1
|
Rodrigues JPA, Rocha MSG, Laube KAC, Iglesio R, Filho PRT, Freitas JLD, Figueiredo EG, Carlotti CG, Soriano DC, Godinho F. Field H1 of Forel vs Subthalamic Nucleus Electrical Stimulation in Parkinson's Disease: Long-term Effects on Motor Symptoms and Quality of Life. Neuromodulation 2025; 28:492-500. [PMID: 39530963 DOI: 10.1016/j.neurom.2024.09.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) relieves motor symptoms, including levodopa-responsive gait disorders in Parkinson's disease (PD). Traditionally, STN-DBS is not indicated to treat severe, clinically resistant axial symptoms. In this scenario, field H1 of Forel (FF) stimulation (FF-DBS) is likely a feasible option, given it improves motor symptoms, including freezing of gait (FOG), as shown by a short-term study. However, no data are available about the long-term effects of this therapy. Finally, no study has compared the long-term effects of FF and STN-DBS. OBJECTIVE We report the long-term outcome (>five years) of bilateral FF-DBS in patients with PD. We also compare the effects of FF-DBS and STN-DBS on motor symptoms, cognition, and quality of life. MATERIALS AND METHODS We studied 22 patients (ten with FF-DBS and 12 with STN-DBS). Motor symptoms, cognition, quality of life, and gait symptoms were assessed using the motor part of the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III), the Mattis Dementia Rating Scale, the 39-item PD quality of life (PDQ-39), and the FOG questionnaire (FOG score) respectively. The levodopa equivalent daily dose was recorded. Comparisons of the FF and STN-DBS results were conducted. RESULT The mean follow-up was 6.18 years (95% CI: 5.57-6.78). Compared with the preoperative period, patients with FF had an average reduction of 32.2% in the MDS-UPDRS III scores (p < 0.01), a decrease of 35.3% in the FOG scores (p < 0.01), and an improvement of 25.9% in the PDQ-39 (p < 0.01). There was a 7.5% decrease in cognition (p < 0.01). Levodopa equivalent dose (LED) was reduced by 26.3% (p < 0.01). The STN group had an average reduction of 39.4% in the MDS-UPDRS III scores (p < 0.01), a decrease of 23.7% in the FOG scores (p < 0.01), and an improvement of 33.2% in the PDQ-39 scores (p < 0.01). Cognition decreased by 1.6% (p < 0.01) and LED by 15.06% (p = 0.02). Patients with FF-DBS were older than those with STN-DBS at the time of surgery: 61.2 years and 55.7 years, respectively (p = 0.02), and had longer duration of disease (p = 0.02). Patients with FF-DBS had a greater reduction in FOG (p = 0.02) than did the STN group and presented with a greater decrease in cognition (p < 0.01) after five years. STN-DBS had a greater effect on quality of life. CONCLUSIONS Both FF-DBS and STN-DBS relieved motor symptoms and improved quality of life over a long-term period. Patients with FF-DBS had a higher reduction in both FOG and in LED than did those with STN-DBS. These data support our hypothesis that FF-DBS is a safe and efficient option for treating motor symptoms in PD, including FOG in advanced stages.
Collapse
Affiliation(s)
- Juliana Passinho Azevedo Rodrigues
- Department of Functional Neurosurgery, Santa Marcelina Hospital, São Paulo, Brazil; Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil.
| | | | - Kaito Alves Carvalho Laube
- Department of Functional Neurosurgery, Santa Marcelina Hospital, São Paulo, Brazil; Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil
| | - Ricardo Iglesio
- Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil
| | | | | | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil
| | - Carlos Gilberto Carlotti
- Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil
| | - Diogo Coutinho Soriano
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of Santo André, São Bernardo do Campo and São Caetano do Sul, Brazil
| | - Fábio Godinho
- Department of Functional Neurosurgery, Santa Marcelina Hospital, São Paulo, Brazil; Division of Neurosurgery, Department of Neurology, Clinics Hospital, University of São Paulo Medicine School, São Paulo, Brazil
| |
Collapse
|
2
|
Cacciatore TW, Anderson DI, Cohen RG. Central mechanisms of muscle tone regulation: implications for pain and performance. Front Neurosci 2024; 18:1511783. [PMID: 39717699 PMCID: PMC11665217 DOI: 10.3389/fnins.2024.1511783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals. Indeed, simplistic models based on the stretch reflex, which neglect the central regulation of tone, are still perpetuated today. Recent advances regarding tone are dispersed across different literatures, including animal physiology, pain science, motor control, neurology, and child development. This paper brings together diverse areas of research to construct a conceptual model of the neuroscience underlying active muscle tone. It highlights how multiple tonic drive networks tune the excitability of complex spinal feedback circuits in concert with various sources of sensory feedback and in relation to postural demands, gravity, and arousal levels. The paper also reveals how tonic muscle activity and excitability are disrupted in people with musculoskeletal pain and how tone disorders can lead to marked pain and motor impairment. The paper presents evidence that integrative somatic methods address the central regulation of tone and discusses potential mechanisms and implications for tone rehabilitation to improve pain and performance.
Collapse
Affiliation(s)
| | - David I. Anderson
- Department of Kinesiology, Marian Wright Edelman Institute, San Francisco State University, San Francisco, CA, United States
| | - Rajal G. Cohen
- Department of Psychology and Communication, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Artusi CA, Ledda C, Gallo S, Rinaldi D, Campisi C, Rousseau V, Thalamas C, Barbosa R, Ory-Magne F, Brefel-Courbon C, Rascol O, de Barros A, Harroch E, Zibetti M, Rizzone MG, Romagnolo A, Imbalzano G, Lopiano L, Houeto JL, Fabbri M. Subthalamic and nigral stimulation for freezing of gait in Parkinson's disease: Randomized pilot trial. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1602-1613. [PMID: 39957196 DOI: 10.1177/1877718x241292315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Freezing of gait (FoG) is a debilitating symptom of Parkinson's disease (PD) with limited response to dopaminergic medication and subthalamic deep brain stimulation (STN-DBS). Substantia nigra pars reticulata (SNr) stimulation could improve FoG. OBJECTIVE To analyze the effect of combined STN-SNr stimulation at different frequencies on FoG. METHODS We performed a double-blind, cross-over, randomized pilot trial involving STN-DBS treated PD patients with FoG. Participants received: high-frequency (HF) STN-DBS (S), combined HF-STN and SNr stimulation (C1), and combined HF-STN and low-frequency (LF) SNr stimulation (C2), for one month each. The primary endpoint was the score change in the New-Freezing-of-Gait-Questionnaire (NFOG-Q). Secondary analyses were performed on motor complications, axial symptoms, daily living activities, psychiatric symptoms, sleep, and patient preference. RESULTS Fifteen patients received at least one combined stimulation. No significant difference in NFOG-Q scores was found between S, C1, and C2; one-third of patients showed a clinically significant improvement (≥8 points) with combined stimulations. Motor complications improved significantly with C1 and C2 (C1-S: 3.6 ± 3.8 vs. 4.9 ± 3.8, p = 0.046; C2-S: 2.7 ± 3.1 vs. 4.9 ± 3.8, p = 0.005). 80% of patients preferred the combined STN-SNr stimulation while blinded. All adverse events were manageable. CONCLUSIONS Our study did not prove a statistically significant improvement in NFOG-Q with STN-SNr stimulation; however, one-third of patients experienced a clinically meaningful FoG improvement, and the majority preferred to maintain STN-SNr stimulation. STN-SNr stimulation was both safe and effective in addressing motor complications and improving sleep quality, highlighting the importance of further exploration into the effects of combined STN-SNr stimulation.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Claudia Ledda
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Silvia Gallo
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Domiziana Rinaldi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa, 1035-00189, Rome, Italy
| | - Corrado Campisi
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Vanessa Rousseau
- Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire et Faculté de Médecine de Toulouse, Toulouse, France
- Centre Midi-Pyrénées de PharmacoVigilance, de Pharmacoépidémiologie et d'Informations sur le Médicament et Pharmacopôle Midi-Pyrénées, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Claire Thalamas
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Raquel Barbosa
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Fabienne Ory-Magne
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Christine Brefel-Courbon
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| | - Olivier Rascol
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| | - Amaury de Barros
- Department of Neurosurgery, Toulouse University Hospital, Toulouse, France
- INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC", Toulouse, France
| | - Estelle Harroch
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Maurizio Zibetti
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Mario Giorgio Rizzone
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Alberto Romagnolo
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Gabriele Imbalzano
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Leonardo Lopiano
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Jean Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital; Inserm, U1094, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Limoges Cedex 01, France
| | - Margherita Fabbri
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
4
|
Isaias IU, Caffi L, Borellini L, Ampollini AM, Locatelli M, Pezzoli G, Mazzoni A, Palmisano C. Case report: Improvement of gait with adaptive deep brain stimulation in a patient with Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1428189. [PMID: 39323762 PMCID: PMC11423205 DOI: 10.3389/fbioe.2024.1428189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.
