1
|
Yang C, Xiong W, Dong J, Zhao X, Liang G, Zheng W. Artemisinin protected human bronchial epithelial cells from amiodarone-induced oxidative damage via 5'-AMP-activated protein kinase (AMPK) activation. Redox Rep 2025; 30:2447721. [PMID: 39803706 PMCID: PMC11731350 DOI: 10.1080/13510002.2024.2447721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models. RESULTS In vitro experiments revealed that amiodarone decreased cell viability, increased LDH release, ROS generation, caspase 3 activation, and apoptosis in BEAS-2B cells. Artemisinin counteracted these effects by upregulating p-AMPK, CaMKK2, Nrf2, and SOD1 protein levels, thereby protecting the cells from oxidative damage. The protective effect of artemisinin was diminished by the AMPK inhibitor Compound C or AMPKα knockdown. In vivo experiments demonstrated that artemisinin increased p-AMPK and Nrf2 protein levels in lung tissues, protecting against amiodarone-induced apoptosis and bronchial epithelial cell shedding in mice. CONCLUSION These findings suggest that artemisinin protects airway epithelial cells and lung tissue from amiodarone-induced oxidative stress and apoptosis through AMPK activation, offering potential new strategies for preventing and treating amiodarone-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Chao Yang
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Wenjun Xiong
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Jiayi Dong
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Xia Zhao
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Wenhua Zheng
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| |
Collapse
|
2
|
Tang Q, Cheng J, Zhu T, Zhou Z, Xia P. Methyl 3,4-dihydrobenzoate attenuates muscle fiber necroptosis and macrophage pyroptosis by regulating oxidative stress in inflammatory myopathies. Int Immunopharmacol 2025; 154:114608. [PMID: 40186902 DOI: 10.1016/j.intimp.2025.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/09/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory cell infiltration and myofiber necrosis are pathological hallmarks of idiopathic inflammatory myopathies (IIM). Methyl 3,4-dihydroxybenzoate (MDHB) is a natural phenolic acid compound, renowned for its anti-inflammatory and antioxidant effects. In this study, we investigated its protective mechanisms targeting muscle fiber necrosis and macrophage pyroptosis by regulating oxidative stress in IIM. In the present study, we found that increased reactive oxygen species (ROS) level and decreased nuclear factor erythroid 2 related factor 2 (Nrf2) protein expression were shown on the muscle fibers of experimental autoimmune myositis (EAM). Receptor-interacting protein 1 (RIPK1) and receptor-interacting protein 3 (RIPK3) protein expression were elevated in EAM. In vitro, MDHB protected C2C12 cells and myotubes against H2O2-induced cell viability damage. MDHB decreased the levels of oxidative stress such as ROS, and mitochondrial superoxide (MitoSOX), and rescued mitochondrial membrane potential and ATP generation. MDHB inhibited necroptosis of the C2C12 cells and myotubes under H2O2 stimulation in a dose-dependent manner. Furthermore, MDHB suppressed lipopolysaccharide and nigericin-induced caspase-1 cleavage and interleukin (IL-1β) secretion, indicating suppression of macrophage pyroptosis in vitro. In vivo, treatment with MDHB suppressed EAM-induced muscle weakness and inflammation. MDHB decreased ROS accumulation, and increased Nrf2 and heme oxygenase-1 (HO-1) expression in EAM mice's muscles, thereby inhibiting necroptosis of inflamed muscle species and macrophage pyroptosis. In conclusion, we demonstrated that MDHB could be a novel therapy for IIM that alleviates inflammation, muscle fiber necroptosis, and macrophage pyroptosis by regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Qiwen Tang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | - Jiao Cheng
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | - Zhijie Zhou
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ping Xia
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China.
| |
Collapse
|
3
|
Guo Y, Shen M, Yang H, Lin S, Wang D. Nanoparticle delivery of CD68 siRNA inhibits neuroimmune responses by inhibiting activation of M1 macrophages. Int Immunopharmacol 2025; 152:114380. [PMID: 40064056 DOI: 10.1016/j.intimp.2025.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
CD68 is a vital costimulatory molecule expressed on macrophages/microglia (M/Ms) and plays a critical role in their activation. By targeting this molecule, therapeutic interventions can potentially prevent the homing of M/Ms. to the lesion site. In this study, we developed a biomimetic nanoparticle-based system (siCD68/NPs) to deliver CD68 small interfering RNA (siCD68) more efficiently into M/Ms.Administration of siCD68/NPs was found to not only polarize M1 macrophages toward M2 phenotype, but also reduce the reactive oxygen species (ROS) levels in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) induced macrophages/microglia (M/Ms). Moreover, treatment with siCD68/NPs significantly extended the survival time in a mouse spinal cord injury (SCI) model.In summary, siCD68/NPs were found to activate an anti-neuroinflammatory immune response and reprogram the polarization of M/Ms., leading to a significant improvement in the recovery of spinal cord injury. This study contributes to the field of biomimetic nanoparticle-based therapies and offers novel insights into potential treatments for neuroinflammation-induced SCI.
Collapse
Affiliation(s)
- Yue Guo
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Mao Shen
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongkai Yang
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Dahao Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Dey C, Pal P, Samanta S, Ghosh Dey S. Heme-Aβ compound 0: a common intermediate in ROS generation and peroxidase activity. Dalton Trans 2025. [PMID: 40200711 DOI: 10.1039/d5dt00234f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Oxidative stress is a key factor in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the leading cause of dementia. A hallmark of AD is the accumulation of amyloid β (Aβ) peptides, along with redox-active metal ions and heme cofactors, all of which significantly contribute to disease progression. When heme binds to Aβ, it can drive oxidative stress through two primary pathways: firstly, reduced high-spin ferrous heme-Aβ active sites may generate H2O2 through oxygen reduction, leading to the oxidation of biomolecules and lipid membranes; secondly, this H2O2 can react with the oxidised form of high-spin ferric heme-Aβ, initiating peroxidase-like activity that can catalyse the oxidation of neurotransmitters. These pathways converge at a crucial intermediate i.e. the heme-Aβ-peroxo complex, which serves as the final intermediate in the ROS cycle and the first in the peroxidase cycle. Although, we have previously characterized other intermediates in these pathways, compound 0 resulting from the reaction of a high-spin heme-Aβ species with peroxides has remained elusive due to its rapid hydrolysis in an aqueous environment. In this study, we report the oxidation of dopamine by peroxides catalyzed by ferric heme-Aβ species and successfully stabilised and characterized compound 0 of high-spin heme-Aβ in dimethylformamide, an organic aprotic solvent. This stabilization enables detection through stopped-flow, EPR and resonance Raman spectroscopy, thereby facilitating a deeper understanding of the oxidative stress caused by high-spin heme-Aβ.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Puja Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Hu X, Wu J, Shi L, Wang F, He K, Tan P, Hu Y, Yang Y, Wang D, Ma T, Ding S. The transcription factor MEF2C restrains microglial overactivation by inhibiting kinase CDK2. Immunity 2025; 58:946-960.e10. [PMID: 40139186 DOI: 10.1016/j.immuni.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Microglial intrinsic immune checkpoints are essential safeguards to maintain immune homeostasis by preventing microglial overactivation, a process that substantially influences neurological disorders such as autism spectrum disorder (ASD). MEF2C is a crucial immune checkpoint that regulates microglial activation, but the mechanism remains unclear. We found that MEF2C-deficient (MEF2C-/-) induced microglia-like cells (iMGLs) derived from human pluripotent stem cells (hPSCs) exhibited overactivation following lipopolysaccharide stimulation, mimicking patterns observed in various neuroinflammatory disorders. High-throughput screening identified BMS265246, a cyclin-dependent kinase 2 (CDK2) inhibitor, which suppressed overactivation of MEF2C-/- iMGLs and normalized their inflammatory responses. Mechanistically, MEF2C transcriptionally upregulated p21 to inhibit CDK2 activation-mediated retinoblastoma protein (RB) degradation, thereby preventing transcription factor nuclear factor κB (NFκB) nuclear translocation and consequent microglial overactivation. BMS265246 treatment substantially ameliorated microglial overactivation and ASD-like behaviors in Mef2c-deficient mice. Our findings identify the MEF2C-p21-CDK2-RB-NFκB axis as a critical pathway to maintain microglial homeostasis and highlight CDK2 as a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Xiaodan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianchen Wu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Shi
- CRE Life Institute, Beijing 100000, China
| | - Folin Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kezhang He
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Pengcheng Tan
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Sheng Ding
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Li YW, Zheng QJ, Zheng NJ, Meng JZ, Liu BL, Liu X, Zhao HM, Feng NX, Cai QY, Xiang L, Mo CH, Li QX. Novel Insights into Microcystin-LR Uptake, Accumulation, and Toxicity Mechanisms in Lettuce ( Lactuca sativa L.) Using a Protoplast Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7620-7631. [PMID: 40123071 DOI: 10.1021/acs.jafc.4c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Prevalent microcystin-LR (MC-LR), a cyanotoxin, in agricultural fields compromises produce safety and threatens human health. However, little is known about its uptake and accumulation in plant cells and its resultant toxicity mechanisms. This study revealed that the MC-LR uptake into protoplasts was controlled by an active transmembrane transport process mediated by the protein carrier. MC-LR in the plant cells can enlarge the specific mitochondrial permeability transition pores and probably bind with the electron transport chain complex I (especially, NADH oxidoreductase 1, -30.59 kcal/mol of binding energy) and complex III (especially, cytochrome b, -36.98 kcal/mol of binding energy) via hydrophobic force and hydrogen bond. The interactions between MC-LR and the mitochondrial complex proteins block the electron transfer, causing high levels of reactive oxygen species (ROS), especially for H2O2. The MC-LR-induced ROS destroys the mitochondrial inner membrane structure and decreases the cell viability by 13.6-30.6% in a significant dose-dependent manner at 1-5 mg/L MC-LR stress. The findings provided direct evidence of MC-LR entry into the cells via active plasma membrane transport for the first time and clarified the associations between MC accumulation and its toxicity at cellular and molecular levels, thereby providing crucial insights for ensuring food safety and safeguarding human health.
