1
|
Wang J, Luo Y, Wu Y, Du F, Shi S, Duan Y, Chen A, Zhang J, Yu S. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells. Talanta 2025; 292:127933. [PMID: 40081243 DOI: 10.1016/j.talanta.2025.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Despite the significant potential of mesenchymal stem cells (MSC) therapy in clinical settings, challenges persist regarding the efficient detection of consistency and uniformity of MSC populations. Raman spectroscopy is a fast, convenient, and nondestructive technique to acquire molecular properties of biomolecules across laboratory and mass-production settings. Here we utilized Raman spectroscopy to evaluate the heterogeneity of primary MSC from varying donors, passages, and distinct culture conditions, and compared its effectiveness with conventional techniques such as flow cytometry. Although these MSC exhibited insignificant differences in morphology and surface markers in flow cytometry analysis, they could be distinctly clustered into different populations by Raman spectroscopy and the subsequent machine learning using linear discriminant analysis. Principal component analysis demonstrated limited efficiency in clustering Raman data from diverse sources, which could be enhanced through combination with support vector machine or deterministic finite automation. These findings highlight the sensitivity of Raman spectroscopy in detecting subtle differences. Moreover, the analysis of characteristic Raman peaks attributed to cellular biomolecules in MSC from passages 2 (P2) to P10 revealed a gradual decrease in the levels of nucleic acids, lipids, and proteins with increasing passages, and a significant increase in carotenoids from P8. These results suggest the potential use of Raman spectroscopy to assess cellular biochemical characteristics such as aging, with carotenoids emerging as a potential marker of cell aging. In conclusion, Raman spectroscopy demonstrates the ability to rapidly and non-invasively detect cellular heterogeneity and biochemical status, offering significant potential for quality control in stem cell therapy.
Collapse
Affiliation(s)
- Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yanjun Luo
- Shanghai D-Band Medical Technology Co., LTD, Shanghai, 201802, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Hu H, Fan Y, Wang J, Zhang J, Lyu Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025; 381:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Wang YC, Cheng JB, Feng ML. Requirements for standardizing the assessment of mesenchymal stem cell therapy and its effects on osteoarthritis. World J Orthop 2025; 16:104451. [PMID: 40124721 PMCID: PMC11924026 DOI: 10.5312/wjo.v16.i3.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025] Open
Abstract
Publications of Soufan et al and Kristjánsson et al in the World Journal of Orthopedics on mesenchymal stem cell (MSC) therapy for osteoarthritis (OA) represent a significant exploration of regenerative medicine's potential in OA treatment. In their research, it is highlighted that MSCs can alleviate OA symptoms and even regenerate cartilage, potentially reversing the disease. They also compared the efficacy of three MSC subtypes, emphasizing the therapeutic advantages of adipose-derived MSCs. MSC injections, a novel and less invasive alternative to traditional treatments such as chondrocyte transplantation or arthroplasty, have a low cost, low risks, and favorable outcomes, presenting a promising approach for OA patients. Additionally, we stressed that the efficacy evaluation criteria, heterogeneity, safety, and other factors must be carefully considered to further advance the clinical translation of MSC therapy for OA.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing-Bo Cheng
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming-Li Feng
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Cyr-Depauw C, Mižik I, Cook DP, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing to Guide Autologous Preterm Cord Mesenchymal Stromal Cell Therapy. Am J Respir Crit Care Med 2025; 211:391-406. [PMID: 39586004 DOI: 10.1164/rccm.202403-0569oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity (<28 wk of gestation). Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) represent an opportunity for autologous cell therapy, as UC-MSCs have been shown to improve lung function and structure in experimental BPD. However, characterization and repair capacity of UC-MSCs derived from donors with pregnancy-related complications associated with prematurity remain unexplored. Objectives: To characterize UC-MSCs' transcriptome and determine if pregnancy-related complications (preeclampsia and chorioamnionitis) alter their therapeutic potential. Methods: Single-cell RNA sequencing was used to compare the transcriptome of UC-MSCs derived from 5 term donors, 16 preterm donors, and human neonatal dermal fibroblasts (control cells of mesenchymal origin) and correlated with their therapeutic potential in experimental BPD. Using publicly available neonatal lung single-nucleus RNA sequencing data, we also determined putative communication networks between UC-MSCs and resident lung cell populations. Measurements and Main Results: Most UC-MSCs displayed a similar transcriptome despite their pregnancy-related conditions and mitigated hyperoxia-induced lung injury in newborn rats. Conversely, human neonatal dermal fibroblasts and one term and two preterm with preeclampsia UC-MSC donors exhibited a distinct transcriptome enriched in genes related to fibroblast function and senescence and were devoid of therapeutic benefit in hyperoxia-induced BPD. Conversely, therapeutic UC-MSCs displayed a unique transcriptome active in cell proliferation and distinct cell-cell interactions with neonatal lung cell populations, including NEGR (neuronal growth regulator 1) and NRNX (neurexin) pathways. Conclusions: Term and preterm UC-MSCs are lung protective in experimental BPD. Single-cell RNA sequencing allows us to identify donors with a distinct UC-MSC transcriptome characteristic of reduced therapeutic potential.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Translational Pulmonology and Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Daniel Freund
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Silva B, Bragança J. Induced pluripotent stem cell-derived mesenchymal stem cells for modeling and treating metabolic associated fatty liver disease and metabolic associated steatohepatitis: Challenges and opportunities. World J Stem Cells 2025; 17:99331. [DOI: 10.4252/wjsc.v17.i2.99331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
The potential of induced pluripotent stem cells (iPSCs) for modeling and treating metabolic associated fatty liver disease (MAFLD) and metabolic associated steatohepatitis (MASH) is emerging. MAFLD is a growing global health concern, currently with limited treatment options. While primary mesenchymal stem cells hold promise, iPSCs offer a versatile alternative due to their ability to differentiate into various cell types, including iPSC-derived mesenchymal stem cells. However, challenges remain, including optimizing differentiation protocols, ensuring cell safety, and addressing potential tumorigenicity risks. In addition, iPSCs offer the possibility to generate complex cellular models, including three-dimensional organoid models, which are closer representations of the human disease than animal models. Those models would also be valuable for drug discovery and personalized medicine approaches. Overall, iPSCs and their derivatives offer new perspectives for advancing MAFLD/MASH research and developing novel therapeutic strategies. Further research is needed to overcome current limitations and translate this potential into effective clinical applications.
Collapse
Affiliation(s)
- Bárbara Silva
- Algarve Biomedical Center-Research Institute, University of Algarve, Faro 8005-139, Portugal
- Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
| | - José Bragança
- Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Center-Research Institute, University of Algarve, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon 1000-001, Portugal
| |
Collapse
|
6
|
Huang S, Xu X, Guo J, Li Z, Wu Y, Liu Y, Sun Q, Wang S, Yan H, Su Y, Guo W. Single-Cell Transcriptome Decoding Umbilical Cord-Derived Mesenchymal Stem Cell Heterogeneity Reveals a Unique IL1R1 HighPDGFRA High Ultroser-G-MSC With Osteogenesis and Chondrogenesis Signatures. J Cell Physiol 2025; 240:e70004. [PMID: 39956958 DOI: 10.1002/jcp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
The heterogeneity of human umbilical cord mesenchymal stem cells (hUC-MSCs) is culturing-dependent, resulting in functional non-uniformness. To achieve the best clinical benefit, a comprehensive understanding of the origin of the heterogeneity in different culture systems can identify functional subgroups to direct the precise application of hUC-MSCs. Here, we create a single-cell transcriptome atlas of hUC-MSC in different culture systems for the identification of a subgroup of Ultroser-G-MSCs with high osteogenic and chondrogenic potentials featured by high expressions of IL1R1 and PDGFRA. Further experimental validations surprisingly reveal that IL1R1highPDGFRAhigh Ultroser-G-MSCs possess advantages over "traditional" hUC-MSCs in the treatments of modeled osteoarthritis, leading to a cell-cell communication network centered in Clusters 0 and 2. Moreover, we found that Wnt5 signaling is the key pathway for the dynamic transformation of osteogenic and chondrogenic phenotypes in hUC-MSC. Overall, the present study paves the way for the clarification of heterogenetic nature of hUC-MSC in different culture systems for the selection of optimal MSC types to achieve the precision on clinical treatments.
