1
|
Tsuji K, Kimura S, Tateda K, Takahashi H. Protective effect of teriparatide against vancomycin-induced cytotoxicity in osteoblasts. J Orthop Sci 2023; 28:1384-1391. [PMID: 36371341 DOI: 10.1016/j.jos.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Intrawound vancomycin powder is effective in preventing surgical site infection after spine surgery. In a previous study, vancomycin-induced cytotoxicity in osteoblasts was investigated in vitro, and vitamin D3 was verified to be a candidate drug aiding recovery from vancomycin-induced cytotoxicity. The treatment practices involving osteogenesis-promoting drugs vary widely. Teriparatide, an anabolic agent, highly promotes bone formation by inducing osteoblast activation, increasing bone formation and mineral density, and preventing vertebral fractures. Hence, teriparatide may be administered in combination with vancomycin. METHODS MC3T3-E1 cells were cultured in minimum essential medium supplemented with 10% fetal bovine serum at 37 °C in a humidified incubator containing 5% CO2. The experimental concentrations of vancomycin (2500, 5000, and 7500 μg/mL) were determined based on previous reports and our preliminary experiments. Teriparatide (100 ng/mL) was administered concomitantly to prevent cytotoxicity in osteoblasts, using pulsed vancomycin for 24 h (measured at 1, 3, and 7 days). Cell numbers and morphological changes in cells treated with vancomycin or vancomycin plus 100 ng/mL teriparatide were measured. Osteoblast differentiation was assessed using alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red S staining. RESULTS Teriparatide showed a recovery effect when vancomycin (7500 μg/mL) was administered only for 24 h. Microscopic examination revealed that teriparatide had a protective effect on osteoblasts exposed to 7500 μg/mL vancomycin. Addition of teriparatide led to the recovery of alkaline phosphatase staining and alizarin red staining. CONCLUSION Vancomycin-induced cytotoxicity in osteoblasts could be inhibited by administering teriparatide concomitantly with vancomycin.
Collapse
Affiliation(s)
- Kentaro Tsuji
- Department of Orthopaedic Surgery, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku 143-8541, Tokyo, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, 5-21-16 Omori-nishi, Ota-ku 143-8540, Tokyo, Japan; Division of Infection Prevention and Control, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yohokaha 244-0806, Kanagawa, Japan.
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, 5-21-16 Omori-nishi, Ota-ku 143-8540, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Orthopaedic Surgery, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku 143-8541, Tokyo, Japan
| |
Collapse
|
2
|
Kitcharanant N, Chattipakorn N, Chattipakorn SC. The effect of intermittent parathyroid hormone on bone lengthening: current evidence to inform future effective interventions. Osteoporos Int 2023; 34:1657-1675. [PMID: 37286663 DOI: 10.1007/s00198-023-06809-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Recent studies have demonstrated the positive effects of parathyroid hormone (PTH) on bone healing, and findings support the use of PTH to accelerate bone healing following distraction osteogenesis. The goal of this review was to compile and discuss the mechanisms potentially underlying the effects of PTH on newly formed bone following a bone-lengthening procedure incorporating all relevant evidence in both animal and clinical studies. METHODS This review summarized all evidence from in vivo to clinical studies regarding the effects of PTH administration on a bone-lengthening model. In addition, a comprehensive evaluation of what is currently known regarding the potential mechanisms underlying the potential benefits of PTH in bone lengthening was presented. Some controversial findings regarding the optimal dosage and timing of administration of PTH in this model were also discussed. RESULTS The findings demonstrated that the potential mechanisms associated with the action of PTH on the acceleration of bone regeneration after distraction osteogenesis are involvement in mesenchymal cell proliferation and differentiation, endochondral bone formation, membranous bone formation, and callus remodeling. CONCLUSIONS In the last 20 years, a number of animal and clinical studies have indicated that there is a prospective role for PTH treatment in human bone lengthening as an anabolic agent that accelerates the mineralization and strength of the regenerated bone. Therefore, PTH treatment can be viewed as a potential treatment to increase the amount of new calcified bone and the mechanical strength of the bone in order to shorten the consolidation stage after bone lengthening.
