Jiho Nam
- Department of Biological ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hyunmin Woo
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Jihye Yang
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic SurgeryUijeongbu St. Mary's HospitalThe Catholic University of Korea College of MedicineUijeongbu11765Republic of Korea
| | - Kwang Pyo Lee
- Aging Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Ji Hoon Yu
- New Drug Development CenterDaegu‐Gyeongbuk Medical Innovation Foundation (K‐MEDI hub)Daegu41061Republic of Korea
| | - Tae Joo Park
- Department of Biological SciencesUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Siyoung Yang
- Department of Biological ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
16
|
Makada H, Singh M. Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers (Basel) 2025; 17:915. [PMID: 40219305 PMCID: PMC11991254 DOI: 10.3390/polym17070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The use of miRNA in therapeutics has, since its discovery in 1993, attracted tremendous attention, and research in this area has progressed rapidly. Since the advent of RNA interference (RNAi), much about the nucleic acid siRNA has been elucidated. At the same time, no miRNA-based drugs have passed phase II clinical trials. A significant obstacle to miRNA-based drug development is the ease of degradation and relatively short half-life in vivo of miRNA. Hydrogels are networks of cross-linked polymer chains with the ability to 'swell'. They have shown remarkable capabilities that improve the properties of other researched carriers. In combination with miRNA modification strategies and inorganic carriers, hydrogel systems show promise for sustained miRNA delivery and the development of novel miRNA-based drugs. Although hydrogel systems have been reported recently, the focus has been predominantly on their wound-healing properties, with a dearth of information on their nucleic acid carrier abilities. This paper focuses more on the latest advancements in developing hydrogels as a carrier system, emphasizing the delivery of miRNA. This review will cover the methods of hydrogel fabrication, efforts for sustained miRNA release, biomedical applications, and future prospects.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
17
|
Wen M, Guo X, Zhang J, Li Y, Li J, Fan Z, Ren W. Non-coding RNA in cartilage regeneration: regulatory mechanism and therapeutic strategies. Front Bioeng Biotechnol 2025; 13:1522303. [PMID: 40206827 PMCID: PMC11979253 DOI: 10.3389/fbioe.2025.1522303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
The pathogenesis of cartilage injury and degeneration is exceptionally complex. In addition to being associated with osteoarthritis and trauma, factors such as age, gender, obesity, inflammation, and apoptosis of chondrocytes are also considered significant influencing factors. Due to the lack of direct blood supply, lymphatic circulation, and neural innervation, coupled with low metabolic activity, the self-repair capability of cartilage after injury is extremely limited, making its treatment quite challenging. Recent research indicated that ncRNA, a class of RNA transcribed from the genome that does not encode proteins, played a crucial regulatory role in various disease processes. Particularly noteworthy is its positive regulatory role in cartilage regeneration, achieved through the modulation of the inflammatory microenvironment, promotion of chondrocyte proliferation, inhibition of chondrocyte degradation, and facilitation of the recruitment and differentiation of bone marrow mesenchymal stem cells into chondrocytes. In the earlier phase, we conducted a review and outlook on therapeutic strategies for the regeneration of articular cartilage injuries. This article specifically focuses on summarizing the regulatory roles and research advancements of ncRNA in cartilage regeneration, as well as its contributions to the clinical application of gene therapy for cartilage defects.
Collapse
Affiliation(s)
- Mengnan Wen
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jingdi Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yunian Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jixiang Li
- Junji College of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Shi G, Wu Z, Hao Z, Zhu M, Shu F, Yang Z, Wang J, Wang C, Chen R, Li Z, Wei R, Li J. Microenvironment-Responsive Hydrogels Comprising Engineering Zeolitic Imidazolate Framework-8-Anchored Parathyroid Hormone-Related Peptide-1 for Osteoarthritis Therapy. ACS NANO 2025; 19:6529-6553. [PMID: 39899451 DOI: 10.1021/acsnano.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Intra-articular drug injections are effective for osteoarthritis (OA), but challenges such as the complex microenvironment and rapid drug diffusion require frequent injections. Herein, we propose a biofunctional hydrogel-based strategy for prolonged drug delivery and microenvironment remodeling. We propose a strategy to functionalize zeolitic imidazolate framework-8 with tannic acid (TA-ZIF), anchor PTH-related peptide-1 (PTHrP-1) within this framework (TA-ZIF@P1) and incorporate a phenylboronic acid-modified gelatin-based hydrogel (GP hydrogel) drug delivery system (GP@TA-ZIF@P1, GPTP hydrogel) with responsive release properties that respond to the pathological microenvironments of OA. The GPTP hydrogel facilitated controlled, sustained release of PTHrP-1 via dynamic boronic esters, with in vitro and in vivo studies showing continuous release for over 28 days. It not only promotes chondrocyte proliferation but also exhibits significant cytoprotective effects under hyperactive ROS and IL-1β-induced conditions. Notably, transcriptome sequencing confirms that the GPTP hydrogel facilitates both chondrocyte proliferation and chondrogenesis under inflammatory conditions by deactivating Wnt/β-Catenin signaling pathways and enhancing the PI3K/AKT signaling pathway. Additionally, the GPTP hydrogel delays the catabolic metabolism of cartilage explants from mice in inflammatory environments. In a surgical model of mouse OA, we show that the intra-articular injection of GPTP hydrogels reduced periarticular bone remodeling and promoted the production of glycosaminoglycans while offering chondroprotection against cartilage degeneration. To sum up, this pioneering research on PTHrP-1 as a treatment for OA, combined with the GPTP hydrogel system, offers valuable insights and a paradigm for the controlled and sustained release of PTHrP-1, representing a significant advancement in OA treatment strategies.