Collapse
Affiliation(s)
- Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Jun Zheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Hawaii Pacific Neuroscience, 2230 Liliha Street, Honolulu, Hawaii 96817, United States
| |
Collapse
|
7
|
Carvalho AVS, Sanches EF, Ribeiro RT, Durán-Carabali LE, Júnior OR, Muniz BD, Wajner M, Wyse AT, Netto CA, Sizonenko SV. Maternal lactoferrin supplementation prevents mitochondrial and redox homeostasis dysfunction, and improves antioxidant defenses through Nrf2 and UCP2 signaling after neonatal hypoxia-ischemia. Free Radic Biol Med 2025; 231:68-79. [PMID: 40010517 DOI: 10.1016/j.freeradbiomed.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and neurological impairments in infants. Main HI-induced pathological mechanisms include mitochondrial dysfunction and oxidative stress due to insufficient oxygen and energetic substrates to the nervous cells. Bovine lactoferrin (Lf) has demonstrated neuroprotective effects in several experimental models of neonatal brain injury in rodents, however its mechanisms remain unclear. This study aimed to evaluate the early impact of maternal dietary supplementation with Lf on redox and hippocampal mitochondrial function following neonatal HI. From postnatal day 6 (PND6), pregnant Wistar rats were fed with a diet supplemented with Lf (1 g/kg) or with an isocaloric control diet until offspring euthanasia. At PND7, pups of both sexes were subjected to experimental HI through the occlusion of the right common carotid artery followed by 60 min of hypoxia (8 % oxygen). Lf prevented HI-induced increased levels of DCFH and lipoperoxidation in hippocampus. Furthermore, Lf enhanced antioxidant defenses including SOD, GPx, and GSH, counteracting HI-induced oxidative stress. HI injury altered the activities of enzymes in the mitochondrial respiratory chain and increased the mitochondrial membrane potential. Both effects were counteracted by Lf supplementation. Lactoferrin prevented oxidative stress and to restored mitochondrial function by upregulating Nrf2 and UCP2 expression following experimental HI. Our results show that even a shorter period of Lf delivery to rat pups is able to improve hippocampal response to neonatal hypoxia-ischemia, reversing initial mechanisms of damage in the cascade of HI injury.
Collapse
Affiliation(s)
- Andrey Vinicios S Carvalho
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Rafael T Ribeiro
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luz Elena Durán-Carabali
- Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Osmar Ramires Júnior
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Dutra Muniz
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angela T Wyse
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
9
|
Wang Z, He Z, Chang X, Xie L, Song Y, Wu H, Zhang H, Wang S, Zhang X, Bai Y. Mitochondrial damage-associated molecular patterns: New perspectives for mitochondria and inflammatory bowel diseases. Mucosal Immunol 2025; 18:290-298. [PMID: 39920995 DOI: 10.1016/j.mucimm.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Mitochondria are key regulators of inflammatory responses and mitochondrial dysfunction is closely linked to various inflammatory diseases. Increasing genetic and experimental evidence suggests that mitochondria play a critical role in inflammatory bowel disease (IBD). In the complex environment of the intestinal tract, intestinal epithelial cells (IECs) and their mitochondria possess unique phenotypic features, shaping each other and regulating intestinal homeostasis and inflammation through diverse mechanisms. Here, we focus on intestinal inflammation in IBD induced by mitochondrial damage-associated molecular patterns (mtDAMPs), which comprise mitochondrial components and metabolic products. The pathogenic mechanisms of mtDAMP signaling pathways mediated by two major mtDAMPs, mitochondrial DNA (mtDNA) and mitochondrial reactive oxygen species (mtROS), are discussed.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xin Chang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Yihang Song
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Haicong Wu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- The Sixth Student Team, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Shuling Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China.
| | - Yu Bai
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
10
|
Ali MM, Nookaew I, Resende-Coelho A, Marques-Carvalho A, Warren A, Fu Q, Kim HN, O'Brien CA, Almeida M. Mechanisms of mitochondrial reactive oxygen species action in bone mesenchymal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.643319. [PMID: 40196660 PMCID: PMC11974693 DOI: 10.1101/2025.03.24.643319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mitochondrial (mt)ROS, insufficient NAD + , and cellular senescence all contribute to the decrease in bone formation with aging. ROS can cause senescence and decrease NAD + , but it remains unknown whether these mechanisms mediate the effects of ROS in vivo . Here, we generated mice lacking the mitochondrial antioxidant enzyme Sod2 in osteoblast lineage cells targeted by Osx1-Cre and showed that Sod2 ΔOsx1 mice had low bone mass. Osteoblastic cells from these mice had impaired mitochondrial respiration and attenuated NAD + levels. Administration of an NAD + precursor improved mitochondrial function in vitro but failed to rescue the low bone mass of Sod2 ΔOsx1 mice. Single-cell RNA-sequencing of bone mesenchymal cells indicated that ROS had no significant effects on markers of senescence but disrupted parathyroid hormone signaling, iron metabolism, and proteostasis. Our data supports the rationale that treatment combinations aimed at decreasing mtROS and senescent cells and increasing NAD + should confer additive effects in delaying age-associated osteoporosis.
