1
|
Coletti C, Naaktgeboren R, Tourais J, Van De Steeg-Henzen C, Weingärtner S. Generalized inhomogeneity-resilient relaxation along a fictitious field (girRAFF) for improved robustness in rotating frame relaxometry at 3T. Magn Reson Med 2024; 92:2373-2391. [PMID: 39046914 DOI: 10.1002/mrm.30219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To optimize Relaxation along a Fictitious Field (RAFF) pulses for rotating frame relaxometry with improved robustness in the presence ofB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities. METHODS The resilience of RAFF pulses againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities was studied using Bloch simulations. A parameterized extension of the RAFF formulation was introduced and used to derive a generalized inhomogeneity-resilient RAFF (girRAFF) pulse. RAFF and girRAFF preparation efficiency, defined as the ratio of the longitudinal magnetization before and after the preparation (M z ( T p ) / M 0 $$ {M}_z\left({T}_p\right)/{M}_0 $$ ), were simulated and validated in phantom experiments.T RAFF $$ {T}_{\mathrm{RAFF}} $$ andT girRAFF $$ {T}_{\mathrm{girRAFF}} $$ parametric maps were acquired at 3T in phantom, the calf muscle, and the knee cartilage of healthy subjects. The relaxation time maps were analyzed for resilience against artificially induced field inhomogeneities and assessed in terms of in vivo reproducibility. RESULTS Optimized girRAFF preparations yielded improved preparation efficiency (0.95/0.91 simulations/phantom) with respect to RAFF (0.36/0.67 simulations/phantom).T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ preparations showed in phantom/calf 6.0/4.8 times higher resilience toB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities than RAFF, and a 4.7/5.3 improved resilience toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. In the knee cartilage,T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ (53± $$ \pm $$ 14 ms) was higher thanT RAFF $$ {T}_{\mathrm{RAFF}} $$ (42± $$ \pm $$ 11 ms). Moreover, girRAFF preparations yielded 7.6/4.9 times improved reproducibility acrossB 0 $$ {\mathrm{B}}_0 $$ /B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity conditions, 1.9 times better reproducibility across subjects and 1.2 times across slices compared with RAFF. Dixon-based fat suppression led to a further 15-fold improvement in the robustness of girRAFF to inhomogeneities. CONCLUSIONS RAFF pulses display residual sensitivity to off-resonance and pronounced sensitivity toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. Optimized girRAFF pulses provide increased robustness and may be an appealing alternative for applications where resilience against field inhomogeneities is required.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Roeland Naaktgeboren
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
2
|
Piccolo CL, Mallio CA, Vaccarino F, Grasso RF, Zobel BB. Imaging of knee osteoarthritis: a review of multimodal diagnostic approach. Quant Imaging Med Surg 2023; 13:7582-7595. [PMID: 37969633 PMCID: PMC10644136 DOI: 10.21037/qims-22-1392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 11/17/2023]
Abstract
Knee osteoarthritis (KOA) is a common chronic condition among the elderly population that significantly affects the quality of life. Imaging is crucial in the diagnosis, evaluation, and management of KOA. This manuscript reviews the various imaging modalities available until now, with a little focus on the recent developments with Artificial Intelligence. Currently, radiography is the first-line imaging modality recommended for the diagnosis of KOA, owing to its wide availability, affordability, and ability to provide a clear view of bony components of the knee. Although radiography is useful in assessing joint space narrowing (JSN), osteophytes and subchondral sclerosis, it has limited effectiveness in detecting early cartilage damage, soft tissue abnormalities and synovial inflammation. Ultrasound is a safe and affordable imaging technique that can provide information on cartilage thickness, synovial fluid, JSN and osteophytes, though its ability to evaluate deep structures such as subchondral bone is limited. Magnetic resonance imaging (MRI) represents the optimal imaging modality to assess soft tissue structures. New MRI techniques are able to detect early cartilage damage measuring the T1ρ and T2 relaxation time of knee cartilage. Delayed gadolinium-enhanced MRI of cartilage, by injecting a contrast agent to enhance the visibility of the cartilage on MRI scans, can provide information about its integrity. Despite these techniques can provide valuable information about the biochemical composition of knee cartilage and can help detect early signs of osteoarthritis (OA), they may not be widely available. Computed tomography (CT) has restricted utility in evaluating OA; nonetheless, weight-bearing CT imaging, using the joint space mapping technique, exhibits potential in quantifying knee joint space width and detecting structural joint ailments. PET-MRI is a hybrid imaging technique able to combine morphological information on bone and soft tissue alterations with the biochemical changes, but more research is needed to justify its high cost and time involved. The new tools of artificial intelligence, including machine learning models, can assist in detecting patterns and correlations in KOA that may be useful in the diagnosis, grading, predicting the need for arthroplasty, and improving surgical accuracy.
Collapse
Affiliation(s)
- Claudia Lucia Piccolo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Federica Vaccarino
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Rosario Francesco Grasso
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| |
Collapse
|
3
|
Frenken M, Radke KL, Schäfer ELE, Valentin B, Wilms LM, Abrar DB, Nebelung S, Martirosian P, Wittsack HJ, Müller-Lutz A. Insights into the Age Dependency of Compositional MR Biomarkers Quantifying the Health Status of Cartilage in Metacarpophalangeal Joints. Diagnostics (Basel) 2023; 13:diagnostics13101746. [PMID: 37238230 DOI: 10.3390/diagnostics13101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.
Collapse
Affiliation(s)
- Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Emilia Louisa Ernestine Schäfer
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Lena Marie Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Tübingen, D-72076 Tübingen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| |
Collapse
|
4
|
Zu Z, Adelnia F, Harkins K, Wang F, Ostenson J, Gore JC. Correction of errors in estimates of T 1ρ at low spin-lock amplitudes in the presence of B 0 and B 1 inhomogeneities. NMR IN BIOMEDICINE 2023; 36:e4951. [PMID: 37070215 PMCID: PMC10619883 DOI: 10.1002/nbm.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Relaxation rates R1ρ in the rotating frame measured by spin-lock methods at very low locking amplitudes (≤ 100 Hz) are sensitive to the effects of water diffusion in intrinsic gradients and may provide information on tissue microvasculature, but accurate estimates are challenging in the presence of B0 and B1 inhomogeneities. Although composite pulse preparations have been developed to compensate for nonuniform fields, the transverse magnetization comprises different components and the spin-lock signals measured do not decay exponentially as a function of locking interval at low locking amplitudes. For example, during a typical preparation sequence, some of the magnetization in the transverse plane is nutated to the Z-axis and later tipped back, and so does not experience R1ρ relaxation. As a result, if the spin-lock signals are fit to a monoexponential decay with locking interval, there are residual errors in quantitative estimates of relaxation rates R1ρ and their dispersion with weak locking fields. We developed an approximate theoretical analysis to model the behaviors of the different components of the magnetization, which provides a means to correct these errors. The performance of this correction approach was evaluated both through numerical simulations and on human brain images at 3 T, and compared with a previous correction method using matrix multiplication. Our correction approach has better performance than the previous method at low locking amplitudes. Through careful shimming, the correction approach can be applied in studies using low spin-lock amplitudes to assess the contribution of diffusion to R1ρ dispersion and to derive estimates of microvascular sizes and spacings. The results of imaging eight healthy subjects suggest that R1ρ dispersion in human brain at low locking fields arises from diffusion among inhomogeneities that generate intrinsic gradients on a scale of capillaries (~7.4 ± 0.5 μm).
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason Ostenson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Deparment of Physics and Astronomy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Elsayed H, Karjalainen J, Nissi MJ, Ketola J, Kajabi AW, Casula V, Zbýň Š, Nieminen MT, Hanni M. Assessing post-traumatic changes in cartilage using T 1ρ dispersion parameters. Magn Reson Imaging 2023; 97:91-101. [PMID: 36610648 DOI: 10.1016/j.mri.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 12/17/2022] [Indexed: 01/06/2023]
Abstract
Degeneration of cartilage can be studied non-invasively with quantitative MRI. A promising parameter for detecting early osteoarthritis in articular cartilage is T1ρ, which can be tuned via the amplitude of the spin-lock pulse. By measuring T1ρ at several spin-lock amplitudes, the dispersion of T1ρ is obtained. The aim of this study is to find out if the dispersion contains diagnostically relevant information complementary to a T1ρ measurement at a single spin-lock amplitude. To this end, five differently acquired dispersion parameters are utilized; A, B, τc, T1ρ/T2, and R2 - R1ρ. An open dataset of an equine model of post-traumatic cartilage was utilized to assess the T1ρ dispersion parameters for the evaluation of cartilage degeneration. Firstly, the parameters were compared for their sensitivity in detecting degenerative changes. Secondly, the relationship of the dispersion parameters to histological and biomechanical reference parameters was studied. Parameters A, T1ρ/T2, and R2 - R1ρ were found to be sensitive to lesion-induced changes in the cartilage within sample. Strong correlations of several dispersion parameters with optical density, as well as with collagen fibril angle were found. Most of the dispersion parameters correlated strongly with individual T1ρ values. The results suggest that dispersion parameters can in some cases provide a more accurate description of the biochemical composition of cartilage as compared to conventional MRI parameters. However, in most cases the information given by the dispersion parameters is more of a refinement than complementary to conventional quantitative MRI.