Collapse
Affiliation(s)
- Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zijian Wu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengyue Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang 550499, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chenglong Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zouwei Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Renxiong Wei
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
19
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
20
|
Bao C, Zhu S, Pang D, Yang M, Huang J, Wang F, Hou Y, Wang X, Feng Y, Yang H, Jiang J, He J, He C. Hexokinase 2 Suppression Alleviates the Catabolic Properties in Osteoarthritis via HMGA2 and Contributes to Pulsed Electromagnetic Field-mediated Cartilage Protection. Int J Biol Sci 2025; 21:1459-1477. [PMID: 39990654 PMCID: PMC11844298 DOI: 10.7150/ijbs.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/21/2024] [Indexed: 02/25/2025] Open
Abstract
Abnormalities in glycolytic pathways are prominent factors in the pathogenesis of osteoarthritis (OA). The key glycolytic enzyme Hexokinase 2 (HK2) is highly expressed in chondrocytes in OA; however, its role remains unclear. Pulsed electromagnetic field (PEMF) is commonly used for the treatment of OA. However, the role of PEMF in cartilage damage and the underlying mechanisms are not well understood. Herein, we found that HK2 suppression down-regulated catabolic pathways and alleviated inflammatory responses in OA chondrocytes, whereas HK2 overexpression stimulated inflammation and catabolic levels; moreover, inhibition of HK2 has potential anti-inflammatory and anti-catabolic properties by regulating the expression of HMGA2. PEMF dramatically inhibited the increase in glycolytic activity and catabolic metabolism level in OA and could alleviate the OA phenotype by modulating the HK2/HMGA2 signaling axis. Suppressing HK2 via adeno-associated virus (AAV) in articular cartilage demonstrated that PEMF reduces cartilage damage and OA symptoms through HK2 knockdown. Furthermore, the HK2 inhibitor Lonidamine, in combination with PEMF, more effectively ameliorated cartilage degeneration in OA. Overall, our findings improve understanding of HK2's role in OA and offer new insights for targeting HK2 in treatment. Furthermore, our results provide new clues for the reducing of catabolism and cartilage damage using PEMF.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuan Feng
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Haolun Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Junliang Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Chang TK, Ho TL, Lin YY, Thuong LHH, Lai KY, Tsai CH, Liaw CC, Tang CH. Ugonin P facilitates chondrogenic properties in chondrocytes by inhibiting miR-3074-5p production: implications for the treatment of arthritic disorders. Int J Biol Sci 2025; 21:1378-1390. [PMID: 39990652 PMCID: PMC11844289 DOI: 10.7150/ijbs.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 02/25/2025] Open
Abstract
Arthritis is a chronic inflammatory disease that causes joint damage, with osteoarthritis (OA) and rheumatoid arthritis (RA) being the most common types. Both conditions are characterized by cartilage degradation due to an imbalance between repair and breakdown processes. Chondrocytes, the key cells in articular cartilage, maintain its structure by producing an extracellular matrix rich in aggrecan and type II collagen (COL2). MicroRNAs (miRNAs), small noncoding RNAs, regulate genes critical for cartilage balance and are involved in the progression and treatment of OA and RA. Recently, herbal medicines have gained attention for arthritis treatment. Ugonin P, a flavonoid from Helminthostachys zeylanica Hook, is known for its antioxidant and anticancer effects, but its role in cartilage homeostasis is unclear. This study explores ugonin P's chondrogenic effects and its molecular mechanisms involving miRNA regulation. Analysis of Gene Expression Omnibus (GEO) data and clinical samples revealed reduced aggrecan and COL2 levels in OA and RA, while miR-3074-5p levels were elevated, suppressing these proteins. Ugonin P, without affecting cell viability, enhanced aggrecan and COL2 production and promoted chondrocyte differentiation by downregulating miR-3074-5p and activating MAPK pathways. These findings suggest ugonin P as a promising therapeutic candidate for arthritis management.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yen-You Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Le Huynh Hoai Thuong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kuan-Ying Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
23
|
Li Z, Cheng Q, Lin L, Fu X, Wang Y. Plasma Membrane-Derived Biomimetic Apoptotic Nanovesicles Targeting Inflammation and Cartilage Degeneration for Osteoarthritis. SMALL METHODS 2025; 9:e2400660. [PMID: 39036830 DOI: 10.1002/smtd.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Osteoarthritis (OA) is a degenerative whole-joint disease in which the synovium and joint cartilage become inflamed and damaged. The essential role of inflammation in the development of OA has been recognized recently. Accordingly, simultaneous regulation of local inflammation and tissue degeneration is proposed as a promising therapeutic strategy. Herein, multifunctional biomimetic apoptotic nanovesicles (Apo-NVs) are constructed with plasma membrane derived from apoptotic T cells. The anti-inflammatory microRNA-124 is further encapsulated into Apo-NVs in the hope of achieving an enhanced immunomodulatory effect. It is found that apoptotic nanovesicles, including Apo-NVs and Apo-NVs-miR-124, both efficiently promote the M2 repolarization of M1 macrophages and inhibit the degenerative phenotype of chondrocytes. Further in vivo studies show that Apo-NVs and Apo-NVs-miR-124 alleviate synovial inflammation and protect cartilage tissue from degeneration in OA mice. The study highlights the potential of Apo-NVs in treating OA and other inflammation-related diseases.
