1
|
Gao X, Yang J, Liu L, Hu Z, Lin R, Tang L, Yu M, Chen Z, Gao C, Zhang M, Li L, Ruan C, Liu Y. An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects. Bioact Mater 2025; 46:1-20. [PMID: 39719966 PMCID: PMC11665476 DOI: 10.1016/j.bioactmat.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL). Benefiting from this strategy, SAB, an unstable and untargetable plant-derived osteogenic compound, was effectively encapsulated in APS@P, demonstrating stable and precise delivery with improved therapeutic efficacy. Owing to SAB-mediated bone homeostasis, APS@P significantly promoted angiogenesis and new bone formation while suppressing bone resorption, resulting in a significant 146 % increase in bone mass and improved microstructure compared to the OBD group. It was confirmed that the encapsulation of SAB into APS@P could promote the osteogenic differentiation of MSCs by stimulating Tph2/Wnt/β-catenin signaling axis, coupled with the stimulation of type H angiogenesis and the suppression of RANKL-mediate bone resorption, thereby enhance OBD repair. This study provides a universal platform for enhancing the bioactivity of tissue-engineered scaffolds, offering an effective solution for the efficient regeneration of osteoporotic bone.
Collapse
Affiliation(s)
- Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zilong Hu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Rui Lin
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Lan Tang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Yu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Li Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| |
Collapse
|
2
|
Yan L, Liu J, Chen R, Lei M, Guo B, Chen Z, Dai Z, Zhu H. Reproductive characteristics and methods to improve reproductive performance in goose production: A systematic review. Poult Sci 2025; 104:105099. [PMID: 40209471 DOI: 10.1016/j.psj.2025.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
In the past two decades, the high demand of and significance of poultry meat have promoted the development of the goose industry. Despite the continuous expansion of the goose breeding scale and the generation of large economic benefits by the goose industry, low reproductive efficiency remains a barrier to limit vigorous development of the goose industry. Poor reproductive efficiency can be attributed to breeding seasonality, strong broody behavior, and poor semen quality. Based on the reproductive endocrine regulation mechanism of geese, an overview of past studies that have developed various methods to achieve a significant improvement in goose reproductive performance including physical facilities for artificial illumination control and dietary nutrition manipulation to improve breeder reproductivity, and artificial incubation equipment and technology for better hatchability. The most recent advances utilize immunoneutralization to regulate critical hormones involved in goose reproduction. This review provides new information for industry and academic studies of goose breeding.
Collapse
Affiliation(s)
- Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rong Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
3
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
4
|
Xia R, Peng H, Zhu X, Suolang W, Pambayi STL, Yang X, Zeng Y, Shen B. Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases. Orthop Surg 2025. [PMID: 40071773 DOI: 10.1111/os.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Recent literature has increasingly demonstrated the significant function of autonomic nerves in regulating physiological and pathological changes associated with the skeletal system. Extensive studies have been conducted to understand the contribution of the autonomic nervous system (ANS) to skeletal metabolic homeostasis and resistance to aseptic inflammation, specifically from the viewpoint of skeletal neurobiology. There have been plenty of studies on how the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), the two main branches of the ANS, regulate bone remodeling, which is the process of bone formation and resorption. The following studies have revealed critical neurological pathways that induce significant alterations in bone cell biology and uncover the intricate linkages between the ANS and the skeletal system. Furthermore, inspired by the connection between the ANS and bone remodeling, neuromodulation has been utilized as a therapeutic method for patients with orthopedic diseases: by directly influencing the ANS, it is possible to alter the excitability of nerve fibers and the release of neurotransmitters, which can lead to anti-inflammatory and analgesic effects, thereby directly or indirectly impacting bone formation and bone resorption. Our work aims to review the most recent findings on the impact of the ANS on bone remodeling, enhance the current understanding of the interaction between nerves and bones, and explore potential neuromodulation methods that could be used to treat orthopedic conditions, thereby drawing attention to the significant role of the ANS in the skeletal system.
Collapse
Affiliation(s)
- Ruihao Xia
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongjun Peng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xishan Zhu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wangdui Suolang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Steve T L Pambayi
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Templeton-Jager TJ, Diarra S, Kelley LK, Gilpin NW. Systemic bupropion treatment reduces long-access cocaine self-administration in male and female rats. J Psychopharmacol 2025; 39:282-294. [PMID: 39881654 DOI: 10.1177/02698811241312680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND More than 1 million people in the United States meet the criteria for cocaine use disorder (CUD), and over 19,000 people died from cocaine-related overdoses in 2020, but there are currently no FDA-approved medications for the treatment of CUD. Bupropion is an antidepressant currently prescribed to treat depression and nicotine addiction that acts by inhibiting norepinephrine and dopamine transporters. METHODS In this study, we tested the effect of several doses of systemic bupropion on cocaine self-administration in male and female Wistar rats. In our first experiment, rats self-administered cocaine solution intravenously and were pretreated with systemic bupropion before self-administration sessions. In our second experiment, rats were pre-treated with bupropion before completing tests of locomotor activity and anxiety-like behavior. RESULTS We found that high doses of systemically administered bupropion (60 mg/kg) attenuated cocaine self-administration in male and female rats during extended-access (6 h) sessions. We also found that the highest dose (60 mg/kg) of systemic bupropion was more efficacious in females relative to males during the first hour of operant sessions. Systemic bupropion did not alter locomotor activity, inactive lever presses, or food intake. The Estrous cycle did not influence cocaine intake with or without bupropion. CONCLUSION Our finding that bupropion attenuates cocaine self-administration suggests that bupropion may have promise for reducing cocaine use in humans.
Collapse
Affiliation(s)
- Taylor J Templeton-Jager
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Siga Diarra
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Leslie K Kelley
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| |
Collapse
|
6
|
Qiu Q, Komnenov D, Hali M, Chung CS, Mueller PJ, Rossi NF, Kuhn DM, Mateika JH. Systolic and diastolic dysfunction is exacerbated by age and spinal cord injury in male and female mice with central nervous system serotonin deficiency. J Physiol 2025; 603:1375-1397. [PMID: 39968856 PMCID: PMC11908478 DOI: 10.1113/jp287067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
The present study was designed to explore whether the depletion of serotonin (5-HT) in the central nervous system (CNS5-HT) leads to systolic and diastolic dysfunction and whether this dysfunction is exacerbated by sex, age and spinal cord injury. Echocardiographic assessment of systolic and diastolic function was completed in young and old male and female tryptophan hydroxylase 2 knockout (TPH2-/-) and wild-type (TPH2+/+) mice with intact spinal cords, as well as in C2 spinal cord hemisected young TPH2-/- and TPH2+/+ mice. In addition, lumbar sympathetic nervous system activity was recorded in elderly male and female intact TPH2-/- and TPH2+/+ mice. Systolic and diastolic dysfunction was evident in young TPH2-/- mice, including a higher left ventricular mass (P < 0.001), left ventricular outflow parameters (e.g. peak velocity) and E/A (P < 0.001). Reductions in ejection fraction and fractional shortening were also evident (P < 0.001), although stroke volume and cardiac output were maintained. The assessed dysfunction was exacerbated by age and spinal cord injury, resulting in reductions in cardiac output (P ≤ 0.01). The dysfunction was accompanied by increases in sympathetic burst height (P = 0.038) and incidence (P = 0.001). Reductions in CNS5-HT are coupled to systolic and diastolic dysfunction, which is exacerbated by age and spinal cord injury. This dysfunction is coupled to increases in sympathetic nervous system activity in elderly mice. Our findings are an initial step toward determining whether reductions in CNS5-HT are a unifying mechanism that links central sleep apnoea, sympathoexcitation and heart failure in intact and spinal cord injured individuals. KEY POINTS: Reductions in central nervous system serotonin (CNS5-HT) may contribute to systolic and diastolic dysfunction. This dysfunction may be linked to increases in sympathetic nervous system activity and exacerbated by sex, age and spinal cord injury. Echocardiographic assessment of systolic and diastolic function was completed in young and old male and female intact TPH2+/+ and TPH2-/- mice, as well as in C2 spinal cord hemisected young mice. Lumbar sympathetic nervous system activity was also recorded in elderly male and female intact TPH2+/+ and TPH2-/- mice. Systolic and diastolic dysfunction was evident in young TPH2-/- mice. This dysfunction was exacerbated by age and spinal cord injury. The cardiac dysfunction was accompanied by increases in lumbar sympathetic nervous system activity. Our findings are an initial step toward determining whether reductions in CNS5-HT is a unifying mechanism that links central sleep apnoea, sympathoexcitation and heart failure in intact and spinal cord injured individuals.