Collapse
|
11
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
12
|
Ghaffari MK, Sefati N, Esmaeilpour T, Salari V, Oblak D, Simon C. The impact of ketamine and thiopental anesthesia on ultraweak photon emission and oxidative-nitrosative stress in rat brains. Front Syst Neurosci 2025; 19:1502589. [PMID: 40191280 PMCID: PMC11968709 DOI: 10.3389/fnsys.2025.1502589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Anesthetics such as ketamine and thiopental, commonly used for inducing unconsciousness, have distinct effects on neuronal activity, metabolism, and cardiovascular and respiratory systems. Ketamine increases heart rate and blood pressure while preserving respiratory function, whereas thiopental decreases both and can cause respiratory depression. This study investigates the impact of ketamine (100 mg/kg) and thiopental (45 mg/kg) on ultraweak photon emission (UPE), oxidative-nitrosative stress, and antioxidant capacity in isolated rat brains. To our knowledge, no previous study has investigated and compared UPE in the presence and absence of anesthesia. Here, we compare the effects of ketamine and thiopental anesthetics with each other and with a non-anesthetized control group. Ketamine increased UPE, lipid peroxidation, and antioxidant enzyme activity while reducing thiol levels. Conversely, thiopental decreased UPE, oxidative markers, and antioxidant enzyme activity, while increasing thiol levels. UPE was negatively correlated with thiol levels and positively correlated with oxidative stress markers. These findings suggest that the contrasting effects of ketamine and thiopental on UPE are linked to their differing impacts on brain oxidative stress and antioxidant capacity. This research suggests a potential method to monitor brain oxidative stress via UPE during anesthesia, and opens up new ways for understanding and managing anesthetic effects.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Bevere M, Morabito C, Verucci D, Di Sinno N, Mariggiò MA, Guarnieri S. Growth-Associated Protein-43 Loss Promotes Ca 2+ and ROS Imbalance in Cardiomyocytes. Antioxidants (Basel) 2025; 14:361. [PMID: 40227418 DOI: 10.3390/antiox14030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Growth-Associated Protein-43 (GAP-43) is a calmodulin-binding protein, originally found in neurons, that in skeletal muscle regulates the handling of intracellular Ca2+ dynamics. According to its role in Ca2+ regulation, myotubes from GAP-43 knockout (GAP-43-/-) mice display alterations in spontaneous Ca2+ oscillations and increased Ca2+ release. The emerging hypothesis is that GAP-43 regulates CaM interactions with RyR and DHPR Ca2+ channels. The loss of GAP-43 promotes cardiac hypertrophy in newborn GAP-43-/- mice, extending the physiological role of GAP-43 in cardiac muscle. We investigated the role of GAP-43 in cardiomyocytes derived from the hearts of GAP-43-/- mice, evaluating intracellular Ca2+ variations and the correlation with the levels of reactive oxygen species (ROS), considering their importance in cardiovascular physiology. In GAP-43-/- cardiomyocytes, we found the increased expression of markers of cardiac hypertrophy, Ca2+ alterations, and high mitochondria ROS levels (O2•-) together with increased oxidized functional proteins. Treatment with a CaM inhibitor (W7) restored Ca2+ and ROS alterations, possibly due to high mitochondrial Ca2+ entry by a mitochondrial Ca2+ uniporter. Indeed, Ru360 was able to abolish O2•- mitochondrial production. Our results suggest that GAP-43 has a key role in the regulation of Ca2+ and ROS homeostasis, alterations to which could trigger heart disease.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Delia Verucci
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Noemi Di Sinno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
14
|
Ji D, Mylvaganam S, Ravi Chander P, Tarnopolsky M, Murphy K, Carlen P. Mitochondria and oxidative stress in epilepsy: advances in antioxidant therapy. Front Pharmacol 2025; 15:1505867. [PMID: 40177125 PMCID: PMC11961640 DOI: 10.3389/fphar.2024.1505867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/26/2024] [Indexed: 04/05/2025] Open
Abstract
Epilepsy, affecting approximately 50 million individuals worldwide, is a neurological disorder characterized by recurrent seizures. Mitochondrial dysfunction and oxidative stress are critical factors in its pathophysiology, leading to neuronal hyperexcitability and cell death. Because of the multiple mitochondrial pathways that can be involved in epilepsy and mitochondrial dysfunction, it is optimal to treat epilepsy with multiple antioxidants in combination. Recent advancements highlight the potential of antioxidant therapy as a novel treatment strategy. This approach involves tailoring antioxidant interventions-such as melatonin, idebenone, and plant-derived compounds-based on individual mitochondrial health, including mitochondrial DNA mutations and haplogroups that influence oxidative stress susceptibility and treatment response. By combining antioxidants that target multiple pathways, reducing oxidative stress, modulating neurotransmitter systems, and attenuating neuroinflammation, synergistic effects can be achieved, enhancing therapeutic efficacy beyond that of a single antioxidant on its own. Future directions include conducting clinical trials to evaluate these combination therapies, and to translate preclinical successes into effective clinical interventions. Targeting oxidative stress and mitochondrial dysfunction through combination antioxidant therapy represents a promising adjunctive strategy to modify disease progression and improve outcomes for individuals living with epilepsy.
Collapse
Affiliation(s)
- Delphine Ji
- Krembil Research Institute, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Mark Tarnopolsky
- Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | | | - Peter Carlen
- Krembil Research Institute, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
- Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Arleth T, Baekgaard J, Dinesen F, Creutzburg A, Dalsten H, Queitsch CJ, Wadland SS, Rosenkrantz O, Siersma V, Moser C, Jensen PØ, Rasmussen LS, Steinmetz J. Oxidative stress in trauma patients receiving a restrictive or liberal oxygen strategy - A sub-study of the TRAUMOX2 trial. Free Radic Biol Med 2025; 230:309-319. [PMID: 39956475 DOI: 10.1016/j.freeradbiomed.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION A liberal supplemental oxygen approach is recommended for all severely injured trauma patients despite limited evidence. Liberal oxygen administration may cause oxidative stress. The aim of this study was to investigate the effect of an early restrictive oxygen strategy versus a liberal oxygen strategy in adult trauma patients on biomarkers of oxidative stress within 48 h of hospital admission. MATERIALS AND METHODS This was a single-centre, sub-study of an international, randomised controlled trial TRAUMOX2. In TRAUMOX2, patients were randomised shortly after trauma to a restrictive oxygen strategy (arterial oxygen saturation target of 94 %) or a liberal oxygen strategy (12-15 L of oxygen per minute or fraction of inspired oxygen of 0.6-1.0) for 8 h. Blood samplings were performed at four time points within 48 h after randomisation: upon arrival at the trauma centre, and at eight, 24, and 48 h post-randomisation. The primary outcome was the plasma level of malondialdehyde (MDA) 24 h post-randomisation. Secondary outcomes were numerous, and included the level of MDA at other time points, superoxide dismutase (SOD) at all time points, 30-day mortality, and major respiratory complications. RESULTS The sub-study included 90 adult trauma patients. The median MDA levels at 24 h post-randomisation was 60.9 μM (95 % CI 49.5 to 73.4) in the restrictive oxygen group and 56.7 μM (95 % CI 46.9 to 68.2) in the liberal oxygen group, corresponding to a difference of -4.2 μM (95 % CI -19.8 to 10.5; P = 0.35). No significant differences were found in MDA or SOD at the other time points either. Neither did we find a significant difference in 30-day mortality or major respiratory complications. CONCLUSIONS In this sub-study of the TRAUMOX2 trial, no significant differences were found in biomarkers of oxidative stress between a restrictive oxygen strategy and liberal oxygen strategy in adult trauma patients.
Collapse
Affiliation(s)
- Tobias Arleth
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Josefine Baekgaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Felicia Dinesen
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Andreas Creutzburg
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Helene Dalsten
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Carl Johan Queitsch
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Sarah Sofie Wadland
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
| | - Oscar Rosenkrantz
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark.
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark; Institute for Inflammation Research, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Valdemar Hansens Vej 17, 2600, Glostrup, Denmark.
| | - Lars S Rasmussen
- Danish Ministry of Defence Personnel Agency, H.C. Sneedorffs Allé 3, 1439, Copenhagen, Denmark.
| | - Jacob Steinmetz
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark; Danish Air Ambulance, Brendstrupgårdsvej 7, 8200, Aarhus N, Denmark; Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Faculty of Health, Aarhus University, Vennelyst Blvd. 4, 8000, Aarhus, Denmark.
| |
Collapse
|
16
|
Arzoo SH, Tasmin R, Banerjee SJ. Quantification of Total Free Radicals in Drosophila Using a Fluorescence-Based Biochemical Assay. Bio Protoc 2025; 15:e5238. [PMID: 40084083 PMCID: PMC11896775 DOI: 10.21769/bioprotoc.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 03/16/2025] Open
Abstract
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), induce oxidative stress. This stress plays crucial roles in cellular signaling, stress response, and disease progression, making the quantification of free radicals essential for understanding oxidative stress mechanisms. Here, we present a high-throughput fluorescence-based protocol for measuring the presence of total free radicals, including ROS and RNS, in the whole adult Drosophila melanogaster (fruit fly). The protocol involves homogenizing whole adult flies in PBS and treating only the supernatant of the lysate with dichlorodihydrofluorescein-DiOxyQ (DCFH-DiOxyQ), which then converts into a fluorescent molecule, dichlorofluorescein (DCF), upon reacting with free radicals. The level of fluorescence is directly proportional to the amount of free radicals present in the sample. This protocol offers simplicity, scalability, and adaptability, making it ideal for studying oxidative stress in the model organism Drosophila and its different tissues under different dietary regimes, environmental stresses, genetic mutations, or pharmacological treatments. It is to be noted that the protocol uses a kit from Abcam, which has been used to measure free radicals in mice, rats, human blood, and cell lines. It can also be applied to biofluids, culture supernatants, and cell lysates, making it suitable for a wide range of sample types beyond whole organisms or tissues. However, due to our research focus and expertise, here we describe a detailed protocol to measure free radicals responsible for inducing oxidative stress only in fruit flies. Key features • Quantifies total free radicals including ROS and RNS levels in adult Drosophila melanogaster using a fluorescence-based approach for oxidative stress studies. • Suitable for high-throughput analysis with a 96-well black plate format, simultaneously enabling efficient handling of multiple samples and standards. • Adaptable to different experimental conditions, including diverse ROS-inducing treatments and mutations in Drosophila. • Offers detailed instructions for reagent preparation, sample homogenization, fluorescence measurement, normalization, and statistical analysis of data to ensure reproducibility and accuracy across research settings. Graphical overview Schematic workflow of the assay. Whole adult fruit flies are homogenized in PBS buffer and centrifuged. The clear supernatant is carefully transferred into new tubes for further treatment with different reagents, loaded into a clear-bottom black 96-well plate, and treated with another set of reagents. The plate is then incubated, and fluorescence is measured using the Agilent BioTek Synergy H1 plate reader.
