1
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024; 61:10656-10670. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
2
|
Hanada R. The role of the RANKL/RANK/OPG system in the central nervous systems (CNS). J Bone Miner Metab 2021; 39:64-70. [PMID: 32888064 DOI: 10.1007/s00774-020-01143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
The receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK have essential roles in regulating bone metabolism and the immune system. Besides, the RANKL/RANK system plays important roles in multiple physiological and pathophysiological processes such as mammary gland development during pregnancy, cancer development, and bone metastasis. While it has long been known that RANKL and RANK are expressed in the central nervous system (CNS), the physiological roles of RANKL/RANK system in the CNS and the underlying molecular mechanisms have been elucidated recently. Over the last decade, several reports showed that the central RANKL/RANK system plays important roles in regulating body temperature, brain ischemia, autoimmune encephalopathy, feeding behavior, and energy metabolism. In this review, it is provided an updated information regarding the roles of RANKL/RANK system in the CNS.
Collapse
Affiliation(s)
- Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Yufu City, Oita, 879-5593, Japan.
| |
Collapse
|
3
|
Abstract
Almost a quarter century has passed since discovery of receptor activator of NF-κB ligand (RANKL). This discovery had a major impact on identification of mechanisms regulating osteoclast differentiation and function, establishment of a research field bridging bone and the immune system (osteoimmunology), and development of a fully human anti-RANKL neutralizing antibody (denosumab). Denosumab is now clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many other countries, including Japan. Denosumab is a so-called blockbuster drug, with sales of 5.0 billion US dollars in 2019. This is a real success story from bench to bedside. In this review, the pivotal roles of the RANKL/RANK/OPG system in osteoclast differentiation and function are shown. RANKL is a ligand required for osteoclast generation, RANK is the receptor for RANKL, and osteoprotegerin (OPG) is a decoy receptor for RANKL. The review covers recent results showing the importance of RANKL on osteoblasts in regulation of osteogenesis and the role of RANKL-RANK dual signaling in coupling of bone resorption and formation, including demonstration of RANKL reverse signaling that we had previously hypothesized. Possible applications of anti-RANKL antibody in treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50, Kano-cho, Nagahama, Shiga, 526-0804, Japan.
| |
Collapse
|
4
|
Kalkan R, Becer E. RANK/RANKL/OPG pathway is an important for the epigenetic regulation of obesity. Mol Biol Rep 2019; 46:5425-5432. [PMID: 31364017 DOI: 10.1007/s11033-019-04997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a complex disorder that is influenced by genetic and environmental factors. DNA methylation is an epigenetic mechanism that is involved in development of obesity and its metabolic complications. The aim of this study was to investigate the association between the RANKL and c-Fos gene methylation on obesity with body mass index (BMI), lipid parameters, homeostasis model assessment of insulin resistance (HOMA-IR), plasma leptin, adiponectin and resistin levels. The study included 68 obese and 46 non-obese subjects. Anthropometric parameters, including body weight, body mass index, waist circumference, and waist-hip ratio, were assessed. Serum glucose, triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), plasma leptin, adiponectin and resistin levels were measured. Methylation status of RANKL and c-Fos gen were evaluated by MS-HRM. Statistically significant differences were observed between obese patients and the controls with respect to RANKL and c-Fos gene methylation status (p < 0.001). Also, statistically significant importance was observed RANKL gene methylation and increased level of leptin in obese subjects (p = 0.0081). At the same time, statistically significant association between methylation of c-Fos and increased level of adiponectin was observed in obese patients (p = 0.03) On the other hand, decreased level of resistin was observed where the c-Fos was unmetyladed in controls (p = 0.01). We conclude that methylation of RANKL and c-Fos genes have significant influences on obesity and adipokine levels. Based on literature this was the first study which shows the interactions between RANKL and c-Fos methylation and obesity.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Eda Becer
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Near East Boulevard, ZIP. 99138, Nicosia, Cyprus. .,Research Center of Experimental Health Sciences (DESAM), Near East University, Nicosia, Cyprus.