Collapse
Affiliation(s)
- Qingchao Qiu
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
| | - Dragana Komnenov
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
- Department of Internal MedicineWayne State University School of MedicineDetroitMIUSA
| | - Mirabela Hali
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
| | - Charles S. Chung
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
| | - Patrick J. Mueller
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
| | - Noreen F. Rossi
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
- Department of Internal MedicineWayne State University School of MedicineDetroitMIUSA
| | - Donald M. Kuhn
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMIUSA
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical CenterDetroitMIUSA
- Department of PhysiologyWayne State University School of MedicineDetroitMIUSA
- Department of Internal MedicineWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
7
|
Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T, Yue G, Guo H, Liang R, Chen Q, Gao S, Wang L, Zhang D. Semaphorin 3A on Osteoporosis: An Overreview of the Literature. Calcif Tissue Int 2025; 116:43. [PMID: 39985619 DOI: 10.1007/s00223-025-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Semaphorin 3A (Sema3A) is a signaling protein that has attracted increasing attention in recent years for its important role in regulating bone metabolism. In this review, we searched different databases with various combinations of keywords to analyze the effects of Sema3A on osteoporosis. Sema3A promotes bone formation and inhibits bone resorption by directly affecting the osteoblast and osteoclast or indirectly targeting the nervous system. The sympathetic nervous system may be the main link between the central nervous system and bone metabolism for Sema3A. In the peripheral nervous system, Sema3A may improve bone quality via sensory nervous innervation. In addition, estrogen is found to regulate Sema3A levels to improve bone homeostasis. Lots of Sema3A agonists have been documented to exhibit anti-osteoporotic potential in preclinical investigations. Therefore, Sema3A can be considered a novel therapeutic target for preserving bone mass, highlighting an alternative strategy for the development of anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Yueyi Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hanfen Shi
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuan Dai
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Shen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiyuan Yin
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshu Xu
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gaiyue Yue
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haochen Guo
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiqiong Liang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qishuang Chen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Conde KM, Wong H, Fang S, Li Y, Yu M, Deng Y, Liu Q, Fang X, Wang M, Shi Y, Ginnard OZ, Yang Y, Tu L, Liu H, Liu H, Yin N, Bean JC, Han J, Burt ME, Jossy SV, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Serotonin neurons integrate GABA and dopamine inputs to regulate meal initiation. Metabolism 2025; 163:156099. [PMID: 39667432 PMCID: PMC11924950 DOI: 10.1016/j.metabol.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HTDRN➔arcuate nucleus (ARH) circuit plays a role in meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the role of dopaminergic inputs via dopamine receptor D2 in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, for the initiation of a meal.
Collapse
Affiliation(s)
- Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuzheng Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuhan Shi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan E Burt
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V Jossy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
10
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Maxwell ND, Smiley CE, Sadek AT, Loyo-Rosado FZ, Giles DC, Macht VA, Woodruff JL, Taylor DL, Glass VM, Wilson SP, Reagan LP, Fadel JR, Grillo CA. Leptin Activation of Dorsal Raphe Neurons Inhibits Feeding Behavior. Diabetes 2024; 73:1821-1831. [PMID: 39167681 PMCID: PMC11493758 DOI: 10.2337/db24-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Leptin is a homeostatic regulatory element that signals the presence of adipocyte energy stores, reduces food intake, and increases energy expenditure. Similarly, serotonin (5-HT), a signaling molecule found in both the central and peripheral nervous systems, also controls food intake. Using neuronal tract tracing, pharmacologic and optogenetic approaches, and in vivo microdialysis, combined with behavioral end points, we tested the hypothesis that leptin controls food intake not only by activating hypothalamic leptin receptors (LepRs) but also through activation of LepRs expressed by serotonergic raphe neurons that send projections to the arcuate (ARC). We showed that microinjection of leptin directly into the dorsal raphe nucleus (DRN) reduced food intake in rats. This effect was mediated by LepR-expressing neurons in the DRN, because selective optogenetic activation of these neurons at either their DRN cell bodies or their ARC terminals reduced food intake. Anatomically, we identified a unique population of serotonergic raphe neurons expressing LepRs that send projections to the ARC. Finally, by using in vivo microdialysis, we showed that leptin administration to the DRN increased 5-HT efflux into the ARC, and specific antagonism of the 5-HT2C receptors in the ARC diminished the leptin anorectic effect. Overall, this study identified a novel circuit for leptin-mediated control of food intake through a DRN-ARC pathway, identifying a new level of interaction between leptin and serotonin to control food intake. Characterization of this new pathway creates opportunities for understanding how the brain controls eating behavior and opens alternative routes for the treatment of eating disorders. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas David Maxwell
- School of Medicine, University of South Carolina, Columbia, SC
- School of Medicine, Duke University, Durham, NC
| | - Cora Erin Smiley
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | | | | | | | | | | | | | | | - Lawrence Patrick Reagan
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | - Claudia Alejandra Grillo
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
12
|
Ubhayarathna M, Langmead CJ, Diepenhorst NA, Stewart GD. Molecular and structural insights into the 5-HT 2C receptor as a therapeutic target for substance use disorders. Br J Pharmacol 2024; 181:4414-4429. [PMID: 37679998 DOI: 10.1111/bph.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.
Collapse
Affiliation(s)
- Maleesha Ubhayarathna
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Natalie A Diepenhorst
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| |
Collapse
|
13
|
Hsu CN, Kao CH, Yang CH, Cheng MT, Hsu YP, Hong SG, Yao CL, Chen YH. Leptin Promotes the Expression of Pro-inflammatory Mediator Genes but Does Not Alter Osteoclastogenesis and Early Stage Differentiation of Osteoblasts. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:355-363. [PMID: 39569657 DOI: 10.4103/ejpi.ejpi-d-24-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024]
Abstract
ABSTRACT Leptin, a hormone secreted by adipose tissue, plays a pivotal role in maintaining energy metabolism and bone quality. Dysregulation of leptin can lead to the development of various pathological conditions. For example, the concentration of leptin is increased in individuals with obesity, and this increased concentration is positively correlated with higher bone mass. In addition, mice lacking leptin or the leptin receptor exhibit substantial bone loss, further highlighting the pivotal role of leptin in regulating bone metabolism. However, the precise mechanism through which leptin affects bone remodeling remains unclear. The present study investigated the effect of leptin on osteoclastogenesis and osteoblastogenesis. Osteoblasts derived from MC3T3-E1 cells and osteoclasts derived from RAW 264.7 cells were used. The findings revealed that leptin did not substantially affect osteoclastogenesis or osteoblastogenesis. Furthermore, leptin did not affect cell viability during osteoclast differentiation. The expression of inflammatory mediators was increased in differentiating RAW 264.7 cells. However, the expression of critical bone resorptive genes, including Ctsk and tartrate-resistant acid phosphatase, was not elevated following leptin stimulation. By contrast, leptin did not alter the expression of key osteogenic genes in preosteoblasts in the early stage of differentiation. These data demonstrate that leptin can stimulate the expression of pro-inflammatory mediators in differentiating osteoclasts. These changes do not affect osteoblastogenesis or osteoclastogenesis. Leptin may downregulate bone resorption and enhance mineralization to increase bone mass.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chih-Hong Kao
- Department of Cardiovascular Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chin-Hua Yang
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Sinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, Chung Yung Christian University, Taoyuan, Taiwan
| | - Yu-Pao Hsu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shinn-Gwo Hong
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
14
|
Yue L, Huang H, Lin W. Development of a Fluorescent Probe with High Selectivity based on Thiol-ene Click Nucleophilic Cascade Reactions for Delving into the Action Mechanism of Serotonin in Depression. Angew Chem Int Ed Engl 2024; 63:e202407308. [PMID: 38995157 DOI: 10.1002/anie.202407308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
The intrinsic correlation between depression and serotonin (5-HT) is a highly debated topic, with significant implications for the diagnosis, treatment, and advancement of drugs targeting neurological disorders. To address this important question, it is of utmost priority to understand the action mechanism of serotonin in depression through fluorescence imaging studies. However, the development of efficient molecular probes for serotonin is hindered by the lack of responsive sites with high selectivity for serotonin at the present time. Herein, we developed the first highly selective serotonin responsive site, 3-mercaptopropionate, utilizing thiol-ene click cascade nucleophilic reactions. The novel responsive site was then employed to construct the powerful molecular probe SJ-5-HT for imaging the serotonin level changes in the depression cells and brain tissues. Importantly, the imaging studies reveal that the level of serotonin in patients with depression may not be the primary factor, while the ability of neurons in patients with depression to release serotonin appears to be more critical. Additionally, this serotonin release capability correlates strongly with the levels of mTOR (intracellular mammalian target of rapamycin). These discoveries could offer valuable insights into the molecular mechanisms underpinning depression and furnish mTOR as a novel direction for the advancement of antidepressant therapies.