Collapse
Affiliation(s)
- Shihao Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyu Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaqi Guo
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Zhuolan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanlin Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qinyi Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Sihan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huilin Yan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Wei Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Li Y, Song G, Jiang Y, Zhao H, Zhu Y, Song S, Wang L, Wu X. Single-cell transcriptome analysis of stem cells from human exfoliated deciduous teeth investigating functional heterogeneity in immunomodulation. Sci Rep 2024; 14:31279. [PMID: 39732760 PMCID: PMC11682124 DOI: 10.1038/s41598-024-82734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs. In our study, single-cell RNA sequencing (scRNA-seq) revealed that SHED in a low differentiation state (S7) exhibited the powerful ability to recruit multiple immune cells. In contrast, SHED in a relatively high differentiation state (S1) may hold a solid ability to secret many factors with paracrine signaling capacity. The analysis result shows that SHED has more robust immunomodulatory properties than human bone marrow-derived mesenchymal stem cells (hBMSCs) or human umbilical cord-derived mesenchymal stem cells (hUCMSCs). When co-cultured with PBMCs, SHED can enhance the proliferation of Treg and down-regulate TNF-α in vitro. SHED may have some advantages in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yin Li
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China.
| | - Guangyuan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Yizhun Zhu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shanshan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Lulu Wang
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Xueying Wu
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
8
|
Zong R, Zheng Y, Yan Y, Sun W, Kong L, Huang Y, Liu Y, Jiang C, Ping J, Li C. Mesenchymal stem cells-derived exosomes alleviate liver fibrosis by targeting Hedgehog/SMO signaling. Hepatol Int 2024; 18:1781-1791. [PMID: 39138757 DOI: 10.1007/s12072-024-10717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND & AIMS Despite increasing knowledge regarding the cellular and molecular mechanisms of liver fibrogenesis, there is currently no approved drug for the treatment of liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for tissue damage and inflammation. This study was designed to determine the protective effect and underlying mechanism of human umbilical cord-derived MSCs (UC-MSCs) on thioacetamide-induced liver fibrosis. METHODS Liver fibrosis was induced in mice by intraperitoneal injection of thioacetamide (TAA). Some mice were then given injection of UC-MSCs or UC-MSCs-derived exosomes (UC-MSCs-Exo) via the tail vein. Liver tissues were collected for histologic analysis. RESULTS We found that administration of UC-MSCs significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels, and attenuated hepatic inflammation and fibrosis. Moreover, the therapeutic effect of UC-MSCs-derived exosomes was similar to that of UC-MSCs. Intriguingly, UC-MSCs-Exo treatment downregulated the expression of smoothened (SMO), a fundamental component of Hedgehog signaling which plays a critical role in fibrogenesis, and subsequently inhibited the activation of hepatic stellate cells, a central driver of fibrosis in experimental and human liver injury. Furthermore, the anti-inflammatory and anti-fibrotic effects of UCMSCs- Exo was reversed by the SMO agonist SAG treatment in mice. CONCLUSION Our findings suggest that UC-MSCs-Exo exert therapeutic effects on liver fibrosis, at least in part, through inhibiting the Hedgehog/SMO signaling pathway.
Collapse
Affiliation(s)
- Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yan Zheng
- Department of Pharmacy, Hubei Aerospace Hospital, Xiaogan, Hubei, China
| | - Yufei Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Wenao Sun
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Liangyi Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yating Huang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yujie Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Chaochen Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Ping
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China.
| |
Collapse
|
9
|
Jeong Y, Deveza L, Ortinau L, Lei K, Dawson JR, Park D. Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair. JCI Insight 2024; 9:e173831. [PMID: 39405183 PMCID: PMC11601900 DOI: 10.1172/jci.insight.173831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.
Collapse
Affiliation(s)
| | - Lorenzo Deveza
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Kevin Lei
- Department of Molecular and Human Genetics and
| | - John R. Dawson
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics and
| |
Collapse
|
10
|
Wu Y, Li J, Feng K, Tan A, Gao Y, Chen W, Jia W, Guo X, Kang J. N-CADHERIN +/CD168 - subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction. Stem Cell Res Ther 2024; 15:423. [PMID: 39533355 PMCID: PMC11559175 DOI: 10.1186/s13287-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The efficiency of mesenchymal stem cells (MSCs) in treating myocardial infarction (MI) remains inconsistent, which limits their therapeutic applications. Therefore, exploring the mechanism for the inconsistent efficacy of MSCs and identification the criteria for screening MSCs are important for improving the efficiency of MSCs. METHODS Mouse model after MI was utilized to test the role of MSCs from different donors and the functional subpopulation in improving cardiac function. Heterogeneity of MSCs was identified using single-cell RNA sequencing (scRNA-seq) of MSC-GY. GSEA and Scissor analyses were used to find the functional subpopulations of MSCs that promote angiogenesis. The role of functional subpopulations in promoting angiogenesis was verified by detecting the secretory proteins, the ratio of N-CADHERIN+/CD168- subpopulations in MSCs, and the tube formation, migration, and proliferation of HUVECs after treatment with conditional medium (CM) derived from different MSCs. RESULTS We found that umbilical cord-derived MSCs (UC-MSCs) from different donors have varied therapeutic efficacy in MI mice and UC-MSCs with higher therapeutic effectiveness exhibited the most potent pro-angiogenic effects by secreting elevated levels of angiogenesis-related proteins, such as MYDGF, VEGFA, and FGF2. ScRNA-seq of 10,463 UC-MSCs revealed that the N-CADHERIN+/CD168- subpopulation was closely associated with pro-angiogenic effects, and the ratio of this cell subpopulation was positively correlated with the angiogenic potential of MSCs. We also found that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in improving cardiac function of MI mice. CONCLUSIONS Our study identified that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in treating MI, which was essential for the development and utilization of MSCs in MI treatment.