| |
Collapse
|
5
|
Wang S, Xu S, Shi Z, Wu J, Lei S, Wang Y. [Progress of research on the relationship between calcitonin gene-related peptide and RANK/RANKL/OPG system in the bone reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:511-515. [PMID: 30983204 PMCID: PMC8337187 DOI: 10.7507/1002-1892.201811137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/10/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize the research progress on the calcitonin gene-related peptide (CGRP) and receptor activator of nuclear factor κB (RANK)/receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) system during bone reconstruction to provide theoretical basis for further research on the prevention and treatment of bone-related diseases. METHODS The relevant research results at home and abroad in recent years were analyzed and summarized. RESULTS CGRP and RANK/RANKL/OPG system play important regulatory roles in the bone reconstruction. CONCLUSION At present, the research on the mechanism of CGRP and RANK/RANKL/OPG system in bone reconstruction is insufficient. Therefore, it is necessary to study further on the process and interrelation of CGRP and RANK/RANKL/OPG system in bone reconstruction to confirm their mechanism, which will bring new ideas and methods for the treatment of bone related diseases in clinic.
Collapse
Affiliation(s)
- Shiyao Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China;Orthopedics Key Laboratory of Gansu Province, Lanzhou Gansu, 730000, P.R.China
| | - Shaoce Xu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China;Orthopedics Key Laboratory of Gansu Province, Lanzhou Gansu, 730000, P.R.China
| | - Zhengwei Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China;Orthopedics Key Laboratory of Gansu Province, Lanzhou Gansu, 730000, P.R.China
| | - Jianchao Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China;Orthopedics Key Laboratory of Gansu Province, Lanzhou Gansu, 730000, P.R.China
| | - Shuanhu Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Yuliang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000,
| |
Collapse
|
6
|
Hohman EE, Hodges JK, Wastney ME, Lachcik PJ, Han CY, Dwyer D, Peacock M, Kostenuik PJ, Weaver CM. Serum calcium concentration is maintained when bone resorption is suppressed by osteoprotegerin in young growing male rats. Bone 2018; 116:162-170. [PMID: 30077758 DOI: 10.1016/j.bone.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/22/2023]
Abstract
Serum calcium (Ca) is maintained in a narrow range through regulation of Ca metabolism in the intestine, kidney, and bone. Calcium is incorporated and resorbed from bone during bone remodeling via cellular processes as well as by exchange. Both routes contribute to calcium homeostasis. To assess the magnitude of bone turnover contribution to calcium homeostasis we labeled bone with a Ca tracer and measured Ca release following stimulation or suppression of bone resorption. Young growing male rats (n = 162) were dosed with 45Ca to label skeletal Ca. After a one-month period to allow the label to incorporate into the skeleton, rats were treated with a bone resorption antagonist (OPG), a bone resorption agonist (RANKL), or vehicle control (PBS). Serum and urine 45Ca and total Ca, and serum TRACP5b (a bone resorption biomarker), were monitored for 45 days following treatment. Tracer data were analyzed by a compartmental model using WinSAAM to quantify dynamic changes in Ca metabolism and identify sites of change following treatment. In RANKL treated rats, both serum 45Ca and serum TRACP5b were increased by >70% due to a 25-fold increase in bone resorption. In OPG treated rats, both serum 45Ca and serum TRACP5b were suppressed by >70% due to a 75% decrease in bone resorption, a 3-fold increase in bone formation, and a 50% increase in absorption. Because TRACP5b and 45Ca responded similarly, we conclude that Ca release from bone into serum occurs mostly via osteoclast-mediated bone resorption. However, because serum Ca concentration did not change with altered resorption in response to either RANKL or OPG treatment, we also conclude that serum Ca concentration under normal dietary conditions in young growing male rats is maintained by processes in addition to cellular bone resorption.