Collapse
Affiliation(s)
- Lizhou Yue
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Huawei Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
15
|
Zhang X, Xiao Y, Tao Z, Zhang Y, Cheng X, Liu X, Li Y, Yin W, Tian J, Wang S, Zhang T, Yang X, Liu S. Myeloid Cells and Sensory Nerves Mediate Peritendinous Adhesion Formation via Prostaglandin E2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405367. [PMID: 39207041 PMCID: PMC11516151 DOI: 10.1002/advs.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Peritendinous adhesion that forms after tendon injury substantially limits daily life. The pathology of adhesion involves inflammation and the associated proliferation. However, the current studies on this condition are lacking, previous studies reveal that cyclooxygenase-2 (COX2) gene inhibitors have anti-adhesion effects through reducing prostaglandin E2 (PGE2) and the proliferation of fibroblasts, are contrary to the failure in anti-adhesion through deletion of EP4 (prostaglandin E receptor 4) gene in fibroblasts in mice of another study. In this study, single-cell RNA sequencing analysis of human and mouse specimens are combined with eight types of conditional knockout mice and further reveal that deletion of COX2 in myeloid cells and deletion of EP4 gene in sensory nerves decrease adhesion and impair the biomechanical properties of repaired tendons. Furthermore, the COX2 inhibitor parecoxib reduces PGE2 but impairs the biomechanical properties of repaired tendons. Interestingly, PGE2 local treatment improves the biomechanical properties of the repaired tendons. These findings clarify the complex role of PGE2 in peritendinous adhesion formation (PAF) and tendon repair.
Collapse
Affiliation(s)
- Xinshu Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yao Xiao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yizhe Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuan Cheng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuanzhe Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yanhao Li
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Weiguang Yin
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jian Tian
- Department of OrthopaedicsWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxi214062P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Tianyi Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xiao Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
16
|
Cao G, Yu Y, Wang H, Yang H, Tao F, Yang S, Liu J, Li Z, Yang C. Dietary Clostridium butyricum and 25-Hydroxyvitamin D 3 modulate bone metabolism of broilers through the gut-brain axis. Poult Sci 2024; 103:103966. [PMID: 38959642 PMCID: PMC11269786 DOI: 10.1016/j.psj.2024.103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Leg disorders have become increasingly common in broilers, leading to lower meat quality and major economic losses. This study evaluated the effects of dietary supplementation with Clostridium butyricum (C. butyricum) and 25-hydroxyvitamin D3 (25-OH-D3) on bone development by comparing growth performance, tibial parameters, Ca and P contents of tibial ash, bone development-related indicators' level, and cecal short-chain fatty acids in Cobb broilers. All birds were divided into four treatment groups, which birds fed either a basal diet (Con), basal diet + 75 mg chlortetracycline/kg (Anti), basal diet + C. butyricum at 109 CFU/kg (Cb), basal diet + C. butyricum at 109 CFU/kg and 25-OH-D3 at 25 μg/kg (CbD), or basal diet + 25-OH-D3 at 25 μg/kg (CD). Our results suggest that the dietary supplementation in Cb, CbD, and CD significantly increased the body weight (BW) and average daily gain (ADG), and reduced the feed-to-weight ratio (F/G) at different stages of growth (P < 0.05). Dietary supplementation in Cb, CbD, and CD prolonged (P < 0.05) the behavioral responses latency-to-lie (LTL) time, reduced (P < 0.05) the levels of osteocalcin (BGP) and peptide tyrosine (PYY), and increased (P < 0.05) serotonin (5-HT) and dopamine (DA). Treatment with Cb increased (P < 0.05) the levels of acetic acid, isobutyric acid, butyric acid, and isovaleric acid compared with those in Con group. The cecal metagenome showed that Alistipes spp. were significantly more abundant in Cb, CbD, and CD groups (P < 0.05). A total of 12 metabolic pathways were significantly affected by supplementation, including the signaling pathways of glucagon, insulin, and PI3K-AKT; primary and secondary bile acid biosynthesis; and P-type Ca 2+ transporters (P < 0.05). Hence, the CbD supplementation modulates bone metabolism by regulating the mediators of gut-brain axis, which may inform strategies to prevent leg diseases and improve meat quality in broilers.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou 310018, PR China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Huixian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Huijuan Yang
- College of Standardisation, China Jiliang University, Hangzhou 310018, PR China
| | - Fei Tao
- College of Standardisation, China Jiliang University, Hangzhou 310018, PR China
| | - Shenglan Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji 313300, PR China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, PR China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, PR China.
| |
Collapse
|
17
|
Fefeu M, Blatzer M, Kneppers A, Briand D, Rocheteau P, Haroche A, Hardy D, Juchet-Martin M, Danckaert A, Coudoré F, Tutakhail A, Huchet C, Lafoux A, Mounier R, Mir O, Gaillard R, Chrétien F. Serotonin reuptake inhibitors improve muscle stem cell function and muscle regeneration in male mice. Nat Commun 2024; 15:6457. [PMID: 39085209 PMCID: PMC11291725 DOI: 10.1038/s41467-024-50220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties. Following prolonged administration of fluoxetine in male mice, we showed that fluoxetine increases the number of muscle stem cells and muscle angiogenesis, associated with positive changes in skeletal muscle function. Fluoxetine also improved skeletal muscle regeneration after single and multiples injuries with an increased muscle stem cells pool and vessel density associated with reduced fibrotic lesions and inflammation. Mice devoid of peripheral serotonin treated with fluoxetine did not exhibit beneficial effects during muscle regeneration. Specifically, pharmacological, and genetic inactivation of the 5-HT1B subtype serotonin receptor also abolished the enhanced regenerative process induced by fluoxetine. We highlight here a regenerative property of serotonin on skeletal muscle.
Collapse
Affiliation(s)
- Mylène Fefeu
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
- Université de Paris Cité, Paris, France
| | - Michael Blatzer
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Anita Kneppers
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - David Briand
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Pierre Rocheteau
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Alexandre Haroche
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Mélanie Juchet-Martin
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | | | - François Coudoré
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Abdulkarim Tutakhail
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corinne Huchet
- TaRGeT, INSERM UMR 1089, Nantes Université, CHU Nantes, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, IRS 2 Nantes Biotech, Nantes, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Olivier Mir
- Sarcoma Group, Gustave Roussy, Villejuif, France
| | - Raphaël Gaillard
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France.