Collapse
Affiliation(s)
- Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingying Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Yan W, Wu H, Wu Y, Gao Z, Li Z, Zhao F, Cao C, Wang J, Cheng J, Hu X, Ao Y. Exercise Induced Endothelial Mesenchymal Transition (EndMT) Facilitates Meniscal Fibrocartilage Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403788. [PMID: 39344749 PMCID: PMC11600215 DOI: 10.1002/advs.202403788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/01/2024] [Indexed: 10/01/2024]
Abstract
The meniscus is a semilunar wedge-shaped fibrocartilage tissue within the knee joint that is important for withstanding mechanical shock during joint motion. The intrinsic healing capacity of meniscus tissue is very limited, which makes meniscectomy the primary treatment method in the clinic. An effective translational strategy for regenerating the meniscus after total or subtotal meniscectomy, particularly for extensive meniscal lesions or degeneration, is yet to be developed. The present study demonstrates that the endothelial mesenchymal transition (EndMT) contributes to meniscal regeneration. The mechanical stimulus facilitated EndMT by activating TGF-β2 signaling. A handheld bioprinter system to intraoperatively fabricate a porous meniscus scaffold according to the resected meniscus tissue is developed; this can simplify the scaffold fabrication procedure and period. The transplantation of a porous meniscus scaffold combined with a postoperative regular exercise stimulus facilitated the regeneration of anisotropic meniscal fibrocartilaginous tissue and protected the joint cartilage from degeneration in an ovine subtotal meniscectomy model. Single-cell RNA sequencing and immunofluorescence co-staining analyses further confirmed the occurrence of EndMT during meniscal regeneration. EndMT-transformed cells gave rise to fibrochondrocytes, subsequently contributing to meniscal fibrocartilage regeneration. Thus, an efficient translational strategy to facilitate meniscal regeneration is developed.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Haoda Wu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Yue Wu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Zeyuan Gao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Zong Li
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Jianquan Wang
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Jin Cheng
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| |
Collapse
|
12
|
Yuan Z, Zhang Y, He X, Wang X, Wang X, Ren S, Su J, Shen J, Li X, Xiao Z. Engineering mesenchymal stem cells for premature ovarian failure: overcoming challenges and innovating therapeutic strategies. Theranostics 2024; 14:6487-6515. [PMID: 39479455 PMCID: PMC11519806 DOI: 10.7150/thno.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of infertility in women, causing significant psychological and physical distress. Current therapeutic options are limited, necessitating the exploration of new treatments. Mesenchymal stem cells (MSCs), known for their remarkable homing and regenerative properties, have emerged as a promising intervention for POF. However, their clinical efficacy has been inconsistent. This paper aims to address these challenges by examining the cellular heterogeneity within MSC populations, which is crucial for identifying and selecting specific functional subpopulations for clinical applications. Understanding this heterogeneity can enhance therapeutic efficacy and ensure treatment stability. Additionally, this review comprehensively examines the literature on the effectiveness, safety, and ethical considerations of MSCs for ovarian regeneration, with a focus on preclinical and clinical trials. We also discuss potential strategies involving genetically and tissue-engineered MSCs. By integrating insights from these studies, we propose new directions for the design of targeted MSC treatments for POF and related disorders, potentially improving outcomes, addressing safety concerns, and expanding therapeutic options while ensuring ethical compliance.
Collapse
Affiliation(s)
- Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
- Luzhou People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Mokhtari F, Nam HY, Ruhparwar A, Raad R, Razal JM, Varley RJ, Wang CH, Foroughi J. Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices. J Mater Chem B 2024; 12:9727-9739. [PMID: 39224031 DOI: 10.1039/d4tb01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-performance biocompatible composite materials are gaining attention for their potential in various fields such as neural tissue scaffolds, bio-implantable devices, energy harvesting, and biomechanical sensors. However, these devices currently face limitations in miniaturization, finite battery lifetimes, fabrication complexity, and rigidity. Hence, there is an urgent need for smart and self-powering soft devices that are easily deployable under physiological conditions. Herein, we present a straightforward and efficient fabrication technique for creating flexible/stretchable fiber-based piezoelectric structures using a hybrid nanocomposite of polyvinylidene fluoride (PVDF), reduced graphene oxide (rGO), and barium-titanium oxide (BT). These nanocomposite fibers are capable of converting biomechanical stimuli into electrical signals across various structural designs (knit, braid, woven, and coil). It was found that a stretchable configuration with higher output voltage (4 V) and a power density (87 μW cm-3) was obtained using nanocomposite coiled fibers or knitted fibers, which are ideal candidates for real-time monitoring of physiological signals. These structures are being proposed for practical transition to the development of the next generation of fiber-based biomedical devices. The cytotoxicity and cytocompatibility of nanocomposite fibers were tested on human mesenchymal stromal cells. The obtained results suggest that the developed fibers can be utilized for smart scaffolds and bio-implantable devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Arjang Ruhparwar
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
| | - Raad Raad
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Javad Foroughi
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Behm C, Miłek O, Schwarz K, Kovar A, Derdak S, Rausch-Fan X, Moritz A, Andrukhov O. Heterogeneity in Dental Tissue-Derived MSCs Revealed by Single-Cell RNA-seq. J Dent Res 2024; 103:1141-1152. [PMID: 39327720 PMCID: PMC11500480 DOI: 10.1177/00220345241271997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, progenitor cells that reside in tissues across the human body, including the periodontal ligament (PDL) and gingiva. They are a promising therapeutic tool for various degenerative and inflammatory diseases. However, different heterogeneity levels caused by tissue-to-tissue and donor-to-donor variability, and even intercellular differences within a given MSCs population, restrict their therapeutic potential. There are considerable efforts to decipher these heterogeneity levels using different "omics" approaches, including single-cell transcriptomics. Previous studies applied this approach to compare MSCs isolated from various tissues of different individuals, but distinguishing between donor-to-donor and tissue-to-tissue variability is still challenging. In this study, MSCs were isolated from the PDL and gingiva of 5 periodontally healthy individuals and cultured in vitro. A total of 3,844 transcriptomes were generated using single-cell mRNA sequencing. Clustering across the 2 different tissues per donor identified PDL- and gingiva-specific and tissue-spanning MSCs subpopulations with unique upregulated gene sets. Gene/pathway enrichment and protein-protein interaction (PPI) network analysis revealed differences restricted to several cellular processes between tissue-specific subpopulations, indicating a limited tissue-of-origin variability in MSCs. Gene expression, pathway enrichment, and PPI network analysis across all donors' PDL- or gingiva-specific subpopulations showed significant but limited donor-to-donor differences. In conclusion, this study demonstrates tissue- and donor-specific variabilities in the transcriptome level of PDL- and gingiva-derived MSCs, which seem restricted to specific cellular processes. Identifying tissue-specific and tissue-spanning subpopulations highlights the intercellular differences in dental tissue-derived MSCs. It could be reasonable to control MSCs at a single-cell level to ensure their properties before transplantation.
Collapse
Affiliation(s)
- C. Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - K. Schwarz
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Kovar
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - S. Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - X. Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| |
Collapse
|
15
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
16
|
Xia Y, Wang L, Shen X, Xu Y, Xu W, Li J, Fan L, Chen L. Mesenchymal stem cell infusion for enhancing hematopoietic recovery and addressing cytopenias in CAR-T cell therapy. Stem Cell Res Ther 2024; 15:333. [PMID: 39334276 PMCID: PMC11437967 DOI: 10.1186/s13287-024-03941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T therapy has emerged as a promising treatment for hematologic malignancies. However, cytopenia remains one of the most frequent and challenging adverse effects of this therapy. METHODS We conducted a retrospective analysis of 26 patients with relapsed/refractory aggressive B-cell lymphoma who received CAR-T therapy at our center. Subsequently, to investigate measures to address cytopenias following CAR-T therapy, we isolated and generated murine CAR-T cells and bone marrow-derived mesenchymal stem cells (MSCs), establishing a murine syngeneic CAR-T therapy model. We assessed the impact of MSC infusion on hematopoietic recovery post-CAR-T therapy by evaluating complete blood count, bone marrow hematopoietic stem cells and their subpopulations, bone marrow histomorphology, and hematopoiesis-related genes. RESULTS All patients experienced cytopenias to varying degrees, with complete lineage involvement in half of the patients. Grade ≥ 3 cytopenias were observed in 88.46% of the patients. CAR-T therapy was associated with a higher incidence of biphasic, late-onset, or prolonged cytopenias. Survival analysis indicated that neutropenia and lymphopenia tended to be associated with better prognosis, whereas thrombocytopenia tended to be related to poorer outcomes. Through animal experiments, we discovered that MSCs infusion boosted HSCs and their long-term subpopulations, enhancing hematopoietic recovery, particularly in the megakaryocyte lineage, and mitigating bone marrow damage. Importantly, both in vitro and in vivo experiments demonstrated that MSCs did not compromise the activity or antitumor efficacy of CAR-T cells. CONCLUSIONS Our findings propose MSCs infusion as a promising strategy to address cytopenias, particularly thrombocytopenia, after CAR-T therapy. This approach could help overcome certain limitations of cellular immunotherapy by enhancing hematopoietic recovery without compromising the efficacy of CAR-T cells. HIGHLIGHTS 1 Cytopenia is a frequently observed adverse effect following CAR-T therapy, and it is often characterized by biphasic and prolonged patterns. 2 MSCs play a critical role in promoting hematopoietic recovery and mitigating bone marrow damage in a murine model of CAR-T therapy 3 The activity and antitumor efficacy of CAR-T cells were not impaired by MSCs.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Hematology, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Li Wang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuxing Shen
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ying Xu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Lijuan Chen
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
17
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Yi N, Zeng Q, Zheng C, Li S, Lv B, Wang C, Li C, Jiang W, Liu Y, Yang Y, Yan T, Xue J, Xue Z. Functional variation among mesenchymal stem cells derived from different tissue sources. PeerJ 2024; 12:e17616. [PMID: 38952966 PMCID: PMC11216188 DOI: 10.7717/peerj.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.