Collapse
Affiliation(s)
- Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Linda Borellini
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Marco Locatelli
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Tortato NCB, Ribas G, Frizon LA, Farah M, Teive HAG, Munhoz RP. Efficacy of subthalamic deep brain stimulation programming strategies for gait disorders in Parkinson's disease: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:525. [PMID: 39223361 DOI: 10.1007/s10143-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with advanced Parkinson's disease often suffer from severe gait and balance problems, impacting quality of live and persisting despite optimization of standard therapies. The aim of this review was to systematically review the efficacy of STN-DBS programming techniques in alleviating gait disturbances in patients with advanced PD. Searches were conducted in PubMed, Embase, and Lilacs databases, covering studies published until May 2024. The review identified 36 articles that explored five distinct STN-DBS techniques aimed at addressing gait and postural instability in Parkinson's patients: low-frequency stimulation, ventral STN stimulation for simultaneous substantia nigra activation, interleaving, asymmetric stimulation and a short pulse width study. Among these, 21 articles were included in the meta-analysis, which revealed significant heterogeneity among studies. Notably, low-frequency STN-DBS demonstrated positive outcomes in total UPDRS-III score and FOG-Q, especially when combined with dopaminergic therapy. The most favorable results were found for low-frequency STN stimulation. The descriptive analysis suggests that unconventional stimulation approaches may be viable for gait problems in patients who do not respond to standard therapies.
Collapse
Affiliation(s)
- Nathália C B Tortato
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil.
| | - Gustavo Ribas
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Leonardo A Frizon
- Neurosurgery Department, Faculdade Pequeno Principe, Av Iguaçu, 333, Curitiba, Brazil
| | - Marina Farah
- Neurology Service, Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155, Curitiba, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, Canada
| |
Collapse
|
6
|
Hu CH, Lai YR, Huang CC, Lien CY, Chen YS, Yu CC, Lee SY, Lin WC, Cheng BC, Chiu WC, Chiang YF, Kung CF, Lu CH. Exploring the role of anticipatory postural adjustment duration within APA2 subphase as a potential mediator between clinical disease severity and fall risk in Parkinson's disease. Front Aging Neurosci 2024; 16:1354387. [PMID: 38988326 PMCID: PMC11234839 DOI: 10.3389/fnagi.2024.1354387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction People with Parkinson's Disease (PD) often show reduced anticipatory postural adjustments (APAs) before voluntary steps, impacting their stability. The specific subphase within the APA stage contributing significantly to fall risk remains unclear. Methods We analyzed center of pressure (CoP) trajectory parameters, including duration, length, and velocity, throughout gait initiation. This examination encompassed both the postural phase, referred to as anticipatory postural adjustment (APA) (APA1, APA2a, APA2b), and the subsequent locomotor phases (LOC). Participants were instructed to initiate a step and then stop (initiating a single step). Furthermore, we conducted assessments of clinical disease severity using the Unified Parkinson's Disease Rating Scale (UPDRS) and evaluated fall risk using Tinetti gait and balance scores during off-medication periods. Results Freezing of gait (FOG) was observed in 18 out of 110 participants during the measurement of CoP trajectories. The Ramer-Douglas-Peucker algorithm successfully identified CoP displacement trajectories in 105 participants (95.5%), while the remaining 5 cases could not be identified due to FOG. Tinetti balance and gait score showed significant associations with levodopa equivalent daily dose, UPDRS total score, disease duration, duration (s) in APA2a (s) and LOC (s), length in APA1 (cm) and APA2b (cm), mediolateral velocity in APA1 (X) (cm/s), APA2a (X) (cm/s), APA2b (X) (cm/s) and LOC (X) (cm/s), and anterior-posterior velocity in APA2a (Z) (cm/s) and APA2b (Z) (cm/s). Multiple linear regression revealed that only duration (s) in APA2a and UPDRS total score was independently associated with Tinetti gait and balance score. Further mediation analysis showed that the duration (s) in APA2a served as a mediator between UPDRS total score and Tinetti balance and gait score (Sobel test, p = 0.047). Conclusion APA2 subphase duration mediates the link between disease severity and fall risk in PD, suggesting that longer APA2a duration may indicate reduced control during gait initiation, thereby increasing fall risk.
Collapse
Affiliation(s)
- Cheng-Hao Hu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yun-Ru Lai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Hyperbaric Oxygen Therapy Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Yi Lien
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Sheng Chen
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiun-Chieh Yu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sieh-Yang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chan Chiu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Fang Chiang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Feng Kung
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Intelligent Commerce, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Simonet A, Fourcade P, Loete F, Delafontaine A, Yiou E. Evaluation of the Margin of Stability during Gait Initiation in Young Healthy Adults, Elderly Healthy Adults and Patients with Parkinson's Disease: A Comparison of Force Plate and Markerless Motion Capture Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:3322. [PMID: 38894112 PMCID: PMC11174352 DOI: 10.3390/s24113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Gait initiation (GI) is a functional task classically used in the literature to evaluate the capacity of individuals to maintain postural stability. Postural stability during GI can be evaluated through the "margin of stability" (MoS), a variable that is often computed from force plate recordings. The markerless motion capture system (MLS) is a recent innovative technology based on deep learning that has the potential to compute the MoS. This study tested the agreement between a force plate measurement system (FPS, gold standard) and an MLS to compute the MoS during GI. Healthy adults (young [YH] and elderly [EH]) and Parkinson's disease patients (PD) performed GI series at spontaneous (SVC) and maximum velocity (MVC) on an FPS while being filmed by a MLS. Descriptive statistics revealed a significant effect of the group (YH vs. EH vs. PD) and velocity condition (SVC vs. MVC) on the MoS but failed to reveal any significant effect of the system (MLS vs. PFS) or interaction between factors. Bland-Altman plot analysis further showed that mean MoS biases were zero in all groups and velocity conditions, while the Bayes factor 01 indicated "moderate evidence" that both systems provided equivalent MoS. Trial-by-trial analysis of Bland-Altman plots, however, revealed that differences of >20% between the two systems did occur. Globally taken, these findings suggest that the two systems are similarly effective in detecting an effect of the group and velocity on the MoS. These findings may have important implications in both clinical and laboratory settings due to the ease of use of the MLS compared to the FPS.