Collapse
Affiliation(s)
- Zongyi Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Luoyao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoling Fu
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
24
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
25
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
26
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
27
|
Wu D, Yang S, Gong Z, Zhu X, Hong J, Wang H, Xu W, Lai J, Wang X, Lu J, Fang X, Jiang G, Zhu J. Enhanced therapeutic potential of a self-healing hyaluronic acid hydrogel for early intervention in osteoarthritis. Mater Today Bio 2024; 29:101353. [PMID: 39687801 PMCID: PMC11647215 DOI: 10.1016/j.mtbio.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA. Material characterization experiments on AHA/CHA hydrogels with varying concentrations validated their exceptional self-healing capabilities, superior injectability and viscoelasticity, sustained adhesion strength to cartilage, and a low friction coefficient. Chondrocytes exhibited robust adhesion and proliferation on the AHA/CHA hydrogel surface, with the upregulation of cartilage matrix protein expression. Intra-articular injection of AHA/CHA hydrogels was performed following destabilization of the medial meniscus (DMM) surgery in mice to assess its protective effect on cartilage. The AHA/CHA hydrogel effectively attenuated the degree of cartilage wear, facilitated chondrocytes' anabolic metabolism, and restored the ECM of cartilage. Therefore, the AHA/CHA hydrogel emerges as a promising therapeutic approach in clinical practices of OA treatment.
Collapse
Affiliation(s)
- Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Xinxin Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Juncong Hong
- Department of Anesthesiology, The First People's Hospital of Linping District, Hangzhou, 311100, Zhejiang, China
| | - Haitao Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Juncheng Lai
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiye Lu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Jinjin Zhu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| |
Collapse
|
28
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
29
|
Wang L, Chen S, Zhang H, Wei G, Ma F, Zhang M, Zhang B, Yang S, Cheng H, Yang R, Wang R, Liu M, Song Y, Li X, E X. Serine protease inhibitor E2 protects against cartilage tissue destruction and inflammation in osteoarthritis by targeting NF-κB signalling. Rheumatology (Oxford) 2024; 63:3172-3183. [PMID: 39180420 DOI: 10.1093/rheumatology/keae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/19/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE OA is a chronic disease characterized by cartilage degeneration and inflammation, with no approved disease-modifying drugs. This study aimed to identify pathogenic genes and elucidate their mechanism in OA. METHODS We systematically identified pathogenic genes combined sing-cell and bulk transcriptome profiles of cartilage tissues in OA. Adenovirus carrying the serpin peptidase inhibitor clade E member 2 (serpinE2) or exogenous serpinE2 was injected into monosodium iodoacetate (MIA)-induced OA-model rats. Histological analysis, immunohistochemistry and Alcian blue staining were performed. In vitro, immunofluorescence, quantitative real-time PCR (RT-qPCR), ELISA and western blot assays were performed. RESULTS serpinE2 exhibited elevated expression and hypomethylation, showing a positive association with collagen pathway activities in patients with OA. Silencing serpinE2 aggravated MIA-induced knee cartilage degeneration in OA-model rats. Conversely, the intra-articular injection of exogenous serpinE2 ameliorated articular cartilage degeneration, reduced pain-related behavioural responses and relieve synovitis in MIA-induced OA-model rats. Exogenous serpinE2 not only attenuated the elevation of NLRP3, IL-1β and caspase1 expression levels but also restored the reduction in cell viability induced by lipopolysaccharide (LPS) in chondrocytes. Mechanistically, we found that exogenous serpinE2 inhibited LPS-induced reactive oxygen species (ROS) release and NF-κB signalling activation. CONCLUSIONS serpinE2 plays a protective role in cartilage and synovium tissues, suggesting that serpinE2 gene transfer or molecules that upregulate serpinE2 expression could be therapeutic candidates for OA.
Collapse
Affiliation(s)
- Linzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Shuangshuang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Huizhen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Guozhao Wei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Fenghua Ma
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Mingxiu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Boyang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Sen Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongyi Cheng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ruonan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ruifeng Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Mengyuan Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yang Song
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiaoqiang E
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
30
|
Wei FL, Zhai Y, Wang TF, Zhao JW, Wang CL, Tang Z, Shen K, Wu H, Zheng R, Du MR, Heng W, Li XX, Yan XD, Gao QY, Guo Z, Qian JX, Zhou CP. Stem cell-homing biomimetic hydrogel promotes the repair of osteoporotic bone defects through osteogenic and angiogenic coupling. SCIENCE ADVANCES 2024; 10:eadq6700. [PMID: 39485837 PMCID: PMC11529719 DOI: 10.1126/sciadv.adq6700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Osteoporotic bone defects refer to the disruption of bone structural integrity in patients with osteoporosis and pose a substantial challenge to orthopedic surgeons. In this study, we developed a biomimetic hydrogel to improve the osteogenic microenvironment and promote stem cell homing. This hydrogel served as a container for S-nitrosoglutathione and Ca2+, promoting the release of bioactive nitric oxide (NO) from bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells and activating the NO/cyclic guanosine monophosphate signaling pathway. These changes promote osteogenic and angiogenic couplings. The hydrogel simultaneously recruited BMSCs by conjugating the stem cell homing peptide SKPPGTSS. Using a rat distal femoral defect model, it was demonstrated that this hydrogel can effectively increase the formation of bone tissue and new blood vessels and has immune-regulating functions. We envision that this hydrogel may be a minimally invasive yet highly effective strategy for expediting the healing of osteoporotic bone defects.