Collapse
Affiliation(s)
- Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Qiao Zeng
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Chunbing Zheng
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Shiping Li
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Bo Lv
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Cheng Wang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Chanyi Li
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjiao Jiang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yun Liu
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yuan Yang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Tenglong Yan
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Jinfeng Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| |
Collapse
|
19
|
Qi Y, Wang X, Bai Z, Xu Y, Lu T, Zhu H, Zhang S, Wu Z, Liu Z, He Z, Jia W. Enhancement of the function of mesenchymal stem cells by using a GMP-grade three-dimensional hypoxic large-scale production system. Heliyon 2024; 10:e30968. [PMID: 38826705 PMCID: PMC11141262 DOI: 10.1016/j.heliyon.2024.e30968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Efficiently increasing the production of clinical-grade mesenchymal stem cells (MSCs) is crucial for clinical applications. Challenges with the current planar culture methods include scalability issues, labour intensity, concerns related to cell senescence, and heterogeneous responses. This study aimed to establish a large-scale production system for MSC generation. In addition, a comparative analysis of the biological differences between MSCs cultured under various conditions was conducted. Methods and materials We developed a GMP-grade three-dimensional hypoxic large-scale production (TDHLSP) system for MSCs using self-fabricated glass microcarriers and a multifunctional bioreactor. Different parameters, including cell viability, cell diameter, immunophenotype, morphology, karyotype, and tumourigenicity were assessed in MSCs cultured using different methods. Single-cell RNA sequencing (scRNA-seq) revealed pathways and genes associated with the enhanced functionality of MSCs cultured in three dimensions under hypoxic conditions (3D_Hypo MSCs). Moreover, CD142 knockdown in 3D_Hypo MSCs confirmed its in vitro functions. Results Inoculating 2 × 108 MSCs into a 2.6 L bioreactor in the TDHLSP system resulted in a final scale of 4.6 × 109 3D_Hypo MSCs by day 10. The 3D_Hypo MSCs retained characteristics of the 2D MSCs, demonstrating their genomic stability and non-tumourigenicity. Interestingly, the subpopulations of 3D_Hypo MSCs exhibited a more uniform distribution and a closer relationship than those of 2D MSCs. The heterogeneity of MSCs was strongly correlated with 'cell cycle' and 'stroma/mesenchyme', with 3D_Hypo MSCs expressing higher levels of activated stroma genes. Compared to 2D MSCs, 3D_Hypo MSCs demonstrated enhanced capabilities in blood vessel formation, TGF-β1 secretion, and inhibition of BV2 proliferation, with maintenance of Senescence-Associated β-Galactosidase (SA-β-gal) negativity. However, the enhanced functions of 3D_Hypo MSCs decreased upon the downregulation of CD142 expression. Conclusion The TDHLSP system led to a high overall production of MSCs and promoted uniform distribution of MSC clusters. This cultivation method also enhanced key cellular properties, such as angiogenesis, immunosuppression, and anti-aging. These functionally improved and uniform MSC subpopulations provide a solid basis for the clinical application of stem cell therapies.
Collapse
Affiliation(s)
- Yiyao Qi
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Ying Xu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Tingting Lu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Hanyu Zhu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Shoumei Zhang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihong Wu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhiying He
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| |
Collapse
|
20
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
21
|
Robb KP, Galipeau J, Shi Y, Schuster M, Martin I, Viswanathan S. Failure to launch commercially-approved mesenchymal stromal cell therapies: what's the path forward? Proceedings of the International Society for Cell & Gene Therapy (ISCT) Annual Meeting Roundtable held in May 2023, Palais des Congrès de Paris, Organized by the ISCT MSC Scientific Committee. Cytotherapy 2024; 26:413-417. [PMID: 37804284 DOI: 10.1016/j.jcyt.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 10/09/2023]
Abstract
Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.
Collapse
Affiliation(s)
- Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin in Madison, Madison, Wisconsin, USA; University of Wisconsin Carbone Comprehensive Cancer, University of Wisconsin in Madison, Madison, Wisconsin, USA
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; The Third Affiliated Hospital of Soochow University, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou Jiangsu, China
| | | | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
23
|
Wang X, Yang C, Ma X, Li X, Qi Y, Bai Z, Xu Y, Ma K, Luo Y, Song J, Jia W, He Z, Liu Z. A division-of-labor mode contributes to the cardioprotective potential of mesenchymal stem/stromal cells in heart failure post myocardial infarction. Front Immunol 2024; 15:1363517. [PMID: 38562923 PMCID: PMC10982400 DOI: 10.3389/fimmu.2024.1363517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Treatment of heart failure post myocardial infarction (post-MI HF) with mesenchymal stem/stromal cells (MSCs) holds great promise. Nevertheless, 2-dimensional (2D) GMP-grade MSCs from different labs and donor sources have different therapeutic efficacy and still in a low yield. Therefore, it is crucial to increase the production and find novel ways to assess the therapeutic efficacy of MSCs. Materials and methods hUC-MSCs were cultured in 3-dimensional (3D) expansion system for obtaining enough cells for clinical use, named as 3D MSCs. A post-MI HF mouse model was employed to conduct in vivo and in vitro experiments. Single-cell and bulk RNA-seq analyses were performed on 3D MSCs. A total of 125 combination algorithms were leveraged to screen for core ligand genes. Shinyapp and shinycell workflows were used for deploying web-server. Result 3D GMP-grade MSCs can significantly and stably reduce the extent of post-MI HF. To understand the stable potential cardioprotective mechanism, scRNA-seq revealed the heterogeneity and division-of-labor mode of 3D MSCs at the cellular level. Specifically, scissor phenotypic analysis identified a reported wound-healing CD142+ MSCs subpopulation that is also associated with cardiac protection ability and CD142- MSCs that is in proliferative state, contributing to the cardioprotective function and self-renewal, respectively. Differential expression analysis was conducted on CD142+ MSCs and CD142- MSCs and the differentially expressed ligand-related model was achieved by employing 125 combination algorithms. The present study developed a machine learning predictive model based on 13 ligands. Further analysis using CellChat demonstrated that CD142+ MSCs have a stronger secretion capacity compared to CD142- MSCs and Flow cytometry sorting of the CD142+ MSCs and qRT-PCR validation confirmed the significant upregulation of these 13 ligand factors in CD142+ MSCs. Conclusion Clinical GMP-grade 3D MSCs could serve as a stable cardioprotective cell product. Using scissor analysis on scRNA-seq data, we have clarified the potential functional and proliferative subpopulation, which cooperatively contributed to self-renewal and functional maintenance for 3D MSCs, named as "division of labor" mode of MSCs. Moreover, a ligand model was robustly developed for predicting the secretory efficacy of MSCs. A user-friendly web-server and a predictive model were constructed and available (https://wangxc.shinyapps.io/3D_MSCs/).
