1
|
Qiao YJ, Song XY, Zhang LD, Li F, Zhang HQ, Zhou SH. Comparative study of a rabbit model of spinal tuberculosis using different concentrations of Mycobacterium tuberculosis. World J Orthop 2025; 16:101424. [PMID: 39850038 PMCID: PMC11752485 DOI: 10.5312/wjo.v16.i1.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/03/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies. AIM To establish a rabbit model of spinal tuberculosis and examine the effect on the model's efficacy using different concentrations of Mycobacterium tuberculosis (M. tuberculosis) inoculum. METHODS New Zealand rabbits were randomly divided into experimental, control and blank groups. The experimental and control animals were sensitized with complete Freund's adjuvant, a hole was drilled beneath the upper endplate of the L6 vertebral body and filled with gelfoam sponge. The experimental group was divided into three subgroups (experimental 1, experimental 2, experimental 3) and infused with M. tuberculosis suspension at various concentrations. The control group was inoculated with saline and the blank group received no treatment. The 12-week post-operative survival rates were 100%, 80% and 30% in the experimental groups inoculated with concentrations of 106, 107 and 108 CFU/mL bacteria, respectively. RESULTS The survival rate of the control and blank groups was 100%. Vertebral body destruction at 8 weeks in the three experimental groups as determined by X-ray analysis was 33.3%, 62.5% and 66.7%, and by computed tomography (CT) and 3-dimensional CT 44.4%, 75% and 100%, respectively. At 12 weeks, the figures were 44.4%, 75% and 100% by X-ray analysis and 44.4%, 100% and 100% by CT and 3-dimensional CT, respectively. All surviving rabbits of the experimental groups had vertebral destruction. The positive bacterial culture rates were 22.2%, 75% and 66.7%, respectively, in the experimental groups. After being sensitized with complete Freund's adjuvant, large differences were observed in the extent of spinal tuberculosis after inoculation of the rabbits with different concentrations of H37RV standard M. tuberculosis. CONCLUSION The experimental 1 had a low success rate at establishing an infection. The experimental 3 resulted in high mortality and complication rates. The experimental 2 was optimum for establishing a spinal tuberculosis model based on the high level of symptoms observed and the low rabbit mortality.
Collapse
Affiliation(s)
- Yong-Jie Qiao
- Department of Joint Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730050, Gansu Province, China
- Department of Orthopedics, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730000, Gansu Province, China
| | - Xiao-Yang Song
- Department of Orthopedics, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730000, Gansu Province, China
| | - Lv-Dan Zhang
- Department of Respiratory Medicine, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Feng Li
- Department of Orthopaedics, The 943rd Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Wuwei 733099, Gansu Province, China
| | - Hao-Qiang Zhang
- Department of Orthopedics, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730000, Gansu Province, China
| | - Sheng-Hu Zhou
- Department of Orthopedics, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Sun J, Chen F, Wei X, Ou Y. Establishment of a Rabbit Model of Adjacent Intervertebral Disk Degeneration After Lumbar Fusion and Fixation and Evaluation of Autophagy Factor Expression in Nucleus Pulposus Cells. Orthopedics 2024; 47:e167-e173. [PMID: 38690847 DOI: 10.3928/01477447-20240424-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
BACKGROUND The objectives of this research were to establish an animal model of adjacent segment degeneration (ASD) bordering lumbar fusion and to investigate the expression of autophagy factors in nucleus pulposus cells of adjacent intervertebral disks. MATERIALS AND METHODS Twenty-four adult New Zealand white rabbits were enrolled and divided into two groups: group A (n=12) and group B (n=12). Posterolateral fusion and fixation were performed after intervertebral disk degeneration occurred in group A, and the rabbits were monitored for 6 months. Group B was the control group and did not undergo fusion surgery. These rabbits were monitored for 6 months. Real-time quantitative polymerase chain reaction and immunohistochemistry were performed to detect the mRNA and protein expressions of PTEN-induced kinase 1 (PINK1), Parkin, ADAMTS-4, and MMP-3. An external database, the GEO database, was used to examine the expression of these genes and analyze them for differential expression. RESULTS After lumbar fusion in rabbits, the animal model of ASD exhibited gradual degeneration of adjacent intervertebral disks over time. Group A displayed significantly higher mRNA and protein expressions of PINK1 and MMP-3 but lower expression of ADAMTS-4 compared with group B (P<.05). The results analyzed in the GEO database showed that the expression of PINK1 was higher in group A than in group B, while the expression of ADAMTS-4 was lower in group A than in group B. CONCLUSION After posterolateral lumbar fusion in rabbits, the animal ASD model showed gradual deterioration of adjacent intervertebral disks with prolonged follow-up. The findings indicate the important role of autophagy in the apoptosis of nucleus pulposus cells in adjacent intervertebral disks. [Orthopedics. 2024;47(4):e167-e173.].
