1
|
Kato M, Sato K. A Microfluidic-Based Cell-Stretching Culture Device That Allows for Easy Preparation of Slides for Observation with High-Magnification Objective Lenses. MICROMACHINES 2025; 16:93. [PMID: 39858748 PMCID: PMC11767594 DOI: 10.3390/mi16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Microfluidic-based cell-stretching devices are vital for studying the molecular pathways involved in cellular responses to mechanobiological processes. Accurate evaluation of these responses requires detailed observation of cells cultured in this cell-stretching device. This study aimed to develop a method for preparing microscope slides to enable high-magnification imaging of cells in these devices. The key innovation is creating a peelable bond between the cell culture membrane and the upper channel, allowing for easy removal of the upper layer and precise cutting of the membrane for high-magnification microscopy. Using the fabricated device, OP9 cells (15,000 cells/channel) were stretched, and the effects of focal adhesion proteins and the intracellular distribution of YAP1 were examined under a fluorescence microscope with 100× and 60× objectives. Stretch stimulation increased integrinβ1 expression and promoted integrin-vinculin complex formation by approximately 1.4-fold in OP9 cells. Furthermore, YAP1 nuclear localization was significantly enhanced (approximately 1.3-fold) during stretching. This method offers a valuable tool for researchers using microfluidic-based cell-stretching devices. The advancement of imaging techniques in microdevice research is expected to further drive progress in mechanobiology research.
Collapse
Affiliation(s)
| | - Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| |
Collapse
|
2
|
Brown ME, Puetzer JL. Enthesis maturation in engineered ligaments is differentially driven by loads that mimic slow growth elongation and rapid cyclic muscle movement. Acta Biomater 2023; 172:106-122. [PMID: 37839633 DOI: 10.1016/j.actbio.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Entheses are complex attachments that translate load between elastic-ligaments and stiff-bone via organizational and compositional gradients. Neither natural healing, repair, nor engineered replacements restore these gradients, contributing to high re-tear rates. Previously, we developed a culture system which guides ligament fibroblasts in high-density collagen gels to develop early postnatal-like entheses, however further maturation is needed. Mechanical cues, including slow growth elongation and cyclic muscle activity, are critical to enthesis development in vivo but these cues have not been widely explored in engineered entheses and their individual contribution to maturation is largely unknown. Our objective here was to investigate how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, individually drive enthesis maturation in our system so to shed light on the cues governing enthesis development, while further developing our tissue engineered replacements. Interestingly, we found these loads differentially drive organizational maturation, with slow stretch driving improvements in the interface/enthesis region, and cyclic load improving the ligament region. However, despite differentially affecting organization, both loads produced improvements to interface mechanics and zonal composition. This study provides insight into how mechanical cues differentially affect enthesis development, while producing some of the most organized engineered enthesis to date. STATEMENT OF SIGNIFICANCE: Entheses attach ligaments to bone and are critical to load transfer; however, entheses do not regenerate with repair or replacement, contributing to high re-tear rates. Mechanical cues are critical to enthesis development in vivo but their individual contribution to maturation is largely unknown and they have not been widely explored in engineered replacements. Here, using a novel culture system, we provide new insight into how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, differentially affect enthesis maturation in engineered ligament-to-bone tissues, ultimately producing some of the most organized entheses to date. This system is a promising platform to explore cues regulating enthesis formation so to produce functional engineered replacements and better drive regeneration following repair.
Collapse
Affiliation(s)
- M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
3
|
Lee MH, Tsai HP, Lavy C, Mouthuy PA, Czernuszka J. Time-dependent extracellular matrix alterations of young tendons in response to stress relaxation: a model for the Ponseti method. J R Soc Interface 2023; 20:20220712. [PMID: 37194273 PMCID: PMC10189311 DOI: 10.1098/rsif.2022.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/06/2023] [Indexed: 05/18/2023] Open
Abstract
The Ponseti method corrects a clubfoot by manipulation and casting which causes stress relaxation on the tendons. Here, we examined the effect of long-term stress relaxation on tendon extracellular matrix (ECM) by (1) an ex vivo stress relaxation test, (2) an in vitro tenocyte culture with stress relaxation and (3) an in vivo rabbit study. Time-dependent tendon lengthening and ECM alterations including crimp angle reduction and cleaved elastin were observed, which illustrated the mechanism of tissue lengthening behind the treatment-a material-based crimp angle reduction resulted from elastin cleavage. Additionally, in vitro and in vivo results observed restoration of these ECM alterations along with increased elastin level after 7 days of treatment, and the existence of neovascularization and inflammation, indicating the recovery and adaptation from the tendon in reaction to the treatment. Overall, this study provides the scientific background and information that helps explain the Ponseti method.
Collapse
Affiliation(s)
- Mu-Huan Lee
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chris Lavy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Pierre-Alexis Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| |
Collapse
|
4
|
Effect of Therapeutic Ultrasound on the Mechanical and Biological Properties of Fibroblasts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
This paper explores the effect of therapeutic ultrasound on the mechanical and biological properties of ligament fibroblasts.
Methods and Results
We assessed pulsed ultrasound doses of 1.0 and 2.0 W/cm2 at 1 MHz frequency for five days on ligament fibroblasts using a multidisciplinary approach. Atomic force microscopy showed a decrease in cell elastic modulus for both doses, but the treated cells were still viable based on flow cytometry. Finite element method analysis exhibited visible cytoskeleton displacements and decreased harmonics in treated cells. Colorimetric assay revealed increased cell proliferation, while scratch assay showed increased migration at a low dose. Enzyme-linked immunoassay detected increased collagen and fibronectin at a high dose, and immunofluorescence imaging technique visualized β-actin expression for both treatments.
Conclusion
Both doses of ultrasound altered the fibroblast mechanical properties due to cytoskeletal reorganization and enhanced the regenerative and remodeling stages of cell repair.
Lay Summary
Knee ligament injuries are a lesion of the musculoskeletal system frequently diagnosed in active and sedentary lifestyles in young and older populations. Therapeutic ultrasound is a rehabilitation strategy that may lead to the regenerative and remodeling of ligament wound healing. This research demonstrated that pulsed therapeutic ultrasound applied for 5 days reorganized the ligament fibroblasts structure to increase the cell proliferation and migration at a low dose and to increase the releasing proteins that give the stiffness of the healed ligament at a high dose.
Future Works
Future research should further develop and confirm that therapeutic ultrasound may improve the regenerative and remodeling stages of the ligament healing process applied in clinical trials in active and sedentary lifestyles in young and older populations.
