1
|
Hoveidaei AH, Mosalamiaghili S, Sabaghian A, Hajiaghajani S, Farsani AS, Sahebi M, Poursalehian M, Nwankwo BO, Conway JD. Local antibiotic delivery: Recent basic and translational science insights in orthopedics. Bone 2025; 193:117416. [PMID: 39914596 DOI: 10.1016/j.bone.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective. RECENT FINDINGS Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use. SUMMARY Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | | | | | - Sina Hajiaghajani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Sahebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Poursalehian
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Basilia Onyinyechukwu Nwankwo
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA; Howard University Hospital, Department of Orthopaedic Surgery and Rehabilitation, Washington, DC, USA
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
2
|
Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines (Basel) 2025; 13:126. [PMID: 40006673 PMCID: PMC11860605 DOI: 10.3390/vaccines13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious diseases continue to pose a significant global health threat. To combat these challenges, innovative vaccine technologies are urgently needed. Nanoparticles (NPs) have unique properties and have emerged as a promising platform for developing next-generation vaccines. Nanoparticles are revolutionizing the field of vaccine development, offering a new era of immunization. They allow the creation of more effective, stable, and easily deliverable vaccines. Various types of NPs, including lipid, polymeric, metal, and virus-like particles, can be employed to encapsulate and deliver vaccine components, such as mRNA or protein antigens. These NPs protect antigens from degradation, target them to specific immune cells, and enhance antigen presentation, leading to robust and durable immune responses. Additionally, NPs can simultaneously deliver multiple vaccine components, including antigens, and adjuvants, in a single formulation, simplifying vaccine production and administration. Nanovaccines offer a promising approach to combat food- and water-borne bacterial diseases, surpassing traditional formulations. Further research is needed to address the global burden of these infections. This review highlights the potential of NPs to revolutionize vaccine platforms. We explore their mechanisms of action, current applications, and emerging trends. The review discusses the limitations of nanovaccines, innovative solutions and the potential role of artificial intelligence in developing more effective and accessible nanovaccines to combat infectious diseases.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ahmed El-Moghazy
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Adel H. Elgohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Yekani M, Dizaj SM, Sharifi S, Sedaghat H, Saffari M, Memar MY. Nano-scaffold-based delivery systems of antimicrobial agents in the treatment of osteomyelitis ; a narrative review. Heliyon 2024; 10:e38392. [PMID: 39559197 PMCID: PMC11570522 DOI: 10.1016/j.heliyon.2024.e38392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Osteomyelitis caused by drug-resistant pathogens is one of the most important medical challenges due to high rates of mortality and morbidity, and limited therapeutical options. The application of novel nano-scaffolds loaded with antibiotics has widely been studied and extensively evaluated for in vitro and in vivo inhibition of pathogens, regenerating damaged bone tissue, and increasing bone cell proliferation. The treatment of bone infections using the local osteogenic scaffolds loaded with antimicrobial agents may efficiently overcome the problems of the systemic use of antimicrobial agents and provide a controlled release and sufficient local levels of antibiotics in the infected sites. The present study reviewed various nano-scaffolds delivery systems of antimicrobial drugs evaluated to treat osteomyelitis. Nano-scaffolds offer promising approaches because they simulate natural tissue regeneration in terms of their mechanical, structural, and sometimes chemical properties. The potential of several nano-scaffolds prepared by natural polymers such as silk, collagen, gelatin, fibrinogen, chitosan, cellulose, hyaluronic, alginate, and synthetic compounds such as polylactic acid, polyglycolic acid, poly (lactic acid-co-glycolic acid), poly-ɛ-caprolactone have been studied for usage as drug delivery systems of antimicrobial agents to treat osteomyelitis. In addition to incorporated antimicrobial agents and the content of scaffolds, the physical and chemical characteristics of the prepared delivery systems are a determining factor in their effectiveness in treating osteomyelitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Sedaghat
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Khamkaew N, Kanokpanont S, Apinun J, Wangdee C, Motta A, Damrongsakkul S. Physico-Chemical Characterizations of Composited Calcium-Ortho-Phosphate Porous Particles and Their Controlled Release Behavior of Clindamycin Phosphate and Amikacin Sulfate. Polymers (Basel) 2024; 16:3144. [PMID: 39599235 PMCID: PMC11598036 DOI: 10.3390/polym16223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
The porous particles prepared from composited calcium-ortho-phosphate (biphasic), Thai silk fibroin, gelatin, and alginate, with an organic to inorganic component ratio of 15.5:84.5, were tested for their abilities to control the release of the commercialized antibiotic solutions, clindamycin phosphate (CDP) and amikacin sulfate (AMK). The in vitro biodegradability tests complying to the ISO 10993-13:2010 standard showed that the particles degraded <20 wt% within 56 days. The drugs were loaded through a simple adsorption, with the maximum loading of injection-graded drug solution of 43.41 wt% for CDP, and 39.08 wt% for AMK. The release profiles from dissolution tests of the drug-loaded particles varied based on the adsorption methods used. The drug-loaded particles (without a drying step) released the drug immediately, while the drying process after the drug loading resulted in the sustained-release capability of the particles. The model-fitting of drug release profiles showed the release driven by diffusion with the first-ordered kinetic after the initial burst release. The released CDF and AMK from particles could sustain the inhibition of Gram-positive bacteria and Gram-negative bacteria, respectively, for at least 72 h. These results indicated the potential of these composited particles as controlled-release carriers for CDP and AMK.