Collapse
|
3
|
Jia J, Zhang M, Cao Z, Hu X, Lei S, Zhang Y, Kang X. The rabbit model for spinal tuberculosis: An overview. J Orthop Surg (Hong Kong) 2024; 32:10225536241266703. [PMID: 39033332 DOI: 10.1177/10225536241266703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis infection has emerged as a global public health issue, predominantly manifesting as pulmonary tuberculosis. Bone and joint tuberculosis, with spinal tuberculosis accounting for approximately 50%, represents a significant form of extrapulmonary tuberculosis. Over the past years, there has been a rise in the incidence of spinal tuberculosis, and research concerning this area has gained significant attention. At present, animal models provide a means to investigate the pathogenesis, drug resistance, and novel treatment approaches for spinal tuberculosis. New Zealand rabbits, possessing a comparable anatomical structure to humans and capable of reproducing typical pathological features of human tuberculosis, are extensively employed in spinal tuberculosis research using animal models. This article comprehensively evaluates the strengths, considerations in strain selection, various modelling approaches, and practical applications of the rabbit model in studying spinal tuberculosis based on pertinent literature to guide fundamental research in this field by providing valuable insights into appropriate animal model selection.
Collapse
Affiliation(s)
- Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yizhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
4
|
Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect Dis 2022; 22:824. [PMID: 36348467 PMCID: PMC9644586 DOI: 10.1186/s12879-022-07791-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Tuberculosis (TB) represents a bacterial infection affecting many individuals each year and potentially leading to death. Overexpression of transforming growth factor (TGF)-β1 has a primary immunomodulatory function in human tuberculosis. This work aimed to develop nanoliposomes to facilitate the delivery of anti-tubercular products to THP-1-derived human macrophages as Mycobacterium host cells and to evaluate drug efficiencies as well as the effects of a TGF-β1-specific short interfering RNA (siRNA) delivery system employing nanoliposomes.
Methods In the current study, siTGF-β1 nanoliposomes loaded with the anti-TB drugs HRZ (isoniazid, rifampicin, and pyrazinamide) were prepared and characterized in vitro, determining the size, zeta potential, morphology, drug encapsulation efficiency (EE), cytotoxicity, and gene silencing efficiency of TGF-β1 siRNA.
Results HRZ/siTGF-β1 nanoliposomes appeared as smooth spheres showing the size and positive zeta potential of 168.135 ± 0.5444 nm and + 4.03 ± 1.32 mV, respectively. Drug EEs were 90%, 88%, and 37% for INH, RIF, and PZA, respectively. Meanwhile, the nanoliposomes were weakly cytotoxic towards human macrophages as assessed by the MTT assay. Nanoliposomal siTGF-β1 could significantly downregulate TGF-β1 in THP-1-derived human macrophages in vitro. Conclusion These findings suggested that HRZ-loaded nanoliposomes with siTGF-β1 have the potential for improving spinal tuberculosis chemotherapy via nano-encapsulation of anti-TB drugs.