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Fabrice Chrétien
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de neuropathologie, Paris, France.
| |
Collapse
|
18
|
Fu L, Zhang P, Wang Y, Liu X. Microbiota-bone axis in ageing-related bone diseases. Front Endocrinol (Lausanne) 2024; 15:1414350. [PMID: 39076510 PMCID: PMC11284018 DOI: 10.3389/fendo.2024.1414350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Bone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored. This review explores the interplay between gut microbiota and bone metabolism, focusing on the roles of gut microbiota in bone ageing and aging-related bone diseases, including osteoporosis, fragility fracture repair, osteoarthritis, and spinal degeneration from different perspectives. The impact of gut microbiota on bone metabolism during aging through modification of endocrinology system, immune system and gut microbiota metabolites are summarized, facilitating a better grasp of the pathogenesis of aging-related bone metabolic diseases. This review offers innovative insights into targeting the gut microbiota for the treatment of bone ageing-related diseases as a clinical therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Niu H, Zhou M, Xu X, Xu X. Bone Marrow Adipose Tissue as a Critical Regulator of Postmenopausal Osteoporosis - A Concise Review. Clin Interv Aging 2024; 19:1259-1272. [PMID: 39011312 PMCID: PMC11249116 DOI: 10.2147/cia.s466446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.
Collapse
Affiliation(s)
- Huifang Niu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaojuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
20
|
Khuc K, des Bordes J, Ogunwale A, Madel MB, Ambrose C, Schulz P, Elefteriou F, Schwartz A, Rianon NJ. Protective Effects of β-Blockers on Bone in Older Adults with Dementia. Calcif Tissue Int 2024; 115:14-22. [PMID: 38744723 DOI: 10.1007/s00223-024-01221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Increased β-adrenergic receptor activity has been hypothesized to cause bone loss in those with dementia. We investigated the effect of long-term β-blocker use on rate of bone loss in older adults with dementia. We used a linear mixed-effects model to estimate the relationship between long-term β-blocker use and rate of bone loss in participants from the Health Aging and Body Composition study. Records of 1198 participants were analyzed, 44.7% were men. Among the men, 25.2% had dementia and 20.2% were on β-blockers, while in the women, 22.5% had dementia and 16.6% received β-blockers. In the 135 men with dementia, 23 were taking β-blockers, while 15 of 149 women with dementia were using β-blockers. In men with dementia, β-blocker users had 0.00491 g/cm2 less bone mineral density (BMD) loss per year at the femoral neck (i.e., 0.63% less loss per year) than non-users (p < 0.05). No differences were detected in women with or without dementia and men without dementia. β-blockers may be protective by slowing down bone loss in older men with dementia.
Collapse
Affiliation(s)
- Khiem Khuc
- Department Family and Community Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jude des Bordes
- Department Family and Community Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Abayomi Ogunwale
- Department Family and Community Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Maria-Bernadette Madel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Ambrose
- Department of Orthopedic Surgery, UTHealth McGovern Medical School, Houston, TX, USA
| | - Paul Schulz
- Department of Neurology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nahid J Rianon
- Department Family and Community Medicine, UTHealth McGovern Medical School, Houston, TX, USA.
- Joan and Stanford Alexander Division of Geriatric and Palliative Medicine, Department of Internal Medicine, UTHealth McGovern Medical School, 6431 Fannin Street #MSB G.150, Houston, United States.
| |
Collapse
|
21
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
23
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
24
|
Ma C, Zhang Y, Cao Y, Hu CH, Zheng CX, Jin Y, Sui BD. Autonomic neural regulation in mediating the brain-bone axis: mechanisms and implications for regeneration under psychological stress. QJM 2024; 117:95-108. [PMID: 37252831 DOI: 10.1093/qjmed/hcad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 06/01/2023] Open
Abstract
Efficient regeneration of bone defects caused by disease or significant trauma is a major challenge in current medicine, which is particularly difficult yet significant under the emerging psychological stress in the modern society. Notably, the brain-bone axis has been proposed as a prominent new concept in recent years, among which autonomic nerves act as an essential and emerging skeletal pathophysiological factor related to psychological stress. Studies have established that sympathetic cues lead to impairment of bone homeostasis mainly through acting on mesenchymal stem cells (MSCs) and their derivatives with also affecting the hematopoietic stem cell (HSC)-lineage osteoclasts, and the autonomic neural regulation of stem cell lineages in bone is increasingly recognized to contribute to the bone degenerative disease, osteoporosis. This review summarizes the distribution characteristics of autonomic nerves in bone, introduces the regulatory effects and mechanisms of autonomic nerves on MSC and HSC lineages, and expounds the crucial role of autonomic neural regulation on bone physiology and pathology, which acts as a bridge between the brain and the bone. With the translational perspective, we further highlight the autonomic neural basis of psychological stress-induced bone loss and a series of pharmaceutical therapeutic strategies and implications toward bone regeneration. The summary of research progress in this field will add knowledge to the current landscape of inter-organ crosstalk and provide a medicinal basis for the achievement of clinical bone regeneration in the future.
Collapse
Affiliation(s)
- C Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Y Zhang
- Department of Medical Rehabilitation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Y Cao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - C-H Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - C-X Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Y Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - B-D Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
25
|
Zhang F, Qiao W, Wei JA, Tao Z, Chen C, Wu Y, Lin M, Ng KMC, Zhang L, Yeung KWK, Chow BKC. Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice. Nat Commun 2024; 15:1030. [PMID: 38310104 PMCID: PMC10838336 DOI: 10.1038/s41467-024-45436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Ji-An Wei
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengyi Tao
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Yefeng Wu
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Minghui Lin
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Ka Man Carmen Ng
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kelvin Wai-Kwok Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
26
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
27
|
Feng Q, Song X, Liu L, Zhou X, Chen Z. Plasma serotonin precursors and metabolite are correlated with bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis. J Orthop Surg (Hong Kong) 2024; 32:10225536231187181. [PMID: 38613416 DOI: 10.1177/10225536231187181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Serotonin (5-HT) precursors regulate bone remodeling. This study aims to investigate the correlation of plasma 5-HT precursors and metabolite with bone mineral density (BMD) and bone turnover markers in postmenopausal osteoporosis (PMOP) patients. METHODS The age, body mass index (BMI), and years since menopause (YSM) were documented for 348 postmenopausal women in normal/osteopenia/osteoporosis (OP) groups, with lumbar spine and femoral neck BMD measured. Serum bone turnover markers (PINP/β-CTX) and plasma 5-HT, 5-HT precursors (Trp/5-HTP) and metabolite (5-HIAA) were measured by ELISA. OP patients were allocated to high/low expression groups following ROC analysis of 5-HT/Trp/5-HTP/5-HIAA. The relationship of plasma 5-HT/Trp/5-HTP/5-HIAA, BMD, and bone turnover markers with PMOP was analyzed using logistic regression analysis. The correlation of plasma 5-HT/Trp/5-HTP/5-HIAA with BMD and bone turnover markers was analyzed using Pearson's correlation analysis, followed by logistic regression analysis of the relationship between plasma 5-HT/Trp/5-HTP/5-HIAA and BMD, bone turnover markers and PMOP. RESULTS BMI, YSM, BMD and PINP, and β-CTX levels differed among groups. Levels of plasma 5-HT precursors/metabolite were increased in OP patients. Individuals with high 5-HT precursors/metabolite levels had low BMD and high PINP/β-CTX levels. The 5-HT precursors/metabolite negatively-correlated with BMD and positively-correlated with PINP/β-CTX. BMI, YSM, BMD, and PINP/β-CTX/Trp/5-HTP/5-HT related to PMOP and were independent risk factors for OP. CONCLUSION Plasma 5-HT precursors and metabolite negatively-correlate with BMD and positively-correlate with PINP/β-CTX in PMOP patients. Peripheral 5-HT precursors and metabolite level may be a new direction of treatment of PMOP and bone metabolism-related disorders.