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Chao Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaoxue Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Ying Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Keming Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yi Luo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jiyang Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
24
|
Shen J, Wu L, Shi X, Chen G, Liu T, Xu F, Xu X, Kou X, Zhao Y, Wang H, Wang C, Gao S, Xu S. Transplantation of the LRP1 high subpopulation of human umbilical cord-derived mesenchymal stem cells improves ovarian function in mice with premature ovarian failure and aged mice. Stem Cell Res Ther 2024; 15:64. [PMID: 38438896 PMCID: PMC10913679 DOI: 10.1186/s13287-024-03660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.
Collapse
Affiliation(s)
- Jiacheng Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xiaoying Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Gang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Tingwei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaocui Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X, Liu F, Zhang L. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther 2023; 14:381. [PMID: 38124129 PMCID: PMC10734083 DOI: 10.1186/s13287-023-03587-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
With the continuous improvement of human technology, the medical field has gradually moved from molecular therapy to cellular therapy. As a safe and effective therapeutic tool, cell therapy has successfully created a research boom in the modern medical field. Mesenchymal stem cells (MSCs) are derived from early mesoderm and have high self-renewal and multidirectional differentiation ability, and have become one of the important cores of cell therapy research by virtue of their immunomodulatory and tissue repair capabilities. In recent years, the application of MSCs in various diseases has received widespread attention, but there are still various problems in the treatment of MSCs, among which the heterogeneity of MSCs may be one of the causes of the problem. In this paper, we review the correlation of MSCs heterogeneity to provide a basis for further reduction of MSCs heterogeneity and standardization of MSCs and hope to provide a reference for cell therapy.
Collapse
Affiliation(s)
- Jingxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030600, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
26
|
Wan Z, Chen YF, Pan Q, Wang Y, Yuan S, Chin HY, Wu HH, Lin WT, Cheng PY, Yang YJ, Wang YF, Kumta SM, Lee CW, Lee OKS. Single-cell transcriptome analysis reveals the effectiveness of cytokine priming irrespective of heterogeneity in mesenchymal stromal cells. Cytotherapy 2023; 25:1155-1166. [PMID: 37715776 DOI: 10.1016/j.jcyt.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are recognized as a potential cell-based therapy for regenerative medicine. Short-term inflammatory cytokine pre-stimulation (cytokine priming) is a promising approach to enhance regenerative efficacy of MSCs. However, it is unclear whether their intrinsic heterogenic nature causes an unequal response to cytokine priming, which might blunt the accessibility of clinical applications. METHODS In this study, by analyzing the single-cell transcriptomic landscape of human bone marrow MSCs from a naïve to cytokine-primed state, we elucidated the potential mechanism of superior therapeutic potential in cytokine-primed MSCs. RESULTS We found that cytokine-primed MSCs had a distinct transcriptome landscape. Although substantial heterogeneity was identified within the population in both naïve and primed states, cytokine priming enhanced the several characteristics of MSCs associated with therapeutic efficacy irrespective of heterogeneity. After cytokine-priming, all sub-clusters of MSCs possessed high levels of immunoregulatory molecules, trophic factors, stemness-related genes, anti-apoptosis markers and low levels of multi-lineage and senescence signatures, which are critical for their therapeutic potency. CONCLUSIONS In conclusion, our results provide new insights into MSC heterogeneity under cytokine stimulation and suggest that cytokine priming reprogrammed MSCs independent of heterogeneity.
Collapse
Affiliation(s)
- Zihao Wan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Hospital Authority, Hong Kong SAR, China
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Qi Pan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hui Yen Chin
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Po-Yu Cheng
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Jung Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
27
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Deng J, Liu YJ, Wei WT, Huang QX, Zhao LP, Luo LY, Zhu Q, Zhang L, Chen Y, Ren YL, Jia SG, Lin YL, Yang J, Lv FH, Zhang HP, Li FE, Li L, Li MH. Single-cell transcriptome and metagenome profiling reveals the genetic basis of rumen functions and convergent developmental patterns in ruminants. Genome Res 2023; 33:1690-1707. [PMID: 37884341 PMCID: PMC10691550 DOI: 10.1101/gr.278239.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Jing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen-Tian Wei
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Xuan Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li-Ping Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou 256600, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu-Luan Lin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Ping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng-E Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
29
|
Lee T, Hwang S, Seo D, Cho S, Yang S, Kim H, Kim J, Uh Y. Comparative Analysis of Biological Signatures between Freshly Preserved and Cryo-Preserved Bone Marrow Mesenchymal Stem Cells. Cells 2023; 12:2355. [PMID: 37830568 PMCID: PMC10571833 DOI: 10.3390/cells12192355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple connective tissue lineages, including osteoblasts, chondrocytes, and adipocytes. MSCs secrete paracrine molecules that are associated with immunomodulation, anti-fibrotic effects, and angiogenesis. Due to their orchestrative potential, MSCs have been therapeutically applied for several diseases. An important aspect of this process is the delivery of high-quality MSCs to patients at the right time, and cryo-biology and cryo-preservation facilitate the advancement of the logistics thereof. This study aimed to compare the biological signatures between freshly preserved and cryo-preserved MSCs by using big data sourced from the Pharmicell database. From 2011 to 2022, data on approximately 2300 stem cell manufacturing cases were collected. The dataset included approximately 60 variables, including viability, population doubling time (PDT), immunophenotype, and soluble paracrine molecules. In the dataset, 671 cases with no missing data were able to receive approval from an Institutional Review Board and were analyzed. Among the 60 features included in the final dataset, 20 were selected by experts and abstracted into two features by using a principal component analysis. Circular clustering did not introduce any differences between the two MSC preservation methods. This pattern was also observed when using viability, cluster of differentiation (CD) markers, and paracrine molecular indices as inputs for unsupervised analysis. The individual average PDT and cell viability at most passages did not differ according to the preservation method. Most immunophenotypes (except for the CD14 marker) and paracrine molecules did not exhibit different mean levels or concentrations between the frozen and unfrozen MSC groups. Collectively, the biochemical signatures of the cryo-preserved and unfrozen bone marrow MSCs were comparable.
Collapse
Affiliation(s)
- Taesic Lee
- Division of Data Mining and Computational Biology, Regenerative Medicine Research Center, Wonju Severance Christian Hospital, Wonju 26426, Republic of Korea;
- Department of Family Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Sangwon Hwang
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Dongmin Seo
- Department of Medical Information, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Sungyoon Cho
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Sunja Yang
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Hyunsoo Kim
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Jangyoung Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
30
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
31
|
Wang Z, Liao Y, Wang C, Tang C, Fang C, Luo J, Liu H, Mo X, Wang Z, Shen L, Wang J, Chen X, Yin Z, Li J, Shen W. Stem cell-based therapeutic strategies for rotator cuff tendinopathy. J Orthop Translat 2023; 42:73-81. [PMID: 37664079 PMCID: PMC10470406 DOI: 10.1016/j.jot.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Rotator cuff tendinopathy is a common musculoskeletal disorder that imposes significant health and economic burden. Stem cell therapy has brought hope for tendon healing in patients with final stage rotator cuff tendinopathy. Some clinical trials have confirmed the effectiveness of stem cell therapy for rotator cuff tendinopathy, but its application has not been promoted and approved. There are still many issues that should be solved prior to using stem cell therapy in clinical applications. The optimal source and dose of stem cells for rotator cuff tendinopathy should be determined. We also proposed novel prospective approaches that can overcome cell population heterogeneity and standardize patient types for stem cell applications. The translational potential of this article This review explores the optimal sources of stem cells for rotator cuff tendinopathy and the principles for selecting stem cell dosages. Key strategies are provided for stem cell population standardization and recipient selection.