Collapse
Affiliation(s)
- Emily E Hohman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Joanna K Hodges
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Meryl E Wastney
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Pamela J Lachcik
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Chun-Ya Han
- Metabolic Disorders Research, Amgen, Thousand Oaks, CA, USA
| | - Denise Dwyer
- Metabolic Disorders Research, Amgen, Thousand Oaks, CA, USA
| | - Munro Peacock
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul J Kostenuik
- Phylon Pharma Services, Newbury Park, CA, USA; University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Zhu P, Zhang Z, Huang X, Liang S, Khandekar N, Song Z, Lin S. RANKL Reduces Body Weight and Food Intake via the Modulation of Hypothalamic NPY/CART Expression. Int J Med Sci 2018; 15:969-977. [PMID: 30013437 PMCID: PMC6036154 DOI: 10.7150/ijms.24373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
The receptor activator of nuclear factor-κB ligand (RANKL) modulates energy metabolism. However, how RANKL regulates energy homeostasis is still not clear. This study aims to investigate the central mechanisms by which central administration of RANKL inhibits food intake and causes weight loss in mice. We carried out a systematic and in-depth analysis of the neuronal pathways by which RANKL mediates catabolic effects. After intracerebroventricle (i.c.v.) injection of RANKL, the expression of neuropeptide Y (NPY) mRNA in the Arc was significantly decreased, while the CART mRNA expression dramatically increased in the Arc and DMH. However, the agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) mRNA had no significant changes compared with control groups. Together, the results suggest that central administration of RANKL reduces food intake and causes weight loss via modulating the hypothalamic NPY/CART pathways.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Zhihui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Xufeng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Shiyu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Zhiyuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China.,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| |
Collapse
|
8
|
Fei T, Shao Y, Yan Z, Zhu L, Li S, Pan J, Guo C. The effects of P-gp and CYP450 modulated by rifampicin on the steroid-induced osteonecrosis of the femoral head. J Bone Miner Metab 2017; 35:504-512. [PMID: 27848009 DOI: 10.1007/s00774-016-0787-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of rifampicin-modulated P-glycoprotein (P-gp) and cytochrome P450 (CYP450) activity on the development of steroid-induced osteonecrosis of the femoral head. Thirty-two rabbits were equally divided into four groups: control group, oral administration group, intramuscular injection group, and local release group, in which rifampicin-loaded artificial bone graft was implanted in the left femur cavity and blank bone graft was implanted in the right femur cavity. Dexamethasone was given 1 week after rifampicin administration. Peripheral P-gp activity and hepatic CYP450 content were investigated 4 weeks later. Hematoxylin and eosin, Massson, and tetracycline-fluorescence staining of the femoral head were compared. In vitro, the effects of intracellular dexamethasone concentration modulated by P-gp on osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) expression and differentiation of mesenchymal stem cells were further investigated. Peripheral P-gp activity and hepatic CYP450 content in the oral administration group and the intramuscular injection group were significantly higher than those in the local release group. P-gp activity of mesenchymal stem cells in rifampicin-implanted femoral head was significantly higher than that in the blank control. Histological study showed that rifampicin could prevent steroid-induced bone loss and lipid formation, and promote new bone formation and maturation. In vitro study confirmed that intracellular dexamethasone concentration modulated by P-gp could influence the OPG/RANKL ratio and the differentiation of mesenchymal stem cells. Enhanced levels of peripheral P-gp and hepatic CYP450 can reduce the incidence of steroid-induced osteonecrosis of the femoral head. P-gp activity locally enhanced by rifampicin decreases the intracellular steroid concentration, but rifampicin does not have significant effects on peripheral P-gp and hepatic CYP450.
Collapse
Affiliation(s)
- Teng Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China
| | - Yunchao Shao
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China.
| | - Liang Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China.
| | - Shuo Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China
| | - Jianfeng Pan
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Building 5, No. 180, FengLin Road, XuHui District, Shanghai, 200032, China
| |
Collapse
|
9
|
Xi JC, Zang HY, Guo LX, Xue HB, Liu XD, Bai YB, Ma YZ. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. J Recept Signal Transduct Res 2015; 35:640-5. [PMID: 26390889 DOI: 10.3109/10799893.2015.1041647] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Osteoporosis is a systemic skeletal disease with the high incidence, serious complications, financial burden, and heavily decrease in living quality. METHODS Proliferation of osteoblast was tested by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method, alkaline phosphatase (ALP) activity of osteoblasts was tested by ALP REAGENT, Calcium level was determined by a colorimetric assay, mRNA expression of phosphoinositide-3 kinase (PI3K), 3-phosphoinositide-dependent protein kinase 1 (PDK1), Akt, Caspase-3, Caspase-7, Caspase-9, osteocalcin (OCN), Osterix and Runx2 of osteoblasts was tested by RNA preparation and quantitative reverse transcription polymerase chain reaction (RT-PCR), and protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt was measured by Western Blot analysis. RESULTS In osteoporosis model rats, it found that mRNA expression of PI3K, PDK1 and Akt showed no changes while protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt in bone tissue was decreased dramatically. To further characterize the molecular mechanisms that regulate osteoporosis, we examined the contribution of the PI3K/Akt cell signaling pathway in cultured osteoblasts. It suggested that, the blockade of PI3K activation by LY294002, a specific inhibitor of the PI3K/Akt signaling pathway in osteoblasts, heavily inhibited cell proliferation, ALP activity, calcium accumulation, and mRNA expression of OCN, Osterix and Runx2. However, mRNA expression of Caspase-3 and Caspase-9 was promoted accordingly. CONCLUSION The in vivo and in vitro studies indicated that the PI3K/Akt cell signaling pathway is involved in the inhibition of osteoporosis through promoting osteoblast proliferation, differentiation and bone formation.