Collapse
Affiliation(s)
- Hassaan Elsayed
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jouni Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikko J Nissi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juuso Ketola
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Abdul Wahed Kajabi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Štefan Zbýň
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Matti Hanni
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O.Box 5000, 90014 Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
6
|
Sharafi A, Zibetti MVW, Chang G, Cloos M, Regatte RR. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T. NMR IN BIOMEDICINE 2022; 35:e4800. [PMID: 35815660 PMCID: PMC9669203 DOI: 10.1002/nbm.4800] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 05/25/2023]
Abstract
Quantitative MRI can detect early biochemical changes in cartilage; however, the conventional techniques only measure one parameter (e.g., T1 , T2 , and T1ρ ) at a time while also being comparatively slow. We implemented a 3D magnetic resonance fingerprinting (3D-MRF) technique for simultaneous, volumetric mapping of T1 , T2 , and T1ρ in knee articular cartilage in under 9 min. It is evaluated on 11 healthy volunteers (mean age: 53 ± 9 years), five mild knee osteoarthritis (OA) patients (Kellgren-Lawrence (KL) score: 2, mean age: 60 ± 4 years), and the National Institute of Standards and Technology (NIST)/International Society for Magnetic Resonance in Medicine (ISMRM) system phantom. Proton density image, and T1 , T2, T1ρ relaxation times, and B1 + were estimated in the NIST/ISMRM system phantom as well as in the human knee medial and lateral femur, medial and lateral tibia, and patellar cartilage. The repeatability and reproducibility of the proposed technique were assessed in the phantom using analysis of the Bland-Altman plots. The intrasubject repeatability was assessed with the coefficient of variation (CV) and root mean square CV (rmsCV). The Mann-Whitney U test was used to assess the difference between healthy subjects and mild knee OA patients. The Bland-Altman plots in the NIST/ISMRM phantom demonstrated an average difference of 0.001% ± 015%, 1.2% ± 7.1%, and 0.47% ± 3% between two scans from the same 3-T scanner (repeatability), and 0.002% ± 015%, 0.62% ± 10.5%, and 0.97% ± 14% between the scans acquired on two different 3-T scanners (reproducibility) for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with rmsCV less than 1%, 2%, and 1% for T1 , T2 , and T1ρ , respectively. T1ρ relaxation time in the mild knee OA patients was significantly higher (p < 0.05) than in healthy subjects. The proposed 3D-MRF sequence is fast, reproducible, robust to B1 + inhomogeneity, and can simultaneously measure the T1 , T2 , T1ρ , and B1 + volumetric maps of the knee joint in a single scan within a clinically feasible scan time.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcelo V. W. Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martijn Cloos
- Center of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Comparison of meniscal T1rho- and T2*-relaxation times in professional female volleyball players and healthy controls using 3T MRI: A pilot study. Eur J Radiol 2022; 155:110503. [DOI: 10.1016/j.ejrad.2022.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
8
|
Wu M, Ma YJ, Liu M, Xue Y, Gong L, Wei Z, Jerban S, Jang H, Chang DG, Chang EY, Ma L, Du J. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T 1ρ (3D UTE-Cones-AdiabT 1ρ) imaging. Eur Radiol 2022; 32:6178-6186. [PMID: 35357540 PMCID: PMC9388581 DOI: 10.1007/s00330-022-08722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate articular cartilage degeneration using quantitative three-dimensional ultrashort-echo-time cones adiabatic-T1ρ (3D UTE-Cones-AdiabT1ρ) imaging. METHODS Sixty-six human subjects were recruited for this study. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic-Resonance-Imaging Score (WORMS) were evaluated by two musculoskeletal radiologists. The human subjects were categorized into three groups, namely normal controls (KL0), doubtful-minimal osteoarthritis (OA) (KL1-2), and moderate-severe OA (KL3-4). WORMS were regrouped to encompass the extent of lesions and the depth of lesions. The UTE-Cones-AdiabT1ρ values were obtained using 3D UTE-Cones data acquisitions preceded by seven paired adiabatic full passage pulses that corresponded to seven spin-locking times (TSLs) of 0, 12, 24, 36, 48, 72, and 96 ms. The performance of the UTE-Cones-AdiabT1ρ technique in evaluating the degeneration of knee cartilage was assessed via the ANOVA comparisons with subregional analysis and Spearman's correlation coefficient as well as the receiver-operating-characteristic (ROC) curve. RESULTS UTE-Cones-AdiabT1ρ showed significant positive correlations with KL grade (r = 0.15, p < 0.05) and WORMS (r = 0.57, p < 0.05). Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the cartilage. The differences in UTE-Cones-AdiabT1ρ values among different extent and depth groups of cartilage lesions were all statistically significant (p < 0.05). Subregional analyses showed that the correlations between UTE-Cones-AdiabT1ρ and WORMS varied with the location of cartilage. The AUC value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration (WORMS=1) was 0.8. The diagnostic threshold value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration was 39.4 ms with 80.8% sensitivity. CONCLUSIONS The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. KEY POINTS • The 3D UTE-Cones-AdiabT1ρ sequence can distinguish mild cartilage degeneration from normal cartilage with a diagnostic threshold value of 39.4 ms for mild cartilage degeneration with 80.8% sensitivity. • Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the articular cartilage. • UTE-Cones-AdiabT1ρ is a promising biomarker for quantitative evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Mouyuan Liu
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yanping Xue
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Lillian Gong
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Liheng Ma
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA.
| |
Collapse
|
9
|
Qi H, Lv Z, Hu J, Xu J, Botnar R, Prieto C, Hu P. Accelerated 3D free-breathing high-resolution myocardial T 1ρ mapping at 3 Tesla. Magn Reson Med 2022; 88:2520-2531. [PMID: 36054715 DOI: 10.1002/mrm.29417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a fast free-breathing whole-heart high-resolution myocardial T1ρ mapping technique with robust spin-lock preparation that can be performed at 3 Tesla. METHODS An adiabatically excited continuous-wave spin-lock module, insensitive to field inhomogeneities, was implemented with an electrocardiogram-triggered low-flip angle spoiled gradient echo sequence with variable-density 3D Cartesian undersampling at a 3 Tesla whole-body scanner. A saturation pulse was performed at the beginning of each cardiac cycle to null the magnetization before T1ρ preparation. Multiple T1ρ -weighted images were acquired with T1ρ preparations with different spin-lock times in an interleaved fashion. Respiratory self-gating approach was adopted along with localized autofocus to enable 3D translational motion correction of the data acquired in each heartbeat. After motion correction, multi-contrast locally low-rank reconstruction was performed to reduce undersampling artifacts. The accuracy and feasibility of the 3D T1ρ mapping technique was investigated in phantoms and in vivo in 10 healthy subjects compared with the 2D T1ρ mapping. RESULTS The 3D T1ρ mapping technique provided similar phantom T1ρ measurements in the range of 25-120 ms to the 2D T1ρ mapping reference over a wide range of simulated heart rates. With the robust adiabatically excited continuous-wave spin-lock preparation, good quality 2D and 3D in vivo T1ρ -weighted images and T1ρ maps were obtained. Myocardial T1ρ values with the 3D T1ρ mapping were slightly longer than 2D breath-hold measurements (septal T1ρ : 52.7 ± 1.4 ms vs. 50.2 ± 1.8 ms, P < 0.01). CONCLUSION A fast 3D free-breathing whole-heart T1ρ mapping technique was proposed for T1ρ quantification at 3 T with isotropic spatial resolution (2 mm3 ) and short scan time of ∼4.5 min.
Collapse
Affiliation(s)
- Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, People's Republic of China
| | - Zhenfeng Lv
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, People's Republic of China
| | - Junpu Hu
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Jian Xu
- UIH America, Inc., Houston, Texas
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Su J, Wan H, Pang Y, Lu Y, Liang J, Yan Z, Xu S, Sun T. Trans-Posterior Cruciate Ligament All-Inside Root Repair Versus Partial Meniscectomy for Medial Meniscus Posterior Root Tears: Comparison of Semiquantitative and Quantitative MRI Outcomes in Cartilage Degeneration and Osteoarthritic Progression. Cartilage 2022; 13:19476035221114242. [PMID: 35932104 PMCID: PMC9364209 DOI: 10.1177/19476035221114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To perform conventional, morphological, and T2 mapping compositional MRI imaging to assess the cartilage degeneration and osteoarthritic progression in patients with medial meniscus posterior root tears (MMPRTs) who underwent trans-posterior cruciate ligament (PCL) all-inside repair or partial meniscectomy. DESIGN Patients with MMPRTs after trans-PCL all-inside repair (group AR) or partial meniscectomy (group PM) between 2015 and 2018 were retrospectively identified. Preoperative and postoperative conventional MRI were collected to assess medial meniscus extrusion (MME) and the whole-organ magnetic resonance imaging score (WORMS). Postoperative morphological MRI and T2 mapping compositional MRI were collected to evaluate the quantitative cartilage thickness/volume and cartilage composition. RESULTS The final cohort consisted of 21 patients in group AR and 22 patients in group PM, with no differences in demographic data and baseline patient characteristics between the 2 groups. Group AR demonstrated less progression of articular cartilage wear (P < 0.05) and decreased meniscal extrusion (P = 0.008) than group PM at the final follow-up. In addition, group AR demonstrated less extracellular matrix degeneration in the cartilage subregion of the medial compartment (P < 0.05) than group PM with lower T2 relaxation times in the superficial layer of the articular cartilage. CONCLUSION Trans-PCL all-inside repair of MMPRTs could delay the initial cartilage deterioration and morphological cartilage degeneration compared with partial meniscectomy. However, the amount of residual meniscal extrusion is clinically important, and an improved root repair fixation method should be investigated.
Collapse
Affiliation(s)
- Jiarong Su
- Arthritis Clinic and Research Center,
Peking University People’s Hospital, Beijing, China
| | | | - Yingchang Pang
- Arthritis Clinic and Research Center,
Peking University People’s Hospital, Beijing, China
| | - Yanli Lu
- Beijing Longfu Hospital, Beijing,
China
| | - Jiaming Liang
- Arthritis Clinic and Research Center,
Peking University People’s Hospital, Beijing, China
| | | | - Sibo Xu
- Arthritis Clinic and Research Center,
Peking University People’s Hospital, Beijing, China
| | - Tiezheng Sun
- Arthritis Clinic and Research Center,
Peking University People’s Hospital, Beijing, China,Tiezheng Sun, Arthritis Clinic and Research
Center, Peking University People’s Hospital, 11 Xizhimen South Street, Xicheng
District, Beijing 100044, China.
| |
Collapse
|
11
|
Sharafi A, Zibetti MVW, Chang G, Cloos MA, Regatte RR. Simultaneous bilateral T 1 , T 2 , and T 1ρ relaxation mapping of the hip joint with magnetic resonance fingerprinting. NMR IN BIOMEDICINE 2022; 35:e4651. [PMID: 34825750 PMCID: PMC9233946 DOI: 10.1002/nbm.4651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Quantitative MRI can detect early biochemical changes in cartilage, but its bilateral use in clinical routines is challenging. The aim of this prospective study was to demonstrate the feasibility of magnetic resonance fingerprinting for bilateral simultaneous T1 , T2 , and T1ρ mapping of the hip joint. The study population consisted of six healthy volunteers with no known trauma or pain in the hip. Monoexponential T1 , T2 , and T1ρ relaxation components were assessed in femoral lateral, superolateral, and superomedial, and inferior, as well as acetabular, superolateral, and superomedial subregions in left and right hip cartilage. Aligned ranked nonparametric factorial analysis was used to assess the side's impact on the subregions. Kruskal-Wallis and Wilcoxon tests were used to compare subregions, and coefficient of variation to assess repeatability. Global averages of T1 (676.0 ± 45.4 and 687.6 ± 44.5 ms), T2 (22.5 ± 2.6 and 22.1 ± 2.5 ms), and T1ρ (38.2 ± 5.5 and 38.2 ± 5.5 ms) were measured in the left and right hip, and articular cartilage, respectively. The Kruskal-Wallis test showed a significant difference between different subregions' relaxation times regardless of the hip side (p < 0.001 for T1 , p = 0.012 for T2 , and p < 0.001 for T1ρ ). The Wilcoxon test showed that T1 of femoral layers was significantly (p < 0.003) higher than that for acetabular cartilage. The experiments showed excellent repeatability with CVrms of 1%, 2%, and 4% for T1 , T2 , and T1ρ, respectively. It was concluded that bilateral T1 , T2 , and T1ρ relaxation times, as well as B1+ maps, can be acquired simultaneously from hip joints using the proposed MRF sequence.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Marcelo V. W. Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Martijn A. Cloos
- Center of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
T 2 MRI at 3T of cartilage and menisci in patients with hyperuricemia: initial findings. Skeletal Radiol 2022; 51:607-618. [PMID: 34287675 DOI: 10.1007/s00256-021-03861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare and evaluate T2 values of compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia at 3T. MATERIALS AND METHODS Thirty-two subjects were included in this study and subdivided into two subgroups: 15 healthy controls (3 females, 12 males; mean age = 45.3 ± 10.9 years), 17 patients with hyperuricemia (2 females, 15 males; mean age = 44.4 ± 12.7 years). All subjects were assessed on a 3T MR scanner using an 8-channel phased-array knee coil (transmit-receive). Wilcoxon rank sum test and analysis of covariance (ANCOVA) were performed to determine whether there were any statistically significant differences in T2 values of compartmental femorotibial cartilage and subregional menisci between the two subgroups. RESULTS Lateral tibial cartilage (48.6 ± 3.5 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subcompartments of femorotibial cartilage in hyperuricemia subgroup. Medial tibial cartilage (56.5 ± 4.3 ms) in hyperuricemia subgroup had significantly higher (p < 0.05) T2 values than all subcompartments of femorotibial cartilage except medial tibial cartilage in healthy subgroup. Medial anterior horn of meniscus (39.4 ± 2.9 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subregional menisci except both medial anterior horn and medial body segment of meniscus in hyperuricemia subgroup. CONCLUSION T2 values in certain compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia are evidently and abnormally heightened compared with those in healthy subjects, to which special attention should be paid when diagnosing and treating the patients with hyperuricemia in the clinical setting. The LT cartilage had significantly lower T2 values (48.6 ± 3.5 ms) in healthy subgroup compared to all compartmental femorotibial cartilage in cohort with HU. MF cartilage had significantly lower T2 values (51.6 ± 2.9 ms) in healthy subgroup compared to both LF (54.4 ± 4.1 ms) and MT (56.5 ± 4.3 ms) in cohort with HU. MT cartilage had significantly higher T2 values (56.5 ± 4.3 ms) in cohort with HU subgroup compared to LF (52.5 ± 3.0 ms) in healthy subgroup. T2 mapping may be promising and potential sensitive discriminator of understanding and examining the early compositional and structural change in proteoglycan-collagen matrix of human femorotibial cartilage in patients with hyperuricemia.