Collapse
Affiliation(s)
- Zetao Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Cailian Fang
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Mo
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zicheng Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Lingfang Shen
- Air Force Health Care Center for Special Services, Hangzhou, China
| | | | - Xiao Chen
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi Yin
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Weiliang Shen
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Hao RC, Li ZL, Wang FY, Tang J, Li PL, Yin BF, Li XT, Han MY, Mao N, Liu B, Ding L, Zhu H. Single-cell transcriptomic analysis identifies a highly replicating Cd168 + skeletal stem/progenitor cell population in mouse long bones. J Genet Genomics 2023; 50:702-712. [PMID: 37075860 DOI: 10.1016/j.jgg.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Skeletal stem/progenitor cells (SSPCs) are tissue-specific stem/progenitor cells localized within skeletons and contribute to bone development, homeostasis, and regeneration. However, the heterogeneity of SSPC populations in mouse long bones and their respective regenerative capacity remain to be further clarified. In this study, we perform integrated analysis using single-cell RNA sequencing (scRNA-seq) datasets of mouse hindlimb buds, postnatal long bones, and fractured long bones. Our analyses reveal the heterogeneity of osteochondrogenic lineage cells and recapitulate the developmental trajectories during mouse long bone growth. In addition, we identify a novel Cd168+ SSPC population with highly replicating capacity and osteochondrogenic potential in embryonic and postnatal long bones. Moreover, the Cd168+ SSPCs can contribute to newly formed skeletal tissues during fracture healing. Furthermore, the results of multicolor immunofluorescence show that Cd168+ SSPCs reside in the superficial zone of articular cartilage as well as in growth plates of postnatal mouse long bones. In summary, we identify a novel Cd168+ SSPC population with regenerative potential in mouse long bones, which adds to the knowledge of the tissue-specific stem cells in skeletons.
Collapse
Affiliation(s)
- Rui-Cong Hao
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fei-Yan Wang
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pei-Lin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng-Yue Han
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Li Ding
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Air Force Medical Center, PLA, Beijing 100142, China.
| | - Heng Zhu
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
33
|
Zheng Y, Shen P, Tong M, Li H, Ren C, Wu F, Li H, Yang H, Cai B, Du W, Zhao X, Yao S, Quan R. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2023:166783. [PMID: 37302424 DOI: 10.1016/j.bbadis.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/β-catenin pathway were further determined as appropriate. RESULTS A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/β-catenin pathway. CONCLUSIONS Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/β-catenin signaling, thus providing new insights into the aetiology of CS.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panyang Shen
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Tong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangchao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanyu Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Xing Zhao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shasha Yao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China; Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
34
|
Anbazhagan M, Geem D, Venkateswaran S, Pelia R, Kolachala VL, Dodd A, Maddipatla SC, Cutler DJ, Matthews JD, Chinnadurai R, Kugathasan S. Characterization of Intestinal Mesenchymal Stromal Cells From Patients With Inflammatory Bowel Disease for Autologous Cell Therapy. Stem Cells Transl Med 2023; 12:112-122. [PMID: 36869704 PMCID: PMC9985114 DOI: 10.1093/stcltm/szad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 03/05/2023] Open
Abstract
Therapy with mesenchymal stromal cells (MSCs) has shown promise in inflammatory bowel disease-leveraging their immunosuppressive and regenerative properties. However, the potential immunogenic complications of allogenic MSCs sourced from different tissues raise concern. Thus, we assessed the fitness and functionality of autologous intestinal MSCs as a potential platform for cellular therapy. Mucosal biopsy-derived MSCs from Crohn's disease (n = 11), ulcerative colitis (n = 12), and controls (n = 14) were analyzed by microscopy and flow cytometry for doubling-time, morphology, differentiation potential, and immunophenotype. Gene expression, cell-subtype composition, along with surface marker and secretome changes after IFN-γ priming were measured by bulk and single-cell RNA sequencing coupled with a 30-plex Luminex panel. MSCs expanded ex vivo demonstrate canonical MSC markers, similar growth kinetics, and tripotency regardless of the patient phenotype. Global transcription patterns were similar at baseline though inflammatory bowel disease (IBD) rectal MSCs showed changes in select immunomodulatory genes. IFN-γ priming resulted in upregulation of shared immunoregulatory genes (particularly in PD-1 signaling) and overrode the transcriptional differences observed at baseline. Furthermore, MSCs secrete key immunomodulatory molecules at baseline and in response to IFN-γ including CXCL10, CXCL9, and MCP-1. Overall, MSCs from IBD patients have normal transcriptional and immunomodulatory properties with therapeutic potential and can be sufficiently expanded.
Collapse
Affiliation(s)
- Murugadas Anbazhagan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Duke Geem
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Ranjit Pelia
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Anne Dodd
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Sushma C Maddipatla
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jason D Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Yang Y, Zhang W, Wang X, Yang J, Cui Y, Song H, Li W, Li W, Wu L, Du Y, He Z, Shi J, Zhang J. A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Front Cell Dev Biol 2023; 11:998666. [PMID: 36824368 PMCID: PMC9941187 DOI: 10.3389/fcell.2023.998666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-β-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.
Collapse
Affiliation(s)
- Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jingxian Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Weiping Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| | - Wei Li
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Le Wu
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Yao Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| |
Collapse
|
36
|
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, Hu K, Lin J, Lin Q, Tan Y, Li S, Chen J, Chen L, Chen X. Single-Cell and Spatial Transcriptomics Decodes Wharton's Jelly-Derived Mesenchymal Stem Cells Heterogeneity and a Subpopulation with Wound Repair Signatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204786. [PMID: 36504438 PMCID: PMC9896049 DOI: 10.1002/advs.202204786] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.
Collapse
|
37
|
Robb KP, Audet J, Gandhi R, Viswanathan S. Putative critical quality attribute matrix identifies mesenchymal stromal cells with potent immunomodulatory and angiogenic "fitness" ranges in response to culture process parameters. Front Immunol 2022; 13:972095. [PMID: 36532069 PMCID: PMC9747767 DOI: 10.3389/fimmu.2022.972095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (MSC(AT)) display immunomodulatory and angiogenic properties, but an improved understanding of quantitative critical quality attributes (CQAs) that inform basal MSC(AT) fitness ranges for immunomodulatory and/or angiogenic applications is urgently needed for effective clinical translation. We constructed an in vitro matrix of multivariate readouts to identify putative CQAs that were sensitive enough to discriminate between specific critical processing parameters (CPPs) chosen for their ability to enhance MSC immunomodulatory and angiogenic potencies, with consideration for donor heterogeneity. We compared 3D aggregate culture conditions (3D normoxic, 3D-N) and 2D hypoxic (2D-H) culture as non-genetic CPP conditions that augment immunomodulatory and angiogenic fitness of MSC(AT). We measured multivariate panels of curated genes, soluble factors, and morphometric features for MSC(AT) cultured under varying CPP and licensing conditions, and we benchmarked these against two functional and therapeutically relevant anchor assays - in vitro monocyte/macrophage (MΦ) polarization and in vitro angiogenesis. Our results showed that varying CPP conditions was the primary driver of MSC(AT) immunomodulatory fitness; 3D-N conditions induced greater MSC(AT)-mediated MΦ polarization toward inflammation-resolving subtypes. In contrast, donor heterogeneity was the primary driver of MSC(AT) angiogenic fitness. Our analysis further revealed panels of putative CQAs with minimum and maximum values that consisted of twenty MSC(AT) characteristics that informed immunomodulatory fitness ranges, and ten MSC(AT) characteristics that informed angiogenic fitness ranges. Interestingly, many of the putative CQAs consisted of angiogenic genes or soluble factors that were inversely correlated with immunomodulatory functions (THBS1, CCN2, EDN1, PDGFA, VEGFA, EDIL3, ANGPT1, and ANG genes), and positively correlated to angiogenic functions (VEGF protein), respectively. We applied desirability analysis to empirically rank the putative CQAs for MSC(AT) under varying CPP conditions and donors to numerically identify the desirable CPP conditions or donors with maximal MSC(AT) immunomodulatory and/or angiogenic fitness. Taken together, our approach enabled combinatorial analysis of the matrix of multivariate readouts to provide putative quantitative CQAs that were sensitive to variations in select CPPs that enhance MSC immunomodulatory/angiogenic potency, and donor heterogeneity. These putative CQAs may be used to prospectively screen potent MSC(AT) donors or cell culture conditions to optimize for desired basal MSC(AT) immunomodulatory or angiogenic fitness.