Collapse
Affiliation(s)
| | - Rubaia Tasmin
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
17
|
de Oliveira MP, da Silva LE, Fernandes BB, Steiner MR, Pistóia DG, Santos Cichella TD, Jacinto LB, Spuldaro KM, Pinto Moehlecke Iser B, Rezin GT. The impact of obesity on mitochondrial dysfunction during pregnancy. Mol Cell Endocrinol 2025; 598:112463. [PMID: 39832615 DOI: 10.1016/j.mce.2025.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Mitochondria play a central role in nutrient metabolism, besides being responsible for the production of adenosine triphosphate (ATP), the main source of cellular energy. However, the ATP production process is associated with the generation of reactive oxygen species (ROS), which excessive accumulation can cause mitochondrial dysfunction. This dysfunction, in turn, causes the accumulation of fatty acids in the adipose tissue, triggering a local inflammatory process that can evolve into systemic inflammation. In women with obesity, an increase in lipid levels in the placental environment is observed. The high presence of fatty acids compromises the structural integrity and mitochondrial membrane, culminating in the release of ROS. This process damages the DNA of placental cells and causes an inflammatory state, affecting metabolic efficiency. This vicious cycle is characterized by defects in mitochondrial ATP production, which can lead to lipid accumulation and inflammation. In pregnant women with obesity, these mitochondrial changes play a determining role in pregnancy outcomes. Hence, the objective of this study was to search the literature to review the impact of mitochondrial dysfunction in the maternal obesity.
Collapse
Affiliation(s)
- Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Debora Gehrke Pistóia
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Tamires Dos Santos Cichella
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Luana Bahia Jacinto
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Karoline Marcondes Spuldaro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Betine Pinto Moehlecke Iser
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
18
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
19
|
Schell JR, Wei SJ, Zhang J, Trevino R, Chen WH, Aguilar L, Qian W, Corbett CW, Jiang H, Dong FF, Chocron ES, Nazarullah A, Chang J, Flanagan ME, Glatt V, Dikalov S, Munkácsy E, Horikoshi N, Gius D. MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy. Free Radic Biol Med 2025; 229:58-67. [PMID: 39824446 DOI: 10.1016/j.freeradbiomed.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSODK68R) knock-in mouse. These mice exhibited several cardiovascular phenotypes, including lower blood pressure, decreased ejection fraction, and importantly, dilated cardiomyopathy, as evidenced by echocardiography at four months of age. In addition, both mouse embryo fibroblasts (MEFs) and cardiovascular tissue from MnSODK68R/K68R mice exhibited an increase in cellular senescence. Finally, MnSODK68R/K68R mouse hearts also showed an increase in lipid peroxidation. We conclude that constitutively active MnSOD detoxification activity, lacking the normal switch between non-acetylated and acetylated forms, dysregulates mitochondrial physiology during development, leading to dilated cardiomyopathy.
Collapse
Affiliation(s)
- Joseph R Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Sung-Jen Wei
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Jun Zhang
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Leonardo Aguilar
- Department of Orthopedic Surgery, UT Health San Antonio, TX, USA
| | - Wei Qian
- Houston Methodist Cancer Center, Houston, TX, USA; Houston Methodist Research Institute, Houston, TX, USA
| | - Cole W Corbett
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Felix F Dong
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - E Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Alia Nazarullah
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Department of Pathology, UT Health San Antonio, TX, USA
| | - Jenny Chang
- Houston Methodist Cancer Center, Houston, TX, USA; Houston Methodist Research Institute, Houston, TX, USA
| | - Margaret E Flanagan
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, TX, USA; Department of Pathology, UT Health San Antonio, TX, USA
| | - Vaida Glatt
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA; Department of Orthopedic Surgery, UT Health San Antonio, TX, USA
| | - Sergey Dikalov
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA; Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA.
| |
Collapse
|
20
|
Eigenfeld M, Schwaminger SP. Cellular variability as a driver for bioprocess innovation and optimization. Biotechnol Adv 2025; 79:108528. [PMID: 39914686 DOI: 10.1016/j.biotechadv.2025.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Cellular heterogeneity plays a crucial role in biotechnological processes, significantly influencing metabolic activity, product yield, and process consistency. This review explores the different dimensions of cellular heterogeneity, focusing on its manifestation at both single-cell and population levels. The study examines how factors such as asymmetric cell division, age, and environmental conditions contribute to functional diversity within cell populations, with an emphasis on microorganisms like yeast. Age-related cellular heterogeneity, in particular, is highlighted for its impact on metabolic pathways, mitochondrial function, and secondary metabolite production, which directly affect bioprocess outcomes. Furthermore, the review discusses advanced techniques for detecting and managing heterogeneity, including surface marker-based approaches, which utilize proteins, polysaccharides, and lipids, and label-free methods that leverage cellular volume and physical properties for separation. Understanding and controlling cellular heterogeneity is essential for optimizing industrial bioprocesses, improving yield, and ensuring product quality. The review also underscores the potential of emerging biotechnological tools, such as real-time single-cell analysis and microfluidic devices, in enhancing separation techniques and managing cellular diversity for better process efficiency and robustness.
Collapse
Affiliation(s)
- M Eigenfeld
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - S P Schwaminger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
21
|
Sato M, Kadomatsu T, Morinaga J, Kinoshita Y, Torigoe D, Horiguchi H, Ohtsuki S, Yamamura S, Kusaba R, Yamaguchi T, Yoshioka G, Araki K, Wakayama T, Miyata K, Node K, Oike Y. HINT1 suppression protects against age-related cardiac dysfunction by enhancing mitochondrial biogenesis. Mol Metab 2025; 93:102107. [PMID: 39909188 PMCID: PMC11850129 DOI: 10.1016/j.molmet.2025.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE Cardiac function declines with age, impairing exercise tolerance and negatively impacting healthy aging. However, mechanisms driving age-related declines in cardiac function are not fully understood. METHODS We examined mechanisms underlying age-related cardiac dysfunction using 3- and 24-month-old wild-type mice fed ad libitum or 24-month-old wild-type mice subjected to 70% calorie restriction (CR) starting at 2-month-old. In addition, cardiac aging phenotypes and mitochondrial biogenesis were also analyzed in 25-month-old cardiac-specific Hint1 knockout mice, 24-month-old CAG-Caren Tg mice, and 24-month-old wild-type mice injected with AAV6-Caren. RESULTS We observed inactivation of mitochondrial biogenesis in hearts of aged mice. We also showed that activity of the BAF chromatin remodeling complex is repressed by HINT1, whose expression in heart increases with age, leading to decreased transcription of Tfam, which promotes mitochondrial biogenesis. Interestingly, CR not only suppressed age-related declines in cardiac function and mitochondrial biogenesis but blocked concomitant increases in cardiac HINT1 protein levels and maintained Tfam transcription. Furthermore, expression of the lncRNA Caren, which inhibits Hint1 mRNA translation, decreased with age in heart, and CR suppressed this effect. Finally, decreased HINT1 expression due to Caren overexpression antagonized age-related declines in mitochondrial biogenesis, ameliorating age-related cardiac dysfunction, exercise intolerance, and exercise-induced cardiac damage and subsequent death of mice. CONCLUSION Our findings suggest that mitochondrial biogenesis in cardiomyocytes decreases with age and could underlie cardiac dysfunction, and that the Caren-HINT1-mitochondrial biogenesis axis may constitute a mechanism linking CR to resistance to cardiac aging. We also show that ameliorating declines in mitochondrial biogenesis in cardiomyocytes could counteract age-related declines in cardiac function, and that this strategy may improve exercise tolerance and extend so-called "healthy life span".