Collapse
Affiliation(s)
- Arnaud Simonet
- LADAPT Loiret, Centre de Soins de Suite et de Réadaptation, 45200 Amilly, France;
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (P.F.); (A.D.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Paul Fourcade
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (P.F.); (A.D.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Florent Loete
- Laboratoire GeePs—CENTRALESUPELEC, 91190 Gif-sur-Yvette, France;
| | - Arnaud Delafontaine
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (P.F.); (A.D.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
- Laboratoire d’Anatomie Fonctionnelle, Faculté des Sciences de la Motricité, Université Libre de Bruxelles, CP 619-1070 Brussels, Belgium
- Laboratoire d’Anatomie, de Biomécanique et d’Organogenèse, Faculté de Médecine, Université Libre de Bruxelles, CP 619-1070 Brussels, Belgium
| | - Eric Yiou
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (P.F.); (A.D.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
8
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581627. [PMID: 38464010 PMCID: PMC10925223 DOI: 10.1101/2024.02.22.581627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
|
9
|
Simonet A, Delafontaine A, Fourcade P, Yiou E. Vertical Center-of-Mass Braking and Motor Performance during Gait Initiation in Young Healthy Adults, Elderly Healthy Adults, and Patients with Parkinson's Disease: A Comparison of Force-Plate and Markerless Motion Capture Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:1302. [PMID: 38400460 PMCID: PMC10891667 DOI: 10.3390/s24041302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND This study tested the agreement between a markerless motion capture system and force-plate system ("gold standard") to quantify stability control and motor performance during gait initiation. METHODS Healthy adults (young and elderly) and patients with Parkinson's disease performed gait initiation series at spontaneous and maximal velocity on a system of two force-plates placed in series while being filmed by a markerless motion capture system. Signals from both systems were used to compute the peak of forward center-of-mass velocity (indicator of motor performance) and the braking index (indicator of stability control). RESULTS Descriptive statistics indicated that both systems detected between-group differences and velocity effects similarly, while a Bland-Altman plot analysis showed that mean biases of both biomechanical indicators were virtually zero in all groups and conditions. Bayes factor 01 indicated strong (braking index) and moderate (motor performance) evidence that both systems provided equivalent values. However, a trial-by-trial analysis of Bland-Altman plots revealed the possibility of differences >10% between the two systems. CONCLUSION Although non-negligible differences do occur, a markerless motion capture system appears to be as efficient as a force-plate system in detecting Parkinson's disease and velocity condition effects on the braking index and motor performance.
Collapse
Affiliation(s)
- Arnaud Simonet
- LADAPT Loiret, Centre de Soins de Suite et de Réadaptation, 45200 Amilly, France;
- CIAMS, Université Paris-Saclay, 91190 Paris, France; (A.D.); (P.F.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Arnaud Delafontaine
- CIAMS, Université Paris-Saclay, 91190 Paris, France; (A.D.); (P.F.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
- Département de Chirurgie Orthopédique, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Paul Fourcade
- CIAMS, Université Paris-Saclay, 91190 Paris, France; (A.D.); (P.F.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Eric Yiou
- CIAMS, Université Paris-Saclay, 91190 Paris, France; (A.D.); (P.F.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
10
|
Kroneberg D, Al-Fatly B, Morkos C, Steiner LA, Schneider GH, Kühn A. Kinematic Effects of Combined Subthalamic and Dorsolateral Nigral Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:269-282. [PMID: 38363617 PMCID: PMC10977420 DOI: 10.3233/jpd-230181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Background Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Morkos
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon Amadeus Steiner
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charite - Universitatsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Wilkins KB, Melbourne JA, Akella P, Bronte-Stewart HM. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson's disease. Front Hum Neurosci 2023; 17:1310393. [PMID: 38094147 PMCID: PMC10716917 DOI: 10.3389/fnhum.2023.1310393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Over the past three decades, deep brain stimulation (DBS) for Parkinson's disease (PD) has been applied in a continuous open loop fashion, unresponsive to changes in a given patient's state or symptoms over the course of a day. Advances in recent neurostimulator technology enable the possibility for closed loop adaptive DBS (aDBS) for PD as a treatment option in the near future in which stimulation adjusts in a demand-based manner. Although aDBS offers great clinical potential for treatment of motor symptoms, it also brings with it the need for better understanding how to implement it in order to maximize its benefits. In this perspective, we outline considerations for programing several key parameters for aDBS based on our experience across several aDBS-capable research neurostimulators. At its core, aDBS hinges on successful identification of relevant biomarkers that can be measured reliably in real-time working in cohesion with a control policy that governs stimulation adaption. However, auxiliary parameters such as the window in which stimulation is allowed to adapt, as well as the rate it changes, can be just as impactful on performance and vary depending on the control policy and patient. A standardize protocol for programming aDBS will be crucial to ensuring its effective application in clinical practice.
Collapse
Affiliation(s)
- Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian A. Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Pranav Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
13
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
14
|
ERDEM M, BALAL M, DEMİRKIRAN M. Postural stability in early Parkinson’s disease: effect of cognitive dual-tasking. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose: The primary aim of this study is to evaluate postural stability by using a static posturography in patients with early Parkinson’s disease (PD). Secondly, this paper addresses the need for illustrating the effect of dual-tasking on postural stability in early PD patients.
Materials and Methods: Twenty-nine early PD patients with maximum 5 years of disease duration were included in this study. The selected group had no clinical PI while their age- and sex-matched healthy controls were carried out. Neurological examination and mini-mental state examination (MMSE) were performed in all subjects. Unified Parkinson Disease Rating Scale (UPDRS) and modified Hoehn and Yahr (H&Y) scores were recorded in PD patients. Postural stability was assessed in all subjects on a static posturography platform under three different conditions: eyes open, eyes closed and a cognitive task of producing words with given letters.
Results: The mean age of the PD was 59.2±10.5 whereas the control groups mean age was 56.3±7.6 (p>0.05). The female-male ratio was 9/20 in the PD and 12/17 in the control group. There was no important difference between the two groups in terms of demographic characteristics. In the PD group, the mean UPDRS was 12.8±4.9. The patients were mostly receiving polytherapy.
Eye closure and cognitive task caused an increase in most sway parameters in both groups.
Conclusion: Early PD patients on medication, postural stability is preserved and cognitive dual-tasking does not affect postural stability in these patients in the early stage.
Collapse
Affiliation(s)
- Miray ERDEM
- ADANA CITY TRAINING AND RESEARCH HOSPITAL, DEPARTMENT OF NEUROLOGY
| | - Mehmet BALAL
- CUKUROVA UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF NEUROLOGY
| | - Meltem DEMİRKIRAN
- CUKUROVA UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF NEUROLOGY
| |
Collapse
|
15
|
Lai J, Cai Y, Yang L, Xia M, Cheng X, Chen Y. Effects of Baduanjin exercise on motor function, balance and gait in Parkinson's disease: a systematic review and meta-analysis. BMJ Open 2022; 12:e067280. [PMID: 36379643 PMCID: PMC9668024 DOI: 10.1136/bmjopen-2022-067280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aims to systematically evaluate the effects of Baduanjin on motor function, balance and gait in patients with Parkinson's disease (PD). DESIGN Systematic review and meta-analysis. STUDY SELECTION All eligible randomised controlled trials (RCTs) published in the English and Chinese language were included. DATA SOURCES Ten electronic databases were systematically searched, from inception to 17 March 2022: PubMed, Web of Science, Cochrane Library, Embase, EBSCOhost, OVID, SinoMed, China National Knowledge Infrastructure, Wanfang Data and China Science Journal Database (VIP). REVIEW METHODS Methodological quality assessment and meta-analysis were performed for the included studies using the Cochrane Review Manager V.5.4 software. RESULTS Ten RCTs with 804 participants were included. The results revealed the following: (1) Baduanjin significantly improved the motor function of patients with PD, based on the Unified Parkinson's Disease Rating Scale Part III (mean difference, MD -5.37, 95% CI -8.96 to -1.78, p=0.003) and Fugl-Meyer Assessment of Lower Extremity (MD 5.39, 95% CI 2.71 to 8.07, p<0.0001); (2) Baduanjin significantly improved the ability of balance of patients with PD, based on the Berg Balance Scale (MD 4.40, 95% CI 3.08 to 5.73, p<0.00001); (3) Baduanjin significantly improved the gait of patients with PD, based on the 6 min walk distance (MD 21.62, 95% CI 11.14 to 32.10, p<0.0001). After the further subgroup and sensitivity analyses, the heterogeneity was identified to be potentially due to the different degrees of disease severity in patients with PD and the difference in Baduanjin intervention durations. CONCLUSIONS The analysis of this systematic evaluation indicates that Baduanjin might have a positive effect in improving the motor function, balance and gait of patients with PD. However, due to the quantity and clinical heterogeneity limitations of the included studies, this conclusion still warrants more high-quality and multicentre RCTs for further verification.