Collapse
Affiliation(s)
- Kevin P. Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada,Krembil Research Institute, University Health Network, Toronto, ON, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Julie Audet
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rajiv Gandhi
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada,Department of Surgery, Division of Orthopedic Surgery, University of Toronto, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada,Krembil Research Institute, University Health Network, Toronto, ON, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada,*Correspondence: Sowmya Viswanathan,
| |
Collapse
|
38
|
Chen H, Wen X, Liu S, Sun T, Song H, Wang F, Xu J, Zhang Y, Zhao Y, Yu J, Sun L. Dissecting Heterogeneity Reveals a Unique BAMBI high MFGE8 high Subpopulation of Human UC-MSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202510. [PMID: 36373720 PMCID: PMC9811468 DOI: 10.1002/advs.202202510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mixed human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are widely applied in clinical trials to treat various diseases due to their multipotent differentiation potential and immune regulatory activities. However, the lack of a clear understanding of their heterogeneity hampers their application to precisely treat diseases. Moreover, few studies have experimentally authenticated the functions of so-called UC-MSC subpopulations classified from scRNA-seq samples. Here, this work draws a large-scale single-cell transcriptomic atlas and identified three clusters (C1, C2, and C3), representing the primed, intermediate, and stem statuses individually. The C1 and C3 clusters feature higher expression of cytokines and stemness markers, respectively. Surprisingly, further experimental assays reveal that the BAMBIhigh MFGE8high C1 subgroup has a unique phenotype, distinct transcriptomic profile, and limited adipogenic differentiation potential but compromised immunosuppressive activity in vitro and in vivo in lupus mice. Thus, this work is helpful to clarify the nature of human UC-MSCs and to choose optimal MSC types to treat specific diseases in the future.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Xin Wen
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Shanshan Liu
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Tian Sun
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Hua Song
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Fang Wang
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Jiayue Xu
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Yueyang Zhang
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Yu
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| |
Collapse
|
39
|
Single-cell RNA sequencing reveals different signatures of mesenchymal stromal cell pluripotent-like and multipotent populations. iScience 2022; 25:105395. [PMID: 36339265 PMCID: PMC9633745 DOI: 10.1016/j.isci.2022.105395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Somatic stem cells are advantageous research targets for understanding the properties required to maintain stemness. Human bone marrow-mesenchymal stromal cells (BM-MSCs) were separated into pluripotent-like SSEA-3(+) Muse cells (Muse-MSCs) and multipotent SSEA-3(−) MSCs (MSCs) and were subjected to single-cell RNA sequencing analysis. Compared with MSCs, Muse-MSCs exhibited higher expression levels of the p53 repressor MDM2; signal acceptance-related genes EGF, VEGF, PDGF, WNT, TGFB, INHB, and CSF; ribosomal protein; and glycolysis and oxidative phosphorylation. Conversely, MSCs had higher expression levels of FGF and ANGPT; Rho family and caveola-related genes; amino acid and cofactor metabolism; MHC class I/II, and lysosomal enzyme genes than Muse-MSCs. Unsupervised clustering further divided Muse-MSCs into two clusters stratified by the expression of cell cycle-related genes, and MSCs into three clusters stratified by the expression of cell cycle-, cytoskeleton-, and extracellular matrix-related genes. This study evaluating the differentiation ability of BM-MSC subpopulations provides intriguing insights for understanding stemness.
MSCs were separated into pluripotent-like Muse-MSCs and multipotent MSCs Gene expressions of Muse-MSCs and MSCs were analyzed by single-cell RNA sequencing p53 suppressor, ribosomal protein, and energy metabolism were higher in Muse-MSCs Genes related to the cytoskeleton, amino acid metabolism, and MHC were higher in MSCs
Collapse
|
40
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
41
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
42
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
43
|
Zhang W, Ling Q, Wang B, Wang K, Pang J, Lu J, Bi Y, Zhu D. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell Res Ther 2022; 13:406. [PMID: 35941696 PMCID: PMC9358877 DOI: 10.1186/s13287-022-02974-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs) in type 1 diabetes (T1D) has been demonstrated in both preclinical and clinical studies. MSCs that have been used in research on T1D are derived from various tissue sources, with bone marrow (BM) and umbilical cord (UC) tissues being the most commonly used. However, the influence of tissue origin on the functional properties and therapeutic effects of MSCs in T1D remains unclear. This study aimed to compare the therapeutic efficacy of UC-MSCs and BM-MSCs in a mouse model of T1D as well as in patients with T1D. Methods In non-obese diabetic (NOD) mice, the development of diabetes was accelerated by streptozotocin injections. Thereafter, diabetic mice were randomized and treated intravenously with UC-MSCs, BM-MSCs or phosphate-buffered saline as a control. Blood glucose and serum insulin were measured longitudinally after transplantation. At 14 days post-transplantation, pancreatic tissues were collected to assess insulitis and the β-cell mass. Flow cytometry was performed to evaluate the composition of T lymphocytes in the spleen and pancreatic lymph nodes of the NOD mice. In our retrospective study of patients with T1D, 28 recipients who received insulin therapy alone or a single transplantation of UC-MSCs or BM-MSCs were enrolled. The glycaemic control and β-cell function of the patients during the first year of follow-up were compared. Results In NOD mice, UC-MSC and BM-MSC transplantation showed similar effects on decreasing blood glucose levels and preserving β cells. The regulation of islet autoimmunity was examined, and no significant difference between UC-MSCs and BM-MSCs was observed in the attenuation of insulitis, the decrease in T helper 17 cells or the increase in regulatory T cells. In patients with T1D, MSC transplantation markedly lowered haemoglobin A1c (HbA1c) levels and reduced insulin doses compared to conventional insulin therapy. However, the therapeutic effects were comparable between UC-MSCs and BM-MSCs, and they also exerted similar effects on the endogenous β-cell function in the patients. Conclusion In conclusion, both UC-MSCs and BM-MSCs exhibited comparable therapeutic effects on improving glycaemic control and preserving β-cell function in T1D. Considering their abundance and higher cell yields, UC-MSCs appear to be more promising than BM-MSCs in clinical applications. Trial registration NCT02763423. Registered on May 5, 2016—Retrospectively registered, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Ling
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kai Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jianbo Pang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Lu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
44
|
Cai S, Fan C, Xie L, Zhong H, Li A, Lv S, Liao M, Yang X, Su X, Wang Y, Wang H, Wang M, Huang P, Liu Y, Wang Y, Liu Y, Wang T, Zhong Y, Ma L. Single-cell RNA sequencing reveals the potential mechanism of heterogeneity of immunomodulatory properties of foreskin and umbilical cord mesenchymal stromal cells. Cell Biosci 2022; 12:115. [PMID: 35869528 PMCID: PMC9306236 DOI: 10.1186/s13578-022-00848-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are heterogeneous populations. Heterogeneity exists within the same tissue and between different tissues. Some studies have found enormous heterogeneity in immunomodulatory function among MSCs derived from different tissues. Moreover, the underlying mechanism of heterogeneity in immunomodulatory abilities is still unclear. METHODS Foreskin mesenchymal stromal cells (FSMSCs) and human umbilical cord mesenchymal stromal cells (HuMSCs) were isolated and cultured until the third passage. According to the International Association for Cell Therapy standard, we confirmed the cell type. Then, FSMSCs and HuMSCs were cocultured with human peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) in vitro. Furthermore, the supernatant was sampled for an enzyme-linked immunosorbent assay to investigate the secretion of IL-1β, IL-6, IL-10, TNF-α, and TGF-β1. Finally, we performed single-cell RNA sequencing (scRNA-seq) of FSMSCs and HuMSCs. RESULTS We successfully identified FSMSCs and HuMSCs as MSCs. When cocultured with LPS pretreated PBMCs, FSMSCs and HuMSCs could effectively reduced the secretion of IL-1β and TNF-α. However, FSMSCs stimulated the PBMCs to secrete more IL-10, TGF-β1, and IL-6. Furthermore, 4 cell subsets were identified from integrated scRNA-seq data, including proliferative MSCs (MKI67+, CD146low+, NG2+, PDGFRB-), pericytes (CD146high+, PDGFRB+, MKI67-, CD31-, CD45-, CD34-), immune MSCs (CXCL12high+, PTGIShigh+, PDGFRB+, CD146-, MKI67-) and progenitor proliferative MSCs (CXCL12low+, PTGISlow+, PDGFRB+, CD146-, MKI67-). Among them, we found that immune MSCs with strengthened transcriptional activity were similar to pericytes with regard to the degree of differentiated. Various of immune-related genes, gene sets, and regulons were also enriched in immune MSCs. Moreover, immune MSCs were determined to be close to other cell subsets in cell-cell communication analysis. Finally, we found that the proportion of immune MSCs in foreskin tissue was highest when comparing the subset compositions of MSCs derived from different tissues. CONCLUSIONS FSMSCs show better immunomodulatory capacity than HuMSCs in vitro. Moreover, immune MSCs may play a vital role in the heterogeneity of immunoregulatory properties. This study provides new insights suggesting that immune MSCs can be isolated to exert stable immunoregulatory functions without being limited by the heterogeneity of MSCs derived from different tissues.