Graphical abstract
Collapse
|
5
|
Driving native-like zonal enthesis formation in engineered ligaments using mechanical boundary conditions and β-tricalcium phosphate. Acta Biomater 2022; 140:700-716. [PMID: 34954418 DOI: 10.1016/j.actbio.2021.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
Fibrocartilaginous entheses are structurally complex tissues that translate load from elastic ligaments to stiff bone via complex zonal gradients in the organization, mineralization, and cell phenotype. Currently, these complex gradients necessary for long-term mechanical function are not recreated in soft tissue-to-bone healing or engineered replacements, contributing to high failure rates. Previously, we developed a culture system that guides ligament fibroblasts to develop aligned native-sized collagen fibers using high-density collagen gels and mechanical boundary conditions. These constructs are promising ligament replacements, however functional ligament-to-bone attachments, or entheses, are required for long-term function in vivo. The objective of this study was to investigate the effect of compressive mechanical boundary conditions and the addition of beta-tricalcium phosphate (βTCP), a known osteoconductive agent, on the development of zonal ligament-to-bone entheses. We found that compressive boundary clamps, that restrict cellular contraction and produce a zonal tensile-compressive environment, guide ligament fibroblasts to produce 3 unique zones of collagen organization and zonal accumulation of glycosaminoglycans (GAGs), type II, and type X collagen. Ultimately, by 6 weeks of culture these constructs had similar organization and composition as immature bovine entheses. Further, βTCP applied under the clamp enhanced maturation of these entheses, leading to significantly increased tensile moduli, and zonal GAG accumulation, ALP activity, and calcium-phosphate accumulation, suggesting the initiation of endochondral ossification. This culture system produced some of the most organized entheses to date, closely mirroring early postnatal enthesis development, and provides an in vitro platform to better understand the cues that drive enthesis maturation in vivo. STATEMENT OF SIGNIFICANCE: Ligaments are attached to bone via entheses. Entheses are complex tissues with gradients in organization, composition, and cell phenotype. Entheses are necessary for proper transfer of load from ligament-to-bone, but currently are not restored with healing or replacements. Here, we provide new insight into how tensile-compressive boundary conditions and βTCP drive zonal gradients in collagen organization, mineralization, and matrix composition, producing tissues similar to immature ligament-to-bone attachments. Collectively, this culture system uses a bottom-up approach with mechanical and biochemical cues to produce engineered replacements which closely mirror postnatal enthesis development. This culture system is a promising platform to better understanding the cues that regulate enthesis formation so to better drive enthesis regeneration following graft repair and in engineered replacements.
Collapse
|
6
|
Kawamura Y, Tetsunaga T, Yamada K, Sanki T, Sato Y, Yoshida A, Furumatsu T, Ozaki T. Mechanical stretching induces calcification and cartilage matrix metabolism, causing degeneration of the acetabular labrum. Hip Int 2021; 33:500-507. [PMID: 34538120 DOI: 10.1177/11207000211044675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The acetabular labrum plays an important role in joint lubrication, and damage to this structure leads to osteoarthritis. This study aimed to histologically classify the degree of degeneration of the acetabular labrum and to investigate the changes in gene expression induced by mechanical stretching. METHODS We obtained acetabular labrum cells from patients with hip osteoarthritis during total hip arthroplasty (n = 25). The labrum was stained with safranin O, and images were histologically evaluated using a new parameter, the red/blue (R/B) value. The samples were divided into the degenerated group (D group: n = 18) and the healthy group (H group: n = 7) in accordance with the Kellgren-Lawrence (KL) grade. The cultured acetabular labral cells were subjected to loaded uniaxial cyclic tensile strain (CTS). After CTS, changes in gene expression were examined in both groups. RESULTS Spearman's correlation analysis revealed that the R/B value was significantly correlated with the KL grade and the Krenn score. The expression levels of genes related to cartilage metabolism, osteogenesis and angiogenesis significantly increased after CTS in the H group, while gene expression in the D group showed weaker changes after CTS than that in the H group compared to the nonstretched control group. CONCLUSIONS The degree of labral degeneration could be classified histologically using the R/B value and the KL grade. Mechanical stretching caused changes in gene expression that support the pathological features of labral degeneration.
Collapse
Affiliation(s)
- Yoshi Kawamura
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomonori Tetsunaga
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuki Yamada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoaki Sanki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Sato
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Pedrero SG, Llamas-Sillero P, Serrano-López J. A Multidisciplinary Journey towards Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4896. [PMID: 34500986 PMCID: PMC8432705 DOI: 10.3390/ma14174896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Millions of patients suffer yearly from bone fractures and disorders such as osteoporosis or cancer, which constitute the most common causes of severe long-term pain and physical disabilities. The intrinsic capacity of bone to repair the damaged bone allows normal healing of most small bone injuries. However, larger bone defects or more complex diseases require additional stimulation to fully heal. In this context, the traditional routes to address bone disorders present several associated drawbacks concerning their efficacy and cost-effectiveness. Thus, alternative therapies become necessary to overcome these limitations. In recent decades, bone tissue engineering has emerged as a promising interdisciplinary strategy to mimic environments specifically designed to facilitate bone tissue regeneration. Approaches developed to date aim at three essential factors: osteoconductive scaffolds, osteoinduction through growth factors, and cells with osteogenic capability. This review addresses the biological basis of bone and its remodeling process, providing an overview of the bone tissue engineering strategies developed to date and describing the mechanisms that underlie cell-biomaterial interactions.
Collapse
Affiliation(s)
- Sara G. Pedrero
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
| | - Pilar Llamas-Sillero
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
- Hematology Department, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Juana Serrano-López
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
| |
Collapse
|
8
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
9
|
Gögele C, Hoffmann C, Konrad J, Merkel R, Schwarz S, Tohidnezhad M, Hoffmann B, Schulze-Tanzil GG. Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile. Cell Tissue Res 2021; 384:675-690. [PMID: 33835257 PMCID: PMC8211585 DOI: 10.1007/s00441-021-03416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
Mechanical stress of ligaments varies; hence, ligament fibroblasts must adapt their expression profile to novel mechanomilieus to ensure tissue resilience. Activation of the mechanoreceptors leads to a specific signal transduction, the so-called mechanotransduction. However, with regard to their natural three-dimensional (3D) microenvironment cell reaction to mechanical stimuli during emigrating from a 3D spheroid culture is still unclear. This study aims to provide a deeper understanding of the reaction profile of anterior cruciate ligament (ACL)-derived fibroblasts exposed to cyclic uniaxial strain in two-dimensional (2D) monolayer culture and during emigration from 3D spheroids with respect to cell survival, cell and cytoskeletal orientation, distribution, and expression profile. Monolayers and spheroids were cultured in crosslinked polydimethyl siloxane (PDMS) elastomeric chambers and uniaxially stretched (14% at 0.3 Hz) for 48 h. Cell vitality, their distribution, nuclear shape, stress fiber orientation, focal adhesions, proliferation, expression of ECM components such as sulfated glycosaminoglycans, collagen type I, decorin, tenascin C and cell-cell communication-related gap junctional connexin (CXN) 43, tendon-related markers Mohawk and tenomodulin (myodulin) were analyzed. In contrast to unstretched cells, stretched fibroblasts showed elongation of stress fibers, cell and cytoskeletal alignment perpendicular to strain direction, less rounded cell nuclei, increased numbers of focal adhesions, proliferation, amplified CXN43, and main ECM component expression in both cultures. The applied cyclic stretch protocol evoked an anabolic response and enhanced tendon-related marker expression in ACL-derived fibroblasts emigrating from 3D spheroids and seems also promising to support in future tissue formation in ACL scaffolds seeded in vitro with spheroids.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Christina Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Konrad
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Silke Schwarz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| |
Collapse
|
10
|
Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:644595. [PMID: 33987173 PMCID: PMC8112590 DOI: 10.3389/fbioe.2021.644595] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.