Collapse
|
5
|
Yue X, Zhu X, Wu L, Shi J. A comparative study of a rabbit spinal tuberculosis model constructed by local direct infection via the posterior lateral approach. Sci Rep 2022; 12:12853. [PMID: 35896778 PMCID: PMC9329296 DOI: 10.1038/s41598-022-16624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
The present study aims to establish a method of constructing a New Zealand rabbit spinal tuberculosis model by direct local infusion of M. tuberculosis H37Rv strain into the intervertebral disc space through the posterior lateral approach. Sixty-six New Zealand rabbits were pretreated with complete Freund's adjuvant and randomly divided into 4 group: the posterolateral approach model group (Group A, 25), ventral transverse process approach model group (Group B, 25), control group (Group C, 10), and blank group (Group D, 6). In Groups A and B, the bone holes were filled with gelatin sponge after drilling, and the local area was directly infused with 0.1 ml of M. tuberculosis H37Rv strain suspension. In Group C, the gelatin sponge was filled through the posterolateral approach and the local area was infused with 0.1 ml of normal saline suspension. In Group D, No specific treatment was performed. The general conditions of the experimental rabbits in each group were compared to those of a control group; the degree of vertebral body exposure, incision length, and complications of the two methods were compared; and the tuberculosis models were evaluated by imaging, histopathology, and bacterial culture. In Group A, the lateral side of the vertebral body was well exposed, the damage was mild, and no peritoneal rupture or gastrointestinal complications were observed. In Group B, the ventral side of the vertebral body and the intervertebral disc were exposed, and abdominal complications were more likely to occur. The survival rates of the experimental rabbits at 8 weeks after surgery were 92.0% in Group A, 88.00% in Group B, 90.0% in Group C, and 100% in Group D. MRI examinations showed that in Group A, the positive rate of radiographic bone findings was 86.9% at 4 weeks after surgery and 100% at 8 weeks after surgery; in Group B, the positive rate of radiographic bone findings was 78.2% at 4 weeks after surgery and 95.4% at 8 weeks after surgery. There was no significant difference between Groups A and B in the radiographic bone findings rate detected by the same imaging method at the same time point (P > 0.05). Eight weeks after surgery, bone destruction, paravertebral abscess, and caseous necrosis occurred in the vertebral bodies of surviving rabbits in Groups A and B. The BacT/ALERT 3D rapid culture system was used to culture the pus in the lesion, and the results showed that the positive rate of tuberculosis was 52.17% in Group A and 54.54% in Group B, and the difference was not statistically significant (P > 0.05). After pretreatment with complete Freund's adjuvant, direct infusion of the H37Rv strain of M. tuberculosis into the intervertebral disc space of New Zealand rabbits via the posterolateral approach and the ventral transverse process approach can successfully establish rabbit spinal tuberculosis models.
Collapse
Affiliation(s)
- Xuefeng Yue
- Department of Orthopedics, The First People's Hospital of Yinchuan, Liqun Street, Xingqing District, Yinchuan, 750001, Ningxia, People's Republic of China. .,Department of Orthopedics, The Second Affiliated Hospital of Ningxia Medical University, Yinchuan, 750001, China.
| | - Xi Zhu
- Department of Spine Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750003, Ningxia, People's Republic of China
| | - Longyun Wu
- Department of Spine Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750003, Ningxia, People's Republic of China
| | - Jiandang Shi
- Department of Spine Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750003, Ningxia, People's Republic of China.
| |
Collapse
|
6
|
Hei L, Ge Z, Yuan W, Suo L, Suo Z, Lin L, Ding H, Qiu Y. Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage. Neurol Res 2021; 43:447-457. [PMID: 33455565 DOI: 10.1080/01616412.2020.1866804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To establish an animal model of adjacent intervertebral disc degeneration by performing spinal fixation and fusion after percutaneous needle puncture and removal of the intervertebral disc or percutaneous needling of the vertebral body without removal of the intervertebral disc. Methods: We established a model of adjacent intervertebral disc degeneration after spinal fixation and fusion of rabbits maintained in upright feeding cages. Twenty-five healthy New Zealand rabbits were used. In the experimental group, the L3-4 intervertebral disc was percutaneously punctured with an 18-G needle under fluoroscopic guidance. Once degeneration occurred, the L3-4 disc was excised, and interbody fusion was performed. The changes in the adjacent intervertebral discs were observed periodically via X-ray and MRI. In the control group, the L3 vertebral body was percutaneously needled with an 18-G needle under fluoroscopic guidance. The changes in the adjacent intervertebral discs were observed on X-ray and MRI at 4, 8, and 12 weeks after puncture in both groups. At 12 weeks postoperatively, the animals were euthanized, and the histopathologic changes of the adjacent intervertebral discs were assessed using hematoxylin-eosin and TdT-mediated dUTP nick end labeling (TUNEL) staining. The mRNA and protein expressions of aggrecanase-1 were measured by real-time quantitative PCR and Western blot analysis. The product of aggrecan degradation, Aggrecan ARGxx, was measured by Western blot analysis. Results: The degeneration of the intervertebral discs in the adjacent segments in the experimental group increased over time. The mRNA and protein expressions of aggrecanase-1 and the expression of Aggrecan ARGxx in the experimental group were significantly increased after puncture, fixation, and fusion (P<0.05). The adjacent intervertebral disc sections had a significantly lower cell density and significantly higher TUNEL-positive cell rate in the experimental group than the control group (P<0.05). Conclusion: The results suggest that the occurrence of intervertebral disc degeneration in adjacent segments may begin with the degeneration of the punctured intervertebral disc.
Collapse
Affiliation(s)
- Long Hei
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China.,Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Zhaohui Ge
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China.,Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Wenqi Yuan
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Ling Suo
- Fourth Clinical Department, Minkang Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhigang Suo
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Leilei Lin
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Huiqiang Ding
- Department of Spine Surgery, The General Hospital of Ningxia Medical University
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' An, China
| |
Collapse
|