Collapse
Affiliation(s)
- Jinghui Lai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Yangfan Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Liyan Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Min Xia
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Xi Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Ying Chen
- Chinese Medicine, Fujian Agriculture and Forestry University Hospital, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson's Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8799. [PMID: 35886651 PMCID: PMC9321220 DOI: 10.3390/ijerph19148799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Nelida Aliaga
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Pablo Graff
- Functional Neurosurgery Program, Department of Neurosurgery, San Miguel Arcángel Hospital, Buenos Aires B1406, Argentina;
| | - Amanda Escribano
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Jafeth Lizana
- Department of Neurosurgery, Hospital Nacional Guillermo Almenara Irigoyen, Lima 07035, Peru;
- Medicine Faculty, Universidad Nacional Mayor de San Marcos, Lima 07035, Peru
| |
Collapse
|
17
|
Relation between Step-To-Step Transition Strategies and Walking Pattern in Older Adults. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In older adults, two different modes of step-to-step transition have been observed: an anticipated mode when the redirection of the centre of mass of the body (COM) begins before double stance and another when the transition begins during double stance. However, the impact of transition mode on gait kinetics and kinematics has not been investigated. Age and step-to-step-transition-related differences in intersegmental coordination and in the COM trajectory during walking were identified. Fifteen young (24.1 ± 0.7 y.o.) and thirty-six older adults (74.5 ± 5.0 y.o.) walked on a treadmill at 1.11 m s−1 and 1.67 m s−1. Lower-limb motion and ground reaction force were recorded. The COM dynamics were evaluated by measuring the pendulum-like exchange of the COM energies. While all young adults and 21 of the older adults used an anticipated transition, 15 older adults presented a non-anticipated transition. Previously documented changes of intersegmental coordination with age were accentuated in older adults with non-anticipated transition (p < 0.001). Moreover, older adults with non-anticipated transition had a smaller pendulum-like energy exchange than older adults with anticipated transition (p = 0.03). The timing of COM redirection is linked to kinematic and mechanic modification of gait and could potentially be used as a quantitative assessment of age-related decline in gait.
Collapse
|
18
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
19
|
Villadóniga M, Cabañes-Martínez L, López-Viñas L, Fanjul S, del Álamo M, Regidor I. Combined Stimulation of the Substantia Nigra and the Subthalamic Nucleus for the Treatment of Refractory Gait Disturbances in Parkinson's Disease: A Preliminary Study. J Clin Med 2022; 11:jcm11082269. [PMID: 35456362 PMCID: PMC9027187 DOI: 10.3390/jcm11082269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is efficient for the treatment of motor symptoms (i.e., tremors) in patients with Parkinson's disease. Gait disorders usually appear during advanced stages of idiopathic Parkinson's disease in up to 80% of patients and have an important impact on their quality of life. The effects of deep brain stimulation of the subthalamic nucleus on gait and balance are still controversial. For this reason, alternative targets have been considered, such as stimulation of the pedunculopontine nucleus and the pars reticulata of substantia nigra, involved in the integration of the functional connections for gait. Due to the proximity of the subthalamic nucleus to the substantia nigra, their combined stimulation is feasible and may lead to better outcomes, improving axial symptoms. Our objective was to prospectively compare simultaneous stimulation of both structures versus conventional subthalamic stimulation in improving gait disorders. In ten patients with advanced Parkinson's disease, deep brain stimulation leads (eight linear contacts) were implanted, and gait analysis was performed 6 months after surgery in off-stimulation and after 4 weeks of dual or single subthalamic stimulation. An improvement in gait parameters was confirmed with both stimulation conditions, with better results with combined substantia nigra and subthalamic stimulation compared with conventional subthalamic stimulation. Further studies are needed to determine if this effect remains after long-term dual-target stimulation.
Collapse
Affiliation(s)
- Marta Villadóniga
- Department of Clinical Neurophysiology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.V.); (L.L.-V.); (I.R.)
| | - Lidia Cabañes-Martínez
- Department of Clinical Neurophysiology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.V.); (L.L.-V.); (I.R.)
- Correspondence:
| | - Laura López-Viñas
- Department of Clinical Neurophysiology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.V.); (L.L.-V.); (I.R.)
| | - Samira Fanjul
- Department of Neurology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Marta del Álamo
- Department of Neurosurgery, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Ignacio Regidor
- Department of Clinical Neurophysiology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.V.); (L.L.-V.); (I.R.)
| |
Collapse
|
20
|
Cury RG, Pavese N, Aziz TZ, Krauss JK, Moro E. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:8. [PMID: 35017551 PMCID: PMC8752758 DOI: 10.1038/s41531-021-00276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gait issues in Parkinson's disease (PD) are common and can be highly disabling. Although levodopa and deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus internus have been established therapies for addressing the motor symptoms of PD, their effects on gait are less predictable and not well sustained with disease progression. Given the high prevalence of gait impairment in PD and the limitations in currently approved therapies, there has been considerable interest in alternative neuromodulation targets and techniques. These have included DBS of pedunculopontine nucleus and substantia nigra pars reticulata, spinal cord stimulation, non-invasive modulation of cortical regions and, more recently, vagus nerve stimulation. However, successes and failures have also emerged with these approaches. Current gaps and controversies are related to patient selection, optimal electrode placement within the target, placebo effects and the optimal programming parameters. Additionally, recent advances in pathophysiology of oscillation dynamics have driven new models of closed-loop DBS systems that may or may not be applicable to gait issues. Our aim is to describe approaches, especially neuromodulation procedures, and emerging challenges to address PD gait issues beyond subthalamic nucleus and the globus pallidus internus stimulation.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Elena Moro
- Division of Neurology, Grenoble Institute of Neurosciences, Grenoble Alpes University, CHU of Grenoble, Grenoble, France
- INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
21
|
Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation. SENSORS 2021; 21:s21237954. [PMID: 34883958 PMCID: PMC8659494 DOI: 10.3390/s21237954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND During gait, the braking index represents postural control, and consequently, the risk of falls. Previous studies based their determination of the braking index during the first step on kinetic methods using force platforms, which are highly variable. This study aimed to investigate whether determining the braking index with a kinematic method, through 3D motion capture, provides more precise results. METHODS Fifty participants (20 to 40 years) performed ten trials in natural and fast gait conditions. Their braking index was estimated from their first step simultaneously using a force platform and VICON motion capture system. The reliability of each braking index acquisition method was assessed by intraclass correlation coefficients, standard error measurements, and the minimal detectable change. RESULTS Both kinetic and kinematic methods allowed good to excellent reliability and similar minimum detectable changes (10%). CONCLUSION Estimating the braking index through a kinetic or a kinematic method was highly reliable.