Collapse
Affiliation(s)
- Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
11
|
McGee OM, Nolan DR, Mathieu PS, Lally C. An in-silico Investigation Into the Role of Strain and Structure on Vascular Smooth Muscle Cell Growth. Front Bioeng Biotechnol 2021; 9:641794. [PMID: 33959595 PMCID: PMC8093633 DOI: 10.3389/fbioe.2021.641794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
The orientation of vascular cells can greatly influence the in vivo mechanical properties and functionality of soft vascular tissues. How cell orientation mediates the growth response of cells is of critical importance in understanding the response of soft tissues to mechanical stimuli or injury. To date, considerable evidence has shown that cells align with structural cues such as collagen fibers. However, in the presence of uniaxial cyclic strain on unstructured substrates, cells generally align themselves perpendicularly to the mechanical stimulus, such as strain, a phenomenon known as “strain avoidance.” The cellular response to this interplay between structural cues and a mechanical stimulus is poorly understood. A recent in vitro experimental study in our lab has investigated both the individual and collective response of rat aortic smooth muscle cells (RASMC) to structural (collagenous aligned constructs) and mechanical (cyclic strain) cues. In this study, a 2D agent-based model (ABM) is developed to simulate the collective response of RASMC to varying amplitudes of cyclic strain (0–10%, 2–8%, 4–6%) when seeded on unstructured (PDMS) and structured (decellularized collagenous tissue) constructs. An ABM is presented that is fit to the experimental outcomes in terms of cellular alignment and cell growth on PDMS substrates, under cyclic strain amplitudes of (4–6%, 2–8%, 0–10%) at 24 and 72 h timepoints. Furthermore, the ABM can predict RASMC alignment and change in cell number on a structured construct at a cyclic strain amplitude of 0–10% after 10 days. The ABM suggests that strain avoidance behavior observed in cells is dominated by selective cell proliferation and apoptosis at these early time points, as opposed to cell re-orientation, i.e., cells perpendicular to the strain increase their rate of proliferation, whilst the rate of apoptosis simultaneously increases in cells parallel to the strain direction. The development of in-silico modeling platforms, such as that presented here, allow for further understanding of the response of cells to changes in their mechanical environment. Such models offer an efficient and robust means to design and optimize the compliance and topological structure of implantable devices and could be used to aid the design of next-generation vascular grafts and stents.
Collapse
Affiliation(s)
- Orla M McGee
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David R Nolan
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pattie S Mathieu
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Puetzer JL, Ma T, Sallent I, Gelmi A, Stevens MM. Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement. Biomaterials 2021; 269:120527. [PMID: 33246739 PMCID: PMC7883218 DOI: 10.1016/j.biomaterials.2020.120527] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Hierarchical collagen fibers are the primary source of strength in musculoskeletal tendons, ligaments, and menisci. It has remained a challenge to develop these large fibers in engineered replacements or in vivo after injury. The objective of this study was to investigate the ability of restrained cell-seeded high density collagen gels to drive hierarchical fiber formation for multiple musculoskeletal tissues. We found boundary conditions applied to high density collagen gels were capable of driving tenocytes, ligament fibroblasts, and meniscal fibrochondrocytes to develop native-sized hierarchical collagen fibers 20-40 μm in diameter. The fibers organize similar to bovine juvenile collagen with native fibril banding patterns and hierarchical fiber bundles 50-350 μm in diameter by 6 weeks. Mirroring fiber organization, tensile properties of restrained samples improved significantly with time, reaching ~1 MPa. Additionally, tendon, ligament, and meniscal cells produced significantly different sized fibers, different degrees of crimp, and different GAG concentrations, which corresponded with respective juvenile tissue. To our knowledge, these are some of the largest, most organized fibers produced to date in vitro. Further, cells produced tissue specific hierarchical fibers, suggesting this system is a promising tool to better understand cellular regulation of fiber formation to better stimulate it in vivo after injury.
Collapse
Affiliation(s)
- Jennifer L Puetzer
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ; Department of Biomedical Engineering and Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States, 23284.
| | - Tianchi Ma
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Ignacio Sallent
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ.
| |
Collapse
|
13
|
Looney AM, Leider JD, Horn AR, Bodendorfer BM. Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: A review of current concepts and emerging techniques. SAGE Open Med 2020; 8:2050312120921057. [PMID: 32435488 PMCID: PMC7222656 DOI: 10.1177/2050312120921057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/22/2020] [Indexed: 12/27/2022] Open
Abstract
Injuries involving the anterior cruciate ligament are among the most common athletic injuries, and are the most common involving the knee. The anterior cruciate ligament is a key translational and rotational stabilizer of the knee joint during pivoting and cutting activities. Traditionally, surgical intervention in the form of anterior cruciate ligament reconstruction has been recommended for those who sustain an anterior cruciate ligament rupture and wish to remain active and return to sport. The intra-articular environment of the anterior cruciate ligament makes achieving successful healing following repair challenging. Historically, results following repair were poor, and anterior cruciate ligament reconstruction emerged as the gold-standard for treatment. While earlier literature reported high rates of return to play, the results of more recent studies with longer follow-up have suggested that anterior cruciate ligament reconstruction may not be as successful as once thought: fewer athletes are able to return to sport at their preinjury level, and many still go on to develop osteoarthritis of the knee at a relatively younger age. The four principles of tissue engineering (cells, growth factors, scaffolds, and mechanical stimuli) combined in various methods of bioaugmentation have been increasingly explored in an effort to improve outcomes following surgical treatment of anterior cruciate ligament injuries. Newer technologies have also led to the re-emergence of anterior cruciate ligament repair as an option for select patients. The different biological challenges associated with anterior cruciate ligament repair and reconstruction each present unique opportunities for targeted bioaugmentation strategies that may eventually lead to better outcomes with better return-to-play rates and fewer revisions.
Collapse
Affiliation(s)
| | - Joseph Daniel Leider
- Department of Orthopaedic Surgery, Georgetown University Medical Center, Washington, DC, USA
| | - Andrew Ryan Horn
- Department of Orthopaedic Surgery, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
14
|
Thönnes S, Shelton P, Bracey DN, Van Dyke M, Whitlock P, Smith TL, Moghaddam A, Tuohy C. Success and efficiency of cell seeding in Avian Tendon Xenografts - A promising alternative for tendon and ligament reconstruction. J Orthop 2020; 18:155-161. [PMID: 32021023 DOI: 10.1016/j.jor.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Decellularized tendon xenografts offer a promising alternative for reconstruction by using ubiquitously available material. This study compares static and centrifugal seeding of avian tendon scaffolds with NIH 3T3 fibroblasts. Incorporation of viable cells was achievable with both techniques, represented by DNA content. Proliferation rate and viability assay showed neither damage by centrifugal force nor superiority of the technique. Cell proliferation after 10 days of culture demonstrated that the scaffold did not hinder 3-D culturing. Confocal laser microscopy revealed structural details as formation of focal adhesions, to provide deeper insight into the process of cell attachment and growth in xenografts.
Collapse
Affiliation(s)
- Simon Thönnes
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstr. 200a, D-69118, Heidelberg, Germany
| | - Peter Shelton
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark Van Dyke
- Virginia Tech, Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University Blacksburg, VA, 24061, USA
| | - Patrick Whitlock
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Arash Moghaddam
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstr. 200a, D-69118, Heidelberg, Germany
| | - Christopher Tuohy
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
15
|
|
16
|
Park SE, Georgescu A, Oh JM, Kwon KW, Huh D. Polydopamine-Based Interfacial Engineering of Extracellular Matrix Hydrogels for the Construction and Long-Term Maintenance of Living Three-Dimensional Tissues. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23919-23925. [PMID: 31199616 PMCID: PMC6953174 DOI: 10.1021/acsami.9b07912] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diverse biological processes in the body rely on the ability of cells to exert contractile forces on their extracellular matrix (ECM). In three-dimensional (3D) cell culture, however, this intrinsic cellular property can cause unregulated contraction of ECM hydrogel scaffolds, leading to a loss of surface anchorage and the resultant structural failure of in vitro tissue constructs. Despite advances in the 3D culture technology, this issue remains a significant challenge in the development and long-term maintenance of physiological 3D in vitro models. Here, we present a simple yet highly effective and accessible solution to this problem. We leveraged a single-step surface functionalization technique based on polydopamine to drastically increase the strength of adhesion between hydrogel scaffolds and cell culture substrates. Our method is compatible with different types of ECM and polymeric surfaces and also permits prolonged shelf storage of functionalized culture substrates. The proof-of-principle of this technique was demonstrated by the stable long-term (1 month) 3D culture of human lung fibroblasts. Furthermore, we showed the robustness and advanced application of the method by constructing a dynamic cell stretching system and performing over 100 000 cycles of mechanical loading on 3D multicellular constructs for visualization and quantitative analysis of stretch-induced tissue alignment. Finally, we demonstrated the potential of our technique for the development of microphysiological in vitro models by establishing microfluidic 3D co-culture of vascular endothelial cells and fibroblasts to engineer self-assembled, perfusable 3D microvascular beds.