Collapse
Affiliation(s)
- Fei-Long Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
- Department of Orthopaedics, General Hospital of Central Theater Command (Wuhan General Hospital of Guangzhou Command, previously), Wuhan 430030, China
| | - Yuan Zhai
- Basic Medical College, Fourth Military Medical University, Xi'an 710032, China
| | - Tian-Fu Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Jing-Wei Zhao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Chao-Li Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Rui Du
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Wei Heng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Xiao-Xiang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Xiao-Dong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Quan-You Gao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Ji-Xian Qian
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| | - Cheng-Pei Zhou
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
| |
Collapse
|
31
|
Wang H, Li Z, Liu J, Chang H, Wang J, Song S, Zhao Y, Zhao X. Nanozyme-enhanced injectable hyaluronic acid-based hydrogel for the treatment of osteoarthritis. Int J Biol Macromol 2024; 282:136819. [PMID: 39447781 DOI: 10.1016/j.ijbiomac.2024.136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The progression of osteoarthritis (OA) is dramatically accelerated by excessive reactive oxygen species (ROS)-induced apoptosis of chondrocytes and the inflammatory response of synovial macrophages. In this study, we developed an injectable hydrogel with a catalase-mimicking nanozyme activity as a therapeutic agent for OA. In vitro experiments confirmed that the HA and peroxide-mimetic nanoenzyme-enhanced hydrogel, containing ε-polylysine/Mn1.8Co1.2O4 (ε-PLE/MnCoO) nanoparticles, continuously eliminated ROS and inflammatory cytokines while promoting the polarization of inflammatory macrophages (M1 phenotype) towards anti-inflammatory macrophages (M2 phenotype) in dysfunctional microenvironments. When used for intraarticular injections in OA models, the nanoenzyme-enhanced hydrogel effectively reduced oxidative stress by scavenging ROS and regulating the immune microenvironment. It resulted in a subsequent reduction in the expression of inflammatory factors, including MMP-13, TNF-α, IL-1β, and iNOS in both the synovium and joint fluid. Moreover, cartilage repair was enhanced by the promotion of COL-2 and SOX-9 expression in the cartilage tissue, whereas osteophyte formation in OA was reduced. This study introduced an innovative treatment strategy for the clinical management of OA, demonstrating its significant potential for application in treating OA.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zuhao Li
- Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Haoran Chang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shanliang Song
- Center for AIE Research, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Xin Zhao
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
32
|
Liu X, Jiang S, Jiang T, Lan Z, Zhang X, Zhong Z, Wu X, Xu C, Du Y, Zhang S. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance. SCIENCE ADVANCES 2024; 10:eadp7872. [PMID: 39423269 PMCID: PMC11488572 DOI: 10.1126/sciadv.adp7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Cartilage regeneration relies on adequate and continuous bioenergy supply to facilitate cellular differentiation and extracellular matrix synthesis. Chondrocytes frequently undergo energy stress under pathological conditions, characterized by disrupted cellular metabolism and reduced adenosine triphosphate (ATP) levels. However, there has limited progress in modulating energy metabolism for cartilage regeneration thus far. Here, we developed bioenergetic-active exosomes (Suc-EXO) to promote cartilage regeneration and homeostasis maintenance. Suc-EXO exhibited a 5.42-fold increase in ATP content, enabling the manipulation of cellular energy metabolism by fueling the TCA cycle. With continuous energy supply, Suc-EXO promoted BMSC chondrogenic differentiation via the P2X7-mediated PI3K-AKT pathway. Moreover, Suc-EXO improved chondrocyte anabolism and mitochondrial homeostasis via the P2X7-mediated SIRT3 pathway. In a rabbit cartilage defect model, the Suc-EXO-encapsulated hydrogel notably promoted cartilage regeneration and maintained neocartilage homeostasis, leading to 2.26 and 1.53 times increase in Col2 and ACAN abundance, respectively. These findings make a remarkable breakthrough in modulating energy metabolism for cartilage regeneration, offering immense potential for clinical translation.