Collapse
Affiliation(s)
- Namfon Khamkaew
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| | - Sorada Kanokpanont
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| | - Jirun Apinun
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalika Wangdee
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38123 Trento, Italy;
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| |
Collapse
|
5
|
Słota D, Jampilek J, Sobczak-Kupiec A. Targeted Clindamycin Delivery Systems: Promising Options for Preventing and Treating Bacterial Infections Using Biomaterials. Int J Mol Sci 2024; 25:4386. [PMID: 38673971 PMCID: PMC11050486 DOI: 10.3390/ijms25084386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Targeted therapy represents a real opportunity to improve the health and lives of patients. Developments in this field are confirmed by the fact that the global market for drug carriers was worth nearly $40 million in 2022. For this reason, materials engineering and the development of new drug carrier compositions for targeted therapy has become a key area of research in pharmaceutical drug delivery in recent years. Ceramics, polymers, and metals, as well as composites, are of great interest, as when they are appropriately processed or combined with each other, it is possible to obtain biomaterials for hard tissues, soft tissues, and skin applications. After appropriate modification, these materials can release the drug directly at the site requiring a therapeutic effect. This brief literature review characterizes routes of drug delivery into the body and discusses biomaterials from different groups, options for their modification with clindamycin, an antibiotic used for infections caused by aerobic and anaerobic Gram-positive bacteria, and different methods for the final processing of carriers. Examples of coating materials for skin wound healing, acne therapy, and bone tissue fillers are given. Furthermore, the reasons why the use of antibiotic therapy is crucial for a smooth and successful recovery and the risks of bacterial infections are explained. It was demonstrated that there is no single proven delivery scheme, and that the drug can be successfully released from different carriers depending on the destination.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| |
Collapse
|
6
|
Niziołek K, Słota D, Sadlik J, Łachut E, Florkiewicz W, Sobczak-Kupiec A. Influence of Drying Technique on Physicochemical Properties of Synthetic Hydroxyapatite and Its Potential Use as a Drug Carrier. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6431. [PMID: 37834568 PMCID: PMC10573467 DOI: 10.3390/ma16196431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Naturally occurring hydroxyapatite (HA) is the mineral phase of bone tissue. It is characterized by its bioactivity toward stimulating bone cells to proliferate and thus form new apatite layers. For this reason, it is a material commonly used in implantology for filling defects or covering implants (such as endoprostheses). There are several methods to obtain synthetic HA, and by controlling parameters such as temperature, pressure or the drying process, physicochemical parameters of the final powder can be affected. In the present study, HA was obtained by wet precipitation technique and subjected to two different drying methods, determining whether this parameter significantly affects the properties of the final material obtained. Analyzed Fourier-transform infrared spectroscopy (FT-IR) confirmed the presence of functional groups typical for HA. X-ray diffraction analysis (XRD) demonstrated that the materials are partially amorphous; however, the only phase was identified in HA. Scanning electron microscopy (SEM) was used to evaluate the surface morphology and the density, and average grain diameter was measured. Furthermore, HA powders were subjected to modification with the antibiotic clindamycin to determine the potential for use as a carrier for the active substance. The release rate of the drug was determined by high-performance liquid chromatography (HPLC). The differences in the characteristics of the powders were relatively small; however, they affected the rate of drug release from the material as well as the shape of the grains. The method of drying the powders was shown to affect the shape of the grains, as well as the porosity of the sinters prepared from it. A higher amount of clindamycin released into PBS was observed in material with more pores. The materials have demonstrated the potential to be used as a carrier for the active substance; however, further biological, as well as physicochemical, analysis is required.