Collapse
Affiliation(s)
- Sunghee E. Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrei Georgescu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeong Min Oh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Keon Woo Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Xu C, Zhang Y, Sutrisno L, Yang L, Chen R, Sung KLP. Bay11-7082 facilitates wound healing by antagonizing mechanical injury- and TNF-α-induced expression of MMPs in posterior cruciate ligament. Connect Tissue Res 2019; 60:311-322. [PMID: 30372627 DOI: 10.1080/03008207.2018.1512978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purposes: To investigate the ability of synoviocytes (SCs) in regulating MMPs expression in the posterior cruciate ligament fibroblasts (PCLfs) after TNF-α treatment, to test whether a specific inflammation inhibitor Bay11-7082 can antagonize the expression of MMPs in PCLfs after injury. Methods: The microenvironment of knee joint cavity after PCL injury was mimicked in an in vitro co-culture system. The effects of TNF-α treatment on the expression of MMPs in PCL fibroblasts (PCLfs) were studied. The expression of MMPs mRNA and protein was detected by qRT-PCR and western blot. For the in vivo study, the Bay11-7082 inhibitor was injected into the knee joint cavity after injury, and then were performed on histological analysis. Results: In the mono-culture conditions, 6% mechanical injury upregulated the expression of MMP-2, whereas downregulated MMP-1 and -3, additionally 12% mechanical injury were upregulated all. However, in co-culture conditions, 6% and 12% both significantly increased MMPs expressions. Stretch injury and TNF-α treatment significantly upregulated expression of MMPs mRNA and protein levels in mono-cultured PCLfs. This effect was more significant in PCLfs Plus SCs co-culture system, in which the cells were treated by combination of stretch injury and TNF-α. In addition, Bay11-7082, a specific inflammation inhibitor, could significantly decrease the expression of MMPs induced by stretch injury and/or TNF-α treatment. Less infiltrated inflammatory cells and more integrated tissues were detected in injury PCL 2 weeks after Bay11-7082 treatment, compared to injury group. Immunofluorescent staining showed very low expression levels of MMPs in PCL of Bay11-7082-treated group, compared to the injury groups. Conclusions: SCs sever as the supporting cells that aggravate the TNF-α-induced MMPs accumulation in PCLfs. Inhibition of the expression of MMPs by Bay11-7082 is a promising way to facilitate the self-healing of PCL.
Collapse
Affiliation(s)
- Chunming Xu
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Yanjun Zhang
- b Department of Life Science , Hunan University of Science and Technology , Xiangtan , Hunan , China
| | - Linawati Sutrisno
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Li Yang
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Rongfu Chen
- c Department of Orthopedics , People's hospital of Changshou , Chongqing , China
| | - K L Paul Sung
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China.,d Departments of Bioengineering and Orthopedics , University of California , San Diego , CA , USA
| |
Collapse
|
18
|
Hayashi K, Bhandal J, Kim SY, Walsh N, Entwistle R, Stover SM, Kapatkin AS. Comparative histomorphometric analysis of cellular phenotype in canine stifle ligaments and tendon. Vet Surg 2019; 48:1013-1018. [PMID: 31056780 DOI: 10.1111/vsu.13227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 04/14/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To measure the density of cellular phenotypes in canine caudal cruciate ligament (CaCL), cranial cruciate ligament (CrCL), medial collateral ligament (MCL), and long digital extensor tendon (LDET). STUDY DESIGN Ex-vivo study. METHODS Ten CaCL, CrCL, MCL, and LDET obtained from 1 stifle of 10 dogs with no gross pathology were analyzed histologically. The density of cells with 3 nuclear phenotypes (fusiform, ovoid, and spheroid) was determined within the core region of each specimen. RESULTS Cells with fusiform nuclei were most dense in the MCL (median [range], 319 [118-538] cells/mm2 ) and LDET (331 [61-463]), whereas cells with ovoid nuclei were most dense in the CaCL (276 [123-368]) and CrCL (212 [165-420]). The spheroid nuclear phenotype had the lowest density in all structures (31 [5-61] in CaCL, 54 [5-90] in CrCL, 2 [0-14] in MCL, and 5 [0-80] in LDET); however, the CrCL contained a denser population of spheroid cells compared with MCL and LDET (P < .05). Total cell densities did not differ among the 4 structures (P > .05). CONCLUSION Phenotype density varied within the ligaments and tendon tested here. The cell population of CaCL and CrCL differed from that of dense collagenous tissues such as MCL and LDET. CLINICAL SIGNIFICANCE The relatively higher density of spheroid phenotype in CrCL may reflect a distinctive native cellular population or a cellular transformation secondary to unique mechanical environment or hypoxia. This intrinsic cellular population may explain altered tissue properties prone to pathological rupture or poor healing potential of the canine CrCL.
Collapse
Affiliation(s)
- Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jitender Bhandal
- JD Wheat Veterinary Orthopedic Research Laboratory, University of California Davis, Davis, California
| | - Sun Young Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Nicholas Walsh
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Rachel Entwistle
- JD Wheat Veterinary Orthopedic Research Laboratory, University of California Davis, Davis, California
| | - Susan M Stover
- JD Wheat Veterinary Orthopedic Research Laboratory, University of California Davis, Davis, California
| | - Amy S Kapatkin
- JD Wheat Veterinary Orthopedic Research Laboratory, University of California Davis, Davis, California
| |
Collapse
|
19
|
Kadhum M, Lee MH, Czernuszka J, Lavy C. An Analysis of the Mechanical Properties of the Ponseti Method in Clubfoot Treatment. Appl Bionics Biomech 2019; 2019:4308462. [PMID: 31019550 PMCID: PMC6452541 DOI: 10.1155/2019/4308462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
Congenital clubfoot is a complex pediatric foot deformity, occurring in approximately 1 in 1000 live births and resulting in significant disability, deformity, and pain if left untreated. The Ponseti method of manipulation is widely recognized as the gold standard treatment for congenital clubfoot; however, its mechanical aspects have not yet been fully explored. During the multiple manipulation-casting cycles, the tendons and ligaments on the medial and posterior aspect of the foot and ankle, which are identified as the rate-limiting tissues, usually undergo weekly sequential stretches, with a plaster of Paris cast applied after the stretch to maintain the length gained. This triggers extracellular matrix remodeling and tissue growth, but due to the viscoelastic properties of tendons and ligaments, the initial strain size, rate, and loading history will affect the relaxation behavior and mechanical strength of the tissue. To increase the efficiency of the Ponseti treatment, we discuss the theoretical possibilities of decreasing the size of the strain step and interval of casting and/or increasing the overall number of casts. This modification may provide more tensile stimuli, allow more time for remodeling, and preserve the mechanical integrity of the soft tissues.