Collapse
Affiliation(s)
- Nitchanant Kitcharanant
- Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front Mol Biosci 2022; 9:965753. [PMID: 36188222 PMCID: PMC9522461 DOI: 10.3389/fmolb.2022.965753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.
Collapse
Affiliation(s)
- Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zeying Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
4
|
Parathyroid hormone promotes the osteogenesis of lipopolysaccharide-induced human bone marrow mesenchymal stem cells through the JNK MAPK pathway. Biosci Rep 2021; 41:229448. [PMID: 34350461 PMCID: PMC8380916 DOI: 10.1042/bsr20210420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/02/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. The present study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 (CCK-8) and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin Red staining. Osteogenic differentiation was further assessed by quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/ml LPS significantly inhibited HBMSC osteogenesis, while 10−9 mol/l PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.
Collapse
|
5
|
Rocha T, Cavalcanti AS, Leal AC, Dias RB, da Costa RS, Ribeiro GDO, Guimarães JAM, Duarte MEL. PTH 1-34 improves devitalized allogenic bone graft healing in a murine femoral critical size defect. Injury 2021; 52 Suppl 3:S3-S12. [PMID: 34088469 DOI: 10.1016/j.injury.2021.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
The treatment of large segmental defects of long bones resulting from trauma, infection, or bone tumor resections is a major challenge for orthopedic surgeons. The reconstruction of bone defects with acellular allografts can be used as an osteoconductive approach. However, devitalized allografts are associated with high rates of clinical failure as a result of poor intrinsic osteoinduction properties and a lack of further remodeling. Nevertheless, evidence suggests that due to its anabolic properties, teriparatide (PTH1-34) could be effective as an adjuvant therapy for massive allograft healing. Therefore, our goal was to investigate in a murine critical-sized defect model whether the intermittent administration of PTH1-34 improves the incorporation and revitalization of acellular structural bone allografts. Thus, a 2.5-mm critical-sized defect was established in the right femur of C57BL/6 mice, followed by the reconstruction with a devitalized cortical structural allograft. A titanium micro locking plate was applied to the anterior femoral surface and secured in place with self-tapping locking screws. Subsequently, daily doses of PTH1-34 (30, and 40 µg/kg) or saline were administered to the mice for 14 days after surgery. The mice were maintained without PTH1-34 therapy for an additional 7 days before being euthanized at 3 weeks post-surgery. Bone graft consolidation was assessed on radiographic images and by histomorphometric analysis. Additionally, to determine the frequency of osteoprogenitor cells in the bone marrow and their in vitro osteogenic capacity, stromal cells were isolated from the bone marrow of animals treated with 30 or 40 µg/kg/day of PTH1-34 following the same protocol used for the experimental animals. Our results suggest that intermittent PTH1-34 treatment at 30 µg/kg/day after femoral allograft reconstruction surgery accelerated the healing process as evidenced by new bone formation induced on endosteal and periosteal surfaces, enhanced revitalization of allogeneic graft, and increased frequency and osteogenic capacity of bone marrow stromal cells (BMSC). These findings should encourage further studies aimed at investigating the potential therapeutic use of intermittent PTH1-34, specifically with regards to the optimal dosing regimen in clinically challenging orthopedic scenarios.