Collapse
|
13
|
Cheng KY, Lombardi AF, Chang EY, Chung CB. Knee Cartilage Imaging. Clin Sports Med 2021; 40:677-692. [PMID: 34509205 DOI: 10.1016/j.csm.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Articular cartilage injury and degeneration represent common causes of knee pain, which can be evaluated accurately and noninvasively using MRI. This review describes the structure of cartilage focusing on its histologic appearance to emphasize that structure will dictate patterns of tissue failure as well as MR appearance. In addition to identifying cartilage loss, MRI can demonstrate signal changes that correspond to intrinsic structural abnormalities which place the cartilage at risk for subsequent more serious injury or premature degeneration, allowing for earlier intervention and treatment of important causes of pain and morbidity.
Collapse
Affiliation(s)
- Karen Y Cheng
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA
| | - Alecio F Lombardi
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA
| | - Eric Y Chang
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA
| | - Christine B Chung
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA.
| |
Collapse
|
14
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Menon RG, Raghavan P, Regatte RR. Pilot study quantifying muscle glycosaminoglycan using bi-exponential T 1ρ mapping in patients with muscle stiffness after stroke. Sci Rep 2021; 11:13951. [PMID: 34230600 PMCID: PMC8260636 DOI: 10.1038/s41598-021-93304-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
Post stroke muscle stiffness is a common problem, which left untreated can lead to disabling muscle contractures. The purpose of this pilot study was to evaluate the feasibility of bi-exponential T1ρ mapping in patients with arm muscle stiffness after stroke and its ability to measure treatment related changes in muscle glycosaminoglycans (GAGs). Five patients with muscle stiffness after stroke and 5 healthy controls were recruited for imaging of the upper arm with 3D-T1ρ mapping. Patients were scanned before and after treatment with hyaluronidase injections, whereas the controls were scanned once. Wilcoxon Mann-Whitney tests compared patients vs. controls and patients pre-treatment vs. post-treatment. With bi-exponential modeling, the long component, T1ρl was significantly longer in the patients (biceps P = 0.01; triceps P = 0.004) compared to controls. There was also a significant difference in the signal fractions of the long and short components (biceps P = 0.03, triceps P = 0.04). The results suggest that muscle stiffness is characterized by increased muscle free water and GAG content. Post-treatment, the T1ρ parameters shifted toward control values. This pilot study demonstrates the application of bi-exponential T1ρ mapping as a marker for GAG content in muscle and as a potential treatment monitoring tool for patients with muscle stiffness after stroke.
Collapse
Affiliation(s)
- Rajiv G Menon
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA.
| | - Preeti Raghavan
- Deparments of Physical Medicine and Rehabilitation and Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| |
Collapse
|
16
|
Zhu J, Hu N, Hou J, Liang X, Wang Y, Zhang H, Wang P, Chen T, Chen W, Wang L. T 1rho mapping of cartilage and menisci in patients with hyperuricaemia at 3 T: a preliminary study. Clin Radiol 2021; 76:710.e1-710.e8. [PMID: 34016388 DOI: 10.1016/j.crad.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
AIM To compare and assess T1rho values of the femorotibial cartilage compartments and subregional menisci in patients with hyperuricaemia at 3 T. MATERIALS AND METHODS Thirty-two patients were enrolled in the study and were subdivided into two subgroups: 15 healthy controls (three women, 12 men; mean age = 45.3 ± 10.9 years, age range 25-72 years) and 17 patients with asymptomatic hyperuricaemia (two women, 15 men; mean age = 44.4 ± 12.7 years, age range 26-77 years). All patients were evaluated using 3 T magnetic resonance imaging (MRI) using an eight-channel phased-array knee coil (transmit-receive). Wilcoxon's rank sum test and analysis of covariance (ANCOVA) were conducted to determine whether there were any statistically significant differences in the T1rho values of the femorotibial cartilage compartments and subregional menisci between the two subgroups. RESULTS Lateral tibial cartilage (45.8 ± 2.9 ms) in the healthy subgroup had significantly lower (p<0.05) T1rho values than those of all subcompartments of the femorotibial cartilage in the hyperuricaemia subgroup. The lateral femoral cartilage (LF) in hyperuricaemia (54.6 ± 3.9 ms) subgroup had significantly higher (p<0.05) T1rho values than those of all subcompartments of the femorotibial cartilage except the LF in the healthy subgroup. Significantly higher (p<0.05) T1rho values existed in the LF of the healthy (54.6 ± 4.7 ms) subgroup in comparison with those of all subcompartments of femorotibial cartilage except the LF in hyperuricaemia subgroup. CONCLUSIONS T1rho values in certain compartments of the femorotibial cartilage in patients with hyperuricaemia are elevated compared to those in healthy patients presumably due to reduced proteoglycan content, to which particular attention should be paid when diagnosing and treating the patients with hyperuricaemia in a clinical setting.
Collapse
Affiliation(s)
- J Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - N Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - J Hou
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - X Liang
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Y Wang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - H Zhang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - P Wang
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, MCN AA-1105, Nashville, TN, 37232-2310, USA
| | - T Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - W Chen
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - L Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions; School of Radiation Medicine and Protection, Medical College of Soochow University; School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
17
|
Xue YP, Ma YJ, Wu M, Jerban S, Wei Z, Chang EY, Du J. Quantitative 3D Ultrashort Echo Time Magnetization Transfer Imaging for Evaluation of Knee Cartilage Degeneration In Vivo. J Magn Reson Imaging 2021; 54:1294-1302. [PMID: 33894091 DOI: 10.1002/jmri.27659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent studies suggest that macromolecular fraction (MMF) derived from three-dimensional ultrashort echo time magnetization transfer (UTE-MT) imaging is insensitive to the magic angle effect. However, its clinical use in osteoarthritis (OA) remains to be investigated. PURPOSE To investigate the feasibility of 3D UTE-MT-derived MMF in differentiating normal from degenerated cartilage. STUDY TYPE Prospective. SUBJECTS Sixty-two participants (54.8 ± 16.7 years, 30 females) with and without OA, plus two healthy volunteers (mean age 35.0 years) for reproducibility test. FIELD STRENGTH/SEQUENCE 3 T/UTE-MT sequence. ASSESSMENT A 3D UTE-MT sequence was employed to calculate MMF based on a two-pool model. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic Resonance Imaging Score (WORMS) were evaluated by three experienced musculoskeletal radiologists. KL grade was condensed into three groups: KL0, KL1-2, and KL3-4. WORMS was regrouped based on extent of lesion (extent group) and depth of lesion (depth group), respectively. The performance of MMF at evaluating the degeneration of cartilage was assessed via Spearman's correlation coefficient and the area under the curve (AUC) calculated according to the receiver-operating characteristic curve. STATISTICAL TESTS After normality check, one-way analysis of variance was used to evaluate the performance. Tukey-Kramer test was performed for post hoc testing. RESULTS MMF showed significant negative correlations with KL grade (r = -0.53, P < 0.05) and WORMS (r = -0.49, P < 0.05). Significantly lower MMFs were found in subjects with greater KL grade (11.8 ± 0.8% for KL0; 10.9 ± 0.9% for KL1-2; 10.6 ± 1.1% for KL3-4; P < 0.05) and in cartilage with greater extent (12.1 ± 1.6% for normal cartilage; 10.9 ± 1.6% for regional lesions; 9.6 ± 1.7% for diffuse lesions; P < 0.05) and depth (12.1 ± 1.6% for normal cartilage; 10.6 ± 1.6% for partial-thickness lesions; 8.8 ± 1.7% for full-thickness lesions; P < 0.05) of lesions. AUC values of MMF for doubtful-minimal OA (KL1-2) and mild cartilage degradation (WORMS1-2) were 0.8 and 0.7, respectively. DATA CONCLUSION This study highlights the clinical potential of MMF in the detection of early OA. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Yan-Ping Xue
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Mei Wu
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, La Jolla, California, USA.,Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Eur Radiol 2021; 31:7653-7663. [PMID: 33783571 DOI: 10.1007/s00330-021-07853-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To develop a fully automated full-thickness cartilage segmentation and mapping of T1, T1ρ, and T2*, as well as macromolecular fraction (MMF) by combining a series of quantitative 3D ultrashort echo time (UTE) cones MR imaging with a transfer learning-based U-Net convolutional neural networks (CNN) model. METHODS Sixty-five participants (20 normal, 29 doubtful-minimal osteoarthritis (OA), and 16 moderate-severe OA) were scanned using 3D UTE cones T1 (Cones-T1), adiabatic T1ρ (Cones-AdiabT1ρ), T2* (Cones-T2*), and magnetization transfer (Cones-MT) sequences at 3 T. Manual segmentation was performed by two experienced radiologists, and automatic segmentation was completed using the proposed U-Net CNN model. The accuracy of cartilage segmentation was evaluated using the Dice score and volumetric overlap error (VOE). Pearson correlation coefficient and intraclass correlation coefficient (ICC) were calculated to evaluate the consistency of quantitative MR parameters extracted from automatic and manual segmentations. UTE biomarkers were compared among different subject groups using one-way ANOVA. RESULTS The U-Net CNN model provided reliable cartilage segmentation with a mean Dice score of 0.82 and a mean VOE of 29.86%. The consistency of Cones-T1, Cones-AdiabT1ρ, Cones-T2*, and MMF calculated using automatic and manual segmentations ranged from 0.91 to 0.99 for Pearson correlation coefficients, and from 0.91 to 0.96 for ICCs, respectively. Significant increases in Cones-T1, Cones-AdiabT1ρ, and Cones-T2* (p < 0.05) and a decrease in MMF (p < 0.001) were observed in doubtful-minimal OA and/or moderate-severe OA over normal controls. CONCLUSION Quantitative 3D UTE cones MR imaging combined with the proposed U-Net CNN model allows a fully automated comprehensive assessment of articular cartilage. KEY POINTS • 3D UTE cones imaging combined with U-Net CNN model was able to provide fully automated cartilage segmentation. • UTE parameters obtained from automatic segmentation were able to reliably provide a quantitative assessment of cartilage.