Collapse
Affiliation(s)
- Murtaza Kadhum
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| | - Mu-Huan Lee
- Department of Materials, Oxford University, UK
| | | | - Chris Lavy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| |
Collapse
|
20
|
Rakhsha M, Smith CR, Recuero A, Brandon SCE, Vignos MF, Thelen DG, Negrut D. Simulation of surface strain in tibiofemoral cartilage during walking for the prediction of collagen fiber orientation. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING. IMAGING & VISUALIZATION 2018; 7:396-405. [PMID: 31886037 PMCID: PMC6934360 DOI: 10.1080/21681163.2018.1442751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2018] [Indexed: 06/10/2023]
Abstract
The collagen fibers in the superficial layer of tibiofemoral articular cartilage exhibit distinct patterns in orientation revealed by split lines. In this study, we introduce a simulation framework to predict cartilage surface loading during walking to investigate if split line orientations correspond with principal strain directions in the cartilage surface. The two-step framework uses a multibody musculoskeletal model to predict tibiofemoral kinematics which are then imposed on a deformable surface model to predict surface strains. The deformable surface model uses absolute nodal coordinate formulation (ANCF) shell elements to represent the articular surface and a system of spring-dampers and internal pressure to represent the underlying cartilage. Simulations were performed to predict surface strains due to osmotic pressure, loading induced by walking, and the combination of both loading due to pressure and walking. Time-averaged magnitude-weighted first principal strain directions agreed well with split line maps from the literature for both the osmotic pressure and combined cases. This result suggests there is indeed a connection between collagen fiber orientation and mechanical loading, and indicates the importance of accounting for the pre-strain in the cartilage surface due to osmotic pressure.
Collapse
Affiliation(s)
- Milad Rakhsha
- Simulation Based Engineering Laboratory (SBEL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Colin R Smith
- Neuromuscular Biomechanics Laboratory (NMBL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Antonio Recuero
- Simulation Based Engineering Laboratory (SBEL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Scott C E Brandon
- Neuromuscular Biomechanics Laboratory (NMBL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael F Vignos
- Neuromuscular Biomechanics Laboratory (NMBL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Darryl G Thelen
- Neuromuscular Biomechanics Laboratory (NMBL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Dan Negrut
- Simulation Based Engineering Laboratory (SBEL), Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
21
|
Frahs SM, Oxford JT, Neumann EE, Brown RJ, Keller-Peck CR, Pu X, Lujan TJ. Extracellular Matrix Expression and Production in Fibroblast-Collagen Gels: Towards an In Vitro Model for Ligament Wound Healing. Ann Biomed Eng 2018; 46:1882-1895. [PMID: 29873012 DOI: 10.1007/s10439-018-2064-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Ligament wound healing involves the proliferation of a dense and disorganized fibrous matrix that slowly remodels into scar tissue at the injury site. This remodeling process does not fully restore the highly aligned collagen network that exists in native tissue, and consequently repaired ligament has decreased strength and durability. In order to identify treatments that stimulate collagen alignment and strengthen ligament repair, there is a need to develop in vitro models to study fibroblast activation during ligament wound healing. The objective of this study was to measure gene expression and matrix protein accumulation in fibroblast-collagen gels that were subjected to different static stress conditions (stress-free, biaxial stress, and uniaxial stress) for three time points (1, 2 or 3 weeks). By comparing our in vitro results to prior in vivo studies, we found that stress-free gels had time-dependent changes in gene expression (col3a1, TnC) corresponding to early scar formation, and biaxial stress gels had protein levels (collagen type III, decorin) corresponding to early scar formation. This is the first study to conduct a targeted evaluation of ligament healing biomarkers in fibroblast-collagen gels, and the results suggest that biomimetic in-vitro models of early scar formation should be initially cultured under biaxial stress conditions.
Collapse
Affiliation(s)
- Stephanie M Frahs
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Erica E Neumann
- Department of Mechanical & Biomedical Engineering, Boise State University, 1910 University Drive, Boise, ID, 83725-2085, USA
| | - Raquel J Brown
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | | | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Trevor J Lujan
- Department of Mechanical & Biomedical Engineering, Boise State University, 1910 University Drive, Boise, ID, 83725-2085, USA.
| |
Collapse
|
22
|
Modelling The Combined Effects Of Collagen and Cyclic Strain On Cellular Orientation In Collagenous Tissues. Sci Rep 2018; 8:8518. [PMID: 29867153 PMCID: PMC5986791 DOI: 10.1038/s41598-018-26989-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Adherent cells are generally able to reorient in response to cyclic strain. In three-dimensional tissues, however, extracellular collagen can affect this cellular response. In this study, a computational model able to predict the combined effects of mechanical stimuli and collagen on cellular (re)orientation was developed. In particular, a recently proposed computational model (which only accounts for mechanical stimuli) was extended by considering two hypotheses on how collagen influences cellular (re)orientation: collagen contributes to cell alignment by providing topographical cues (contact guidance); or collagen causes a spatial obstruction for cellular reorientation (steric hindrance). In addition, we developed an evolution law to predict cell-induced collagen realignment. The hypotheses were tested by simulating bi- or uniaxially constrained cell-populated collagen gels with different collagen densities, subjected to immediate or delayed uniaxial cyclic strain with varying strain amplitudes. The simulation outcomes are in agreement with previous experimental reports. Taken together, our computational approach is a promising tool to understand and predict the remodeling of collagenous tissues, such as native or tissue-engineered arteries and heart valves.
Collapse
|
23
|
Ma R, Schär M, Chen T, Sisto M, Nguyen J, Voigt C, Deng XH, Rodeo SA. Effect of Dynamic Changes in Anterior Cruciate Ligament In Situ Graft Force on the Biological Healing Response of the Graft-Tunnel Interface. Am J Sports Med 2018; 46:915-923. [PMID: 29298079 DOI: 10.1177/0363546517745624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) grafts that are placed for reconstruction are subject to complex forces. Current "anatomic" ACL reconstruction techniques may result in greater in situ graft forces. The biological effect of changing magnitudes of ACL graft force on graft-tunnel osseointegration is not well understood. PURPOSE The research objective is to determine how mechanical force on the ACL graft during knee motion affects tendon healing in the tunnel. STUDY DESIGN Controlled laboratory study. METHODS Male rats (N = 120) underwent unilateral ACL reconstruction with a soft tissue flexor tendon autograft. ACL graft force was modulated by different femoral tunnel positions at the time of surgery to create different graft force patterns with knee motion. External fixators were used to eliminate graft load during cage activity. A custom knee flexion device was used to deliver graft load through controlled daily knee motion. Graft-tunnel healing was then assessed via biomechanical, micro-computed tomography, and histological analyses. RESULTS ACL graft-tunnel healing was sensitive to dynamic changes in graft forces with postoperative knee motion. High ACL graft force with joint motion resulted in early inferior ACL graft load to failure as compared with knees that had low-force ACL grafts and joint motion and knees that were immobilized (mean ± SD: 5.50 ± 2.30 N vs 9.91 ± 3.54 N [ P = .013] and 10.90 ± 2.8 N [ P = .001], respectively). Greater femoral bone volume fraction was seen in immobilized knees and knees with low-force ACL grafts when compared with high-force ACL grafts at 3 and 6 weeks. CONCLUSION The authors were able to demonstrate that ACL graft-tunnel incorporation is sensitive to dynamic changes in ACL graft force with joint motion. Early high forces on the ACL graft appear to impair graft-tunnel osseointegration. CLINICAL RELEVANCE Current "anatomic" techniques of ACL reconstruction may result in greater graft excursion and force with knee motion. Our results suggest that the postoperative rehabilitation regimen may need to be modified during the early phase of healing to protect the reconstruction.