Collapse
Affiliation(s)
- Qinying Feng
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Xiaoyu Song
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Li Liu
- Department of Clinical Examination, Maternal and Child Health Hospital, Guiyang, China
| | - Xinzhong Zhou
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Zhihao Chen
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
28
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
29
|
Guimarães JPT, Queiroz LAD, Menikdiwela KR, Pereira N, Ramalho T, Jancar S, Moustaid-Moussa N, Martins JO. The role of captopril in leukotriene deficient type 1 diabetic mice. Sci Rep 2023; 13:22105. [PMID: 38092813 PMCID: PMC10719306 DOI: 10.1038/s41598-023-49449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
T1D can be associated with metabolic disorders and several impaired pathways, including insulin signaling, and development of insulin resistance through the renin-angiotensin system (RAS). The main precursor of RAS is angiotensinogen (Agt) and this system is often linked to autophagy dysregulation. Dysregulated autophagy has been described in T1D and linked to impairments in both glucose metabolism, and leukotrienes (LTs) production. Here, we have investigated the role of RAS and LTs in both muscle and liver from T1D mice, and its effects on insulin and autophagy pathways. We have chemically induced T1D in 129sve and 129sve 5LO-/- mice (lacking LTs) with streptozotocin (STZ). To further inhibit ACE activity, mice were treated with captopril (Cap). In muscle of T1D mice, treatment with Cap increased the expression of RAS (angiotensinogen and angiotensin II receptor), insulin signaling, and autophagy markers, regardless of the genotype. In the liver of T1D mice, the treatment with Cap increased the expression of RAS and insulin signaling markers, mostly when LTs were absent. 5LO-/- T1D mice showed increased insulin sensitivity, and decreased NEFA, after the Cap treatment. Cap treatment impacted both insulin signaling and autophagy pathways at the mRNA levels in muscle and liver, indicating the potential role of ACE inhibition on insulin sensitivity and autophagy in T1D.
Collapse
Affiliation(s)
- João Pedro Tôrres Guimarães
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | - Luiz A D Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Nayara Pereira
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP/USP), Ribeirão Preto, SP, Brazil
| | - Theresa Ramalho
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonia Jancar
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA.
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Bell V, Rodrigues AR, Antoniadou M, Peponis M, Varzakas T, Fernandes T. An Update on Drug-Nutrient Interactions and Dental Decay in Older Adults. Nutrients 2023; 15:4900. [PMID: 38068758 PMCID: PMC10708094 DOI: 10.3390/nu15234900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the global demographic landscape has undergone a discernible shift that has been characterised by a progressive increase in the proportion of elderly individuals, indicative of an enduring global inclination toward extended lifespans. The aging process, accompanied by physiological changes and dietary patterns, contributes to detrimental deviations in micronutrient consumption. This vulnerable aging population faces heightened risks, including dental caries, due to structural and functional modifications resulting from insufficient nutritional sustenance. Factors such as physiological changes, inadequate nutrition, and the prevalence of multiple chronic pathologies leading to polypharmacy contribute to the challenge of maintaining an optimal nutritional status. This scenario increases the likelihood of drug interactions, both between medications and with nutrients and the microbiome, triggering complications such as dental decay and other pathologies. Since the drug industry is evolving and new types of food, supplements, and nutrients are being designed, there is a need for further research on the mechanisms by which drugs interfere with certain nutrients that affect homeostasis, exemplified by the prevalence of caries in the mouths of older adults. Infectious diseases, among them dental caries, exert serious impacts on the health and overall quality of life of the elderly demographic. This comprehensive review endeavours to elucidate the intricate interplay among drugs, nutrients, the microbiome, and the oral cavity environment, with the overarching objective of mitigating the potential hazards posed to both the general health and dental well-being of older adults. By scrutinising and optimising these multifaceted interactions, this examination aims to proactively minimise the susceptibility of the elderly population to a spectrum of health-related issues and the consequences associated with dental decay.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.B.)
| | - Ana Rita Rodrigues
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.B.)
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, GR-15772 Athens, Greece; (M.A.); (M.P.)
- CSAP Executive Mastering Program in Systemic Management, University of Piraeus, GR-18534 Piraeus, Greece
| | - Marios Peponis
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, GR-15772 Athens, Greece; (M.A.); (M.P.)
| | - Theodoros Varzakas
- Food Science and Technology, University of the Peloponnese, GR-22100 Kalamata, Greece
| | - Tito Fernandes
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
31
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
32
|
Sun K, Wang Y, Du J, Wang Y, Liu B, Li X, Zhang X, Xu X. Exploring the mechanism of traditional Chinese medicine in regulating gut-derived 5-HT for osteoporosis treatment. Front Endocrinol (Lausanne) 2023; 14:1234683. [PMID: 37916145 PMCID: PMC10616894 DOI: 10.3389/fendo.2023.1234683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Osteoporosis is a systemic bone disease characterized by an imbalance in the relationship between osteoblasts, osteocytes, and osteoclasts. This imbalance in bone metabolism results in the destruction of the bone's microstructure and an increase in bone brittleness, thereby increasing the risk of fractures. Osteoporosis has complex causes, one of which is related to the dysregulation of 5-hydroxytryptamine, a neurotransmitter closely associated with bone tissue metabolism. Dysregulation of 5-HT directly or indirectly promotes the occurrence and development of osteoporosis. This paper aims to discuss the regulation of 5-HT by Traditional Chinese Medicine and its impact on bone metabolism, as well as the underlying mechanism of action. The results of this study demonstrate that Traditional Chinese Medicine has the ability to regulate 5-HT, thereby modulating bone metabolism and improving bone loss. These findings provide valuable insights for future osteoporosis treatment.
Collapse
Affiliation(s)
- Kai Sun
- The First Department of Orthopedics and Traumatology, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yincang Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiazhe Du
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yujie Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Bo Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaodong Li
- The First Department of Orthopedics and Traumatology, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xilin Xu
- The First Department of Orthopedics and Traumatology, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
34
|
Komleva PD, Alhalabi G, Izyurov AE, Khotskin NV, Kulikov AV. Effects of the Combination of the C1473G Mutation in the Tph2 Gene and Lethal Yellow Mutations in the Raly-Agouti Locus on Behavior, Brain 5-HT and Melanocortin Systems in Mice. Biomolecules 2023; 13:963. [PMID: 37371543 DOI: 10.3390/biom13060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key and rate-limited enzyme of serotonin (5-HT) synthesis in the brain. The C1473G mutation in the Tph2 gene results in a two-fold decrease in enzyme activity in the mouse brain. The lethal yellow (AY) mutation in the Raly-Agouti locus results in the overexpression of the Agouti gene in the brain and causes obesity and depressive-like behavior in mice. Herein, the possible influences of these mutations and their combination on body mass, behavior, brain 5-HT and melanocortin systems in mice of the B6-1473CC/aa. B6-1473CC/AYa, B6-1473GG/aa are investigated. B6-1473GG/AYa genotypes were studied. The 1473G and AY alleles increase the activity of TPH2 and the expression of the Agouti gene, respectively, but they do not alter 5-HT and 5-HIAA levels or the expression of the genes Tph2, Maoa, Slc6a4, Htr1a, Htr2a, Mc3r and Mc4r in the brain. The 1473G allele attenuates weight gain and depressive-like immobility in the forced swim test, while the AY allele increases body weight gain and depressive-like immobility. The combination of these alleles results in hind limb dystonia in the B6-1473GG/AYa mice. This is the first evidence for the interaction between the C1473G and AY mutations.