Collapse
|
19
|
Abstract
Regulatory approval of ultrahigh field (UHF) MR imaging scanners for clinical use has opened new opportunities for musculoskeletal imaging applications. UHF MR imaging has unique advantages in terms of signal-to-noise ratio, contrast-to-noise ratio, spectral resolution, and multinuclear applications, thus providing unique information not available at lower field strengths. But UHF also comes with a set of technical challenges that are yet to be resolved and may not be suitable for all imaging applications. This review focuses on the latest research in musculoskeletal MR imaging applications at UHF including morphologic imaging, T2, T2∗, and T1ρ mapping, chemical exchange saturation transfer, sodium imaging, and phosphorus spectroscopy imaging applications.
Collapse
|
20
|
Sharafi A, Zibetti MVW, Chang G, Cloos M, Regatte RR. MR fingerprinting for rapid simultaneous T 1 , T 2 , and T 1ρ relaxation mapping of the human articular cartilage at 3T. Magn Reson Med 2020; 84:2636-2644. [PMID: 32385949 PMCID: PMC7396294 DOI: 10.1002/mrm.28308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To implement a novel technique for simultaneous, quantitative multiparametric mapping of the knee articular cartilage. METHODS A novel MR fingerprinting pulse sequence is proposed and implemented for simultaneous measurements of proton density, T1 , T2, and T1ρ relaxation times at 3T. The repeatability and reproducibility of the proposed technique were assessed in model phantoms. Institutional review board-approved MR fingerprinting imaging sequence was performed on healthy volunteers and patients with mild knee osteoarthritis. The Wilcoxon test was used to compare healthy controls and patients. The intra- and intersubject repeatability were assessed with coefficient of variation and the RMS coefficient of variation, respectively RESULTS: The Bland-Altman plots demonstrated an average difference of 4.67 ms, -0.09 ms, and 0.05 ms between 2 scans in the same scanner; and 9.68 ms, 0.29 ms, and -0.72 ms between the scans acquired on 2 different scanners for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with RMS coefficient of variation less than 3%, 6%, and 5% for T1 , T2 , and T1ρ , respectively. The Wilcoxon test showed a significant difference between control and mild osteoarthritis patients for T1 (P = .04), T2 (P = .01), and T1ρ (P = .02) relaxation time in medial tibial cartilage, as well as for T2 relaxation time (P = .02) in medial femoral cartilage. CONCLUSION The proposed MRF sequence is fast and can simultaneously measure the T1 , T2 , T1ρ , and B 1 + maps in a single scan. It is able to discriminate between mild osteoarthritis patients and healthy volunteers.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical ImagingDepartment of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Marcelo V. W. Zibetti
- Bernard and Irene Schwartz Center for Biomedical ImagingDepartment of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical ImagingDepartment of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical ImagingDepartment of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center for Biomedical ImagingDepartment of RadiologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
21
|
Kessler DA, MacKay JW, McDonald S, McDonnell S, Grainger AJ, Roberts AR, Janiczek RL, Graves MJ, Kaggie JD, Gilbert FJ. Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage. J Magn Reson Imaging 2020; 52:1753-1764. [PMID: 32677070 DOI: 10.1002/jmri.27278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE Prospective observational study. POPULATION Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV <1.1%. Repositioning of the knee had the greatest effect on T1ρ of patellar cartilage with the surface-averaged RMS-CV = 4.8%. While T1ρ showed the greatest response to exercise at the patellofemoral cartilage region, the largest changes in T2 were determined in the lateral femorotibial region. Following thresholding, significant (>SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.
Collapse
Affiliation(s)
| | - James W MacKay
- Department of Radiology, University of Cambridge, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Scott McDonald
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen McDonnell
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Andrew J Grainger
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | | | - Martin J Graves
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, UK.,Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
22
|
Wyatt CR, Barbara TM, Guimaraes AR. T 1ρ magnetic resonance fingerprinting. NMR IN BIOMEDICINE 2020; 33:e4284. [PMID: 32125050 PMCID: PMC8818303 DOI: 10.1002/nbm.4284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
T1ρ relaxation imaging is a quantitative imaging technique that has been used to assess cartilage integrity, liver fibrosis, tumors, cardiac infarction, and Alzheimer's disease. T1 , T2 , and T1ρ relaxation time constants have each demonstrated different degrees of sensitivity to several markers of fibrosis and inflammation, allowing for a potential multi-parametric approach to tissue quantification. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T1ρ relaxation is added to the MRF framework using spin lock preparations. An MRF sequence involving an RF-spoiled sequence with TR , flip angle, T1ρ , and T2 preparation variation is described. The sequence is then calibrated against conventional T1 , T2 , and T1ρ relaxation mapping techniques in agar phantoms and the abdomens of four healthy volunteers. Strong intraclass correlation coefficients (ICC > 0.9) were found between conventional and MRF sequences in phantoms and also in healthy volunteers (ICC > 0.8). The highest ICC correlation values were seen in T1 , followed by T1ρ and then T2 . In this study, T1ρ relaxation has been incorporated into the MRF framework by using spin lock preparations, while still fitting for T1 and T2 relaxation time constants. The acquisition of these parameters within a single breath hold in the abdomen alleviates the issues of movement between breath holds in conventional techniques.
Collapse
Affiliation(s)
- Cory R. Wyatt
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| | - Thomas M. Barbara
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
| | - Alexander R. Guimaraes
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| |
Collapse
|
23
|
Qi H, Bustin A, Kuestner T, Hajhosseiny R, Cruz G, Kunze K, Neji R, Botnar RM, Prieto C. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping. J Cardiovasc Magn Reson 2020; 22:12. [PMID: 32014001 PMCID: PMC6998259 DOI: 10.1186/s12968-020-0597-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) T1ρ mapping can be used to detect ischemic or non-ischemic cardiomyopathy without the need of exogenous contrast agents. Current 2D myocardial T1ρ mapping requires multiple breath-holds and provides limited coverage. Respiratory gating by diaphragmatic navigation has recently been exploited to enable free-breathing 3D T1ρ mapping, which, however, has low acquisition efficiency and may result in unpredictable and long scan times. This study aims to develop a fast respiratory motion-compensated 3D whole-heart myocardial T1ρ mapping technique with high spatial resolution and predictable scan time. METHODS The proposed electrocardiogram (ECG)-triggered T1ρ mapping sequence is performed under free-breathing using an undersampled variable-density 3D Cartesian sampling with spiral-like order. Preparation pulses with different T1ρ spin-lock times are employed to acquire multiple T1ρ-weighted images. A saturation prepulse is played at the start of each heartbeat to reset the magnetization before T1ρ preparation. Image navigators are employed to enable beat-to-beat 2D translational respiratory motion correction of the heart for each T1ρ-weighted dataset, after which, 3D translational registration is performed to align all T1ρ-weighted volumes. Undersampled reconstruction is performed using a multi-contrast 3D patch-based low-rank algorithm. The accuracy of the proposed technique was tested in phantoms and in vivo in 11 healthy subjects in comparison with 2D T1ρ mapping. The feasibility of the proposed technique was further investigated in 3 patients with suspected cardiovascular disease. Breath-hold late-gadolinium enhanced (LGE) images were acquired in patients as reference for scar detection. RESULTS Phantoms results revealed that the proposed technique provided accurate T1ρ values over a wide range of simulated heart rates in comparison to a 2D T1ρ mapping reference. Homogeneous 3D T1ρ maps were obtained for healthy subjects, with septal T1ρ of 58.0 ± 4.1 ms which was comparable to 2D breath-hold measurements (57.6 ± 4.7 ms, P = 0.83). Myocardial scar was detected in 1 of the 3 patients, and increased T1ρ values (87.4 ± 5.7 ms) were observed in the infarcted region. CONCLUSIONS An accelerated free-breathing 3D whole-heart T1ρ mapping technique was developed with high respiratory scan efficiency and near-isotropic spatial resolution (1.7 × 1.7 × 2 mm3) in a clinically feasible scan time of ~ 6 mins. Preliminary patient results suggest that the proposed technique may find applications in non-contrast myocardial tissue characterization.
Collapse
Affiliation(s)
- Haikun Qi
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK.
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
| | - Thomas Kuestner
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
| | - Karl Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
- Siemens Healthcare, MR Research Collaborations, Frimley, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
- Siemens Healthcare, MR Research Collaborations, Frimley, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Sherman SL, Raines BT, Burch MB, Ray T, Shubin Stein BE. Patellofemoral Imaging and Analysis. OPER TECHN SPORT MED 2019. [DOI: 10.1016/j.otsm.2019.150684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Zhu J, Hu N, Liang X, Li X, Guan J, Wang Y, Wang L. T2 mapping of cartilage and menisci at 3T in healthy subjects with knee malalignment: initial experience. Skeletal Radiol 2019; 48:753-763. [PMID: 30712122 DOI: 10.1007/s00256-019-3164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the relationship between knee alignment and T2 values of femorotibial cartilage and menisci in healthy subjects at 3 T. MATERIALS AND METHODS Thirty-six healthy subjects divided into three subgroups of 12 neutral, 12 varus, and 12 valgus alignment of the femorotibial joint were investigated on 3-T MR scanner using a 2D multi-echo turbo spin-echo (TSE) sequence for T2 mapping. Wilcoxon signed-rank test and analysis of covariance (ANCOVA) were performed to determine any statistically significant differences in subregional T2 values of femorotibial cartilage and menisci among the three subgroups of healthy subjects. RESULTS Lateral femoral anterior cartilage subregion (52 ± 3 ms, mean ± standard deviation; 53 ± 2 ms) had significantly higher T2 values (p < 0.05) than medial femoral anterior cartilage subregion (51 ± 2 ms; 51 ± 2 ms) in varus and valgus groups, respectively. There were statistically significant differences (p < 0.05) in T2 values of tibial central cartilage subregion between lateral and medical compartment among varus, valgus, and neutral subgroups. Lateral body segment of meniscus (41 ± 3 ms) had significantly higher (p < 0.05) T2 values than medial body segment (40 ± 2 ms) in the varus subgroup. CONCLUSIONS Some degree of correlation between knee alignment and subregional T2 values of femorotibial cartilage and menisci exists in healthy subjects. These findings indicate that T2 mapping may be sensitive in assessing the load distribution pattern of human cartilage and menisci with knee alignment abnormality, which may be used as reference baseline when understanding the occurrence and progression of knee osteoarthritis.