Collapse
|
22
|
Chen T, Lin F, Cai G. Comparison of the Efficacy of Deep Brain Stimulation in Different Targets in Improving Gait in Parkinson's Disease: A Systematic Review and Bayesian Network Meta-Analysis. Front Hum Neurosci 2021; 15:749722. [PMID: 34744665 PMCID: PMC8568957 DOI: 10.3389/fnhum.2021.749722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Although a variety of targets for deep brain stimulation (DBS) have been found to be effective in Parkinson's disease (PD), it remains unclear which target for DBS leads to the best improvement in gait disorders in patients with PD. The purpose of this network meta-analysis (NMA) is to compare the efficacy of subthalamic nucleus (STN)-DBS, internal globus pallidus (GPi)-DBS, and pedunculopontine nucleus (PPN)-DBS, in improving gait disorders in patients with PD. Methods: We searched the PubMed database for articles published from January 1990 to December 2020. We used various languages to search for relevant documents to reduce language bias. A Bayesian NMA and systematic review of randomized and non-randomized controlled trials were conducted to explore the effects of different targets for DBS on gait damage. Result: In the 34 included studies, 538 patients with PD met the inclusion criteria. The NMA results of the effect of the DBS “on and off” on the mean change of the gait of the patients in medication-off show that GPi-DBS, STN-DBS, and PPN-DBS are significantly better than the baseline [GPi-DBS: –0.79(–1.2, –0.41), STN-DBS: –0.97(–1.1, –0.81), and PPN-DBS: –0.56(–1.1, –0.021)]. According to the surface under the cumulative ranking (SUCRA) score, the STN-DBS (SUCRA = 74.15%) ranked first, followed by the GPi-DBS (SUCRA = 48.30%), and the PPN-DBS (SUCRA = 27.20%) ranked last. The NMA results of the effect of the DBS “on and off” on the mean change of the gait of the patients in medication-on show that, compared with baseline, GPi-DBS and STN-DBS proved to be significantly effective [GPi-DBS: –0.53 (–1.0, –0.088) and STN-DBS: –0.47(–0.66, –0.29)]. The GPi-DBS ranked first (SUCRA = 59.00%), followed by STN-DBS(SUCRA = 51.70%), and PPN-DBS(SUCRA = 35.93%) ranked last. Conclusion: The meta-analysis results show that both the STN-DBS and GPi-DBS can affect certain aspects of PD gait disorder.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Mathematics, Shandong University, Jinan, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Cleary RT, Bucholz R. Neuromodulation Approaches in Parkinson's Disease Using Deep Brain Stimulation and Transcranial Magnetic Stimulation. J Geriatr Psychiatry Neurol 2021; 34:301-309. [PMID: 34219521 DOI: 10.1177/08919887211018269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease, characterized by progressive motor (such as resting tremor, hypokinesia, postural instability) and non-motor symptoms (such as neuropsychiatric decline and autonomic dysfunction). Since its introduction in the late 1980s, deep brain stimulation (DBS) has revolutionized the treatment of PD. Initially used in patients' with advanced PD with either medically refractory motor symptoms or medication intolerance, DBS typically provides excellent improvement in motor symptoms. Indications for DBS have continued to expand, with demonstrated efficacy in early PD and essential tremor, and promising preliminary results in the treatment of epilepsy, psychiatric disease, and depression. Advancements in DBS hardware, programming, neuroimaging, and surgical techniques have led to progressive improvement in efficacy and safety profiles. Thanks to ongoing research into remote programming, adaptive DBS, new targets, and alternative interventions, such as transcranial magnetic stimulation, the opportunities for further improvements in DBS and neuromodulation are bright.
Collapse
Affiliation(s)
- Ryan T Cleary
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| | - Richard Bucholz
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
24
|
Zhang L, Meng S, Chen W, Chen Y, Huang E, Zhang G, Liang Y, Ding Z, Xue Y, Chen Y, Shi J, Shi Y. High-Frequency Deep Brain Stimulation of the Substantia Nigra Pars Reticulata Facilitates Extinction and Prevents Reinstatement of Methamphetamine-Induced Conditioned Place Preference. Front Pharmacol 2021; 12:705813. [PMID: 34276387 PMCID: PMC8277946 DOI: 10.3389/fphar.2021.705813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persistent and stable drug memories lead to a high rate of relapse among addicts. A number of studies have found that intervention in addiction-related memories can effectively prevent relapse. Deep brain stimulation (DBS) exhibits distinct therapeutic effects and advantages in the treatment of neurological and psychiatric disorders. In addition, recent studies have also found that the substantia nigra pars reticulata (SNr) could serve as a promising target in the treatment of addiction. Therefore, the present study aimed to investigate the effect of DBS of the SNr on the reinstatement of drug-seeking behaviors. Electrodes were bilaterally implanted into the SNr of rats before training of methamphetamine-induced conditioned place preference (CPP). High-frequency (HF) or low-frequency (LF) DBS was then applied to the SNr during the drug-free extinction sessions. We found that HF DBS, during the extinction sessions, facilitated extinction of methamphetamine-induced CPP and prevented drug-primed reinstatement, while LF DBS impaired the extinction. Both HF and LF DBS did not affect locomotor activity or induce anxiety-like behaviors of rats. Finally, HF DBS had no effect on the formation of methamphetamine-induced CPP. In conclusion, our results suggest that HF DBS of the SNr could promote extinction and prevent reinstatement of methamphetamine-induced CPP, and the SNr may serve as a potential therapeutic target in the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yisen Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jie Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yu Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
25
|
Weiss D, Schoellmann A, Fox MD, Bohnen NI, Factor SA, Nieuwboer A, Hallett M, Lewis SJG. Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 2020; 143:14-30. [PMID: 31647540 DOI: 10.1093/brain/awz314] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diverse but complementary methodologies are required to uncover the complex determinants and pathophysiology of freezing of gait. To develop future therapeutic avenues, we need a deeper understanding of the disseminated functional-anatomic network and its temporally associated dynamic processes. In this targeted review, we will summarize the latest advances across multiple methodological domains including clinical phenomenology, neurogenetics, multimodal neuroimaging, neurophysiology, and neuromodulation. We found that (i) locomotor network vulnerability is established by structural damage, e.g. from neurodegeneration possibly as result from genetic variability, or to variable degree from brain lesions. This leads to an enhanced network susceptibility, where (ii) modulators can both increase or decrease the threshold to express freezing of gait. Consequent to a threshold decrease, (iii) neuronal integration failure of a multilevel brain network will occur and affect one or numerous nodes and projections of the multilevel network. Finally, (iv) an ultimate pathway might encounter failure of effective motor output and give rise to freezing of gait as clinical endpoint. In conclusion, we derive key questions from this review that challenge this pathophysiological view. We suggest that future research on these questions should lead to improved pathophysiological insight and enhanced therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anna Schoellmann
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael D Fox
- Berenson-Allen Center, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicolaas I Bohnen
- Departments of Radiology and Neurology, University of Michigan, Ann Arbor, MI, USA; Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Stewart A Factor
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
| |
Collapse
|
26
|
Li H, McConnell GC. Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats. Front Neurosci 2020; 14:367. [PMID: 32410946 PMCID: PMC7201294 DOI: 10.3389/fnins.2020.00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 11/27/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning the DBS electrode within the SNr is critical for the development of preclinical models of SNr DBS to investigate underlying mechanisms. However, a complete characterization of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement is lacking. In this study, we recorded extracellular single-unit activity in anesthetized rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity, spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude, signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band. No significant differences were observed between structures for any other feature analyzed. Our results shed light on the heterogeneity of the SNr and suggest electrophysiological features to promote precise targeting of SNr subregions during stereotaxic surgery.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| |
Collapse
|
27
|
Macerollo A, Zrinzo L, Akram H, Foltynie T, Limousin P. Subthalamic nucleus deep brain stimulation for Parkinson’s disease: current trends and future directions. Expert Rev Med Devices 2020; 17:1063-1074. [DOI: 10.1080/17434440.2020.1747433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Antonella Macerollo
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| |
Collapse
|
28
|
Deep brain stimulation and refractory freezing of gait in Parkinson’s disease: Improvement with high-frequency current steering co-stimulation of subthalamic nucleus and substantia Nigra. Brain Stimul 2020; 13:280-283. [DOI: 10.1016/j.brs.2019.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 12/30/2022] Open
|
29
|
Meoni S, Cury RG, Moro E. New players in basal ganglia dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:307-327. [PMID: 32247369 DOI: 10.1016/bs.pbr.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The classical model of the basal ganglia (BG) circuit has been recently revised with the identification of other structures that play an increasing relevant role especially in the pathophysiology of Parkinson's disease (PD). Numerous studies have supported the spreading of the alpha-synuclein pathology to several areas beyond the BG and likely even before their involvement. With the aim of better understanding PD pathophysiology and finding new targets for treatment, the spinal cord, the pedunculopontine nucleus, the substantia nigra pars reticulata, the retina, the superior colliculus, the cerebellum, the nucleus parabrachialis and the Meynert's nucleus have been investigated both in animal and human studies. In this chapter, we describe the main anatomical and functional connections between the above structures and the BG, the relationship between their pathology and PD features, and the rational of applying neuromodulation treatment to improve motor and non-motor symptoms in PD. Some of these new players in the BG circuits might also have a potential intriguing role as early biomarkers of PD.