Collapse
Affiliation(s)
- Xulong Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangtong Jiang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting Jiang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziyang Lan
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyu Zhong
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodan Wu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cunjing Xu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Products Administration, Wuhan 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Products Administration, Wuhan 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Ruan WJ, Xu SS, Xu DH, Li ZP. Orthopedic revolution: The emerging role of nanotechnology. World J Orthop 2024; 15:932-938. [PMID: 39473517 PMCID: PMC11514548 DOI: 10.5312/wjo.v15.i10.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
This review summarizes the latest progress in orthopedic nanotechnology, explores innovative applications of nanofibers in tendon repair, and evaluates the potential of selenium and cerium oxide nanoparticles in osteoarthritis and osteoblast differentiation. This review also describes the emerging applications of injectable hydrogels in cartilage engineering, emphasizing the critical role of interdisciplinary research and highlighting the challenges and future prospects of integrating nanotechnology into orthopedic clinical practice. This comprehensive approach provides a holistic perspective on the transformative impact of nanotechnology in orthopedics, offering valuable insights for future research and clinical applications.
Collapse
Affiliation(s)
- Wen-Jie Ruan
- Department of Sports Medicine, Zhejiang Provincial People's Hospital (The Affiliated People's Hospital), Hangzhou 310000, Zhejiang Province, China
| | - Si-Si Xu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Dong-Hui Xu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zhi-Peng Li
- The Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, Henan Province, China
| |
Collapse
|
34
|
Qin Y, Ling X, Li Y, Wang J, Wang J, Rong Z, Cheng Y, Tao Z, Zhang H, Wei H, Yu CY. Histidine phosphatase-ferroptosis crosstalk modulation for efficient hepatocellular carcinoma treatment. J Nanobiotechnology 2024; 22:622. [PMID: 39402673 PMCID: PMC11476632 DOI: 10.1186/s12951-024-02918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Altering the mechanisms of tumor cell death and overcoming the limitations of traditional chemotherapy is pivotal to contemporary tumor treatment. Inducing ferroptosis, while circumventing safety concerns associated with ferrous vectors, through nonferrous ferroptosis is a promising but underexplored frontier in cancer therapy. Histidine phosphatase (LHPP) has emerged as a novel therapeutic target in treating hepatocellular carcinoma (HCC), but the precise mechanism of LHPP against HCC remains unclear. Herein, we explore the effects of upregulating LHPP expression on ferroptosis and tumor immunogenicity induction by simply delivering a miRNA-363-5p inhibitor (miR-363-5pi) via a previously optimized gemcitabine-oleic acid (GOA) prodrug. Efficient miRNA encapsulation was achieved through hydrogen bonding at an optimized GOA/miRNA molar feed ratio of 250:1, affording spherical nanoparticles with a uniform hydrodynamic size of 147.1 nm and a negative potential of -21.5 mV. The mechanism of this LHPP-ferroptosis crosstalk is disclosed to be an inhibited phosphorylation of the PI3K/Akt pathway, leading to a remarkable tumor inhibition rate of 88.2% in nude mice bearing Bel-7402 tumor xenografts via a combination of LHPP-triggered nonferrous ferroptosis and GOA-induced chemotherapy. The biocompatibility of GOA/miR-363-5pi is strongly supported by their non-hematologic toxicity and insignificant organ damage. In addition, the tumor immunogenic activation potential of GOA/miR-363-5pi was finally explored. Overall, this study is the first work that elucidates the precise mechanism of LHPP for treating HCC via ferroptosis induction and achieves the transformation of chemotherapy and gene therapy into ferroptosis activation with tumor cell immunogenicity, which lays a new therapeutic foundation for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yang Qin
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoli Ling
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jieqiong Wang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhuoyi Rong
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yao Cheng
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhenghao Tao
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Hua Wei
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410006, China.
| |
Collapse
|
35
|
Chen N, Li S, Miao C, Zhao Q, Dong J, Li L, Li C. Polysaccharide-based hydrogels for cartilage regeneration. Front Cell Dev Biol 2024; 12:1444358. [PMID: 39463764 PMCID: PMC11503028 DOI: 10.3389/fcell.2024.1444358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024] Open
Abstract
Cartilage defect is one of the common tissue defect clinical diseases and may finally lead to osteoarthritis (OA) which threat patients' physical and psychological health. Polysaccharide is the main component of extracellular matrix (ECM) in cartilage tissue. In the past decades, polysaccharide-based hydrogels have shown great potential for cartilage regeneration considering unique qualities such as biocompatibility, enhanced cell proliferation, drug delivery, low toxicity, and many others. Structures such as chain length and chain branching make polysaccharides have different physical and chemical properties. In this review, cartilage diseases and current treatment options of polysaccharide-based hydrogels for cartilage defection repair were illustrated. We focus on how components and structures of recently developed materials affect the performance. The challenges and perspectives for polysaccharide-based hydrogels in cartilage repair and regeneration were also discussed in depth.