Collapse
Affiliation(s)
- Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China.
| | - Ningfan Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| | - Xiaojing Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Jian Guan
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| | - Yajuan Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| | - Ligong Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| |
Collapse
|
26
|
Baboli R, Sharafi A, Chang G, Regatte RR. Biexponential T 1ρ relaxation mapping of human knee menisci. J Magn Reson Imaging 2019; 50:824-835. [PMID: 30614152 DOI: 10.1002/jmri.26631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Measuring T1ρ in the knee menisci can potentially be used as noninvasive biomarkers in detecting early-stage osteoarthritis (OA). PURPOSE To demonstrate the feasibility of biexponential T1ρ relaxation mapping of human knee menisci. STUDY TYPE Prospective. POPULATION Eight healthy volunteers with no known inflammation, trauma, or pain in the knee and three symptomatic subjects with early knee OA. FIELD STRENGTH/SEQUENCE Customized Turbo-FLASH sequence to acquire 3D-T1ρ -weighted images on a 3 T MRI scanner. ASSESSMENT T1ρ relaxation values were assessed in 11 meniscal regions of interest (ROIs) using monoexponential and biexponential models. STATISTICAL TESTS Nonparametric rank-sum tests, Kruskal-Wallis test, and coefficient of variation. RESULTS The mean monoexponential T1ρ relaxation in the lateral menisci were 28.05 ± 4.2 msec and 37.06 ± 10.64 msec for healthy subjects and early knee OA patients, respectively, while the short and long components were 8.07 ± 0.5 msec and 72.35 ± 3.2 msec for healthy subjects and 2.63 ± 2.99 msec and 55.27 ± 24.76 msec for early knee OA patients, respectively. The mean monoexponential T1ρ relaxation in the medial menisci were 34.30 ± 3.8 msec and 37.26 ± 11.38 msec for healthy and OA patients, respectively, while the short and long components were 7.76 ± 0.7 msec and 72.19 ± 4.2 msec for healthy subjects and 3.06 ± 3.24 msec and 55.27 ± 24.59 msec for OA patients, respectively. Statistically significant (P ≤ 0.05) differences were observed in the monoexponential relaxation between some of the ROIs. The T1ρ,short was significantly lower (P = 0.02) in the patients than controls. The rmsCV% ranges were 1.51-16.6%, 3.59-14.3%, and 4.91-15.6% for T1ρ -mono, T1ρ -short, and T1ρ -long, respectively. DATA CONCLUSION Our results showed that in all ROIs, T1ρ relaxation times of outer zones (red zones) were less than inner zones (white zones). Monoexponential T1ρ was increased in medial, lateral, and body menisci of early OA while the biexponential numbers were decreased in early OA patients. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2019;50:824-835.
Collapse
Affiliation(s)
- Rahman Baboli
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Azadeh Sharafi
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Taylor KA, Collins AT, Heckelman LN, Kim SY, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE. Activities of daily living influence tibial cartilage T1rho relaxation times. J Biomech 2019; 82:228-233. [PMID: 30455059 PMCID: PMC6492554 DOI: 10.1016/j.jbiomech.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.
Collapse
Affiliation(s)
- Kevin A Taylor
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lauren N Heckelman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Y Kim
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Menon RG, Chang G, Regatte RR. The Emerging Role of 7 Tesla MRI in Musculoskeletal Imaging. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0286-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Baboli R, Sharafi A, Chang G, Regatte RR. Isotropic morphometry and multicomponent T 1 ρ mapping of human knee articular cartilage in vivo at 3T. J Magn Reson Imaging 2018; 48:1707-1716. [PMID: 29717787 DOI: 10.1002/jmri.26173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The progressive loss of hyaline articular cartilage due to osteoarthritis (OA) changes the functional and biochemical properties of cartilage. Measuring the T1 ρ along with the morphological assessment can potentially be used as noninvasive biomarkers in detecting early-stage OA. To correlate the biochemical and morphological data, submillimeter isotropic resolution for both studies is required. PURPOSE To implement a high spatial resolution 3D-isotropic-MRI sequence for simultaneous assessment of morphological and biexponential T1 ρ relaxometry of human knee cartilage in vivo. STUDY TYPE Prospective. POPULATION Ten healthy volunteers with no known inflammation, trauma, or pain in the knee. FIELD STRENGTH/SEQUENCE Standard FLASH sequence and customized Turbo-FLASH sequence to acquire 3D-isotropic-T1 ρ-weighted images on a 3T MRI scanner. ASSESSMENT The mean volume and thickness along with mono- and biexponential T1 ρ relaxations were assessed in the articular cartilage of 10 healthy volunteers. STATISTICAL TESTS Nonparametric rank-sum tests. Bland-Altman analysis and coefficient of variation. RESULTS The mean monoexponential T1 ρ relaxation was 40.7 ± 4.8 msec, while the long and short components were 58.2 ± 3.9 msec and 6.5 ± 0.6 msec, respectively. The mean fractions of long and short T1 ρ relaxation components were 63.7 ± 5.9% and 36.3 ± 5.9%, respectively. Statistically significant (P ≤ 0.03) differences were observed in the monoexponential and long components between some of the regions of interest (ROIs). No gender differences between biexponential components were observed (P > 0.05). Mean cartilage volume and thickness were 25.9 ± 6.4 cm3 and 2.2 ± 0.7 mm, respectively. Cartilage volume (P = 0.01) and thickness (P = 0.03) were significantly higher in male than female participants across all ROIs. Bland-Altman analysis showed agreement between two morphological methods with limits of agreement between -1000 mm3 and +1100 mm3 for volume, and -0.78 mm and +0.46 mm for thickness, respectively. DATA CONCLUSION Simultaneous assessment of morphological and multicomponent T1 ρ relaxation of knee joint with 0.7 × 0.7 × 0.7 mm isotropic spatial resolution is demonstrated in vivo. Comparison with a standard method showed that the proposed technique is suitable for assessing the volume and thickness of articular cartilage. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1707-1716.
Collapse
Affiliation(s)
- Rahman Baboli
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Longitudinal changes in MR T1ρ/T2 signal of meniscus and its association with cartilage T1p/T2 in ACL-injured patients. Osteoarthritis Cartilage 2018; 26:689-696. [PMID: 29438746 PMCID: PMC7322765 DOI: 10.1016/j.joca.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the longitudinal changes in meniscal T1ρ/T2 signal post-reconstruction in patients with acute anterior cruciate ligament (ACL) injury and to investigate the association with T1ρ/T2 signal in articular knee cartilage. METHOD In this prospective study, knees of 37 patients with ACL-injury and reconstruction in addition to 13 healthy controls were scanned using magnetic resonance imaging (MRI) T1ρ/T2 mapping. Quantitative analysis of the meniscus was performed in the anterior/posterior horns of lateral/medial meniscus fourteen sub-compartments of cartilage spanning the medial/lateral area of the tibia and femoral condyles. Meniscus T1ρ/T2 signals were compared between injured, contralateral and control knees at baseline, 6-months, 1-year and 2-years using t-tests for cross-sectional comparisons and a mixed model for longitudinal comparisons. Pearson-partial correlations between meniscal and cartilage T1ρ/T2 were evaluated. RESULTS There was a significant decrease of T1ρ/T2 signal in the posterior horn of lateral meniscus (PHLAT) of injured knees during a 2-year period. In the posterior horn of medial meniscus (PHMED), T1ρ/T2 signal of injured knees was significantly elevated at all time points post-reconstruction compared to contralateral and control knees. Within injured knees, PHMED T1ρ/T2 signal showed significant positive correlations with medial tibia (MT) cartilage T1ρ/T2 signal at all time points. CONCLUSION A significant decrease in PHLAT T1ρ/T2 signal by 2-years suggests potential tissue recovery after ACL-injury. Elevated T1ρ/T2 signal in the PHMED of injured knees at 2-years correlating with knee cartilage T1ρ/T2 signal elevations suggests involvement of the PHMED in subacute cartilage degeneration after ACL-injury and reconstruction.
Collapse
|
31
|
Abstract
Detection of multiple relaxation pools using MRI is useful in a number of neuro-pathologies including multiple sclerosis (MS), Alzheimer's, and stroke. In this study we evaluate the feasibility of using T1ρ imaging for the detection of bi-exponential decays in the human brain. A prospective T1ρ imaging study was performed on model relaxation phantoms (eggs) and 7 healthy volunteers. The data was fitted using a single pool and a 2-pool model to estimate mono- and bi-exponential T1ρ maps, respectively. Bi-exponential decays were identified in the gray matter (GM) and white matter (WM) of the brain with 40.5% of GM, and 65.1% of WM pixels showing two T1ρ relaxation pools (significance level P < 0.05). Detection of T1ρ based bi-exponential decays in the brain provides complimentary information to T2 based contrast regarding the in vivo micro-environment in the brain.