Collapse
Affiliation(s)
- Polyna D Komleva
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ghofran Alhalabi
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Arseniy E Izyurov
- Department of Genetics of Industrial Microorganisms, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita V Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Maxwell ND, Smiley CE, Sadek AT, Loyo-Rosado FZ, Giles DC, Macht VA, Woodruff JL, Taylor DL, Wilson SP, Fadel JR, Reagan LP, Grillo CA. Leptin activation of dorsal raphe neurons inhibits feeding behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538086. [PMID: 37162932 PMCID: PMC10168215 DOI: 10.1101/2023.04.24.538086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptin is a homeostatic regulatory element that signals the presence of energy stores -in the form of adipocytes-which ultimately reduces food intake and increases energy expenditure. Similarly, serotonin (5-HT), a signaling molecule found in both the central and peripheral nervous systems, also regulates food intake. Here we use a combination of pharmacological manipulations, optogenetics, retrograde tracing, and in situ hybridization, combined with behavioral endpoints to physiologically and anatomically identify a novel leptin-mediated pathway between 5-HT neurons in the dorsal raphe nucleus (DRN) and hypothalamic arcuate nucleus (ARC) that controls food intake. In this study, we show that microinjecting leptin directly into the DRN reduces food intake in male Sprague-Dawley rats. This effect is mediated by leptin-receptor expressing neurons in the DRN as selective optogenetic activation of these neurons at either their ARC terminals or DRN cell bodies also reduces food intake. Anatomically, we identified a unique population of serotonergic raphe neurons expressing leptin receptors that send projections to the ARC. Finally, by utilizing in vivo microdialysis and high-performance liquid chromatography, we show that leptin administration to the DRN increases 5-HT efflux into the ARC. Overall, this study identifies a novel circuit for leptin-mediated control of food intake through a DRN-ARC pathway, utilizing 5-HT as a mechanism to control feeding behavior. Characterization of this new pathway creates opportunities for understanding how the brain controls eating behavior, as well as opens alternative routes for the treatment of eating disorders. Significance Leptin and serotonin both play a vital role in the regulation of food intake, yet there is still uncertainty in how these two molecules interact to control appetite. The purpose of this study is to further understand the anatomical and functional connections between leptin receptor expressing neurons in the dorsal raphe nucleus, the main source of serotonin, and the arcuate nucleus of the hypothalamus, and how serotonin plays a role in this pathway to reduce food intake. Insight gained from this study will contribute to a more thorough understanding of the networks that regulate food intake, and open alternative avenues for the development of treatments for obesity and eating disorders.
Collapse
|
36
|
Fricke HP, Hernandez LL. The Serotonergic System and Bone Metabolism During Pregnancy and Lactation and the Implications of SSRI Use on the Maternal-Offspring Dyad. J Mammary Gland Biol Neoplasia 2023; 28:7. [PMID: 37086330 PMCID: PMC10122632 DOI: 10.1007/s10911-023-09535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Lactation is a physiological adaptation of the class Mammalia and is a product of over 200 million years of evolution. During lactation, the mammary gland orchestrates bone metabolism via serotonin signaling in order to provide sufficient calcium for the offspring in milk. The role of serotonin in bone remodeling was first discovered over two decades ago, and the interplay between serotonin, lactation, and bone metabolism has been explored in the years following. It is estimated that postpartum depression affects 10-15% of the population, and selective serotonin reuptake inhibitors (SSRI) are often used as the first-line treatment. Studies conducted in humans, nonhuman primates, sheep, and rodents have provided evidence that there are consequences on both parent and offspring when serotonin signaling is disrupted during the peripartal period; however, the long-term consequences of disruption of serotonin signaling via SSRIs during the peripartal period on the maternal and offspring skeleton are not fully known. This review will focus on the relationship between the mammary gland, serotonin, and bone remodeling during the peripartal period and the skeletal consequences of the dysregulation of the serotonergic system in both human and animal studies.
Collapse
Affiliation(s)
- Hannah P Fricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Niwczyk O, Grymowicz M, Szczęsnowicz A, Hajbos M, Kostrzak A, Budzik M, Maciejewska-Jeske M, Bala G, Smolarczyk R, Męczekalski B. Bones and Hormones: Interaction between Hormones of the Hypothalamus, Pituitary, Adipose Tissue and Bone. Int J Mol Sci 2023; 24:ijms24076840. [PMID: 37047811 PMCID: PMC10094866 DOI: 10.3390/ijms24076840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The bony skeleton, as a structural foundation for the human body, is essential in providing mechanical function and movement. The human skeleton is a highly specialized and dynamic organ that undergoes continuous remodeling as it adapts to the demands of its environment. Advances in research over the last decade have shone light on the various hormones that influence this process, modulating the metabolism and structural integrity of bone. More recently, novel and non-traditional functions of hypothalamic, pituitary, and adipose hormones and their effects on bone homeostasis have been proposed. This review highlights recent work on physiological bone remodeling and discusses our knowledge, as it currently stands, on the systemic interplay of factors regulating this interaction. In this review, we provide a summary of the literature on the relationship between bone physiology and hormones including kisspeptin, neuropeptide Y, follicle-stimulating hormone (FSH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), growth hormone (GH), leptin, and adiponectin. The discovery and understanding of this new functionality unveils an entirely new layer of physiologic circuitry.
Collapse
Affiliation(s)
- Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Aleksandra Szczęsnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marta Hajbos
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Michał Budzik
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
38
|
Scott SR, Millwood SN, Manczak EM. Adipocytokine correlates of childhood and adolescent mental health: A systematic review. Dev Psychobiol 2023; 65:e22379. [PMID: 36946681 DOI: 10.1002/dev.22379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
The objective of this systematic review was to determine the current state of the literature regarding how adipocytokines associate with mental health symptoms/disorders in youth. Findings summarized in this review suggested that in neurodevelopmental disorders, higher levels of leptin, ghrelin, resistin, and visfatin as well as lower levels of adiponectin, retinol-binding protein 4, and progranulin predicted increased risk for or were conflated with autism spectrum disorder. Adipocytokine correlates of attention-deficit hyperactivity disorder and related symptoms included higher apelin, higher leptin-to-adiponectin ratio, and lower adiponectin. Evidence from studies examining anxiety symptoms evinced mixed results regarding leptin, and one study suggested higher levels of ghrelin. Depressive symptoms correlated with higher leptin and ghrelin. Research examining posttraumatic stress symptoms found higher levels of ghrelin. In research examining broadband symptoms, conflicting results emerged for associations between internalizing symptoms (i.e., symptoms of emotional stress) and leptin in youth. Low levels of adiponectin and high levels of leptin predicted externalizing symptoms. Total symptom difficulties were associated with a higher leptin-to-adiponectin ratio. Our findings suggest that adipocytokines may be an important set of biomarkers to consider as underlying mechanisms contributing to developmental psychopathology.
Collapse
Affiliation(s)
- Samantha R Scott
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Summer N Millwood
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Erika M Manczak
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
39
|
Templeton TJ, Diarra S, Gilpin NW. Sex differences in cocaine self-administration by Wistar rats after predator odor exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11245. [PMID: 37842228 PMCID: PMC10571484 DOI: 10.3389/adar.2023.11245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Traumatic stress disorders are defined in part by persistent avoidance of trauma-related contexts. Our lab uses a preclinical model of traumatic stress using predator odor (i.e., bobcat urine) in which some but not all rats exhibit persistent avoidance of odor-paired stimuli, similar to what is seen in humans. Bobcat urine exposure increases alcohol consumption in male Avoider rats, but it has not been tested for its effects on intake of other drugs. Here, we tested the effect of bobcat urine exposure on cocaine self-administration in adult male and female Wistar rats. We did not observe any effect of bobcat urine exposure on cocaine self-administration in male or female rats. We observed that (1) female rats with long access (6 hours) to cocaine self-administer more cocaine than long-access males, (2) long-access males and females exhibit escalation of cocaine intake over time, (3) stressed rats gain less weight than unstressed rats following acute predator odor exposure, (4) baseline cocaine self-administration is predictive of subsequent cocaine self-administration. The results of this study may inform future work on predator odor effects on cocaine self-administration.