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan; Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun Morinaga
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Yuya Kinoshita
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Daisuke Torigoe
- Division of Experimental Genetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmacological Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryoko Kusaba
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Goro Yoshioka
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Developmental Genetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
22
|
Esquissato GNM, Pereira TS, Pereira SLDS, Costa FND, Garcia FP, Nakamura CV, Rodrigues JHDS, Castro-Prado MAAD. In vitro anticancer and antifungal properties of the essential oil from the leaves of Lippia origanoides kunth. Nat Prod Res 2025; 39:1741-1744. [PMID: 38164692 DOI: 10.1080/14786419.2023.2300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The essential oil from Lippia origanoides (EOLO) is employed in traditional medicine as it has both antimicrobial and anti-inflammatory properties. The current investigation first evaluated the EOLO's cytotoxic activity in tumour (SiHa and HT-29) and non-tumour (human lymphocyte) cells by MTT. The effect on ROS production was further evaluated in cancer cells by fluorimetry. The oil's mutagenic and antifungal activities were also evaluated using, respectively, the in vitro micronucleus test and the broth microdilution method. The EOLO displayed significant cytotoxicity in both cancer cell lines, with IC50 values of 20.2 μg/mL and 24.3 μg/mL for HT-29 and for SiHa cell lines, respectively. EOLO increased ROS production, was unable to raise the micronucleus frequencies and significantly reduced the cytokinesis block proliferation indices, revealing its anti-proliferative action. The results demonstrate that EOLO is devoid of mutagenic activity but possesses significant activity against tumour and non-tumour human cells, reinforcing its biological potential.
Collapse
Affiliation(s)
| | - Tais Susane Pereira
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brasil
| | | | | | | | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brasil
| | | | | |
Collapse
|
23
|
Lorke DE, Oz M. A review on oxidative stress in organophosphate-induced neurotoxicity. Int J Biochem Cell Biol 2025; 180:106735. [PMID: 39855621 DOI: 10.1016/j.biocel.2025.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals. Organophosphates inhibit the antioxidant paraoxonase, and reactive oxygen species are produced during organophosphate metabolism. Organophosphates disrupt the function of mitochondria, the principal source of free radicals. Organophosphates also induce neuroinflammation, which generates reactive oxygen species, and reactive oxygen species in turn stimulate neuroinflammation. Markers of reactive oxygen species are elevated in vitro and in vivo after exposure to organophosphates and in individuals professionally exposed to organophosphates. This most probably contributes to the pathogenesis of the intermediate syndrome, chronic organophosphate-induced neuropsychiatric disorders and neurodegeneration occurring in patients after organophosphate exposure. Evidence for beneficial effects of antioxidants in organophosphate poisoning is discussed.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, United States; Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| |
Collapse
|
24
|
Kakizawa S. Involvement of ROS signal in aging and regulation of brain functions. J Physiol Sci 2025; 75:100003. [PMID: 39823967 PMCID: PMC11979664 DOI: 10.1016/j.jphyss.2024.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function. While most studies demonstrate either the positive or negative effects of ROS on synaptic plasticity, the dual effects of ROS at individual synapses have been demonstrated recently in the mouse cerebellum. Furthermore, the cooperative interaction between these two effects determines the direction of synaptic plasticity. It is anticipated that further elucidation of both the positive and negative effects of ROS on brain function will lead to the development of more effective therapeutic strategies with fewer side effects for ROS-related brain dysfunction.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan.
| |
Collapse
|
25
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
26
|
Kuk MU, Lee YH, Kim D, Lee KS, Park JH, Yoon JH, Lee YJ, So B, Kim M, Kwon HW, Byun Y, Lee KY, Park JT. Sauchinone Ameliorates Senescence Through Reducing Mitochondrial ROS Production. Antioxidants (Basel) 2025; 14:259. [PMID: 40227233 DOI: 10.3390/antiox14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
One of the major causes of senescence is oxidative stress caused by ROS, which is mainly generated from dysfunctional mitochondria. Strategies to limit mitochondrial ROS production are considered important for reversing senescence, but effective approaches to reduce them have not yet been developed. In this study, we screened the secondary metabolites that plants produce under oxidative stress and discovered sauchinone as a potential candidate. Sauchinone induced mitochondrial function recovery, enabling efficient electron transport within the electron transport chain (ETC). This led to a decrease in ROS production, a byproduct of inefficient electron transport. The reduction in ROS by sauchinone rejuvenated senescence-associated phenotypes. To understand the underlying mechanism by which sauchinone rejuvenates senescence, we carried out RNA sequencing and found VAMP8 as a key gene. VAMP8 was downregulated by sauchinone. Knockdown of VAMP8 decreased mitochondrial ROS levels and subsequently rejuvenated mitochondrial function, which was similar to the effect of sauchinone. Taken together, these studies revealed a novel mechanism by which sauchinone reduces mitochondrial ROS production by regulating mitochondrial function and VAMP8 expression. Our results open a new avenue for aging research to control senescence by regulating mitochondrial ROS production.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Duyeol Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyeong Seon Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Byeonghyeon So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Minseon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
27
|
Lee YH, Jeong EY, Kim YH, Park JH, Yoon JH, Lee YJ, Lee SH, Nam YK, Cha SY, Park JS, Kim SY, Byun Y, Shin SS, Park JT. Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient. Aging (Albany NY) 2025; 17:497-523. [PMID: 39992207 DOI: 10.18632/aging.206207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Reactive oxygen species (ROS) contribute to aging by mainly damaging cellular organelles and DNA. Although strategies to reduce ROS production have been proposed as important components of anti-aging therapy, effective mechanisms to lower ROS levels have not yet been identified. Here, we screened natural compounds frequently used as cosmetic ingredients to find substances that reduce ROS levels. Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts. A novel mechanism by which M. officinalis extract restores mitochondrial function to reduce ROS, a byproduct of inefficient electron transport, was discovered. The reduction of ROS by M. officinalis extracts reversed senescence-associated phenotypes and skin aging. Then, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects. Honokiol functions as an oxygen radical scavenger through redox processes, also significantly reduced ROS levels by restoring mitochondrial function. In summary, our study identified a novel mechanism by which M. officinalis extract reverses aging and skin aging by reducing ROS through restoring mitochondrial function. These new findings will not only expand our understanding of aging and associated diseases, but also provide new approaches to anti-aging treatments.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Young Jeong
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ye Hyang Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - So Hun Lee
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Yeon Kyung Nam
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yoon Cha
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Jin Seong Park
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yeon Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Song Seok Shin
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
28
|
Tiek D, Song X, Yu X, Wu R, Iglesia R, Catezone A, McCortney K, Walshon J, Horbinski C, Jamshidi P, Castellani R, Vassar R, Miska J, Hu B, Cheng SY. Oxidative stress induced protein aggregation via GGCT produced pyroglutamic acid in drug resistant glioblastoma. iScience 2025; 28:111769. [PMID: 39949960 PMCID: PMC11821397 DOI: 10.1016/j.isci.2025.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Drug resistance is a major barrier to cancer therapies and remains poorly understood. Recently, non-mutational mechanisms of drug resistance have been proposed where a more plastic metabolic response can play a major role. Here, we show that upon drug resistance, glioblastoma (GBM) cells have increased oxidative stress, mitochondria function, and protein aggregation. Gamma (γ)-glutamylcyclotranserase (GGCT), an enzyme in the γ-glutamyl cycle for glutathione production, located on chromosome 7 which is commonly amplified in GBM is also increased upon resistance. We further observe that the byproduct of GGCT-pyroglutamic acid-can bind aggregating proteins and that genetic and pharmacological inhibition of GGCT prevents protein aggregation. Finally, we found increased protein aggregation, GGCT expression, and pyroglutamic acid staining in recurrent GBM patient samples, adjacent non-tumor brain, and Alzheimer's brains. These findings suggest a new pathway for protein aggregation within drug resistant brain cancer that should be further studied in other brain disorders.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Runxin Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia Catezone
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katy McCortney
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jordain Walshon
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig Horbinski
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Rudolph Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Robert Vassar
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurosurgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Cisa-Wieczorek S, Hernández-Alvarez MI, Parreño M, Muñoz JP, Bussaglia E, Carricondo M, Ubeda J, Dubreuil P, Zorzano A, Brenet F, Nomdedeu JF. D816V KIT mutation induces mitochondrial morphologic and functional changes through BNIP3 downregulation in human myeloid cell lines ROSA and TF-1. Exp Hematol 2025; 145:104748. [PMID: 39986568 DOI: 10.1016/j.exphem.2025.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The KIT receptor is a transmembrane protein found on the surface of many different cell types. Mutant forms of KIT are drivers of myeloid neoplasms, including systemic mastocytosis. The KIT D816V mutation is the most common, leading to constitutive activation of the receptor and its downstream targets, and it is highly resistant to c-KIT inhibitors. Metabolic rewiring is a common trait in cancer. We analyzed the metabolic profile induced by the KIT D816 mutation, measuring mitochondrial parameters in two myeloid cell lines. We found that the KIT D816V mutation causes a significant increase in mitochondrial abundance and activity associated with superoxide production, which could promote DNA instability. Functional and morphologic changes in mitochondria were associated with reduced levels of BNIP3 protein expression. We also detected low BNIP3 levels in clinical acute myeloid leukemia samples harboring D816V mutations. In addition, we have found constitutive mTOR activation in mutated cells, a pathway that has been shown to regulate autophagy. Our data suggest that KIT D816V increases mitochondrial activity through downregulation of BNIP3 expression, which increases mitochondrial number through the autophagy pathway. Alterations in the cellular metabolism induced by the KIT D816V mutation could be therapeutically exploited.