Collapse
|
32
|
Sharafi A, Chang G, Regatte RR. Bi-component T1ρ and T2 Relaxation Mapping of Skeletal Muscle In-Vivo. Sci Rep 2017; 7:14115. [PMID: 29074883 PMCID: PMC5658335 DOI: 10.1038/s41598-017-14581-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/26/2022] Open
Abstract
The goal of this paper was to evaluate the possibility of bi-component T1ρ and T2 relaxation mapping of human skeletal muscle at 3 T in clinically feasible scan times. T1ρ- and T2-weighted images of calf muscle were acquired using a modified 3D-SPGR sequence on a standard 3 T clinical MRI scanner. The mono- and biexponential models were fitted pixel-wise to the series of T1ρ and T2 weighted images. The biexponential decay of T1ρ and T2 relaxations was detected in ~30% and ~40% of the pixels across all volunteers, respectively. Monoexponential and bi-exponential short and long T1ρ relaxation times were estimated to be 26.9 ms, 4.6 ms (fraction 22%) and 33.2 ms (fraction: 78%), respectively. Similarly, the mono- and bi-exponential short and long T2 relaxation times were 24.7 ms, 4.2 ms (fraction 15%) and 30.4 ms (fraction 85%) respectively. The experiments had good repeatability with RMSCV < 15% and ICC > 60%. This approach could potentially be used in exercise intervention studies or in studies of inflammatory myopathies or muscle fibrosis, permitting greater sensitivity and specificity via measurement of different water compartments and their fractions.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Sharafi A, Xia D, Chang G, Regatte RR. Biexponential T 1ρ relaxation mapping of human knee cartilage in vivo at 3 T. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3760. [PMID: 28632901 PMCID: PMC5597480 DOI: 10.1002/nbm.3760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The purpose of this study was to demonstrate the feasibility of biexponential T1ρ relaxation mapping of human knee cartilage in vivo. A three-dimensional, customized, turbo-flash sequence was used to acquire T1ρ -weighted images from healthy volunteers employing a standard 3-T MRI clinical scanner. A series of T1ρ -weighted images was fitted using monoexponential and biexponential models with two- and four-parametric non-linear approaches, respectively. Non-parametric Kruskal-Wallis and Mann-Whitney U-statistical tests were used to evaluate the regional relaxation and gender differences, respectively, with a level of significance of P = 0.05. Biexponential relaxations were detected in the cartilage of all volunteers. The short and long relaxation components of T1ρ were estimated to be 6.9 and 51.0 ms, respectively. Similarly, the fractions of short and long T1ρ were 37.6% and 62.4%, respectively. The monoexponential relaxation of T1ρ was 32.6 ms. The experiments showed good repeatability with a coefficient of variation (CV) of less than 20%. A biexponential relaxation model showed a better fit than a monoexponential model to the T1ρ relaxation decay in knee cartilage. Biexponential T1ρ components could potentially be used to increase the specificity to detect early osteoarthritis by the measurement of different water compartments and their fractions.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ding Xia
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
34
|
Zhang Y, Hu J, Duan C, Hu P, Lu H, Peng X. Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1ρ mapping. PLoS One 2017; 12:e0178406. [PMID: 28570641 PMCID: PMC5453520 DOI: 10.1371/journal.pone.0178406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/14/2017] [Indexed: 01/31/2023] Open
Abstract
Recent advancements in magnetic resonance imaging have allowed for the early detection of biochemical changes in intervertebral discs and articular cartilage. Here, we assessed the feasibility of axial T2, T2* and T1ρ mapping of the lumbar facet joints (LFJs) to determine correlations between cartilage and intervertebral discs (IVDs) in early lumbar vertebral degeneration. We recruited 22 volunteers and examined 202 LFJs and 101 IVDs with morphological (sagittal and axial FSE T2-weighted imaging) and axial biochemical (T2, T2* and T1ρ mapping) sequences using a 3.0T MRI scanner. IVDs were graded using the Pfirrmann system. Mapping values of LFJs were recorded according to the degeneration grades of IVDs at the same level. The feasibility of T2, T2* and T1ρ in IVDs and LFJs were analyzed by comparing these mapping values across subjects with different rates of degeneration using Kruskal-Wallis tests. A Pearson's correlation analysis was used to compare T2, T2* and T1ρ values of discs and LFJs. We found excellent reproducibility in the T2, T2* and T1ρ values for the nucleus pulposus (NP), anterior and posterior annulus fibrosus (PAF), and LFJ cartilage (intraclass correlation coefficients 0.806-0.955). T2, T2* and T1ρ mapping (all P<0.01) had good Pfirrmann grade performances in the NP with IVD degeneration. LFJ T2* values were significantly different between grades I and IV (PL = 0.032, PR = 0.026), as were T1ρ values between grades II and III (PL = 0.002, PR = 0.006) and grades III and IV (PL = 0.006, PR = 0.001). Correlations were moderately negative for T1ρ values between LFJ cartilage and NP (rL = -0.574, rR = -0.551), and between LFJ cartilage and PAF (rL = -0.551, rR = -0.499). T1ρ values of LFJ cartilage was weakly correlated with T2 (r = 0.007) and T2* (r = -0.158) values. Overall, we show that axial T1ρ effectively assesses early LFJ cartilage degeneration. Using T1ρ analysis, we propose a link between LFJ degeneration and IVD NP or PAF changes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hongbin Lu
- Department of Sports Medicine and Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xianjing Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- * E-mail:
| |
Collapse
|
35
|
Takao S, Nguyen TB, Yu HJ, Hagiwara S, Kaneko Y, Nozaki T, Iwamoto S, Otomo M, Schwarzkopf R, Yoshioka H. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences. BMC Musculoskelet Disord 2017; 18:202. [PMID: 28521823 PMCID: PMC5437607 DOI: 10.1186/s12891-017-1560-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/09/2017] [Indexed: 12/03/2022] Open
Abstract
Background Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Methods Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. Results In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p < 0.0001 and 96.5 ms vs 91.7 ms on SPGR, p = 0.004). In vertical zonal analysis, T1rho relaxation times of the white zone tended to be higher than those of the red zone, and this difference was statistically significant in the posterior horn of the medical meniscus (88.4 ms vs 77.1 ms on b-FFE, p < 0.001 and 104.9 ms vs 96.8 ms on SPGR, p =0.001). Likewise, T2 relaxation times of the superficial zone were significantly higher than those of the deep zone (80.4 ms vs 74.4 ms in the medial meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p < 0.001) and lateral meniscus anterior horn (104.6 ms vs 84.2 ms, p < 0.0001). Inter-class and intra-class correlation coefficients were excellent (>0.74) or good (0.60–0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. Conclusions There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.
Collapse
Affiliation(s)
- Shoichiro Takao
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA.,Department of Diagnostic Radiology, Graduate School of Health Sciences, Tokushima University, 3-18-15, Kuramoto-Cho, Tokushima City, 770-8509, Tokushima, Japan
| | - Tan B Nguyen
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA
| | - Hon J Yu
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA
| | - Shigeo Hagiwara
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA
| | - Yasuhito Kaneko
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA
| | - Taiki Nozaki
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA
| | - Seiji Iwamoto
- Department of Radiology, Tokushima University Hospital, 3-18-15, Kuramoto-Cho, Tokushima City, 770-8509, Tokushima, Japan
| | - Maki Otomo
- Department of Radiology, Tokushima University Hospital, 3-18-15, Kuramoto-Cho, Tokushima City, 770-8509, Tokushima, Japan
| | - Ran Schwarzkopf
- Department of Orthopaedic Surgery, University of California, Irvine, 101 The City Drive South, Orange, 92868, CA, USA
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Rt. 140, Orange, CA, 92868, USA.
| |
Collapse
|
36
|
Kester BS, Carpenter PM, Yu HJ, Nozaki T, Kaneko Y, Yoshioka H, Schwarzkopf R. T1ρ/T2 mapping and histopathology of degenerative cartilage in advanced knee osteoarthritis. World J Orthop 2017; 8:350-356. [PMID: 28473964 PMCID: PMC5396021 DOI: 10.5312/wjo.v8.i4.350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether normal thickness cartilage in osteoarthritic knees demonstrate depletion of proteoglycan or collagen content compared to healthy knees.
METHODS Magnetic resonance (MR) images were acquired from 5 subjects scheduled for total knee arthroplasty (TKA) (mean age 70 years) and 20 young healthy control subjects without knee pain (mean age 28.9 years). MR images of T1ρ mapping, T2 mapping, and fat suppressed proton-density weighted sequences were obtained. Following TKA each condyle was divided into 4 parts (distal medial, posterior medial, distal lateral, posterior lateral) for cartilage analysis. Twenty specimens (bone and cartilage blocks) were examined. For each joint, the degree and extent of cartilage destruction was determined using the Osteoarthritis Research Society International cartilage histopathology assessment system. In magnetic resonance imaging (MRI) analysis, 2 readers performed cartilage segmentation for T1ρ/T2 values and cartilage thickness measurement.
RESULTS Eleven areas in MRI including normal or near normal cartilage thickness were selected. The corresponding histopathological sections demonstrated mild to moderate osteoarthritis (OA). There was no significant difference in cartilage thickness in MRI between control and advanced OA samples [medial distal condyle, P = 0.461; medial posterior condyle (MPC), P = 0.352; lateral distal condyle, P = 0.654; lateral posterior condyle, P = 0.550], suggesting arthritic specimens were morphologically similar to normal or early staged degenerative cartilage. Cartilage T2 and T1ρ values from the MPC were significantly higher among the patients with advanced OA (P = 0.043). For remaining condylar samples there was no statistical difference in T2 and T1ρ values between cases and controls but there was a trend towards higher values in advanced OA patients.
CONCLUSION Though cartilage is morphologically normal or near normal, degenerative changes exist in advanced OA patients. These changes can be detected with T2 and T1ρ MRI techniques.
Collapse
|
37
|
Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM, Potter H, Rodeo S, Li X, Ma CB, Majumdar S, Goldring M, Hannafin JA, Marx RG, Nawabi DH, Otero M, Shah P, Warren RF, Amrami KK, Felmlee JP, Frick MA, Stuart MJ, Williams SL, Kretzchmar M, Lansdown DA, Okazaki N, Russell C, Savic D, Schwaiger B, Su F, Wyatt C, Cheong M, Hardin JA. Effects of Surgical Factors on Cartilage Can Be Detected Using Quantitative Magnetic Resonance Imaging After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2017; 45:1075-1084. [PMID: 28768432 DOI: 10.1177/0363546516677794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quantitative magnetic resonance (qMR) can be used to measure macromolecules in tissues and is a potential method of observing early cartilage changes in the development of posttraumatic osteoarthritis. Hypothesis/Purpose: We hypothesized that specific patient and surgical factors affecting cartilage matrix composition after anterior cruciate ligament (ACL) reconstruction (ACLR) can be detected using T1ρ and T2 relaxation times. Our purpose was to demonstrate this ability in a multicenter feasibility study. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 54 patients who underwent ACLR underwent bilateral MRI at baseline before surgery and 6 months postoperatively. Operative findings were recorded. T1ρ and T2 relaxation times were calculated for 6 cartilage regions: the medial femur, lateral femur, medial tibia, lateral tibia, patella, and trochlea. A paired t test compared relaxation times at baseline and 6 months, univariate regression identified regions that influenced patient-reported outcome measures, and analysis of covariance was used to determine the surgical factors that resulted in elevated relaxation times at 6 months. RESULTS The injured knee had significantly prolonged T1ρ and T2 relaxation times in the tibiofemoral compartment at baseline and 6 months but had shorter values in the patellofemoral compartment compared with the uninjured knee. Prolonged T1ρ and T2 times at 6 months were noted for both the injured and uninjured knees. At 6 months, prolongation of T1ρ and T2 times in the tibial region was associated with lower patient-reported outcome measures. ACLR performed within 30 days of injury had significantly shorter T1ρ times in the tibial regions, and lateral meniscal tears treated with repair had significantly shorter T1ρ times than those treated with excision. CONCLUSION Prolonged relaxation times in multiple regions demonstrate how the injury affects the entire joint after an ACL tear. Changes observed in the uninjured knee may be caused by increased loading during rehabilitation, especially in the patellofemoral articular cartilage and distal femur. Relaxation times in the tibial regions may be predictive of patient symptoms at 6 months. These same regions are affected by surgical timing as early as 30 days after injury, but this may partially be reflective of the severity of the preoperative injury and the choice of treatment of meniscal tears.