Collapse
Affiliation(s)
- Tito Rocha
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Amanda S Cavalcanti
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Ana Carolina Leal
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rhayra B Dias
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rafaela Sartore da Costa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | | | - João Antonio Matheus Guimarães
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Maria Eugênia Leite Duarte
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| |
Collapse
|
6
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
7
|
Kato S, Wakabayashi H, Nakagawa T, Miyamura G, Naito Y, Iino T, Sudo A. Teriparatide improves pain-related behavior and prevents bone loss in ovariectomized mice. J Orthop Surg (Hong Kong) 2020; 28:2309499019893194. [PMID: 31833446 DOI: 10.1177/2309499019893194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The aim of this study was to examine the inhibitory effect of teriparatide (TPTD) on pain and on bone loss in ovariectomized (OVX) mice. The mechanism of osteoporotic pain in OVX mice was evaluated through an examination of pain-related behavior as well as immunohistochemical examinations. METHODS Eight-week-old female ddY mice were OVX and assigned to one of three groups: (1) OVX mice treated with vehicle (OVX), (2) OVX mice treated with teriparatide (OVX-TPTD), or (3) SHAM-operated mice treated with vehicle (SHAM). Starting immediately after surgery, vehicle or TPTD was injected subcutaneously. After a 4-week treatment, mechanical sensitivity was tested using von Frey filaments. The proximal tibial metaphyses were analyzed three-dimensionally by microcomputed tomography (μCT). Calcitonin gene-related peptide (CGRP) and transient receptor potential channel vanilloid 1 (TRPV1) expressions in L3-5 dorsal root ganglion (DRG) neurons were examined using immunohistochemistry. RESULTS Ovariectomy induced bone loss and mechanical hyperalgesia in the hind limbs with upregulation of CGRP and TRPV1 expressions in DRG neurons innervating the hind limbs. Bone loss was prevented more effectively in the OVX-TPTD mice than in the OVX mice. Furthermore, mechanical hyperalgesia and upregulation of CGRP and TRPV1 expressions were significantly lower in the OVX-TPTD mice than in the OVX mice. CONCLUSION TPTD treatment prevented ovariectomy-induced bone loss and ovariectomy-induced mechanical hyperalgesia in hind limbs, and it suppressed CGRP and TRPV1 expressions in DRG neurons. These results suggest that TPTD is useful for the treatment of osteoporotic pain in postmenopausal women.
Collapse
Affiliation(s)
- Sho Kato
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Taro Nakagawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Gaku Miyamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
8
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Lv Z, Muheremu A, Bai X, Zou X, Lin T, Chen B. PTH(1‑34) activates the migration and adhesion of BMSCs through the rictor/mTORC2 pathway. Int J Mol Med 2020; 46:2089-2101. [PMID: 33125102 PMCID: PMC7595657 DOI: 10.3892/ijmm.2020.4754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
The ability of intermittent parathyroid hormone (1-34) [PTH(1-34)] treatment to enhance bone-implant osseo-integration was recently demonstrated in vivo. However, the mechanisms through which PTH (1-34) regulates bone marrow-derived stromal cells (BMSCs) remain unclear. The present study thus aimed to investigate the effects of PTH(1-34) on the migration and adhesion of, and rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling in BMSCs. In the present study, BMSCs were isolated from Sprague-Dawley rats treated with various concentrations of PTH(1-34) for different periods of time. PTH(1-34) treatment was performed with or without an mTORC1 inhibitor (20 nM rapamycin) and mTORC1/2 inhibitor (10 µM PP242). Cell migration was assessed by Transwell cell migration assays and wound healing assays. Cell adhesion and related mRNA expression were investigated through adhesion assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. The protein expression of chemokine receptors (CXCR4 and CCR2) and adhesion factors [intercellular adhesion molecule 1 (ICAM-1), fibronectin and integrin β1] was examined by western blot analysis. The results revealed that various concentrations (1, 10, 20, 50 and 100 nM) of PTH(1-34) significantly increased the migration and adhesion of BMSCs, as well as the expression of CXCR4, CCR2, ICAM-1, fibronectin and integrin β1. In addition, the p-Akt and p-S6 levels were also upregulated by PTH(1-34). BMSCs subjected to mTORC1/2 signaling pathway inhibition or rictor silencing exhibited a markedly reduced PTH-induced migration and adhesion, while no such effect was observed for the BMSCs subjected to mTORC1 pathway inhibition or raptor silencing. These results indicate that PTH(1-34) promotes BMSC migration and adhesion through rictor/mTORC2 signaling in vitro. Taken together, the results of the present study reveal an important mechanism for the therapeutic effects of PTH(1-34) on bone-implant osseointegration and suggest a potential treatment strategy based on the effect of PTH(1-34) on BMSCs.