Collapse
Affiliation(s)
- Richard Ma
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Michael Schär
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Tina Chen
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Marco Sisto
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Joseph Nguyen
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Clifford Voigt
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Xiang-Hua Deng
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
Effect of a calcaneo-tibial screw on medial and lateral stability of the canine tarsocrural joint ex vivo. Vet Comp Orthop Traumatol 2017; 30:331-338. [DOI: 10.3415/vcot-16-12-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
Abstract
SummaryObjective: To evaluate the use of a temporary calcaneo-tibial screw for stabilization of the tarsocrural joint in dogs with surgically treated collateral ligament injury.Methods: The degree of varus and valgus laxity of the tarsocrural joint in various states of injury and stabilization was measured in paired cadaveric limbs of Greyhound dogs. The angle of varus or valgus laxity was calculated following simulated collateral ligament injury (long collateral ligament only, long and short collateral ligaments, and bilateral long and short collateral ligaments) and stabilization with a calcaneo-tibial screw.Results: The joint was significantly more stable after placement of a calcaneo-tibial screw compared to limbs with any combination of injured collateral ligaments. There was not a significant difference between stability of the intact limb compared to the injured limb with calcaneo-tibial screw fixation.Clinical significance: Calcaneo-tibial screw fixation appears to be an adequate method of stabilizing the tarsocrural joint following collateral ligament injury, and warrants clinical evaluation as a less expensive alternative to external skeletal fixation application. It is likely that this method would need to be supplemented with a cranial half cast to prevent screw failure during weight bearing.
Collapse
|
25
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
26
|
Lee JK, Huwe LW, Paschos N, Aryaei A, Gegg CA, Hu JC, Athanasiou KA. Tension stimulation drives tissue formation in scaffold-free systems. NATURE MATERIALS 2017; 16:864-873. [PMID: 28604717 PMCID: PMC5532069 DOI: 10.1038/nmat4917] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/04/2017] [Indexed: 05/04/2023]
Abstract
Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue.
Collapse
Affiliation(s)
- Jennifer K. Lee
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Le W. Huwe
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nikolaos Paschos
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ashkan Aryaei
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Courtney A. Gegg
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Orthopaedic Surgery, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Correspondence and reprint requests should be addressed to: KA Athanasiou, Tel.: (530) 754-6645, Fax: (530) 754-5739, , Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
27
|
Yang L, Carrington LJ, Erdogan B, Ao M, Brewer BM, Webb DJ, Li D. Biomechanics of cell reorientation in a three-dimensional matrix under compression. Exp Cell Res 2016; 350:253-266. [PMID: 27919745 DOI: 10.1016/j.yexcr.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023]
Abstract
Although a number of studies have reported that cells cultured on a stretchable substrate align away from or perpendicular to the stretch direction, how cells sense and respond to compression in a three-dimensional (3D) matrix remains an open question. We analyzed the reorientation of human prostatic normal tissue fibroblasts (NAFs) and cancer-associated fibroblasts (CAFs) in response to 3D compression using a Fast Fourier Transform (FFT) method. Results show that NAFs align to specific angles upon compression while CAFs exhibit a random distribution. In addition, NAFs with enhanced contractile force induced by transforming growth factor β (TGF-β) behave in a similar way as CAFs. Furthermore, a theoretical model based on the minimum energy principle has been developed to provide insights into these observations. The model prediction is in agreement with the observed cell orientation patterns in several different experimental conditions, disclosing the important role of stress fibers and inherent cell contractility in cell reorientation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Léolène Jean Carrington
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA
| | - Begum Erdogan
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA
| | - Mingfang Ao
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA
| | - Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Donna J Webb
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA.
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA.
| |
Collapse
|
28
|
Zareian R, Susilo ME, Paten JA, McLean JP, Hollmann J, Karamichos D, Messer CS, Tambe DT, Saeidi N, Zieske JD, Ruberti JW. Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Eng Part A 2016; 22:1204-1217. [PMID: 27600605 PMCID: PMC5073220 DOI: 10.1089/ten.tea.2016.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/29/2016] [Indexed: 02/01/2023] Open
Abstract
In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.
Collapse
Affiliation(s)
- Ramin Zareian
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Monica E. Susilo
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Jeffrey A. Paten
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - James P. McLean
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Joseph Hollmann
- The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Conor S. Messer
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Dhananjay T. Tambe
- Departments of Mechanical Engineering and Department of Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Nima Saeidi
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
29
|
Negahi Shirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 881:161-86. [PMID: 26545750 DOI: 10.1007/978-3-319-22345-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anterior cruciate ligament (ACL) is one of the most vulnerable ligaments of the knee. ACL impairment results in episodic instability, chondral and meniscal injury and early osteoarthritis. The poor self-healing capacity of ACL makes surgical treatment inevitable. Current ACL reconstructions include a substitution of torn ACL via biological grafts such as autograft, allograft. This review provides an insight of ACL structure, orientation and properties followed by comparing the performance of various constructs that have been used for ACL replacement. New approaches, undertaken to induce ACL regeneration and fabricate biomimetic scaffolds, are also discussed.
Collapse
Affiliation(s)
- Ali Negahi Shirazi
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Bioengineering, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
31
|
Vigliotti A, McMeeking RM, Deshpande VS. Simulation of the cytoskeletal response of cells on grooved or patterned substrates. J R Soc Interface 2015; 12:rsif.2014.1320. [PMID: 25762648 DOI: 10.1098/rsif.2014.1320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyse the response of osteoblasts on grooved substrates via a model that accounts for the cooperative feedback between intracellular signalling, focal adhesion development and stress fibre contractility. The grooved substrate is modelled as a pattern of alternating strips on which the cell can adhere and strips on which adhesion is inhibited. The coupled modelling scheme is shown to capture some key experimental observations including (i) the observation that osteoblasts orient themselves randomly on substrates with groove pitches less than about 150 nm but they align themselves with the direction of the grooves on substrates with larger pitches and (ii) actin fibres bridge over the grooves on substrates with groove pitches less than about 150 nm but form a network of fibres aligned with the ridges, with nearly no fibres across the grooves, for substrates with groove pitches greater than about 300 nm. Using the model, we demonstrate that the degree of bridging of the stress fibres across the grooves, and consequently the cell orientation, is governed by the diffusion of signalling proteins activated at the focal adhesion sites on the ridges. For large groove pitches, the signalling proteins are dephosphorylated before they can reach the regions of the cell above the grooves and hence stress fibres cannot form in those parts of the cell. On the other hand, the stress fibre activation signal diffuses to a reasonably spatially homogeneous level on substrates with small groove pitches and hence stable stress fibres develop across the grooves in these cases. The model thus rationalizes the responsiveness of osteoblasts to the topography of substrates based on the complex feedback involving focal adhesion formation on the ridges, the triggering of signalling pathways by these adhesions and the activation of stress fibre networks by these signals.