Collapse
Affiliation(s)
- Ning Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province, China
| | - Congrui Miao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ci Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
36
|
Fu L, Wu J, Shi S, Zhang Z, Zheng Y, Li P, Yuan X, Ding Z, Ning C, Sui X, Liu S, Guo Q, Lin Y. A tetrahedral framework nucleic acids-based gene therapeutic nanococktail alleviates cartilage damage and protects against osteoarthritis progression. CHEMICAL ENGINEERING JOURNAL 2024; 498:155189. [DOI: 10.1016/j.cej.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
38
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
39
|
Xia S, Zhao J, Zhang D, Chen L, Zhang Y, Shen P, Yang C. miR-335-5p inhibits endochondral ossification by directly targeting SP1 in TMJ OA. Oral Dis 2024; 30:3176-3187. [PMID: 37727896 DOI: 10.1111/odi.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE During the development of temporomandibular joint osteoarthritis, endochondral ossification is compromised which leads to condylar degeneration; miR-335-5p in endochondral ossification in osteoarthritic condylar cartilage tissue remains unclear. METHODS Up-regulated microRNA and its target gene were searched for endochondral ossification in osteoarthritis articular cartilage. The effect of increased or decreased miR-335-5p on endochondral ossification was evaluated by transfecting miR-335-5p mimics or miR-335-5p inhibitor in vitro in chondrocytes C28/I2. Finally, we injected the temporomandibular joint of rats intra-articularly with agomiR-335 in a unilateral anterior crossbite rat model to determine the in vivo regulation of miR-335. RESULTS After the onset of temporomandibular joint osteoarthritis, miR-335-5p levels were gradually up-regulated, whereas endochondral ossification-related genes were down-regulated in condylar cartilage specimens. Our results showed that miR-335 inhibited endochondral ossification after administration of a miR-335 antagonist into the temporomandibular joint articular cavity of a unilateral anterior crossbite rat model. AgomiR-335, a miR-335 agonist, inhibited matrix mineralization in fibrocartilage stem cells in vitro and then miR-335-5p negatively regulated chondrocyte activity by directly targeting SP1 via promoting transforming growth factor-β/Smad signalling. CONCLUSION miR-335-5p can significantly inhibit endochondral ossification; therefore, its inhibition may be beneficial for the treatment of temporomandibular joint osteoarthritis.
Collapse
Affiliation(s)
- Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Zhao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
41
|
Zhou D, Wei Y, Sheng S, Wang M, Lv J, Zhao B, Chen X, Xu K, Bai L, Wu Y, Song P, Cao L, Zhou F, Zhang H, Shi Z, Su J. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis. Bioact Mater 2024; 37:378-392. [PMID: 38689658 PMCID: PMC11059470 DOI: 10.1016/j.bioactmat.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Posttraumatic osteoarthritis (PTOA) patients are often diagnosed by X-ray imaging at a middle-late stage when drug interventions are less effective. Early PTOA is characterized by overexpressed matrix metalloprotease 13 (MMP13). Herein, we constructed an integrated diagnosis and treatment micelle modified with MMP13 enzyme-detachable, cyanine 5 (Cy5)-containing PEG, black hole quencher-3 (BHQ3), and cRGD ligands and loaded with siRNA silencing MMP13 (siM13), namely ERMs@siM13. ERMs@siM13 could be cleaved by MMP13 in the diseased cartilage tissues to detach the PEG shell, causing cRGD exposure. Accordingly, the ligand exposure promoted micelle uptake by the diseased chondrocytes by binding to cell surface αvβ3 integrin, increasing intracellular siM13 delivery for on-demand MMP13 downregulation. Meanwhile, the Cy5 fluorescence was restored by detaching from the BHQ3-containing micelle, precisely reflecting the diseased cartilage state. In particular, the intensity of Cy5 fluorescence generated by ERMs@siM13 that hinged on the MMP13 levels could reflect the PTOA severity, enabling the physicians to adjust the therapeutic regimen. Finally, in the murine PTOA model, ERMs@siM13 could diagnose the early-stage PTOA, perform timely interventions, and monitor the OA progression level during treatment through a real-time detection of MMP13. Therefore, ERMs@siM13 represents an appealing approach for early-stage PTOA theranostics.
Collapse
Affiliation(s)
- Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Bowen Zhao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hao Zhang
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
42
|
Hu X, Zhu X, Chen Y, Zhang W, Li L, Liang H, Usmanov BB, Donadon M, Yusupbekov AA, Zheng Y. Senescence-related signatures predict prognosis and response to immunotherapy in colon cancer. J Gastrointest Oncol 2024; 15:1020-1034. [PMID: 38989417 PMCID: PMC11231866 DOI: 10.21037/jgo-24-339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. Cellular senescence plays a vital role in carcinogenesis by activating many pathways. In this study, we aimed to identify biomarkers for predicting the survival and recurrence of CRC through cellular senescence-related genes. Methods Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, RNA-sequencing data and clinical information for CRC were collected. A risk model for predicting overall survival was established based on five differentially expressed genes using least absolute shrinkage and selection operator-Cox regression (LASSO-Cox regression), receiver operating characteristic (ROC), and Kaplan-Meier analyses. The study also delved into both the tumor microenvironment and the response to immunotherapy. Moreover, we gathered clinical sample data from our center in order to confirm the findings of public database analysis. Results Through ROC and Kaplan-Meier analyses, a risk model was developed using five cellular senescence-related genes [i.e., CDKN2A, SERPINE1, SNAI1, CXCL1, and ETS2] to categorize patients into high- and low-risk groups. In the TCGA-colon adenocarcinoma (COAD) and GEO-COAD cohorts, the high-risk group was associated with a bleaker forecast (P<0.05), immune cell inactivation, and insensitivity to immunotherapy in IMvigor210 database (http://research-pub.gene.com/IMvigor210CoreBiologies/). Clinical samples were then used to confirm that ETS2 and CDKN2A could serve as independent prognostic biomarkers in CRC. Conclusions Gene signatures related to cellular senescence, specifically involving CDKN2A and ETS2, are emerging as promising biomarkers for predicting CRC prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoshan Hu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongjie Zhu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yifan Chen