Collapse
Affiliation(s)
- Sara Meoni
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France.
| |
Collapse
|
30
|
Simmons RW, Taggart TC, Thomas JD, Mattson SN, Riley EP. Gait control in children with attention-deficit/hyperactivity disorder. Hum Mov Sci 2020; 70:102584. [PMID: 32217203 DOI: 10.1016/j.humov.2020.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The current profile of gait control in children with ADHD is incomplete and predominately based on children walking forward at a self-selected pace. There are no studies of potential gait deficits in this clinical population when walking in different directions in combination with varying rates of stepping that are freely selected and entrained to an external stimulus. The purpose of the current study was to address this lack of information by assessing gait of children aged 7-17 years with (n = 17) and without (n = 26) ADHD. Participants walked forward and backward along an electronically instrumented carpet at a self-selected stepping rate and in synchrony to a metronome that dictated an increased and decreased stepping rate. Using repeated measures analysis of covariance (ANCOVA) to assess spatiotemporal gait parameters, results showed that children with ADHD exhibited a significantly exaggerated, toes 'turned out,' foot position for all walking conditions compared to typically developing children. When walking backward, children with ADHD produced an increased step width, higher stepping cadence, and increased velocity. Additionally, coefficient of variation ratios indicated that children with ADHD produced greater variability of velocity, cadence, and step time for all walking conditions, and greater variability for stride length when walking at an increased stepping rate. Results were interpreted in terms of clinical significance and practical ramifications that inform rehabilitation specialists in designing therapies that ameliorate the reported gait deficits.
Collapse
Affiliation(s)
- Roger W Simmons
- Motor Control Laboratory, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, United States of America.
| | - Tenille C Taggart
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America; Clinical Psychology Doctoral Program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| |
Collapse
|
31
|
Abstract
Parkinson disease (PD) treatment options have conventionally focused on dopamine replacement and provision of symptomatic relief. Current treatments cause undesirable adverse effects, and a large unmet clinical need remains for treatments that offer disease modification and that address symptoms resistant to levodopa. Advances in high-throughput drug screening methods for small molecules, developments in disease modelling and improvements in analytical technologies have collectively contributed to the emergence of novel compounds, repurposed drugs and new technologies. In this Review, we focus on disease-modifying and symptomatic therapies under development for PD. We review cellular therapies and repurposed drugs, such as nilotinib, inosine, isradipine, iron chelators and anti-inflammatories, and discuss how their success in preclinical models has paved the way for clinical trials. We provide an update on immunotherapies and vaccines. In addition, we review non-pharmacological interventions targeting motor symptoms, including gene therapy, adaptive deep brain stimulation (DBS) and optogenetically inspired DBS. Given the many clinical phenotypes of PD, individualization of therapy and precision of treatment are likely to become important in the future.
Collapse
|
32
|
Abstract
Parkinson's disease (PD) and other synucleinopathies, namely dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), are common degenerative neurological disorders that share synuclein pathology. Although certain cardinal features of parkinsonism, including bradykinesia and rigidity, respond well to levodopa, axial features, such as gait and balance impairment, are less reliably responsive to dopaminergic therapy and surgical interventions. Consequently, falls are common in PD and other synucleinopathies and are a major contributor toward injury and loss of independence. This underscores the need for appropriate fall risk assessment and implementation of preventative measures in all patients with parkinsonism. The aim of this review is therefore to explore modifiable and non-modifiable risk factors for falls in synucleinopathies. We next review and evaluate the evidence for pharmacological, nonpharmacological, and surgical approaches for fall prevention, and emphasize individualized and multifaceted approaches.
Collapse
|
33
|
Elshinnawy AM, Wadee AN, Tawfick AM. Influence of sensory integration training on postural instability in elderly with parkinsonian disease following stereotactic surgery. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2019. [DOI: 10.4103/bfpt.bfpt_1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Heilbronn M, Scholten M, Schlenstedt C, Mancini M, Schöllmann A, Cebi I, Pötter-Nerger M, Gharabaghi A, Weiss D. Anticipatory postural adjustments are modulated by substantia nigra stimulation in people with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 2019; 66:34-39. [DOI: 10.1016/j.parkreldis.2019.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
|
35
|
Müller MLTM, Marusic U, van Emde Boas M, Weiss D, Bohnen NI. Treatment options for postural instability and gait difficulties in Parkinson's disease. Expert Rev Neurother 2019; 19:1229-1251. [PMID: 31418599 DOI: 10.1080/14737175.2019.1656067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Gait and balance disorders in Parkinson's disease (PD) represent a major therapeutic challenge as frequent falls and freezing of gait impair quality of life and predict mortality. Limited dopaminergic therapy responses implicate non-dopaminergic mechanisms calling for alternative therapies.Areas covered: The authors provide a review that encompasses pathophysiological changes involved in axial motor impairments in PD, pharmacological approaches, exercise, and physical therapy, improving physical activity levels, invasive and non-invasive neurostimulation, cueing interventions and wearable technology, and cognitive interventions.Expert opinion: There are many promising therapies available that, to a variable degree, affect gait and balance disorders in PD. However, not one therapy is the 'silver bullet' that provides full relief and ultimately meaningfully improves the patient's quality of life. Sedentariness, apathy, and emergence of frailty in advancing PD, especially in the setting of medical comorbidities, are perhaps the biggest threats to experience sustained benefits with any of the available therapeutic options and therefore need to be aggressively treated as early as possible. Multimodal or combination therapies may provide complementary benefits to manage axial motor features in PD, but selection of treatment modalities should be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre of Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Miriam van Emde Boas
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nicolaas I Bohnen
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
36
|
Serrao M, Pierelli F, Sinibaldi E, Chini G, Castiglia SF, Priori M, Gimma D, Sellitto G, Ranavolo A, Conte C, Bartolo M, Monari G. Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson's Disease: A Pilot, Randomized, Controlled Trial With Crossover. Front Neurol 2019; 10:902. [PMID: 31543859 PMCID: PMC6730596 DOI: 10.3389/fneur.2019.00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: The progressive modular rebalancing (PMR) system is a comprehensive rehabilitation approach derived from proprioceptive neuromuscular facilitation principles. PMR training encourages focus on trunk and proximal muscle function through direct perception, strength, and stretching exercises and emphasizes bi-articular muscle function in the improvement of gait performance. Sensory cueing, such as visual cues (VC), is one of the more established techniques for gait rehabilitation in PD. In this study, we propose PMR combined with VC for improving gait performance, balance, and trunk control during gait in patients with PD. Our assumption herein was that the effect of VC may add to improved motor performance induced by the PMR treatment. The primary aim of this study was to evaluate whether the PMR system plus VC was a more effective treatment option than standard physiotherapy in improving gait function in patients with PD. The secondary aim of the study was to evaluate the effect of this treatment on motor function severity. Design: Two-center, randomized, controlled, observer-blind, crossover study with a 4-month washout period. Participants: Forty individuals with idiopathic PD in Hoehn and Yahr stages 1–4. Intervention: Eight-week rehabilitation programs consisting of PMR plus VC (treatment A) and conventional physiotherapy (treatment B). Primary outcome measures: Spatiotemporal gait parameters, joint kinematics, and trunk kinematics. Secondary outcome measures: UPDRS-III scale scores. Results: The rehabilitation program was well-tolerated by individuals with PD and most participants showed improvements in gait variables and UPDRS-III scores with both treatments. However, patients who received PMR with VC showed better results in gait function with regard to gait performance (increased step length, gait speed, and joint kinematics), gait balance (increased step width and double support duration), and trunk control (increased trunk motion) than those receiving conventional physiotherapy. While crossover results revealed some differences in primary outcomes, only 37.5% of patients crossed over between the groups. As a result, our findings should be interpreted cautiously. Conclusions: The PMR plus VC program could be used to improve gait function and severity motor of motor deficit in individuals with PD. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03346265.