Collapse
Affiliation(s)
- A Vigliotti
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - R M McMeeking
- Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106, USA School of Engineering, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK
| | - V S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| |
Collapse
|
32
|
Chen T, Jiang J, Chen S. Status and headway of the clinical application of artificial ligaments. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2015; 2:15-26. [PMID: 29264235 PMCID: PMC5730644 DOI: 10.1016/j.asmart.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
The authors first reviewed the history of clinical application of artificial ligaments. Then, the status of clinical application of artificial ligaments was detailed. Some artificial ligaments possessed comparable efficacy to, and fewer postoperative complications than, allografts and autografts in ligament reconstruction, especially for the anterior cruciate ligament. At the end, the authors focused on the development of two types of artificial ligaments: polyethylene glycol terephthalate artificial ligaments and tissue-engineered ligaments. In conclusion, owing to the advancements in surgical techniques, materials processing, and weaving methods, clinical application of some artificial ligaments so far has demonstrated good outcomes and will become a trend in the future.
Collapse
Affiliation(s)
- Tianwu Chen
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| | - Jia Jiang
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| | - Shiyi Chen
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| |
Collapse
|
33
|
Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World J Orthop 2015; 6:127-136. [PMID: 25621217 PMCID: PMC4303781 DOI: 10.5312/wjo.v6.i1.127] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon.
Collapse
|
34
|
Computational studies on strain transmission from a collagen gel construct to a cell and its internal cytoskeletal filaments. Comput Biol Med 2015; 56:20-9. [DOI: 10.1016/j.compbiomed.2014.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022]
|
35
|
Jin G, Yang GH, Kim G. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. J Biomed Mater Res B Appl Biomater 2014; 103:935-48. [DOI: 10.1002/jbm.b.33268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/09/2014] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- GyuHyun Jin
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| | - Gi-Hoon Yang
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
36
|
Sardone F, Traina F, Tagliavini F, Pellegrini C, Merlini L, Squarzoni S, Santi S, Neri S, Faldini C, Maraldi N, Sabatelli P. Effect of mechanical strain on the collagen VI pericellular matrix in anterior cruciate ligament fibroblasts. J Cell Physiol 2014; 229:878-86. [PMID: 24356950 DOI: 10.1002/jcp.24518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the role of collagen VI in human ACL. This study shows that collagen VI is associated both in vivo and in vitro to the cell membrane of knee ACL fibroblasts, contributing to the constitution of a microfibrillar pericellular matrix. In cultured cells the localization of collagen VI at the cell surface correlated with the expression of NG2 proteoglycan, a major collagen VI receptor. The treatment of ACL fibroblasts with anti-NG2 antibody abolished the localization of collagen VI indicating that collagen VI pericellular matrix organization in ACL fibroblasts is mainly mediated by NG2 proteoglycan. In vitro mechanical strain injury dramatically reduced the NG2 proteoglycan protein level, impaired the association of collagen VI to the cell surface, and promoted cell cycle withdrawal. Our data suggest that the injury-induced alteration of specific cell-ECM interactions may lead to a defective fibroblast self-renewal and contribute to the poor regenerative ability of ACL fibroblasts.
Collapse
Affiliation(s)
- Francesca Sardone
- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; IOR-IRCCS, SC Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Foolen J, Janssen-van den Broek MWJT, Baaijens FPT. Synergy between Rho signaling and matrix density in cyclic stretch-induced stress fiber organization. Acta Biomater 2014; 10:1876-85. [PMID: 24334146 DOI: 10.1016/j.actbio.2013.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022]
Abstract
Cells adapt in response to mechanical stimulation to ensure adequate tissue functioning. F-actin stress fibers provide a key element in the adaptation process. The high sensitivity and fast adaptation of the F-actin cytoskeleton to cyclic strain have been studied extensively in a 2-D environment; however, 3-D data are scarce. Our previous work showed that stress fibers organize perpendicular to cyclic stretching (stretch-avoidance) in three dimensions. However, stretch-avoidance was absent when cells populated a high density matrix. In this study our aim was to obtain more insight into the synergy between matrix density and the signaling pathways that govern stress fiber remodeling. Therefore we studied stress fiber organization in 3-D reconstituted collagen tissues (at low and high matrix density), subjected to cyclic stretch upon interference with molecular signaling pathways. In particular, the influence of the small GTPase Rho and its downstream effectors were studied. Only at low matrix density does stress fiber stretch avoidance show a stretch-magnitude-dependent response. The activity of matrix metalloproteinases (MMPs), Rho-kinase and myosin light chain kinase are essential for stress fiber reorientation. Although high matrix density restricts stress fiber reorientation, Rho activation can overcome this restriction, but only in the presence of active MMPs. Results from this study highlight a synergistic action between matrix remodeling and Rho signaling in cyclic-stretch-induced stress fiber organization in 3-D tissue.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.117, 5600 MB Eindhoven, The Netherlands.
| | | | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.117, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
38
|
Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. ACTA ACUST UNITED AC 2014; 102:13-36. [DOI: 10.1002/bdrc.21059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| |
Collapse
|
39
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
40
|
Turner KG, Ahmed N, Santerre JP, Kandel RA. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension. Spine J 2014; 14:424-34. [PMID: 24291406 DOI: 10.1016/j.spinee.2013.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Annulus fibrosus (AF), a component of the intervertebral disc (IVD), is always under tension in vivo, a condition that must be taken into consideration when tissue engineering an IVD. Loss of the tensile forces has been implicated in the pathogenesis of disc degeneration characterized by mechanical and structural breakdown of the AF. PURPOSE In this study, we hypothesize that tensile forces modulate cellular and molecular behavior of AF cells grown on nanofibrous scaffolds in vitro. STUDY DESIGN/SETTING Bovine AF cells were seeded onto strained electrospun-aligned nanofibrous polycarbonate urethane (PU) scaffolds. Tension was either maintained throughout the culture duration (monotonic) or removed after 24 hours (relaxed). METHODS The effect of tension on AF cells cultured on PU scaffolds was evaluated over 7 days by scanning electron microscopy, biochemical assays, immunofluorescence microscopy, and quantitative polymerase chain reaction. RESULTS Cells grown on the relaxed scaffold were significantly more proliferative, synthesized more collagen and had increased collagen type I and TGFβ-1 gene expression; however these cells were not as aligned as were the cells and matrix on monotonic strained scaffolds. The alignment of AF cells grown on monotonic scaffolds correlated with significantly greater scaffold elastic modulus on day 7. Additionally, the cellular response to the change in strain was delayed by 3 to 5 days after tension release, which correlated with the time at which changes in scaffold length were detected. CONCLUSIONS This study demonstrated that AF cells respond at the molecular and cellular level to the changes in matrix/scaffold tension. This suggests that it may be necessary to determine the optimal elastic modulus and applied tensile forces to tissue engineer an AF that mimics the native tissue. Furthermore, this study provides insight into how changes in tensile forces may lead to changes in the AF cell function.