Collapse
Affiliation(s)
- Taylor J Templeton
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Siga Diarra
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Southeast Louisiana VA Healthcare System, New Orleans, LA 70119
| |
Collapse
|
40
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
41
|
Calderon-Garcia AA, Perez-Fernandez M, Curto-Aguilera D, Rodriguez-Martin I, Sánchez-Barba M, Gonzalez-Nunez V. Exposure to Morphine and Cocaine Modify the Transcriptomic Landscape in Zebrafish Embryos. Neuroscience 2022; 507:14-27. [PMID: 36404518 DOI: 10.1016/j.neuroscience.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Morphine and other opioid analgesics are the drugs of election to treat moderate-to-severe pain, and they elicit their actions by binding to the opioid receptors. Cocaine is a potent inhibitor of dopamine, serotonin, and noradrenaline reuptake, as it blocks DAT, the dopamine transporter, causing an increase in the local concentration of these neurotransmitters in the synaptic cleft. The molecular effects of these drugs have been studied in specific brain areas or nuclei, but the systemic effects in the whole organism have not been comprehensively analyzed. This study aims to analyze the transcriptomic changes elicited by morphine (10 uM) and cocaine (15 uM) in zebrafish embryos. An RNAseq assay was performed with tissues extracts from zebrafish embryos treated from 5 hpf (hours post fertilization) to 72 hpf, and the most representative deregulated genes were experimentally validated by qPCR. We have found changes in the expression of genes related to lipid metabolism, chemokine receptor ligands, visual system, hemoglobins, and metabolic detoxification pathways. Besides, morphine and cocaine modified the global DNA methylation pattern in zebrafish embryos, which would explain the changes in gene expression elicited by these two drugs of abuse.
Collapse
Affiliation(s)
- Andrés Angel Calderon-Garcia
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Maria Perez-Fernandez
- Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain
| | - Daniel Curto-Aguilera
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain
| | - Ivan Rodriguez-Martin
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Mercedes Sánchez-Barba
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Dept. Statistics. Faculty of Medicine, University of Salamanca, Spain
| | - Veronica Gonzalez-Nunez
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain.
| |
Collapse
|
42
|
He P, He B, Li S, Chai W, Rao W, Zhu Y, Chen W, Zhang P, Zhang X, Pan H, Xu R. Distribution Features and Potential Effects of Serotonin in the Cerebrum of SOD1 G93A Transgenic Mice. eNeuro 2022; 9:ENEURO.0001-22.2022. [PMID: 36265904 PMCID: PMC9651208 DOI: 10.1523/eneuro.0001-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/23/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Serotonin (5-HT) participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), but its effects have not been completely clarified. Therefore, we observed the distribution features and potential effects of 5-HT in the cerebrum of G93A SOD1 transgenic (TG) and wild-type (WT) mice by fluorescence immunohistochemistry, Western blotting, ELISA, as well as motor function measurements. Both 5-HT and tryptophan hydroxylase-2 (TPH2) were mainly present in the limbic systems of the cerebrum, such as the glomerular layer of the olfactory bulb, nucleus accumbens, cingulate, fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus, lateral hypothalamus area, dorsal raphe nucleus, and piriform cortex. TPH2 and 5-HT were expressed in cell bodies in the dorsal raphe nucleus and piriform cortex, while in other regions they were distributed as filaments and clump shapes in axons. The TPH2 distribution in the cerebrum of TG was significantly lower than that in WT in preset, onset, and progression stages. TPH2 expression in the fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus and lateral hypothalamus area was increased in the onset stage and decreased in the progression stage, gradually decreased in the cingulate with disease progression and significantly decreased in the glomerular layer of the olfactory bulb and nucleus accumbens in the onset stage in TG. The number of mammalian achaete-scute homolog-1 in the subventricular zone (SVZ) in TG was significantly lower than that in WT, which was correlated with the TPH2 distribution. Double immunofluorescence staining showed that TPH2, mammalian achaete-scute homolog-1 and 5-HT were mainly expressed in neurons but rarely expressed in microglia or astrocytes in the piriform cortex. The relative fluorescence density of TPH2 in the cingulate region was negatively correlated with the disease severity. Our findings suggest that 5-HT plays a protective role in ALS, likely by regulating neural stem cells in the subventricular zone that might be involved in neuron development in the piriform cortex.
Collapse
Affiliation(s)
- Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Binjun He
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiong Zhang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong 525000, China
| | - Haili Pan
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
43
|
Sui SX, Balanta-Melo J, Pasco JA, Plotkin LI. Musculoskeletal Deficits and Cognitive Impairment: Epidemiological Evidence and Biological Mechanisms. Curr Osteoporos Rep 2022; 20:260-272. [PMID: 35764750 PMCID: PMC9522710 DOI: 10.1007/s11914-022-00736-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment is associated with obesity, sarcopenia, and osteoporosis. However, no critical appraisal of the literature on the relationship between musculoskeletal deficits and cognitive impairment, focusing on the epidemiological evidence and biological mechanisms, has been published to date. Herein, we critically evaluate the literature published over the past 3 years, emphasizing interesting and important new findings, and provide an outline of future directions that will improve our understanding of the connections between the brain and the musculoskeletal system. RECENT FINDINGS Recent literature suggests that musculoskeletal deficits and cognitive impairment share pathophysiological pathways and risk factors. Cytokines and hormones affect both the brain and the musculoskeletal system; yet, lack of unified definitions and standards makes it difficult to compare studies. Interventions designed to improve musculoskeletal health are plausible means of preventing or slowing cognitive impairment. We highlight several musculoskeletal health interventions that show potential in this regard.
Collapse
Affiliation(s)
- Sophia X Sui
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia.
| | - Julián Balanta-Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
- Universidad del Valle School of Dentistry, Cali, Colombia
| | - Julie A Pasco
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia
- Department of Medicine-Western Campus, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
44
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
45
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
46
|
Brain serotonin deficiency and fluoxetine lead to sex-specific effects on binge-like food consumption in mice. Psychopharmacology (Berl) 2022; 239:2975-2984. [PMID: 35750862 DOI: 10.1007/s00213-022-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Although pharmacotherapies are often effective in reducing binge eating in conditions such as bulimia nervosa and binge eating disorder, subsets of patients do not benefit sufficiently from existing treatments, and the reasons for treatment failure remain unclear. OBJECTIVES This study aimed to evaluate whether genetic reductions in brain serotonin influence binge eating and/or the ability of fluoxetine, a selective serotonin reuptake inhibitor, to reduce binge eating in mice. METHODS This study used a validated model of binge-like consumption of high-fat diet to compare binge-like food intake in control and fluoxetine-treated wild-type and serotonin-deficient mice from the tryptophan hydroxylase 2 (R439H) knock-in line. In addition, real-time PCR was used to evaluate potential genotype and sex differences in the effects of fluoxetine on gene expression in the raphe nucleus. RESULTS The results reveal that brain serotonin deficiency is sufficient to increase binge eating in males, but not females. However, while chronic fluoxetine reduced binge eating in both genotypes of males and in wild-type females, it failed to reduce binge eating in serotonin-deficient females. Transcriptional responses to chronic fluoxetine were also characterized by sex and genotype differences. CONCLUSIONS Overall, this study revealed significant sex differences in the effects of fluoxetine and brain serotonin deficiency on binge-like food intake and suggests that low brain serotonin could impact eating disorders both by promoting binge eating and by limiting the efficacy of fluoxetine to reduce binge eating.