Collapse
Affiliation(s)
- Siyu Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Chuiqin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Lichun Xie
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, The Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifeng Zhong
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Aijia Li
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Siyu Lv
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Maochuan Liao
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xixi Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Xing Su
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yue Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Manna Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Peng Huang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yulin Liu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yong Zhong
- Department of Paediatrics, The Southeast General Hospital of Dongguan, Dongguan, 523000, China
| | - Lian Ma
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, The Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, 510150, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, 518000, China
| |
Collapse
|
45
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
46
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
47
|
Li J, Wang Q, An Y, Chen X, Xing Y, Deng Q, Li Z, Wang S, Dai X, Liang N, Hou Y, Yang H, Shang Z. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta. Front Cell Dev Biol 2022; 10:836887. [PMID: 35450295 PMCID: PMC9017713 DOI: 10.3389/fcell.2022.836887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells derived from placenta (PMSCs) are an attractive source for regenerative medicine because of their multidifferentiation potential and immunomodulatory capabilities. However, the cellular and molecular heterogeneity of PMSCs has not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin sequencing (scATAC-seq) techniques to cultured PMSCs from human full-term placenta. Based on the inferred characteristics of cell clusters, we identify several distinct subsets of PMSCs with specific characteristics, including immunomodulatory-potential and highly proliferative cell states. Furthermore, integrative analysis of gene expression and chromatin accessibility showed a clearer chromatin accessibility signature than those at the transcriptional level on immunomodulatory-related genes. Cell cycle gene-related heterogeneity can be more easily distinguished at the transcriptional than the chromatin accessibility level in PMSCs. We further reveal putative subset-specific cis-regulatory elements regulating the expression of immunomodulatory- and proliferation-related genes in the immunomodulatory-potential and proliferative subpopulations, respectively. Moreover, we infer a novel transcription factor PRDM1, which might play a crucial role in maintaining immunomodulatory capability by activating PRDM1-regulon loop. Collectively, our study first provides a comprehensive and integrative view of the transcriptomic and epigenomic features of PMSCs, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of PMSC subset-based cell therapy.
Collapse
Affiliation(s)
- Jinlu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | | | | | - Yanan Xing
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zelong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- BGI College, Northwest University, Xi’an, China
- *Correspondence: Zhouchun Shang,
| |
Collapse
|
48
|
Single-cell RNA sequencing analysis of human bone-marrow-derived mesenchymal stem cells and functional subpopulation identification. Exp Mol Med 2022; 54:483-492. [PMID: 35365767 PMCID: PMC9076886 DOI: 10.1038/s12276-022-00749-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a common kind of multipotent cell in vivo, but their heterogeneity limits their further applications. To identify MSC subpopulations and clarify their relationships, we performed cell mapping of bone-marrow-derived MSCs through single-cell RNA (scRNA) sequencing. In our study, three main subpopulations, namely, the stemness subpopulation, functional subpopulation, and proliferative subpopulation, were identified using marker genes and further bioinformatic analyses. Developmental trajectory analysis showed that the stemness subpopulation was the root and then became either the functional subpopulation or the proliferative subpopulation. The functional subpopulation showed stronger immunoregulatory and osteogenic differentiation abilities but lower proliferation and adipogenic differentiation. MSCs at different passages or isolated from different donors exhibited distinct cell mapping profiles, which accounted for their corresponding different functions. This study provides new insight into the biological features and clinical use of MSCs at the single-cell level, which may contribute to expanding their application in the clinic.
Collapse
|
49
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge.
MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
50
|
Thankam FG, Huynh J, Fang W, Chen Y, Agrawal DK. Exosomal-ribosomal proteins-driven heterogeneity of epicardial adipose tissue derived stem cells under ischemia for cardiac regeneration. J Tissue Eng Regen Med 2022; 16:396-408. [PMID: 35142442 DOI: 10.1002/term.3289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Extracellular ribosomal proteins secreted in exosomes elicit biological/regenerative responses; however, ribosomal proteins contained in the exosomes of ischemia-challenged epicardial adipose tissue-derived stem cells (EATDS) remain unexplored. This study focuses on the identification of ribosomal proteins in the exosomes of ischemia-challenged EATDS and their sub-populations based on the key ribosomal proteins using single-cell genomics. Exosomes were isolated from control, ischemic (ISC), and reperfused (ISC/R) EATDS harvested from hyperlipidemic microswine, and the proteins were detected using Liquid chromatography with tandem mass spectrometry (LC-MS/MS). One hundred ninety-nine proteins and 177 proteins were detected in ISC and ISC/R groups, respectively with significant fold-change compared to controls. Five ribosomal proteins, RPL10A, 40SRPS18, 40SRPS30, 60SRPL14, and 40SRPSA, were significant owing to their abundance based on LC-MS/MS data. Expression of these proteins, except RPL10A, at transcript and protein levels were lower in ISC group compared to the control. scRNAseq analysis revealed EATDS heterogeneity based on the upregulation of 40SRPSA, 40SRPL18, and 40SRPS18. Pro-inflammatory sub-populations upregulated CCL5, anti-inflammatory sub-population upregulated IL-11, proliferative sub-population upregulated cell cycle and DNA replication mediators, and non-proliferative population downregulated the cell cycle and DNA replication mediators. Overall, the functional role of extracellular ribosomal proteins in driving unique phenotypes of EATDS population offers promise for designing effective translational approaches for myocardial regeneration.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - James Huynh
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - William Fang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Yu Chen
- Molecular Instrumentation Center, University of California-Los Angeles, Los Angeles, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|