Collapse
Affiliation(s)
- Kathleen G Turner
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada M5S 3G9; CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5
| | - Nazish Ahmed
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada M5S 3G9; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario, Canada M5G 1G6
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada M5S 3G9; CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5.
| |
Collapse
|
41
|
Obbink-Huizer C, Foolen J, Oomens CWJ, Borochin M, Chen CS, Bouten CVC, Baaijens FPT. Computational and experimental investigation of local stress fiber orientation in uniaxially and biaxially constrained microtissues. Biomech Model Mechanobiol 2014; 13:1053-63. [DOI: 10.1007/s10237-014-0554-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
42
|
Attia E, Bohnert K, Brown H, Bhargava M, Hannafin JA. Characterization of total and active matrix metalloproteinases-1, -3, and -13 synthesized and secreted by anterior cruciate ligament fibroblasts in three-dimensional collagen gels. Tissue Eng Part A 2013; 20:171-7. [PMID: 23879595 DOI: 10.1089/ten.tea.2012.0669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) injury and subsequent reconstructive surgery is increasing with an estimated 200,000 reconstructions performed yearly in the United States. Current treatment requires reconstruction with autograft or allograft tissue with inherent disadvantages. The development of tissue-engineered ligament replacements or scaffolds may provide an alternative treatment method minimizing these issues. The study of ligament fibroblast catabolic and anabolic responses to mechanical and biologic stimuli in three-dimensional (3D) cell culture systems is critical to the development of such therapies. A 3D cell culture system was used to measure the total content and active forms of matrix metalloproteinases (MMPs)-1, -3, and -13 to assess the potential role of the mechanical environment in regulation of matrix turnover by ligament fibroblasts. The production, retention, and secretion of MMPs by ACL fibroblasts in 3D culture were measured over a 14-day period. The total MMP content and MMP activity were determined. The level of all MMPs studied increased over 7-10 days and then reached a steady state or decreased slightly in both the collagen gels and the media. This system will now permit the study of externally applied cyclic and static strains, strain deprivation, and the potential combined role of the cytoskeleton and MMPs in matrix turnover in ligaments.
Collapse
Affiliation(s)
- Erik Attia
- Tissue Engineering Repair and Regeneration Program, Hospital for Special Surgery , New York, New York
| | | | | | | | | |
Collapse
|
43
|
Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A 2013; 102:1614-24. [DOI: 10.1002/jbm.a.34820] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Natalie L. Leong
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| | - David R. McAllister
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
44
|
Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomech Model Mechanobiol 2013; 13:227-36. [DOI: 10.1007/s10237-013-0501-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
|
45
|
Tsai CH, Lin BJ, Chao PHG. α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality. J Orthop Res 2013; 31:322-7. [PMID: 22912342 DOI: 10.1002/jor.22215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/31/2012] [Indexed: 02/04/2023]
Abstract
Guided cell migration is important in tissue development, repair, and engineering. We have previously demonstrated that applied electric fields (EFs) enhanced and directed ligament fibroblast migration and collagen production, depending on EF parameters. Electrical stimulation is widely used for the treatment of pain and to promote wound healing. In orthopaedic practices, applied EFs promote bone healing and ligament repair in vivo. In the current study, stimulation waveforms used in physical therapy for promoting tissue repair were adapted to examine their effects on ACL fibroblast migration. Using different waveform and field strengths, we discovered a decoupling of cell motility and directionality, which suggests disparate mechanisms. Integrin, a major extracellular matrix receptor, polarized in response to applied EFs and controlled cell directionality and signaling. Furthermore, we demonstrated that RhoA is a mediator between integrin aggregation and directed cell migration. Polarization is essential in directed cell migration and our study establishes an outside-in signaling mechanism for EF-induced cell directionality.
Collapse
Affiliation(s)
- Cheng-Hsien Tsai
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
46
|
|
47
|
Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, Lu HH. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 2012; 34:1942-53. [PMID: 23245926 DOI: 10.1016/j.biomaterials.2012.11.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising and clinically relevant cell source for tissue engineering applications. As such, guiding MSCs toward specific lineages and maintaining these phenotypes have been particularly challenging as the contributions of mechanical, chemical and structural cues to the complex differentiation process are largely unknown. To fully harness the potential of MSCs for regenerative medicine, a systematic investigation into the individual and combined effects of these stimuli is needed. In addition, unlike chemical stimulation, for which temporal and concentration gradients are difficult to control, mechanical stimulation and scaffold-based cues may be relatively more biomimetic and can be applied with greater control to ensure fidelity in MSC differentiation. The objective of this study is to investigate the role of nanofiber matrix alignment and mechanical stimulation on MSC differentiation, focusing on elucidating the relative contribution of each parameter in guided regeneration of functional connective tissues. It is observed that nanofiber alignment directs MSC response to physiological loading and that fibroblastic differentiation requires a combination of physiologically-relevant cell-material interactions in conjunction with mechanical stimulation. Importantly, the results of this study reveal that systemic and readily controllable cues, such as scaffold alignment and optimized mechanical stimulation, are sufficient to drive MSC differentiation, without the need for additional chemical stimuli. Moreover, these findings yield a set of fundamental design rules that can be readily applied to connective tissue regeneration strategies.
Collapse
Affiliation(s)
- Siddarth D Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kwok CB, Ho FC, Li CW, Ngan AHW, Chan D, Chan BP. Compression-induced alignment and elongation of human mesenchymal stem cell (hMSC) in 3D collagen constructs is collagen concentration dependent. J Biomed Mater Res A 2012. [PMID: 23184852 DOI: 10.1002/jbm.a.34475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Controlling cell organization is important in tissue engineering. Guidance by aligned features on scaffolds or stimulation by physical signals can be used to induce cell alignment. We have previously demonstrated a preferred alignment of human MSCs (hMSCs) along the compression loading axis in 3D collagen construct. In this study, we aim to investigate the collagen concentration dependence of the compression-induced hMSC organization. Results demonstrated that the compression-induced alignment and elongation of hMSCs exhibited a biphasic dose-dependent relationship with collagen concentration, and associated well with both collagen ligand density and elastic modulus of the constructs. Moreover, collagen concentration and compression loading significantly affected the expression level of integrin beta 1 and antibody neutralization against this molecule aborted the compression-induced alignment and elongation responses.
Collapse
Affiliation(s)
- C B Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang PY, Wu TH, Chao PHG, Kuo WH, Wang MJ, Hsu CC, Tsai WB. Modulation of cell attachment and collagen production of anterior cruciate ligament cells via submicron grooves/ridges structures with different cell affinity. Biotechnol Bioeng 2012; 110:327-37. [PMID: 22833331 DOI: 10.1002/bit.24615] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/06/2023]
Abstract
This study aimed to investigate the effects of submicron-grooved topography and surface cell affinity on the attachment, proliferation and collagen synthesis of anterior cruciate ligament (ACL) cells. Two grooved polystyrene (PS) surfaces (equal groove/ridge width of 800 nm) with a groove depth of 100 or 700 nm were fabricated and modified by oxygen plasma treatment, dopamine deposition and conjugation of RGD-containing peptides to enhance cell affinity. The elongation and alignment of ACL cells was enhanced by grooved structures with increasing groove depths regardless of surface chemistry. On the other hand, cell spreading and proliferation mainly depended on surface chemistry, in accordance with surface cell affinity: O(2) plasma < dopamine deposition < RGD conjugation. The synthesis of type I collagen was the highest by the ACL cells cultured on the 700 nm grooved surface conjugated with RGD peptides, indicating that both surface grooved topography and chemistry play a role in modulating collagen production of ACL cells. Furthermore, the type I collagen deposited on the 700 nm PS surface was aligned with grooves/ridges. Our results indicated that both ligand presentation and cell alignment are important in the physiological activities of ACL fibroblasts. Such information is critical for design of biomaterials for ACL tissue engineering.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemical Engineering, National Taiwan University, No 1, Roosevelt Road, Sec 4, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Foolen J, Deshpande VS, Kanters FMW, Baaijens FPT. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 2012; 33:7508-18. [PMID: 22818650 DOI: 10.1016/j.biomaterials.2012.06.103] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/30/2012] [Indexed: 12/15/2022]
Abstract
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|