Collapse
|
47
|
Gu H, Ru Y, Wang W, Cai G, Gu L, Ye J, Zhang WB, Wang L. Orexin-A Reverse Bone Mass Loss Induced by Chronic Intermittent Hypoxia Through OX1R-Nrf2/HIF-1α Pathway. Drug Des Devel Ther 2022; 16:2145-2160. [PMID: 35818538 PMCID: PMC9270907 DOI: 10.2147/dddt.s363286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background Recent studies suggest that there is a potential connection between obstructive sleep apnea (OSA) and osteoporosis through dysregulation of bone metabolism. Orexin-A, a neuroprotective peptide secreted by the hypothalamus, is at a lower level in the plasma of OSA patients, which regulates appetite, energy expenditure and sleep-wake states. However, the protective effect of orexin-A on bone metabolism in OSA is unclear. Purpose To investigate whether the activation of OX1R by orexin-A can reverse bone mass loss induced by chronic intermittent hypoxia (CIH). Methods Mice were randomly divided into the normoxia group and CIH group. Within the CIH or normoxia groups, treatment groups were given a subcutaneous injection of either orexin-A or saline vehicle once every day for 4 weeks and then femurs were removed for micro-CT scans. Histology and immunohistochemical staining were performed to observe and calculate the changes in femurs as a result of hypoxia. Cell immunofluorescence and immunohistochemical staining were used to detect the expression of orexin receptors in MC3T3-E1 cells or in bones. CCK-8 assay, ALP assay kit and alizarin red staining were used to detect the viability, alkaline phosphatase (ALP) activity, and capacity of mineralization, respectively. The effect of orexin-A on osteogenic differentiation of MC3T3-E1 cells was evaluated using qRT-PCR, Western blot and cell staining. Results CIH led to a decrease in the amount and density of trabecular bone, downregulated OCN expression while increasing osteoclast numbers in femurs and inhibited the expression of RUNX2, OSX, OPN and Nrf2 in MC3T3-E1 cells. Orexin-A treatment alleviated these CIH-induced effects by combining to OX1R. The level of HIF-1α was elevated both in CIH and orexin-A treatment groups. Conclusion CIH environment inhibits osteogenesis and orexin-A can reverse bone mass loss induced by CIH through OX1R-Nrf2/HIF-1α pathway.
Collapse
Affiliation(s)
- Hong Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Yiwen Ru
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Wei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Guanhui Cai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Lanxin Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Junjie Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, People′s Republic of China
- Department of Stomatology, Medical Center of Soochow University, Suzhou, People′s Republic of China
- Correspondence: Wei-Bing Zhang, Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou, 215000, People′s Republic of China, Tel +86-512-67505200, Email
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People′s Republic of China
- Lin Wang, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, People′s Republic of China, Tel +86-025-69593060, Email
| |
Collapse
|
48
|
Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab 2022; 34:805-817. [PMID: 35545088 PMCID: PMC9535690 DOI: 10.1016/j.cmet.2022.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
Genetics in model organisms has progressively broken down walls that previously separated different disciplines of biology. One example of this holistic evolution is the recognition of the complex relationship that exists between the control of bone mass (bone remodeling) and energy metabolism in mammals. Numerous hormones orchestrate this crosstalk. In particular, the study of the leptin-mediated regulation of bone mass has not only revealed the existence of a central control of bone mass but has also led to the realization that sympathetic innervation is a major regulator of bone remodeling. This happened at a time when the use of drugs aiming at treating osteoporosis, the most frequent bone disease, has dwindled. This review will highlight the main aspects of the leptin-mediated regulation of bone mass and how this led to the realization that β-blockers, which block the effects of the sympathetic nervous system, may be a viable option to prevent osteoporosis.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Sundeep Khosla
- Kogod Center of Aging and Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
49
|
Treyball A, Bergeron AC, Brooks DJ, Langlais AL, Hashmi H, Nagano K, Barlow D, Neilson RJ, Roy TA, Nevola KT, Houseknecht KL, Baron R, Bouxsein ML, Guntur AR, Motyl KJ. Propranolol Promotes Bone Formation and Limits Resorption Through Novel Mechanisms During Anabolic Parathyroid Hormone Treatment in Female C57BL/6J Mice. J Bone Miner Res 2022; 37:954-971. [PMID: 35122666 PMCID: PMC9098680 DOI: 10.1002/jbmr.4523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Although the nonselective β-blocker, propranolol, improves bone density with parathyroid hormone (PTH) treatment in mice, the mechanism of this effect is unclear. To address this, we used a combination of in vitro and in vivo approaches to address how propranolol influences bone remodeling in the context of PTH treatment. In female C57BL/6J mice, intermittent PTH and propranolol administration had complementary effects in the trabecular bone of the distal femur and fifth lumbar vertebra (L5 ), with combination treatment achieving microarchitectural parameters beyond that of PTH alone. Combined treatment improved the serum bone formation marker, procollagen type 1 N propeptide (P1NP), but did not impact other histomorphometric parameters relating to osteoblast function at the L5 . In vitro, propranolol amplified the acute, PTH-induced, intracellular calcium signal in osteoblast-like cells. The most striking finding, however, was suppression of PTH-induced bone resorption. Despite this, PTH-induced receptor activator of nuclear factor κ-B ligand (RANKL) mRNA and protein levels were unaltered by propranolol, which led us to hypothesize that propranolol could act directly on osteoclasts. Using in situ methods, we found Adrb2 expression in osteoclasts in vivo, suggesting β-blockers may directly impact osteoclasts. Consistent with this, we found propranolol directly suppresses osteoclast differentiation in vitro. Taken together, this work suggests a strong anti-osteoclastic effect of nonselective β-blockers in vivo, indicating that combining propranolol with PTH could be beneficial to patients with extremely low bone density. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Annika Treyball
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Audrey C. Bergeron
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Daniel J. Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | - Audrie L. Langlais
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
| | - Hina Hashmi
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Deborah Barlow
- Department of Biomedical Sciences, University of New England, Biddeford, ME
| | - Ryan J. Neilson
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Tyler A. Roy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Kathleen T. Nevola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA
| | | | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA
| | - Anyonya R. Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
- Tufts University School of Medicine, Tufts University, Boston, MA
| | - Katherine J. Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
- Tufts University School of Medicine, Tufts University, Boston, MA
| |
Collapse
|
50
|
Fu Y, Hu J, Erasmus MA, Johnson TA, Cheng HW. Effects of early-life cecal microbiota transplantation from divergently selected inbred chicken lines on growth, gut serotonin, and immune parameters in recipient chickens. Poult Sci 2022; 101:101925. [PMID: 35613492 PMCID: PMC9130533 DOI: 10.1016/j.psj.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Recent studies have revealed that fecal microbiota transplantation exerts beneficial effects on modulating stress-related inflammation and gastrointestinal health of the host. The aim of this study was to examine if cecal microbiota transplantation (CMT) presents similar efficiency in improving the health status of egg-laying strain chickens. Chicken lines 63 and 72 divergently selected for resistance or susceptibility to Marek's disease were used as CMT donors. Eighty-four d-old male recipient chicks (a commercial DeKalb XL layer strain) were randomly assigned into 3 treatments with 7 replicates per treatment and 4 birds per replicate (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT) for a 16-wk trial. Cecal transplant gavage was conducted once daily from d 1 to d 10, then boosted once weekly from wk 3 to wk 5. The results indicated that 72-CMT birds had the highest body weight and ileal villus/crypt ratio among the treatments at wk 5 (P ≤ 0.05); and higher heterophil/lymphocyte ratios than that of 63-CMT birds at wk 16 (P < 0.05). 72-CMT birds also had higher levels of plasma natural IgG and Interleukin (IL)-6 at wk 16, while 63-CMT birds had higher concentrations of ileal mucosal secretory IgA at wk 5 and plasma IL-10 at wk 16 (P < 0.05), with a tendency for lower mRNA abundance of splenic IL-6 and tumor necrosis factor (TNF)-α at wk 16 (P = 0.08 and 0.07, respectively). In addition, 72-CMT birds tended to have the lowest serotonin concentrations (P = 0.07) with the highest serotonin turnover in the ileum at wk 5 (P < 0.05). There were no treatment effects on the levels of plasma corticosterone and testosterone at wk 16 (P > 0.05). In conclusion, early postnatal CMT from different donors led to different patterns of growth and health status through the regulation of ileal morphological structures, gut-derived serotonergic activities, peripheral cytokines, and antibody production in recipient chickens.
Collapse
|