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenkai Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Huankun Liang
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Bekzod B Usmanov
- Department of Oncology and Hematology, Tashkent State Pediatric Institute, Tashkent, Uzbekistan
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Abrorjon A Yusupbekov
- Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology (National Cancer Center of Uzbekistan), Tashkent, Uzbekistan
| | - Yanfang Zheng
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Li HM, Che X, Tong Z, Wei W, Teng C. A Novel Role for Protein Tyrosine Phosphatase 1B in Alleviating Chondrocyte Senescence. ACS OMEGA 2024; 9:27017-27029. [PMID: 38947824 PMCID: PMC11209688 DOI: 10.1021/acsomega.3c10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Osteoarthritis (OA) is a kind of arthritis that impairs movement and causes joint discomfort. Recent research has demonstrated a connection between cellular senescence and the degenerative processes of OA chondrocytes. In yeast and human cells, protein tyrosine phosphatase 1B (PTP1B) knockdown prolongs longevity; however, the function of PTP1B in chondrocyte senescence has not been investigated. The goal of the current investigation was to evaluate PTP1B's contribution to human OA chondrocyte senescence. The function of PTP1B and cellular senescence in the onset of OA was investigated and confirmed by using a combination of bioinformatics techniques, clinical samples, and in vitro experimental procedures. The RNA sequencing data pertinent to the OA were obtained using the Gene Expression Omnibus database. Function enrichment analysis, protein-protein correlation analysis, the construction of the correlation regulatory network, and an investigation into possible connections between PTP1B and cellular senescence in OA were all carried out using various bioinformatic techniques. Compared with healthy cartilage, PTP1B expression was increased in OA cartilage. According to a Pearson correlation study, cellular senescence-related genes, including MAP2K1 and ABL1, were highly correlated with PTP1B expression levels in senescent chondrocytes. Furthermore, in vitro tests confirmed that PTP1B knockdown slowed cartilage degradation and prevented chondrocyte senescence in OA. In conclusion, we showed that PTP1B knockdown prevented the senescence of chondrocytes and prevented cartilage degradation in OA. These findings offer a fresh perspective on the pathophysiology of OA, opening up new avenues for OA clinical diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Hui-Min Li
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Xianda Che
- Department
of Orthopedics, The Second Hospital of Shanxi
Medical University, Taiyuan, Shanxi 030001, PR China
| | - Zhicheng Tong
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Wei Wei
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
- Key
Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang
Province, Zhejiang University School of
Medicine, Hangzhou, Zhejiang 310000, PR China
| | - Chong Teng
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| |
Collapse
|
44
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
46
|
Xu L, Zhang Y, Yu J, Huo W, Xu J, Yang H, Zhang M, Yu S, Wu Y, Wang M. miR-708-5p deficiency involves the degeneration of mandibular condylar chondrocytes via the TLR4/NF-κB pathway. Osteoarthritis Cartilage 2024; 32:666-679. [PMID: 38403153 DOI: 10.1016/j.joca.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE Ageing and aberrant biomechanical stimulation are two major risk factors for osteoarthritis (OA). One of the main characteristics of aged cartilage is cellular senescence. One of the main characteristics of osteoarthritic joints is cartilage degeneration. The cells in the temporomandibular joint (TMJ) cartilage are zonally arranged. The deep zone cells are differentiated from the superficial zone cells (SZCs). The purpose of the present study was to investigate whether degenerative shear stress (SS) stimulates the senescence programme in TMJ SZCs, and to determine which miRNA is involved in this process. METHOD SZCs were isolated from the TMJ condyles of 3-week-old rats and treated with continuous passaging or SS. RNA sequencing was conducted to identify miRNA(s) that overlap with those involved in the replication senescence process and the SS-induced degeneration programme. Unilateral anterior crossbite (UAC), which is TMJ-OA inducible, was applied to 2-month-old and 12-month-old mice for 3 weeks. The effect of TMJ local injection of agomiR-708-5p was evaluated histologically. RESULTS Both replication and SS treatment induced SZC senescence. miR-708-5p was identified. Knocking down miR-708-5p in SS-treated SZCs led to more severe senescence by alleviating the inhibitory impact of miR-708-5p on the TLR4/NF-κB pathway. miR-708-5p expression in mouse TMJ cartilage decreased with age. UAC induced more severe osteoarthritic cartilage lesions in 12-month-old mice than in 2-month-old mice. Injection of agomiR-708-5p suppressed UAC-induced osteoarthritic cartilage lesions. CONCLUSIONS Age-related miR-708-5p deficiency is involved in the mechanically stimulated OA process. Intra-articular administration of agomiR-708-5p is a promising new strategy for OA treatment.
Collapse
Affiliation(s)
- Lingfeng Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Yuejiao Zhang
- Department of Oral Anatomy and Physiology and TMD, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jia Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Wanqiu Huo
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Jiali Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Shibing Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Yaoping Wu
- Department of Joint Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Ye W, Zhang C, Fan Z. MiR-26b-5p/TET3 regulates the osteogenic differentiation of human bone mesenchymal stem cells and bone reconstruction in female rats with calvarial defects. Mol Biol Rep 2024; 51:632. [PMID: 38724827 DOI: 10.1007/s11033-024-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.