Collapse
Affiliation(s)
- Jian-Cheng Xi
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| | - Hai-Yu Zang
- b Outpatient Department , Command College of Land Force of People's Liberation Army , Shijiazhuang City , China
| | - Li-Xin Guo
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| | - Hai-Bin Xue
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| | - Xiang-Dong Liu
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| | - Yi-Bing Bai
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| | - Yuan-Zheng Ma
- a Orthopaedic Department , 309 Hospital of People's Liberation Army , Beijing , China and
| |
Collapse
|
10
|
Yasuda H. RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases. World J Orthop 2013; 4:207-217. [PMID: 24147256 PMCID: PMC3801240 DOI: 10.5312/wjo.v4.i4.207] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a common bone disease characterized by reduced bone and increased risk of fracture. In postmenopausal women, osteoporosis results from bone loss attributable to estrogen deficiency. Osteoclast differentiation and activation is mediated by receptor activator of nuclear factor-κB ligand (RANKL), its receptor receptor activator of nuclear factor-κB (RANK), and a decoy receptor for RANKL, osteoprotegerin (OPG). The OPG/RANKL/RANK system plays a pivotal role in osteoclast biology. Currently, a fully human anti-RANKL monoclonal antibody named denosumab is being clinically used for the treatment of osteoporosis and cancer-related bone disorders. This review describes recent advances in RANKL-related research, a story from bench to bedside. First, the discovery of the key factors, OPG/RANKL/RANK, revealed the molecular mechanism of osteoclastogenesis. Second, we established three animal models: (1) a novel and rapid bone loss model by administration of glutathione-S transferase-RANKL fusion protein to mice; (2) a novel mouse model of hypercalcemia with anorexia by overexpression of soluble RANKL using an adenovirus vector; and (3) a novel mouse model of osteopetrosis by administration of a denosumab-like anti-mouse RANKL neutralizing monoclonal antibody. Lastly, anti-human RANKL monoclonal antibody has been successfully applied to the treatment of osteoporosis and cancer-related bone disorders in many countries. This is a real example of applying basic science to clinical practice.
Collapse
|
11
|
Gianforcaro A, Solomon JA, Hamadeh MJ. Vitamin D(3) at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. PLoS One 2013; 8:e30243. [PMID: 23405058 PMCID: PMC3566148 DOI: 10.1371/journal.pone.0030243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously demonstrated that dietary vitamin D(3) at 10x the adequate intake (AI) attenuates the decline in functional capacity in the G93A mouse model of ALS. We hypothesized that higher doses would elicit more robust changes in functional and disease outcomes. OBJECTIVE To determine the effects of dietary vitamin D(3) at 50xAI on functional outcomes (motor performance, paw grip endurance) and disease severity (clinical score), as well as disease onset, disease progression and lifespan in the transgenic G93A mouse model of ALS. METHODS Starting at age 25 d, 100 G93A mice (55 M, 45 F) were provided ad libitum with either an adequate (AI; 1 IU D(3)/g feed) or high (HiD; 50 IU D(3)/g feed) vitamin D(3) diet. RESULTS HiD females consumed 9% less food corrected for body weight vs. AI females (P = 0.010). HiD mice had a 12% greater paw grip endurance over time between age 60-141 d (P = 0.015), and a 37% greater score during disease progression (P = 0.042) vs. AI mice. Although HiD females had a non-significant 31% greater CS prior to disease onset vs. AI females, they exhibited a significant 20% greater paw grip endurance AUC (P = 0.020) when corrected for clinical score. CONCLUSION Dietary D(3) supplementation at 50x the adequate intake attenuated the decline in paw grip endurance, but did not influence age at disease onset, hindlimb paralysis or endpoint in the transgenic G93A mouse model of ALS. Furthermore, females may have reached the threshold for vitamin D(3) toxicity as evidence by reduced food intake and greater disease severity prior to disease onset.
Collapse
Affiliation(s)
- Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|