Collapse
Affiliation(s)
- Zhong Lv
- Department of Orthopedics, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 510080, P.R. China
| | | | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Bailing Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
10
|
Effect of teriparatide on ligamentum flavum mesenchymal stem cells isolated from patients with ossification of the posterior longitudinal ligament. J Pharmacol Sci 2020; 145:23-28. [PMID: 33357776 DOI: 10.1016/j.jphs.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 01/16/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) within the spinal canal sometimes leads to severe myelopathy. Teriparatide (TPD) is a recombinant human parathyroid hormone (PTH) (1-34), which promotes osteogenesis of mesenchymal stem cells (MSCs) via PTH 1 receptor (PTH1R). Although ligamentum flavum (LF)-MSCs from patients with OPLL have a high osteogenic potency, the effect of TPD on them remains unknown. In this study, we determined PTH1R expression in LF-MSCs from patients with OPLL and investigated whether TPD promotes osteogenic differentiation in them. First, LF-MSCs were isolated from patients with OPLL and cervical spondylotic myelopathy (CSM) (controls). Cultured LF-MSCs were treated with different concentrations of TPD on days 0, 7, and 14. On day 21, osteogenic gene expression was quantified. Mineralization was measured based on optical density after Alizarin Red S staining. LF-MSCs from both groups expressed PTH1R at the same level. TPD did not enhance osteogenic gene expression and mineralization in LF-MSCs from both groups. TPD did not promote the osteogenic differentiation of LF-MSCs from patients with OPLL. Thus, it may be safe for patients with OPLL. However, further confirmation of our results with in vivo studies is necessary.
Collapse
|
11
|
Miyamura G, Wakabayashi H, Nagao N, Kato S, Nakagawa T, Naito Y, Sudo A. Prevention of bone loss and improvement of pain-related behavior in hind limb-unloaded mice by administration of teriparatide and bisphosphonate. Mod Rheumatol 2020; 31:733-742. [PMID: 32646253 DOI: 10.1080/14397595.2020.1782592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES There are few reports on the comparison between teriparatide (PTH) and bisphosphonate (BP) in terms of osteoporosis pain-related behavior and immunohistochemical findings. The aims of this study were to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of PTH and BP on pain and bone loss in hind limb-unloaded (HU) mice. The mechanism of osteoporotic pain in HU mice was evaluated by examining pain-related behavior and immunohistochemical findings. The effects of PTH and alendronate (ALN), a potent osteoclast inhibitor, on these parameters were also assessed. METHODS Eight-week-old male ddY mice were tail-suspended for 2 weeks and assigned to four groups: hind limb-loaded (HL) mice with only tail suspension treated with vehicle; HU mice with tail suspension treated with vehicle; HU mice treated with PTH; and HU mice treated with ALN. Starting immediately after reloading, vehicle, PTH, or ALN was injected subcutaneously. After a 2-week treatment, mechanical sensitivity was examined using von Frey filaments. Bilateral hind limbs were removed for micro-computed tomography, immunohistochemical analysis, and messenger RNA (mRNA) expression analysis. RESULTS HU mice with tail suspension developed bone loss and mechanical hyperalgesia in the hind limbs. The HU mice showed an increased osteoclasts and sclerostin-positive cells in the hind limb bone. Furthermore, PTH and ALN both prevented HU-induced bone loss and mechanical hyperalgesia in the osteoporotic animal models. Histological examination of the hind limb bone revealed that, similar to ALN, PTH inhibited the osteoclasts and sclerostin-positive cells. The mRNA levels of TNFα and IL-6 tended to decrease with ALN or PTH treatment compared with those without any treatment. CONCLUSIONS Treatment with PTH as well as BP prevented bone loss, mechanical hyperalgesia, osteoclast increase, and osteocyte increase. Similar to BP, the inhibitory effect of PTH on osteoclasts might contribute to the improvement of skeletal pain.