Collapse
Affiliation(s)
- Sabina Cisa-Wieczorek
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Maria Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matilde Parreño
- Translational Molecular Oncology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Juan P Muñoz
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Bussaglia
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Maite Carricondo
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Jose Ubeda
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fabienne Brenet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Josep F Nomdedeu
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain.
| |
Collapse
|
30
|
Wagner LE, Melnyk O, Turner A, Duffett BE, Muralidharan C, Martinez-Irizarry MM, Arvin MC, Orr KS, Manduchi E, Kaestner KH, Brozinick JT, Linnemann AK. IFN-α Induces Heterogenous ROS Production in Human β-Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639120. [PMID: 40027743 PMCID: PMC11870469 DOI: 10.1101/2025.02.19.639120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Type 1 diabetes (T1D) is a multifactorial disease involving genetic and environmental factors, including viral infection. We investigated the impact of interferon alpha (IFN-α), a cytokine produced during the immune response to viral infection or the presence of un-edited endogenous double-stranded RNAs, on human β-cell physiology. Intravital microscopy on transplanted human islets using a β-cell-selective reactive oxygen species (ROS) biosensor (RIP1-GRX1-roGFP2), revealed a subset of human β-cells that acutely produce ROS in response to IFN-α. Comparison to Integrated Islet Distribution Program (IIDP) phenotypic data revealed that healthier donors had more ROS accumulating cells. I n vitro IFN-α treatment of human islets similarly elicited a heterogenous increase in superoxide production that originated in the mitochondria. To determine the unique molecular signature predisposing cells to IFN-α stimulated ROS production, we flow sorted human islets treated with IFN-α. RNA sequencing identified genes involved in inflammatory and immune response in the ROS-producing cells. Comparison with single cell RNA-Seq datasets available through the Human Pancreas Analysis Program (HPAP) showed that genes upregulated in ROS-producing cells are enriched in control β-cells rather than T1D donors. Combined, these data suggest that IFN-α stimulates mitochondrial ROS production in healthy human β-cells, potentially predicting a more efficient antiviral response.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Abigail Turner
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Charanya Muralidharan
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | | | - Amelia K. Linnemann
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
31
|
Ma B, Chai Z, Liu Y, He Z, Chen X, Qian C, Chen Y, Wang W, Meng Z. New near-infrared fluorescent probe for imaging superoxide anion of cell membrane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125431. [PMID: 39549329 DOI: 10.1016/j.saa.2024.125431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Selective imaging of superoxide anion is important for understanding its role in cell membrane biology, but is often a challenging task because of the lack of an effective fluorescence probe. In this study, a new near-infrared fluorescent probe (SHX-O) that can target cell membrane was developed for imaging superoxide anion. SHX-O was designed by simultaneously incorporating a sulfonated bis-indole and a diphenylphosphinyl recognition group into the hemicyanine moiety. The probe itself showed a rather weak fluorescence due to the hemicyanine's hydroxyl substitution; however, its reaction with superoxide anion caused a large enhancement of near-infrared fluorescence at 790 nm. Moreover, SHX-O exhibited not only high selectivity for superoxide anion over other reactive oxygen species, but also specific cell membrane localization, which may be attributed to the probe's amphiphilic structure. Using the probe, fluorescence imaging of cell membrane superoxide anion produced in the presence of xanthine oxidase and xanthine has been achieved in living cells. We believe that SHX-O may serve as a potential tool for imaging and investigating superoxide anion of cell membrane.
Collapse
Affiliation(s)
- Bokai Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Ziyin Chai
- Sinopec Research Institute of Petroleum Processing CO., LTD, Beijing 100083, China; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zixu He
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinqi Chen
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Chong Qian
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Yongjia Chen
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| | - Zihui Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
32
|
Jeon KO, Yorgason JT, Ford L, Woolley JT, Park SH, Lee BS, Lee EK, Rho J, Jang EY. The superoxide dismutase mimetic TEMPOL modulates nicotine-induced hyperlocomotor activity and nicotine-taking behavior in male rats. Sci Rep 2025; 15:5531. [PMID: 39952992 PMCID: PMC11828947 DOI: 10.1038/s41598-025-88667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Reactive oxygen species (ROS) have been implicated in behaviors induced by acute or repeated cocaine or methamphetamine administration in rodents. In the present study, we investigated the involvement of ROS in behavioral changes induced by nicotine administration and dopamine (DA) transmission changes in the nucleus accumbens (NAc) of rats. Rats were given repeated saline or nicotine (0.4 mg/kg) administration once daily for seven days, and the induction of hyperlocomotor activity, and oxidative stress marker expression induced by the increase in ROS production in the NAc were measured on day 7. We also tested the effect of ROS scavengers on repeated nicotine-induced hyperlocomotor activity and nicotine self-administration, and DA levels in the NAc. Repeated nicotine administration induced hyperlocomotor activity and decreased the expression of oxidative stress markers, such as superoxide dismutase-1 and glutathione peroxidase 1/2, by elevating ROS production in the NAc. Pretreatment with the nonspecific ROS scavenger PBN and the superoxide-selective scavenger TEMPOL significantly attenuated nicotine-induced hyperlocomotor activity without impairing motor function in nicotine-naïve rats on day 7. In addition, in intravenous nicotine self-administration study, TEMPOL significantly reduced nicotine-taking behavior without affecting food intake in nicotine-naïve rats. Furthermore, TEMPOL pretreatment prevented nicotine effects on stimulated DA release in the NAc, which was associated with nicotine-induced behavioral changes. Taken together, these findings suggest that increased ROS production in the NAc contributes to the neuropharmacological properties of nicotine.
Collapse
Affiliation(s)
- Kyung Oh Jeon
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jordan T Yorgason
- Department of Cell Biology and Physiology, 3019 LSB, Brigham Young University, Provo, UT, 84602, USA
| | - Lauren Ford
- Department of Cell Biology and Physiology, 3019 LSB, Brigham Young University, Provo, UT, 84602, USA
| | - Joel T Woolley
- Department of Cell Biology and Physiology, 3019 LSB, Brigham Young University, Provo, UT, 84602, USA
| | - Seong-Hoon Park
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Byoung-Seok Lee
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Eun Kyeong Lee
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Young Jang
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
33
|
Liang Z, Zhao S, Liu Y, Cheng C. The promise of mitochondria in the treatment of glioblastoma: a brief review. Discov Oncol 2025; 16:142. [PMID: 39924629 PMCID: PMC11807951 DOI: 10.1007/s12672-025-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Glioblastoma (GBM) is a prevalent and refractory type of brain tumor. Over the past two decades, there have been minimal advancements in GBM therapy. The current standard treatment involves surgical excision followed by radiation and chemotherapy. Compared to other tumors, GBM is more challenging to treat due to the presence of glioma stem-like cells (GSCs) and the blood-brain barrier, resulting in an extremely low survival rate. Mitochondria play a critical role in tumor respiration, metabolism, and multiple signaling pathways involved in tumor formation, progression, and cell apoptosis. Consequently, mitochondria represent promising targets for developing novel anticancer agents, including those targeting oxidative phosphorylation, reactive oxygen species (ROS), mitochondrial transfer, and mitophagy. This review outlines the mitochondrial-related therapeutic targets in GBM, highlighting the potential of mitochondria as a target for GBM treatment.