Collapse
Affiliation(s)
- Keiko Amano
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alan K Li
- University of California, Berkeley, Berkeley, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hollis Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Scott Rodeo
- Weill Cornell Medical College, Cornell University, New York, New York, USA.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | -
- All members are listed in the Contributing Authors section at the end of this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu J, Zhang Y, Duan C, Peng X, Hu P, Lu H. Feasibility study for evaluating early lumbar facet joint degeneration using axial T 1 ρ, T 2 , and T2* mapping in cartilage. J Magn Reson Imaging 2017; 46:468-475. [PMID: 28152249 DOI: 10.1002/jmri.25596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To assess the feasibility of axial T2 , T2*, and T1 ρ mapping of lumbar facet joint (LFJ) cartilage for evaluation of early degeneration. MATERIALS AND METHODS We examined a total of 176 LFJs from 21 volunteers using axial T2 , T2*, and T1 ρ mapping with a 3.0T magnetic resonance imaging (MRI) scanner. All LFJs were measured and grouped according to the presence of low back pain (LBP), the Weishaupt grading system, and the Pfirrmann grade of the adjacent intervertebral disk (IVD). T2 , T2*, and T1 ρ values were analyzed and compared among the different groups. RESULTS Low interobserver agreement was found in the Weishaupt grading of LFJs (κ = 0.161). The T1 ρ values of LFJs were significantly different between adjacent two Pfirrmann grade of disks (grade I 50.15 ± 3.63 msec / grade II 53.27 ± 3.80 msec, P = 0.002; grade II 53.27 ± 3.80 msec / grade III 58.40 ± 4.17 msec, P < 0.01), and in different Weishaupt grades of LFJs (P = 0.000). T2* values were only found significantly different between Pfirrmann grade I and III of disks (P = 0.048). There was no significant difference in T2 values of LFJs whatever in Pfirrmann (P = 0.556) or Weishaupt grades (P = 0.694). No significant difference was found in T2 , T2*, and T1 ρ values between volunteers with LBP and without LBP (PT2 = 0.783, PT2*=0.311, PT1 ρ = 0.259). CONCLUSION Axial T1 ρ could be an effective and sensitive method to assess for early degenerative changes in LFJ cartilage. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:468-475.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xianjing Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hongbin Lu
- Department of Sports Medicine and Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
39
|
Van Rossom S, Smith CR, Zevenbergen L, Thelen DG, Vanwanseele B, Van Assche D, Jonkers I. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults. PLoS One 2017; 12:e0170002. [PMID: 28076431 PMCID: PMC5226797 DOI: 10.1371/journal.pone.0170002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading.
Collapse
Affiliation(s)
- Sam Van Rossom
- Human movement biomechanics research group, Department of kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Colin Robert Smith
- Department of mechanical engineering, University of Wisconsin-Madison, Madison, United States of America
| | - Lianne Zevenbergen
- Human movement biomechanics research group, Department of kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Darryl Gerard Thelen
- Department of mechanical engineering, University of Wisconsin-Madison, Madison, United States of America
- Department of biomedical engineering, University of Wisconsin-Madison, Madison, United States of America
- Department of orthopedics and rehabilitation, University of Wisconsin-Madison, Madison, United States of America
| | - Benedicte Vanwanseele
- Human movement biomechanics research group, Department of kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dieter Van Assche
- Musculoskeletal rehabilitation research group, Department of rehabilitation sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human movement biomechanics research group, Department of kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Saxena V, D'Aquilla K, Marcoon S, Krishnamoorthy G, Gordon JA, Carey JL, Borthakur A, Kneeland JB, Kelly JD, Reddy R, Sennett BJ. T1ρ Magnetic Resonance Imaging to Assess Cartilage Damage After Primary Shoulder Dislocation. Am J Sports Med 2016; 44:2800-2806. [PMID: 27466221 PMCID: PMC5517299 DOI: 10.1177/0363546516655338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Patients who suffer anterior shoulder dislocations are at higher risk of developing glenohumeral arthropathy, but little is known about the initial cartilage damage after a primary shoulder dislocation. T1ρ is a magnetic resonance imaging (MRI) technique that allows quantification of cartilage proteoglycan content and can detect physiologic changes in articular cartilage. PURPOSE This study aimed to establish baseline T1ρ MRI values for glenoid and humeral head cartilage, determine whether T1ρ MRI can detect glenohumeral cartilage damage after traumatic primary shoulder dislocation, and assess for patterns in cartilage damage in anterior shoulder dislocation. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Nine male patients (mean age, 32.0 years; range, 20-59 years) who sustained first-time anterior shoulder dislocations underwent 3T T1ρ MRI. Five healthy controls (mean age, 27.4 years; range, 24-30 years) without prior dislocation or glenohumeral arthritis also underwent 3T T1ρ MRI. The T1ρ relaxation constant was determined for the entire glenoid and humeral head for patients with a dislocation and for healthy controls. The glenoid and humeral head were divided into 9 zones, and T1ρ values were determined for each zone in dislocated and control shoulders to identify patterns in cartilage damage in dislocated shoulders. RESULTS Average overall T1ρ values for humeral head cartilage in dislocated shoulders were significantly greater than in controls (41.7 ± 3.9 ms vs 38.4 ± 0.6 ms, respectively; P = .03). However, average overall T1ρ values for glenoid cartilage were not significantly different in dislocated shoulders compared with controls (44.0 ± 3.3 ms vs 44.6 ± 2.4 ms, respectively; P = .40), suggesting worse damage to humeral head cartilage. T1ρ values in the posterior-middle humeral head were higher in patients with a dislocation compared with controls (41.5 ± 3.8 ms vs 38.2 ± 2.2 ms, respectively; P = .021) and trended toward significance in the posterior-superior and middle-superior zones (35.2 ± 4.9 ms vs 31.3 ± 1.0 ms and 33.7 ± 5.0 ms vs 30.5 ± 1.3 ms, respectively; P = .056). These 3 humeral head zones are where Hill-Sachs lesions predominate. T1ρ values in the anterior-inferior glenoid zone trended toward significance in patients with a dislocation compared with controls (47.4 ± 5.0 ms vs 43.5 ± 3.5 ms, respectively; P = .073). CONCLUSION Humeral head cartilage sustained greater damage than glenoid cartilage in primary dislocation. T1ρ values were higher in glenohumeral zones associated with Bankart and Hill-Sachs lesions. Widespread initial cartilage damage may predispose patients to glenohumeral arthropathy.
Collapse
Affiliation(s)
- Vishal Saxena
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon Marcoon
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guruprasad Krishnamoorthy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua A. Gordon
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| | - James L. Carey
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ari Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Bruce Kneeland
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John D. Kelly
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian J. Sennett
- Penn Sports Medicine Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Spear JT, Gore JC. New insights into rotating frame relaxation at high field. NMR IN BIOMEDICINE 2016; 29:1258-73. [PMID: 26866422 PMCID: PMC6935321 DOI: 10.1002/nbm.3490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 05/03/2023]
Abstract
Measurements of spin-lock relaxation rates in the rotating frame (R1ρ ) at high magnetic fields afford the ability to probe not only relatively slow molecular motions, but also other dynamic processes, such as chemical exchange and diffusion. In particular, measurements of the variation (or dispersion) of R1ρ with locking field allow the derivation of quantitative parameters that describe these processes. Measurements in deuterated solutions demonstrate the manner and degree to which exchange dominates relaxation at high fields (4.7 T, 7 T) in simple solutions, whereas temperature and pH are shown to be very influential factors affecting the rates of proton exchange. Simulations and experiments show that multiple exchanging pools of protons in realistic tissues can be assumed to behave independently of each other. R1ρ measurements can be combined to derive an exchange rate contrast (ERC) that produces images whose intensities emphasize protons with specific exchange rates rather than chemical shifts. In addition, water diffusion in the presence of intrinsic susceptibility gradients may produce significant effects on R1ρ dispersions at high fields. The exchange and diffusion effects act independently of each other, as confirmed by simulation and experimentally in studies of red blood cells at different levels of oxygenation. Collectively, R1ρ measurements provide an ability to quantify exchange processes, to provide images that depict protons with specific exchange rates and to describe the microstructure of tissues containing magnetic inhomogeneities. As such, they complement traditional T1 or T2 measurements and provide additional insights from measurements of R1ρ at a single locking field. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John T. Spear
- Correspondence to: J. T. Spear, Physics and Astronomy, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA.
| | | |
Collapse
|
42
|
Mitrea BG, Krafft AJ, Song R, Loeffler RB, Hillenbrand CM. Paired self-compensated spin-lock preparation for improved T1ρ quantification. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 268:49-57. [PMID: 27161095 DOI: 10.1016/j.jmr.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE Spin-lock (SL) imaging allows quantification of the spin-lattice relaxation time in the rotating frame (T1ρ). B0 and B1 inhomogeneities impact T1ρ quantification because the preparatory block in SL imaging is sensitive to the field heterogeneities. Here, a modified preparatory block (PSC-SL) is proposed that attempts to alleviate SL sensitivity to field inhomogeneities in scenarios where existing approaches fail, i.e. high SL frequencies. METHODS Computer simulations, phantom and in vivo experiments were used to determine the effect of field inhomogeneities on T1ρ quantification. Existing SL preparations were compared with PSC-SL in different conditions to assess the advantages and disadvantages of each method. RESULTS Phantom experiments and computer modeling demonstrate that PSC-SL provides superior T1ρ quantification at high SL frequencies in situations where the existing SL preparation methods fail. This result has been confirmed in pre-clinical neuro and body imaging at 7T. CONCLUSION PSC-SL complements existing methods by increasing the accuracy of T1ρ quantification at high spin-lock frequencies when large field inhomogeneities are present. A-priory information about the experimental conditions such, as field distribution and spinlock frequency are useful for selecting an appropriate spin-lock preparation for specific applications.
Collapse
Affiliation(s)
- Bogdan G Mitrea
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Axel J Krafft
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruitian Song
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ralf B Loeffler
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia M Hillenbrand
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
43
|
Wáng YXJ, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg 2015; 5:858-85. [PMID: 26807369 PMCID: PMC4700236 DOI: 10.3978/j.issn.2223-4292.2015.12.06] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/06/2015] [Indexed: 12/15/2022]
Abstract
T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.
Collapse
|
44
|
Nozaki T, Kaneko Y, Yu HJ, Kaneshiro K, Schwarzkopf R, Hara T, Yoshioka H. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis. Eur Radiol 2015; 26:1952-62. [PMID: 26396106 PMCID: PMC4803634 DOI: 10.1007/s00330-015-3988-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
Objectives To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. Methods T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4° over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. Results T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Conclusions Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. Key Points • T1rho profiles are not homogeneous over the entire femur. • There is angle- and depth-dependent variation in T1rho profiles. • There is no influence of magic angle effect on T1rho profiles. • Maps/graphs might be useful if several difficulties are solved.