Collapse
Affiliation(s)
- Gaku Miyamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Nobuto Nagao
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Sho Kato
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Taro Nakagawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
12
|
Khan NM, Clifton KB, Lorenzo J, Hansen MF, Drissi H. Comparative transcriptomic analysis identifies distinct molecular signatures and regulatory networks of chondroclasts and osteoclasts. Arthritis Res Ther 2020; 22:168. [PMID: 32650826 PMCID: PMC7353397 DOI: 10.1186/s13075-020-02259-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chondroclasts and osteoclasts have been previously identified as the cells capable of resorbing mineralized cartilage and bone matrices, respectively. While both cell types appear morphologically similar, contain comparable ultrastructural features, and express tartrate-resistant acid phosphatase (TRAP), however, no information is available about the genomic similarities and differences between osteoclasts and chondroclasts. METHODS To address this question, we laser captured homogeneous populations of TRAP-positive cells that interact with bone (osteoclasts) and TRAP-positive cells that interact with mineralized cartilage (chondroclasts) on the same plane from murine femoral fracture callus sections. We then performed a global transcriptome profiling of chondroclasts and osteoclasts by utilizing a mouse genome Agilent GE 4X44K V2 microarray platform. Multiple computational approaches and interaction networks were used to analyze the transcriptomic landscape of osteoclasts and chondroclasts. RESULTS Our systematic and comprehensive analyses using hierarchical clustering and principal component analysis (PCA) demonstrate that chondroclasts and osteoclasts are transcriptionally distinct cell populations and exhibit discrete transcriptomic signatures as revealed by multivariate analysis involving scatter plot, volcano plot, and heatmap analysis. TaqMan qPCR was used to validate the microarray results. Intriguingly, the functional enrichment and integrated network analyses revealed distinct Gene Ontology terms and molecular pathways specific to chondroclasts and osteoclasts and further suggest that subsets of metabolic genes were specific to chondroclasts. Protein-protein interaction (PPI) network analysis showed an abundance of structured networks of metabolic pathways, ATP synthesis, and proteasome pathways in chondroclasts. The regulatory network analysis using transcription factor-target gene network predicted a pool of genes including ETV6, SIRT1, and ATF1 as chondroclast-specific gene signature. CONCLUSIONS Our study provides an important genetic resource for further exploration of chondroclast function in vivo. To our knowledge, this is the first demonstration of genetic landscape of osteoclasts from chondroclasts identifying unique molecular signatures, functional clustering, and interaction network.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Kari B Clifton
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, Farmington, CT, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - Marc F Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
13
|
Paglia DN, Diaz-Hernandez ME, Roberts JL, Kalinowski J, Lorenzo J, Drissi H. Deletion of Runx1 in osteoclasts impairs murine fracture healing through progressive woven bone loss and delayed cartilage remodeling. J Orthop Res 2020; 38:1007-1015. [PMID: 31769548 DOI: 10.1002/jor.24537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Conditional deletion of the transcription factor Runt-related transcription factor 1 (Runx1) in myeloid osteoclast precursors promotes osteoclastogenesis and subsequent bone loss. This study posits whether Runx1 regulates clastic cell-mediated bone and cartilage resorption in the fracture callus. We first generated mice, in which Runx1 was conditionally abrogated in osteoclast precursors (LysM-Cre;Runx1F/F ; Runx1 cKO). Runx1 cKO and control mice were then subjected to experimental mid-diaphyseal femoral fractures. Our study found differential resorption of bony and calcified cartilage callus matrix by osteoclasts and chondroclasts within Runx1 cKO calluses, with increased early bony callus resorption and delayed calcified cartilage resorption. There was an increased number of osteoclasts and chondroclasts in the chondro-osseous junction of Runx1 cKO calluses starting at day 11 post-fracture, with minimal woven bone occupying the callus at day 18 post-fracture. LysM-Cre;Runx1F/F mutant mice had increased bone compliance at day 28, but their strength and work to failure were comparable with controls. Taken together, these results indicate that Runx1 is a critical transcription factor in controlling osteoclastogenesis that negatively regulates bone and cartilage resorption in the fracture callus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1007-1015, 2020.