Collapse
Affiliation(s)
- Zhuo Liang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
34
|
Wang Z, Zhao X, Lu M, Wang N, Xu S, Min D, Wang L. The role of sirtuins in the regulation of reactive oxygen species in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2025:10.1007/s11010-024-05204-9. [PMID: 39920412 DOI: 10.1007/s11010-024-05204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025]
Abstract
Myocardial ischemia/reperfusion (I/R) injury has high morbidity and mortality rates, posing a significant burden on society. There is an urgent need to understand its pathogenesis and develop effective treatments. Reactive oxygen species (ROS) are crucial for the development of myocardial I/R injury, and inhibiting ROS overproduction is one of the most critical ways to delay myocardial I/R injury. Sirtuins are a group of nicotinic adenine dinucleotide ( +)-dependent histone deacetylases whose members can regulate ROS by modulating various biological processes. Numerous studies have shown that Sirtuins play an essential role in the progression of myocardial I/R injury by regulating ROS. This study focuses on the relationship between myocardial I/R injury and ROS, Sirtuins and ROS, discusses the role of Sirtuins in regulating ROS in myocardial I/R, and summarizes the therapeutic modalities aimed at targeting Sirtuins to modulate ROS in myocardial I/R injury, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110102, China
| | - Mingjing Lu
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Naiyu Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Shu Xu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Lijie Wang
- Department of Cardiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, China.
| |
Collapse
|
35
|
Kumar NA, Marouf A, Alagramam KN, Stepanyan R. The potential of mitochondrially-targeted tetrapeptide in protecting against noise-induced hearing impairment. Neuroreport 2025; 36:93-98. [PMID: 39661536 DOI: 10.1097/wnr.0000000000002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Noise-induced hearing loss (NIHL) constitutes a significant global health issue for which there is no effective treatment. The loss of cochlear hair cells and associated synaptopathy are common causes of hearing impairment. One primary mechanism implicated in NIHL is the accumulation of reactive oxygen species (ROS), which ultimately overwhelms cochlear cells. ROS are detected in the cochlea immediately after noise exposure and persist for at least a week. Within cells, ROS are primarily generated in mitochondria as byproducts of cellular metabolism. Elamipretide is a synthetic tetrapeptide known to concentrate in mitochondria, improving mitochondrial function and reducing ROS production. To test the hypothesis that elamipretide treatment mitigates NIHL, 16-week-old male and female CBA/J mice were exposed to 8-16 kHz octave-band noise (OBN) at 98 dB SPL for 2 hours. Elamipretide was administered intraperitoneally immediately after noise exposure and continued for 2 weeks. Efficacy was evaluated based on auditory brainstem response (ABR) thresholds, wave amplitudes, and wave latencies in treated and control groups. Results showed that OBN-exposed mice exhibited an elevation in ABR thresholds at 16 and 32 kHz and a reduction in ABR wave-I amplitude at 32 kHz, although wave-I latencies were not affected at 16 or 32 kHz. Elamipretide treatment prevented the OBN-induced elevation of ABR thresholds and the attenuation of wave-I amplitude. These findings provide proof of concept that mitochondrial-targeted elamipretide can prevent NIHL in a mammalian model and highlight its potential to protect against NIHL in humans.
Collapse
Affiliation(s)
- Niranj A Kumar
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Azmi Marouf
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Kumar N Alagramam
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruben Stepanyan
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
| |
Collapse
|
36
|
Sun W, Zhang J, Li S, Fu W, Liu Y, Liu M, Dong J, Zhao X, Li X. TAB2 deficiency induces dilated cardiomyopathy by promoting mitochondrial calcium overload in human iPSC-derived cardiomyocytes. Mol Med 2025; 31:42. [PMID: 39905300 PMCID: PMC11792723 DOI: 10.1186/s10020-025-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND TGF-β-activated kinase 1 binding protein 2 (TAB2) is an intermediary protein that links Tumor necrosis factor receptor 1 (TNFR1) and other receptor signals to the TGF-β-activated kinase 1 (TAK1) signaling complex. TAB2 frameshift mutations have been linked to dilated cardiomyopathy (DCM), while the exact mechanism needs further investigation. METHODS In this study, we generated a TAB2 compound heterozygous knockout cell line in induced pluripotent stem cells (iPSCs) derived from a healthy individual using CRISPR/Cas9 technology. IPSCs are not species-dependent, are readily accessible, and raise fewer ethical concerns. RESULTS TAB2 disruption had no impact on the cardiac differentiation of iPSCs and led to confirmed TAB2 deficiency in human iPSC-derived cardiomyocytes (hiPSC-CMs). TAB2-deficient hiPSC-CMs were found to develop phenotypic features of DCM, such as distorted sarcomeric ultrastructure, decreased contractility and energy production, and mitochondrial damage at day 30 post differentiation. Paradoxically, TAB2 knockout cell lines showed abnormal calcium handling after 40 days, later than reduced contractility, suggesting that the main cause of impaired contractility was abnormal energy production due to mitochondrial damage. As early as day 25, TAB2 knockout cardiomyocytes showed significant mitochondrial calcium overload, which can lead to mitochondrial damage. Furthermore, TAB2 knockout activated receptor-interacting protein kinase 1 (RIPK1), leading to an increase in mitochondrial calcium uniporter (MCU) expression, thereby augmenting the uptake of mitochondrial calcium ions. Finally, the application of the RIPK1 inhibitor Nec-1s prevents the progression of these phenotypes. CONCLUSIONS In summary, TAB2 abatement cardiomyocytes mimic dilated cardiomyopathy in vitro. This finding emphasizes the importance of using a human model to study the underlying mechanisms of this specific disease. More importantly, the discovery of a unique pathogenic pathway introduces a new notion for the future management of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Shuang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wanrong Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Gasier HG, Kovach J, Porter K. Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice. J Appl Physiol (1985) 2025; 138:415-425. [PMID: 39726281 DOI: 10.1152/japplphysiol.00723.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impaired aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO2) for 4 h on three consecutive days or remained in room air. Postfinal exposure, fatigue was determined by grip strength and run-to-exhaustion tests. Other measurements included indices of oxidant stress and antioxidant defenses, mitochondrial bioenergetics, caffeine-induced sarcoplasmic reticulum-calcium release, and S-nitrosylation of ryanodine receptor 1 (RyR1). Despite grip strength being unaffected by repeated HBO2 exposure, mean running time was reduced by 50%. In skeletal muscle from HBO2 exposed mice, superoxide production was significantly increased, resulting in elevated lipid and DNA (nuclear and mitochondrial) oxidation. Accompanying increased oxidant stress was a reduction in glutathione content and increased Sod1 and Hmox1 gene expression; Ucp3 mRNA was reduced. Mitochondrial respiration, mitochondrial membrane potential, and NAD+/NADH were not influenced by HBO2. In contrast, caffeine-induced sarcoplasmic reticulum (SR)-calcium release was reduced by 66% and S-nitrosylation of RyR1 was increased by 45%. Exposing mice to repeated HBO2 increases oxidant stress that activates some antioxidant defenses. Mitochondrial function is not altered and could be related to decreased production of UCP3 that serves to maintain the electrochemical proton gradient. S-nitrosylation of RyR1 may promote SR-calcium leak and reduce content, a potential mechanism for repeated HBO2-induced fatigue.NEW & NOTEWORTHY Breathing hyperoxic gas during prolonged and repeated dives causes fatigue but the mechanisms are unknown. Here, we show in mice exposed to repeated hyperbaric oxygen that running fatigue is accelerated and accompanied by increased skeletal muscle oxidant stress and reduced caffeine-induced sarcoplasmic reticulum (SR)-calcium release. The latter may be due to increased S-nitrosylation of ryanodine receptor 1 (RyR1) and be a mechanism for impaired physical performance after repeated oxygen diving.