Collapse
Affiliation(s)
- Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Movement Analysis Laboratory, Policlinico Italia, Rome, Italy
| | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Elisabetta Sinibaldi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giorgia Chini
- Movement Analysis Laboratory, Policlinico Italia, Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Marina Priori
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Movement Analysis Laboratory, Policlinico Italia, Rome, Italy
| | - Dario Gimma
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sellitto
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | | | - Michelangelo Bartolo
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA Zingonia, Bergamo, Italy
| | - Giuseppe Monari
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Meurisse GM, Bastien GJ, Schepens B. The step-to-step transition mode: A potential indicator of first-fall risk in elderly adults? PLoS One 2019; 14:e0220791. [PMID: 31374108 PMCID: PMC6677305 DOI: 10.1371/journal.pone.0220791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Guillaume M. Meurisse
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of Neuroscience (IoNS), Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Guillaume J. Bastien
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of Neuroscience (IoNS), Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Bénédicte Schepens
- Laboratory of Physiology and Biomechanics of Locomotion, Institute of Neuroscience (IoNS), Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
38
|
Tankus A, Mirelman A, Giladi N, Fried I, Hausdorff JM. Pace of movement: the role of single neurons in the subthalamic nucleus. J Neurosurg 2019; 130:1835-1840. [PMID: 29932375 DOI: 10.3171/2018.1.jns171859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ability to modulate the pace of movement is a critical factor in the smooth operation of the motor system. The authors recently described distinct and overlapping representations of movement kinematics in the subthalamic nucleus (STN), but it is still unclear how movement pace is modulated according to the demands of the task at the neuronal level in this area. The goal of this study was to clarify how different movement paces are being controlled by neurons in the STN. METHODS The authors performed direct recording of the electrical activity of single neurons in the STN of neurosurgical patients with Parkinson's disease undergoing implantation of a deep brain stimulator under local anesthesia while the patients performed repetitive foot and hand movements intraoperatively at multiple paces. RESULTS A change was observed in the neuronal population controlling the movement for each pace. The mechanism for switching between these controlling populations differs for hand and foot movements. CONCLUSIONS These findings suggest that disparate schemes are utilized in the STN for neuronal recruitment for motor control of the upper and lower extremities. The results indicate a distributed model of motor control within the STN, where the active neuronal population changes when modifying the task condition and pace.
Collapse
Affiliation(s)
- Ariel Tankus
- 1Functional Neurosurgery Unit
- 2Center for Study of Movement, Cognition, and Mobility
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- 2Center for Study of Movement, Cognition, and Mobility
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- 5Department of Neurology, Tel Aviv Sourasky Medical Center
| | - Itzhak Fried
- 1Functional Neurosurgery Unit
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 6Department of Neurosurgery, University of California, Los Angeles, California
| | - Jeffrey M Hausdorff
- 2Center for Study of Movement, Cognition, and Mobility
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- 7Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
- 8Rush Alzheimer's Disease Center and
- 9Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
39
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
40
|
Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease. Neurobiol Dis 2019; 124:46-56. [DOI: 10.1016/j.nbd.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
|
41
|
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Fasano A, Popovic MR, Hutchison WD. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. Brain 2019; 141:177-190. [PMID: 29236966 PMCID: PMC5917776 DOI: 10.1093/brain/awx296] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - Suneil K Kalia
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Mojgan Hodaie
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Andres M Lozano
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Alfonso Fasano
- Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Morton and Gloria Shulman Movement Disorders Center and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - University Health Network, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
42
|
Karachi C, Cormier-Dequaire F, Grabli D, Lau B, Belaid H, Navarro S, Vidailhet M, Bardinet E, Fernandez-Vidal S, Welter ML. Clinical and anatomical predictors for freezing of gait and falls after subthalamic deep brain stimulation in Parkinson's disease patients. Parkinsonism Relat Disord 2019; 62:91-97. [PMID: 30704853 DOI: 10.1016/j.parkreldis.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Freezing of gait (FOG) and falls are the most disabling motor symptoms in Parkinson's disease (PD) patients. The effects of subthalamic deep-brain-stimulation (STN-DBS) on FOG and falls are still a matter of controversy, and factors contributing to their outcome have yet to be defined. METHODS We examined the relationship between FOG and falls after STN-DBS and preoperative clinical features, MRI voxel-based-morphometry (VBM) analysis and statistical mapping of electrode locations. RESULTS 331 patients (age at surgery = 57.7 ± 8.4 years; disease duration = 12.5 ± 5 years) were included in the final analysis, with VBM analysis in 151 patients. After surgery, FOG was aggravated in 93 patients and falls in 75 patients. After surgery, FOG severity was related to its level before surgery without dopaminergic treatment, the dopaminergic treatment dosage and severity of motor fluctuations after surgery; and falls severity to lower postoperative cognitive performance. VBM analyses revealed that, relative to other patient groups, patients with FOG worsening had putamen grey matter density decrease, and fallers patients a left postcentral gyrus atrophy. The best effects of STN-DBS on FOG and falls were associated with the location of contacts within the STN, but no specific location related to aggravation. CONCLUSIONS FOG and falls are reduced after STN-DBS in about 1/3 of patients, with the best effects obtained for electrodes located within the STN. Clinicians should be aware that, after STN-DBS, FOG severity is related to preoperative FOG severity whatever its dopa-sensitivity; and falls to lower postoperative cognitive performance; and atrophy of cortico-subcortical brain areas.
Collapse
Affiliation(s)
- Carine Karachi
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurosurgery Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Florence Cormier-Dequaire
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurology Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - David Grabli
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurology Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Brian Lau
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France
| | - Hayat Belaid
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurosurgery Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Soledad Navarro
- Neurosurgery Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Marie Vidailhet
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurology Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Eric Bardinet
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Centre de Neuroimagerie de Recherche de l'Institut du Cerveau et de la Moelle épinière (CENIR ICM), Paris, France
| | - Sara Fernandez-Vidal
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Centre de Neuroimagerie de Recherche de l'Institut du Cerveau et de la Moelle épinière (CENIR ICM), Paris, France
| | - Marie-Laure Welter
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épiniere (CRICM), UMR-S975, Paris, France; INSERM, U975, Paris, France; CNRS, UMR 7225, CR-ICM, Paris, France; Neurophysiology Department, CHU Rouen, Normandie University, Rouen, France.
| |
Collapse
|
43
|
Weiss D, Milosevic L, Gharabaghi A. Deep brain stimulation of the substantia nigra for freezing of gait in Parkinson's disease: is it about stimulation frequency? Parkinsonism Relat Disord 2018; 63:229-230. [PMID: 30579819 DOI: 10.1016/j.parkreldis.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
Abstract
Converging evidence supports that co-stimulation of the subthalamic nucleus and the substantia nigra pars reticulata can be efficacious for the management of the resistant gait impairment in Parkinson's disease. In this Correspondence, we comment on a recent publication in Parkinsonism & Related Disorders regarding this novel intervention.
Collapse
Affiliation(s)
- Daniel Weiss
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076, Tübingen, Germany.
| | - Luka Milosevic
- Division of Functional and Restorative Neurosurgery, Center for Integrative Neuroscience, Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Center for Integrative Neuroscience, Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
44
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
45
|
Bekkers EMJ, Dijkstra BW, Heremans E, Verschueren SMP, Bloem BR, Nieuwboer A. Balancing between the two: Are freezing of gait and postural instability in Parkinson's disease connected? Neurosci Biobehav Rev 2018; 94:113-125. [PMID: 30125601 DOI: 10.1016/j.neubiorev.2018.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 01/11/2023]
Abstract
Postural instability and freezing of gait (FoG) are key features of Parkinson's disease (PD) closely related to falls. Growing evidence suggests that co-existing postural deficits could influence the occurrence and severity of FoG. To date, the exact nature of this interrelationship remains largely unknown. We analyzed the complex interaction between postural instability and gait disturbance by comparing the findings available in the posturographic literature between patients with and without FoG. Results showed that FoG and postural instability are intertwined, can influence each other behaviorally and may coincide neurologically. The most common FoG-related postural deficits included weight-shifting impairments, and inadequate scaling and timing of postural responses most apparent at forthcoming postural changes under time constraints. Most likely, a negative cycle of combined and more severe postural deficits in people with FoG will enhance postural stability breakdown. As such, the wide brain network deficiencies involved in FoG may also concurrently influence postural stability. Future work needs to examine whether training interventions targeting both symptoms will have extra clinical benefits on fall frequency.