Collapse
Affiliation(s)
- Taiki Nozaki
- Department of Radiological Sciences, University of California Irvine, 101 The City Drive South, Rt. 140, Bldg. 56, Orange, CA, 92868, USA
| | - Yasuhito Kaneko
- Department of Radiological Sciences, University of California Irvine, 101 The City Drive South, Rt. 140, Bldg. 56, Orange, CA, 92868, USA
| | - Hon J Yu
- Department of Radiological Sciences, University of California Irvine, 101 The City Drive South, Rt. 140, Bldg. 56, Orange, CA, 92868, USA
| | | | - Ran Schwarzkopf
- Department of Orthopedic Surgery, University of California Irvine, Irvine, CA, USA
| | - Takeshi Hara
- Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California Irvine, 101 The City Drive South, Rt. 140, Bldg. 56, Orange, CA, 92868, USA.
| |
Collapse
|
45
|
|
46
|
Chang EY, Campos JC, Bae WC, Znamirowski R, Statum S, Du J, Chung CB. Ultrashort Echo Time T1ρ Is Sensitive to Enzymatic Degeneration of Human Menisci. J Comput Assist Tomogr 2015; 39:637-42. [PMID: 25992688 PMCID: PMC4575241 DOI: 10.1097/rct.0000000000000265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of the study was to determine whether quantitative ultrashort echo time (UTE) -T1ρ magnetic resonance (MR) measurements are sensitive to proteoglycan degradation in human menisci by trypsin digestion. METHODS Conventional and quantitative UTE-T1ρ MR sequences were performed on 4 meniscal samples using a 3T scanner. Magnetic resonance imaging was performed before and after 4, 8, and 12 hours of trypsin solution immersion, inducing proteoglycan loss. One sample was used as a control. Digest solutions were analyzed for glycosaminoglycan (GAG) content. The UTE-T1ρ studies were analyzed for quantitative changes. RESULTS Images showed progressive tissue swelling, fiber disorganization, and increase in signal intensity after GAG depletion. The UTE-T1ρ values tended to increase with time after trypsin treatment (P = 0.06). Cumulative GAG loss into the bath showed a trend of increased values for trypsin-treated samples (P = 0.1). CONCLUSIONS Ultrashort echo time T1ρ measurements can noninvasively detect and quantify severity of meniscal degeneration, which has been correlated with progression of osteoarthritis.
Collapse
Affiliation(s)
- Eric Y. Chang
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Juliana C. Campos
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Won C. Bae
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Richard Znamirowski
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Jiang Du
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| | - Christine B. Chung
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA 92103
| |
Collapse
|
47
|
Kumar D, Souza RB, Subburaj K, MacLeod TD, Singh J, Calixto NE, Nardo L, Link TM, Li X, Lane NE, Majumdar S. Are There Sex Differences in Knee Cartilage Composition and Walking Mechanics in Healthy and Osteoarthritis Populations? Clin Orthop Relat Res 2015; 473:2548-58. [PMID: 25716211 PMCID: PMC4488198 DOI: 10.1007/s11999-015-4212-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Women are at a greater risk for knee osteoarthritis (OA), but reasons for this greater risk in women are not well understood. It may be possible that differences in cartilage composition and walking mechanics are related to greater OA risk in women. QUESTIONS/PURPOSES (1) Do women have higher knee cartilage and meniscus T1ρ than men in young healthy, middle-aged non-OA and OA populations? (2) Do women exhibit greater static and dynamic (during walking) knee loading than men in young healthy, middle-aged non-OA and OA populations? METHODS Data were collected from three cohorts: (1) young active (<35 years) (20 men, 13 women); (2) middle-aged (≥35 years) without OA (Kellgren-Lawrence [KL] grade < 2) (43 men, 65 women); and (3) middle-aged with OA (KL>1) (18 men, 25 women). T1ρ and T2 relaxation times for cartilage in the medial knee, lateral knee, and patellofemoral compartments and medial and lateral menisci were quantified with 3.0-T MRI. A subset of the participants underwent three-dimensional motion capture during walking for calculation of peak knee flexion and adduction moments, flexion and adduction impulses, and peak adduction angle. Differences in MR, radiograph, and gait parameters between men and women were compared in the three groups separately using multivariate analysis of variance. RESULTS Women had higher lateral articular cartilage T1ρ (men=40.5 [95% confidence interval {CI}, 38.8-42.3] ms; women=43.3 [95% CI, 41.9-44.7] ms; p=0.017) and patellofemoral T1ρ (men=44.4 [95% CI, 42.6-46.3] ms; women=48.4 [95% CI, 46.9-50.0] ms; p=0.002) in the OA group; and higher lateral meniscus T1ρ in the young group (men=15.3 [95% CI, 14.7-16.0] ms; women=16.4 [95% CI, 15.6-17.2] ms; p=0.045). The peak adduction moment in the second half of stance was lower in women in the middle-aged (men=2.05 [95% CI, 1.76-2.34] %BW*Ht; women=1.66 [95% CI, 1.44-1.89] %BW*Ht; p=0.037) and OA (men=2.34 [95% CI, 1.76-2.91] %BW*Ht; women=1.42 [95% CI, 0.89-1.94] %BW*Ht; p=0.022) groups. Static varus from radiographs was lower in women in the middle-aged (men=178° [95% CI, 177°-179°]; women=180° [95% CI, 179°-181°]; p=0.002) and OA (men=176° [95% CI, 175°-178°]; women=180° [95% CI, 179°-181°]; p<0.001) groups. Women had lower varus during walking in all three groups (young: men=4° [95% CI, 3°-6°]; women=2° [95% CI, 0°-3°]; p=0.013; middle-aged: men=2° [95% CI, 1°-3°]; women=0° [95% CI, -1° to 1°]; p=0.015; OA: men=4° [95% CI, 2°-6°]; women=0° [95% CI, -2° to 2°]; p=0.011). Women had a higher knee flexion moment (men=4.24 [95% CI, 3.58-4.91] %BW*Ht; women 5.40 [95% CI, 4.58-6.21] %BW*Ht; p=0.032) in the young group. CONCLUSIONS These data demonstrate differences in cartilage composition and gait mechanics between men and women in young healthy, middle-aged healthy, and OA cohorts. Considering the cross-sectional nature of the study, longitudinal research is needed to investigate if these differences in cartilage composition and walking mechanics are associated with a greater risk of lateral tibiofemoral or patellofemoral OA in women. Future studies should also investigate the relative risk of lateral versus medial patellofemoral cartilage degeneration risk in women compared with men. LEVEL OF EVIDENCE Level III, retrospective study.
Collapse
Affiliation(s)
- Deepak Kumar
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA , />Division of Physical Therapy, Department of Health Professions, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Room B309, Charleston, SC 29425 USA
| | - Richard B. Souza
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA , />Department of Physical Therapy and Rehabilitation Science, University of California-San Francisco, San Francisco, CA USA
| | - Karupppasamy Subburaj
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA , />Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Toran D. MacLeod
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA , />Department of Physical Therapy, California State University, Sacramento, CA USA
| | - Justin Singh
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| | - Nathaniel E. Calixto
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| | - Lorenzo Nardo
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| | - Thomas M. Link
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| | - Xiaojuan Li
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| | - Nancy E. Lane
- />Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA USA
| | - Sharmila Majumdar
- />Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA USA
| |
Collapse
|
48
|
Zaid M, Lansdown D, Su F, Pedoia V, Tufts L, Rizzo S, Souza RB, Li X, Ma CB. Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction. J Orthop Res 2015; 33:1079-86. [PMID: 25721417 PMCID: PMC7238841 DOI: 10.1002/jor.22867] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/08/2015] [Indexed: 02/04/2023]
Abstract
Altered knee kinematics following ACL reconstruction may predispose patients to the development of early onset post-traumatic osteoarthritis. The goal of our study was to examine the longitudinal interrelationship between altered tibial position relative to the femur and cartilage health measured by quantitative T1ρ MRI. Twenty-five patients with isolated unilateral ACL injury underwent kinematic and cartilage T1ρ MRI at baseline prior to ACL reconstruction and then at 1-year post-reconstruction. Tibial position relative to the femur in the anterior-posterior plane was calculated as well as cartilage T1ρ relaxation values in the injured and uninjured knee. At baseline prior to ACL reconstruction, the tibia was in a significantly more anterior position relative to the femur in the ACL deficient knee compared to the healthy contralateral knee. This difference was no longer present at 1-year follow-up. Additionally, the side-side difference in tibial position correlated to increased cartilage T1ρ relaxation values in the medial compartment of the knee 1-year post-reconstruction. Altered tibial position following ACL reconstruction is correlated with detectable cartilage degeneration as soon as 1 year following ACL reconstruction.
Collapse
Affiliation(s)
- Musa Zaid
- University of California San Francisco School of Medicine, San Francisco
| | - Drew Lansdown
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco
| | - Favian Su
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Lauren Tufts
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Sarah Rizzo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Richard B. Souza
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - C. Benjamin Ma
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco
| |
Collapse
|
49
|
Shah RP, Stambough JB, Fenty M, Mauck RL, Kelly JD, Reddy R, Tjoumakaris FP. T1rho Magnetic Resonance Imaging at 3T Detects Knee Cartilage Changes After Viscosupplementation. Orthopedics 2015; 38:e604-10. [PMID: 26186323 DOI: 10.3928/01477447-20150701-59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/02/2014] [Indexed: 02/03/2023]
Abstract
Viscosupplementation may affect cartilage. Changes in T1rho magnetic resonance imaging (MRI) relaxation times correlate with proteoglycan changes in cartilage. The authors hypothesized that T1rho MRI will show an improvement in proteoglycan content at 6 weeks and 3 months after viscosupplementation and that this improvement will correlate with functional outcome scores. Ten patients (mean age, 56 years; Kellgren-Lawrence grade 1 or 2) underwent T1rho MRI at baseline, 6 weeks, and 3 months after viscosupplementation. Volumetric T1rho means were calculated by depth and region. Visual analog scale (VAS), International Knee Documentation Committee (IKDC), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were obtained. Mean T1rho values decreased in the superficial patella at 6 weeks (10.3%, P=.002) and 3 months (7.9%, P=.018) and in the middle patella at 6 weeks (7.0%, P=.014) compared with baseline values. Deep patella T1rho values increased at 3 months compared with 6 weeks (9.9%, P=.033), returning to values similar to baseline. Mean T1rho values increased in the deep tibia at 6 weeks (4.7%, P=.048) and in the middle tibia (5.2%, P=.004) and deep tibia (11.2%, P=.002) at 3 months compared with baseline. At 6 weeks, improvement was seen in VAS (5.9 to 3.9, P<.01), IKDC-9 (55.3 to 63.7, P=.03), and WOMAC (43.9 to 32.8, P=.03) scores. Functional VAS (4.0, P=.02), IKDC-9 (67.8, P=.04), and WOMAC (30.0, P=.04) scores remained better at 3 months. T1rho MRI is a feasible noninvasive method of studying molecular changes in cartilage. Some segments improved after viscosupplementation, and others worsened, possibly reflecting natural history or symptom relief and subsequent increase in activity-related wear.
Collapse
|
50
|
Gonyea JV, Watts R, Applebee A, Andrews T, Hipko S, Nickerson JP, Thornton L, Filippi CG. In vivo quantitative whole‐brain T
1
rho MRI of multiple sclerosis. J Magn Reson Imaging 2015; 42:1623-30. [DOI: 10.1002/jmri.24954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jay V. Gonyea
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Richard Watts
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Angela Applebee
- Department of Neurological SciencesUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Trevor Andrews
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
- Philips HealthTechCleveland Ohio USA
| | - Scott Hipko
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Joshua P. Nickerson
- Department of RadiologyUniversity of Vermont College of MedicineBurlington Vermont USA
| | - Lindsay Thornton
- Department of RadiologyUniversity of FloridaGainesville Florida USA
| | - Christopher G. Filippi
- Department of Neurological SciencesUniversity of Vermont College of MedicineBurlington Vermont USA
- Department of RadiologyNorth Shore University Hospital‐Long Island JewishNew York New York USA
| |
Collapse
|