Collapse
Affiliation(s)
- Karina Niziołek
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
7
|
Zeng M, Xu Z, Song ZQ, Li JX, Tang ZW, Xiao S, Wen J. Diagnosis and treatment of chronic osteomyelitis based on nanomaterials. World J Orthop 2023; 14:42-54. [PMID: 36844379 PMCID: PMC9945247 DOI: 10.5312/wjo.v14.i2.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic osteomyelitis is a painful and serious disease caused by infected surgical prostheses or infected fractures. Traditional treatment includes surgical debridement followed by prolonged systemic antibiotics. However, excessive antibiotic use has been inducing rapid emergence of antibiotic-resistant bacteria worldwide. Additionally, it is difficult for antibiotics to penetrate internal sites of infection such as bone, thus limiting their efficacy. New approaches to treat chronic osteomyelitis remain a major challenge for orthopedic surgeons. Luckily, the development of nanotechnology has brought new antimicrobial options with high specificity to infection sites, offering a possible way to address these challenges. Substantial progress has been made in constructing antibacterial nanomaterials for treatment of chronic osteomyelitis. Here, we review some current strategies for treatment of chronic osteomyelitis and their underlying mechanisms.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zheng Xu
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhen-Qi Song
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie-Xiao Li
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Sheng Xiao
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Gholami L, Mahmoudi A, Kazemi Oskuee R, Malaekeh-Nikouei B. An overview of polyallylamine applications in gene delivery. Pharm Dev Technol 2022; 27:714-724. [PMID: 35880621 DOI: 10.1080/10837450.2022.2107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A chief objective of gene transportation studies is to manipulate clinically accepted carriers that can be utilized to combat incurable diseases. Despite various strategies, efficiency and application of these vectors have been hindered, owing to different obstacles. Polyallylamine (PAA) is a synthetic water-soluble, weak base cationic polymer with different properties that could be administrated as an ideal candidate for biomedical applications such as gene delivery, drug delivery, or even tissue engineering. However, some intrinsic properties of this polymer limit its application. The two associated problems with the use of PAA in gene delivery are low transfection efficiency (because of low buffering capacity) and cytotoxic effects attributed to intense cationic character. Most of the strategies for structural modification of the PAA structure have focused on introducing hydrophobic groups to the polymeric backbone that target both cytotoxicity and transfection. In this perspective, we concentrate on PAA as a gene delivery vehicle and the existing approaches for modification of this cationic polymer to give insight to researchers for exploitation of PAA as an efficient carrier in biomedical applications.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang S, Qamar SA, Junaid M, Munir B, Ain Q, Bilal M. Algal Polysaccharides‐based Nanoparticles for Targeted Drug Delivery Applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology Jiangsu Food and Pharmaceutical Science College Huaian 223003 China
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Muhammad Junaid
- Department of Biochemistry Government College University Faisalabad Pakistan
| | - Bushra Munir
- Institute of Chemistry University of Sargodha Sargodha 40100 Pakistan
| | - Qurat‐ul Ain
- School of Biochemistry and Biotechnology University of Punjab Lahore Punjab Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| |
Collapse
|
10
|
Procopio A, Lagreca E, Jamaledin R, La Manna S, Corrado B, Di Natale C, Onesto V. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics 2022; 14:872. [PMID: 35456704 PMCID: PMC9027538 DOI: 10.3390/pharmaceutics14040872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.
Collapse
Affiliation(s)
- Anna Procopio
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Elena Lagreca
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-Nanotec), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
11
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
12
|
Xing S, Yan M, Yang Y, Wang Y, Hu X, Ma B, Kang X. Diacerein Loaded Poly (Styrene Sulfonate) and Carbon Nanotubes Injectable Hydrogel: An Effective Therapy for Spinal Cord Injury Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02240-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|