Collapse
Affiliation(s)
- Heath G Gasier
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jack Kovach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Kris Porter
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
38
|
Jang JH, Kim DH, Chun KS. Tumor microenvironment regulation by reactive oxygen species-mediated inflammasome activation. Arch Pharm Res 2025; 48:115-131. [PMID: 39888519 DOI: 10.1007/s12272-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME. By releasing cytokines such as IL-1β and IL-18, inflammasomes contribute to immune cell recruitment and sustain a chronic inflammatory state that supports tumor growth. ROS are critical regulators of inflammasome activation, with the impact of ROS-mediated activation differing across cell types, leading to distinct influences on tumor progression and therapeutic responses. This review explores how ROS drive inflammasome activation in various TME-associated cells and the reciprocal ROS generation induced by inflammasomes, examining their multifaceted impact on tumorigenesis and therapeutic efficacy. By elucidating the complex interplay between ROS and inflammasomes in TME, we provide insights into potential therapeutic approaches that could modulate cancer progression and enhance treatment outcomes.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, 38430, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
39
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
41
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
42
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
43
|
Ali I, Adil M, Imran M, Qureshi SA, Qureshi S, Hasan N, Ahmad FJ. Nanotechnology in Parkinson's Disease: overcoming drug delivery challenges and enhancing therapeutic outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-025-01799-8. [PMID: 39878857 DOI: 10.1007/s13346-025-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development. Moreover, early and precise PD diagnosis remains elusive, relying on clinical assessments, neuroimaging techniques, and emerging biomarkers. Conventional management of PD involves dopaminergic medications and surgical interventions, but these treatments often become less effective over time and do not address disease treatment. Challenges persist due to the blood-brain barrier's (BBB) impermeability, hindering drug delivery. Recent advancements in nanotechnology offer promising novel approaches for PD management. Various drug delivery systems (DDS), including nanosized polymers, lipid-based carriers, and nanoparticles (such as metal/metal oxide, protein, and carbonaceous particles), aim to enhance drug and gene delivery. These modifications seek to improve BBB permeability, ultimately benefiting PD patients. This review underscores the critical role of ageing in PD development and explores how age-related neuronal decline contributes to substantia nigra loss and PD manifestation in susceptible individuals. The review also highlights the advancements and ongoing challenges in nanotechnology-based therapies for PD.
Collapse
Affiliation(s)
- Irfan Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, 4102, Australia
| | - Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
44
|
Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, Park SI, Lee SJ. Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discov 2025; 11:19. [PMID: 39856066 PMCID: PMC11760946 DOI: 10.1038/s41420-024-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Free radicals, characterized by the presence of unpaired electrons, are highly reactive species that play a significant role in human health. These molecules can be generated through various endogenous processes, such as mitochondrial respiration and immune cell activation, as well as exogenous sources, including radiation, pollution, and smoking. While free radicals are essential for certain physiological processes, such as cell signaling and immune defense, their overproduction can disrupt the delicate balance between oxidants and antioxidants, leading to oxidative stress. Oxidative stress results in the damage of critical biomolecules like DNA, proteins, and lipids, contributing to the pathogenesis of various diseases. Chronic conditions such as cancer, cardiovascular diseases, neurodegenerative disorders, and inflammatory diseases have been strongly associated with the harmful effects of free radicals. This review provides a comprehensive overview of the characteristics and types of free radicals, their mechanisms of formation, and biological impacts. Additionally, we explore natural compounds and extracts studied for their antioxidant properties, offering potential therapeutic avenues for managing free radical-induced damage. Future research directions are also discussed to advance our understanding and treatment of free radical-associated diseases.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea
| | - Hyung-Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, 24341, Korea
| | - Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, 58762, Korea
| | - Eun-Kyung Kim
- Nutritional Education Major, Graduate School of Education, Dong-A University, Busan, 49315, Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea.
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea.
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
45
|
Jana S, Alayash AI. Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxid Redox Signal 2025. [PMID: 39846399 DOI: 10.1089/ars.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
46
|
Musyaju S, Modi HR, Shear DA, Scultetus AH, Pandya JD. Time Course of Mitochondrial Antioxidant Markers in a Preclinical Model of Severe Penetrating Traumatic Brain Injury. Int J Mol Sci 2025; 26:906. [PMID: 39940675 PMCID: PMC11816813 DOI: 10.3390/ijms26030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Traumatic brain injury (TBI) results from external mechanical forces exerted on the brain, triggering secondary injuries due to cellular excitotoxicity. A key indicator of damage is mitochondrial dysfunction, which is associated with elevated free radicals and disrupted redox balance following TBI. However, the temporal changes in mitochondrial redox homeostasis after penetrating TBI (PTBI) have not been thoroughly examined. This study aimed to investigate redox alterations from 30 min to two-weeks post-injury in adult male Sprague Dawley rats that experienced either PTBI or a Sham craniectomy. Redox parameters were measured at several points: 30 min, 3 h, 6 h, 24 h, 3 d, 7 d, and 14 d post-injury. Mitochondrial samples from the injury core and perilesional areas exhibited significant elevations in protein modifications including 3-nitrotyrosine (3-NT) and protein carbonyl (PC) adducts (14-53%, vs. Sham). In parallel, antioxidants such as glutathione, NADPH, peroxiredoxin-3 (PRX-3), thioredoxin-2 (TRX-2), and superoxide dismutase 2 (SOD2) were significantly depleted (20-80%, vs. Sham). In contrast, catalase (CAT) expression showed a significant increase (45-75%, vs. Sham). These findings indicate a notable imbalance in redox parameters over the two-week post-PTBI period suggesting that the therapeutic window to employ antioxidant therapy extends well beyond 24 h post-TBI.
Collapse
Affiliation(s)
| | | | | | | | - Jignesh D. Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
| |
Collapse
|
47
|
Yuan J, Xie BM, Ji YM, Bao HJ, Wang JL, Cheng JC, Huang XC, Zhao Y, Chen S. piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1. Cell Death Dis 2025; 16:25. [PMID: 39827178 PMCID: PMC11742951 DOI: 10.1038/s41419-025-07340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells. However, the role and mechanisms of piRNAs in OC and mitochondrial OXPHOS remain to be elucidated. Here, we found that piR-26441 was aberrantly downregulated in OC, and its overexpression suppressed the malignant features of OC cells and tumor growth in a xenograft model. Moreover, overexpression of piR-26441 significantly reduced mitochondrial OXPHOS levels in OC cells. Furthermore, piR-26441 directly binds to and upregulates the expression of YTHDC1 in OC cells. piR-26441 also increased m6A levels, thereby interacting with YTHDC1 to destabilize the mRNA of TSFM. The resultant TSFM loss reduced mitochondrial complex I activity and mitochondrial OXPHOS, leading to mitochondrial dysfunction in OC cells, increased reactive oxygen species levels, and thus, DNA damage and apoptosis in OC cells, thereby inhibiting OC progression. Additionally, ago-piR-26441 suppressed tumor growth and mitochondrial metabolism in the patient-derived organoid model. Altogether, piR-26441 could inhibit OC cell growth via the YTHDC1/TSFM signaling axis, underscoring its significant importance in the context of OC, as well as offering potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bu-Min Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-Meng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Chen Cheng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Chun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
49
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
50
|
Ransdell-Green EC, Baranowska-Kortylewicz J, Wang D. Advances in Fluorescence Techniques for the Detection of Hydroxyl Radicals near DNA and Within Organelles and Membranes. Antioxidants (Basel) 2025; 14:79. [PMID: 39857413 PMCID: PMC11762621 DOI: 10.3390/antiox14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyl radicals (•OH), the most potent oxidants among reactive oxygen species (ROS), are a major contributor to oxidative damage of biomacromolecules, including DNA, lipids, and proteins. The overproduction of •OH is implicated in the pathogenesis of numerous diseases such as cancer, neurodegenerative disorders, and some cardiovascular pathologies. Given the localized nature of •OH-induced damage, detecting •OH, specifically near DNA and within organelles, is crucial for understanding their pathological roles. The major challenge of •OH detection results from their short half-life, high reactivity, and low concentrations within biological systems. As a result, there is a growing need for the development of highly sensitive and selective probes that can detect •OH in specific cellular regions. This review focuses on the advances in fluorescence probes designed to detect •OH near DNA and within cellular organelles and membranes. The key designs of the probes are highlighted, with emphasis on their strengths, applications, and limitations. Recommendations for future research directions are given to further enhance probe development and characterization.
Collapse
Affiliation(s)
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|