Collapse
Affiliation(s)
- Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
48
|
Xiong W, Han Z, Ding S, Wang H, Du Y, Cui W, Zhang M. In Situ Remodeling of Efferocytosis via Lesion-Localized Microspheres to Reverse Cartilage Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400345. [PMID: 38477444 PMCID: PMC11109622 DOI: 10.1002/advs.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Sheng‐Long Ding
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| | - Haoran Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ming‐Zhu Zhang
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| |
Collapse
|
49
|
Li HM, Wang C, Liu Q, Tong Z, Song B, Wei W, Teng C. Correlation between Mitochondria-Associated Endoplasmic Reticulum Membrane-Related Genes and Cellular Senescence-Related Genes in Osteoarthritis. ACS OMEGA 2024; 9:19169-19181. [PMID: 38708239 PMCID: PMC11064197 DOI: 10.1021/acsomega.3c10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The role of mitochondria-associated endoplasmic reticulum membrane (MAM) formation in the development of osteoarthritis (OA) is yet unclear. METHODS A mix of bioinformatics methods and in vitro experimental methodologies was used to study and corroborate the role of MAM-related genes and cellular senescence-related genes in the development of OA. The Gene Expression Omnibus database was used to obtain the microarray information that is relevant to the OA. Several bioinformatic methods were employed to carry out function enrichment analysis and protein-protein correlation analysis, build the correlation regulatory network, and investigate potential relationships between MAM-related genes and cellular senescence-related genes in OA. These methods also served to identify the MAM-related and OA-related genes (MAM-OARGs). RESULTS For the additional functional enrichment analysis, a total of 13 MAM-OARGs were detected. The correlation regulatory network was also created. Hub MAM-OARGs were shown to have a strong correlation with genes relevant to cellular senescence in OA. Results of in vitro experiments further demonstrated a positive correlation between MAM-OARGs (PTPN1 and ITPR1) and cellular senescence-related and OA-related genes. CONCLUSIONS As a result, our findings can offer new insights into the investigations of MAM-related genes and cellular senescence-related genes, which could be linked to the OA as well as brand-new potential treatment targets.
Collapse
Affiliation(s)
| | | | - Qixue Liu
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Zhicheng Tong
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Binghua Song
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Wei Wei
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Chong Teng
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| |
Collapse
|
50
|
Ding X, Huang J, Zhou R, Che X, Pang Y, Liang D, Lu C, Zhuo Y, Cao F, Wu G, Li W, Li P, Zhao L, Rong X, Li P, Wang C. Bibliometric study and visualization of cellular senescence associated with osteoarthritis from 2009 to 2023. Medicine (Baltimore) 2024; 103:e37611. [PMID: 38669405 PMCID: PMC11049721 DOI: 10.1097/md.0000000000037611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis is a common degenerative joint disease that is highly prevalent in the elderly population. Along with the occurrence of sports injuries, osteoarthritis is gradually showing a younger trend. Osteoarthritis has many causative factors, and its pathogenesis is currently unknown. Cellular senescence is a stable form of cell cycle arrest exhibited by cells in response to external stimuli and plays a role in a variety of diseases. And it is only in the last decade or so that cellular senescence has gradually become cross-linked with osteoarthritis. However, there is no comprehensive bibliometric analysis in this field. The aim of this study is to present the current status and research hotspots of cellular senescence in the field of osteoarthritis, and to predict the future trends of cellular senescence in osteoarthritis research from a bibliometric perspective. METHODS This study included 298 records of cellular senescence associated with osteoarthritis from 2009 to 2023, with data from the Web of Science Core Collection database. CiteSpace, Scimago Graphica software, VOSviewer, and the R package "bibliometrix" software were used to analyze regions, institutions, journals, authors, and keywords to predict recent trends in cellular senescence related to osteoarthritis research. RESULTS The number of publications related to cellular senescence associated with osteoarthritis is increasing year by year. China and the United States contribute more than 70% of the publications and are the mainstay of research in this field. Central South University is the most active institution with the largest number of publications. International Journal of Molecular Sciences is the most popular journal in the field with the largest number of publications, while Osteoarthritis and Cartilage is the most cited journal. Loeser, Richard F. is not only the most prolific author, but also the most frequently cited author, contributing greatly to the field. CONCLUSION In the last decade or so, this is the first bibliometric study that systematically describes the current status and development trend of research on cellular senescence associated with osteoarthritis. The study comprehensively and systematically summarizes and concludes the research hotspots and development trends, providing valuable references for researchers in this field.
Collapse
Affiliation(s)
- Xueting Ding
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Jingrui Huang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Raorao Zhou
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Xianda Che
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yiming Pang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Dan Liang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chengyang Lu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yuhao Zhuo
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Fuyang Cao
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Gaige Wu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Wenjin Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Penghua Li
- Laboratory department, Fenyang Hospital of Shanxi Province, Shanxi, China
| | - Litao Zhao
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - XueQin Rong
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - Pengcui Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunfang Wang
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
| |
Collapse
|