Collapse
Affiliation(s)
- E M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium; Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Center Nijmegen (ParC), Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands.
| | - B W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - E Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - S M P Verschueren
- Research Group for Musculoskeletal Research, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - B R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Center Nijmegen (ParC), Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands.
| | - A Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| |
Collapse
|
46
|
Turcato AM, Godi M, Giardini M, Arcolin I, Nardone A, Giordano A, Schieppati M. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed. PLoS One 2018; 13:e0197264. [PMID: 29750815 PMCID: PMC5947908 DOI: 10.1371/journal.pone.0197264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected.
Collapse
Affiliation(s)
- Anna Maria Turcato
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Marco Godi
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
- * E-mail:
| | - Marica Giardini
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Ilaria Arcolin
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Antonio Nardone
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Giordano
- Unit of Bioengineering, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Marco Schieppati
- Department of Exercise & Sports Science, International University of Health, Exercise and Sports, LUNEX University, Differdange, Luxembourg
| |
Collapse
|
47
|
Debû B, De Oliveira Godeiro C, Lino JC, Moro E. Managing Gait, Balance, and Posture in Parkinson's Disease. Curr Neurol Neurosci Rep 2018; 18:23. [PMID: 29623455 DOI: 10.1007/s11910-018-0828-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Postural instability and gait difficulties inexorably worsen with Parkinson's disease (PD) progression and become treatment resistant, with a severe impact on autonomy and quality of life. We review the main characteristics of balance instability, gait disabilities, and static postural alterations in advanced PD, and the available treatment strategies. RECENT FINDINGS It remains very difficult to satisfactorily alleviate gait and postural disturbances in advanced PD. Medical and surgical interventions often fail to provide satisfactory or durable alleviation of these axial symptoms, that may actually call for differential treatments. Exercise and adapted physical activity programs can contribute to improving the patients' condition. Gait, balance, and postural disabilities are often lumped together under the Postural Instability and Gait Difficulties umbrella term. This may lead to sub-optimal patients' management as data suggest that postural, balance, and gait problems might depend on distinct underlying mechanisms. We advocate for a multidisciplinary approach from the day of diagnosis.
Collapse
Affiliation(s)
- Bettina Debû
- University Grenoble Alpes, Grenoble, France.
- INSERM U1216, Grenoble, France.
| | - Clecio De Oliveira Godeiro
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jarbas Correa Lino
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, CHU Amiens, Amiens, France
| | - Elena Moro
- University Grenoble Alpes, Grenoble, France
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
48
|
Luna N, Lucareli P, Sales V, Speciali D, Alonso A, Peterson M, Rodrigues R, Fonoffc E, Barbosac E, Teixeira M, Greve J. Treadmill training in Parkinson’s patients after deep brain stimulation: Effects on gait kinematic. NeuroRehabilitation 2018; 42:149-158. [DOI: 10.3233/nre-172267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- N.M.S. Luna
- Post Graduate Program in Aging Science, São Judas Tadeu University (USJT), São Paulo, Brazil
- Department of Orthopedics and Traumatology, Laboratory for the Study of Movement, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - P.R.G. Lucareli
- Department of Physiotherapy, University Nove de julho, São Paulo, Brazil
| | - V.C. Sales
- Department of Orthopedics and Traumatology, Laboratory for the Study of Movement, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - D. Speciali
- Department of Orthopedics and Traumatology, Laboratory for the Study of Movement, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - A.C. Alonso
- Post Graduate Program in Aging Science, São Judas Tadeu University (USJT), São Paulo, Brazil
- Department of Orthopedics and Traumatology, Laboratory for the Study of Movement, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - M.D. Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, MI, USA
| | - R.B.M. Rodrigues
- Department of Neurology, Division of Functional Neurosurgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - E.T. Fonoffc
- Department of Neurology, Division of Functional Neurosurgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - E.R. Barbosac
- Department of Neurology, Division of Functional Neurosurgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - M.J. Teixeira
- Department of Neurology, Division of Functional Neurosurgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - J.M.D.A. Greve
- Department of Orthopedics and Traumatology, Laboratory for the Study of Movement, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Giardini M, Nardone A, Godi M, Guglielmetti S, Arcolin I, Pisano F, Schieppati M. Instrumental or Physical-Exercise Rehabilitation of Balance Improves Both Balance and Gait in Parkinson's Disease. Neural Plast 2018; 2018:5614242. [PMID: 29706993 PMCID: PMC5863303 DOI: 10.1155/2018/5614242] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/14/2018] [Indexed: 12/19/2022] Open
Abstract
We hypothesised that rehabilitation specifically addressing balance in Parkinson's disease patients might improve not only balance but locomotion as well. Two balance-training protocols (standing on a moving platform and traditional balance exercises) were assessed by assigning patients to two groups (Platform, n = 15, and Exercises, n = 17). The platform moved periodically in the anteroposterior, laterolateral, and oblique direction, with and without vision in different trials. Balance exercises were based on the Otago Exercise Program. Both platform and exercise sessions were administered from easy to difficult. Outcome measures were (a) balancing behaviour, assessed by both Index of Stability (IS) on platform and Mini-BESTest, and (b) gait, assessed by both baropodometry and Timed Up and Go (TUG) test. Falls Efficacy Scale-International (FES-I) and Parkinson's Disease Questionnaire (PDQ-8) were administered. Both groups exhibited better balance control, as assessed both by IS and by Mini-BESTest. Gait speed at baropodometry also improved in both groups, while TUG was less sensitive to improvement. Scores of FES-I and PDQ-8 showed a marginal improvement. A four-week treatment featuring no gait training but focused on challenging balance tasks produces considerable gait enhancement in mildly to moderately affected patients. Walking problems in PD depend on postural instability and are successfully relieved by appropriate balance rehabilitation. This trial is registered with ClinicalTrials.gov NCT03314597.
Collapse
Affiliation(s)
- Marica Giardini
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Antonio Nardone
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Godi
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Italy
| | - Simone Guglielmetti
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Italy
| | - Ilaria Arcolin
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Italy
| | - Fabrizio Pisano
- Neurorehabilitation Division, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Italy
| | - Marco Schieppati
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| |
Collapse
|
50
|
Delafontaine A, Fourcade P, Honeine JL, Ditcharles S, Yiou E. Postural adaptations to unilateral knee joint hypomobility induced by orthosis wear during gait initiation. Sci Rep 2018; 8:830. [PMID: 29339773 PMCID: PMC5770397 DOI: 10.1038/s41598-018-19151-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Balance control and whole-body progression during gait initiation (GI) involve knee-joint mobility. Single knee-joint hypomobility often occurs with aging, orthopedics or neurological conditions. The goal of the present study was to investigate the capacity of the CNS to adapt GI organization to single knee-joint hypomobility induced by the wear of an orthosis. Twenty-seven healthy adults performed a GI series on a force-plate in the following conditions: without orthosis ("control"), with knee orthosis over the swing leg ("orth-swing") and with the orthosis over the contralateral stance leg ("orth-stance"). In orth-swing, amplitude of mediolateral anticipatory postural adjustments (APAs) and step width were larger, execution phase duration longer, and anteroposterior APAs smaller than in control. In orth-stance, mediolateral APAs duration was longer, step width larger, and amplitude of anteroposterior APAs smaller than in control. Consequently, step length and progression velocity (which relate to the "motor performance") were reduced whereas stability was enhanced compared to control. Vertical force impact at foot-contact did not change across conditions, despite a smaller step length in orthosis conditions compared to control. These results show that the application of a local mechanical constraint induced profound changes in the global GI organization, altering motor performance but ensuring greater stability.
Collapse
Affiliation(s)
- A Delafontaine
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405, Orsay, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
| | - P Fourcade
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405, Orsay, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
| | - J L Honeine
- CSAM Laboratory, Department of Public Health, University of Pavia, Pavia, Italy
| | - S Ditcharles
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405, Orsay, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
| | - E Yiou
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405, Orsay, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
| |
Collapse
|