Collapse
Affiliation(s)
- David N Paglia
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Joseph L Roberts
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, Georgia
| | - Judy Kalinowski
- Department of Medicine and Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Joseph Lorenzo
- Department of Medicine and Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Hicham Drissi
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Yoshida W, Matsugami D, Murakami T, Bizenjima T, Imamura K, Seshima F, Saito A. Combined effects of systemic parathyroid hormone (1-34) and locally delivered neutral self-assembling peptide hydrogel in the treatment of periodontal defects: An experimental in vivo investigation. J Clin Periodontol 2019; 46:1030-1040. [PMID: 31292977 DOI: 10.1111/jcpe.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
AIM To evaluate in vivo combination therapy of systemic parathyroid hormone (PTH) and locally delivered neutral self-assembling peptide (SAP) hydrogel for periodontal treatment. MATERIALS AND METHODS Viability/proliferation of rat periodontal ligament cells in a neutral SAP nanofibre hydrogel (SPG-178) was evaluated using WST-1 assay. Periodontal defects were created mesially to the maxillary first molars in 40 Wistar rats. Defects were filled with 1.5% SPG-178 or left unfilled. Animals received PTH (1-34) or saline injections every 2 days. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing at 2 or 4 weeks postoperative. RESULTS At 72 hr, cells in 1.5% SPG-178 showed increased viability/proliferation compared to cells in 0.8% SPG-178 or untreated controls. In vivo, systemic PTH resulted in significantly greater bone volume in the Unfilled group at 2 weeks (p = .01) and 4 weeks (p < .0001) than in the saline control. At 4 weeks, a significantly greater bone volume was observed in the PTH/SPG-178 (p = .0003) and PTH/Unfilled (p = .004) groups than in Saline/SPG-178 group. Histologically, greater bone formation was observed in PTH/SPG-178 at 4 weeks than in other groups. In the PTH/SPG-178 group, increased proportions of PCNA-, VEGF-, and Osterix-positive cells were observed in the treated sites. CONCLUSIONS These findings suggest that intermittent systemic PTH and locally delivered neutral SAP hydrogel enhance periodontal healing.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
15
|
Ma ZP, Zhang ZF, Yang YF, Yang Y. Sesamin Promotes Osteoblastic Differentiation and Protects Rats from Osteoporosis. Med Sci Monit 2019; 25:5312-5320. [PMID: 31314750 PMCID: PMC6659468 DOI: 10.12659/msm.915529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Osteoporosis is a common osteopathy, resulting in fractures, especially in elder people. Sesamin has many pharmacological effects, including supplying calcium. However, how sesamin might prevent osteoporosis is still under study. Material/Methods Bone marrow stromal cells (BMSCs) extracted from rat femur were induced for osteoblastic differentiation. Cell proliferation, alkaline phosphatase (ALP), osterix (OSX), SRY-box 9 (SOX9), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), β-catenin, low density lipoprotein receptor-related protein 5 (LRP5), and glycogen synthase kinase-3β (GSK-3β) levels in BMSCs were detected in the presence or absence of sesamin (1 μM or 10 μM). In addition, FH535 (1 μM) was used to silence Wnt/β-catenin in vitro. Ovariectomized (OVX) rats were established and intragastrically administrated sesamin (80 mg/kg), and then the rat bones were analyzed by micro-computed tomography. Osteocalcin and collagen type I were measured in the rat femurs. Results Sesamin had no influence on BMSC proliferation. Higher sesamin concentration promoted Wnt/β-catenin activity and enhanced more expressions of ALP, OSX, SOX9, RUNX2, and OCN, gradually and significantly (P<0.05). Silencing Wnt/β-catenin weakened the enhancement on RUNX2 and OCN expression. Sesamin (80 mg/kg) promoted bone structure in ovariectomized rats, and significantly enhanced osteocalcin and collage type I expression (P<0.05). Conclusions Sesamin promoted osteoblastic differentiation of rat BMSCs by regulating the Wnt/β-catenin pathway, and improved rat bone structure. Sesamin could have therapeutic and preventive effects on osteoporosis.
Collapse
Affiliation(s)
- Zhong-Ping Ma
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Zhi-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yi-Feng Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yun Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
16
|
Torgomyan AL. 1–34 PTH Effect on the Chondroprogenitor Cells Differentiation, As Well As on the Microstructure of the Subchondral None Tissue, and the Regeneration of Articular Cartilage in Rats. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Arnhold S, Elashry MI, Klymiuk MC, Wenisch S. Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int J Biol Macromol 2018; 123:889-899. [PMID: 30452985 DOI: 10.1016/j.ijbiomac.2018.11.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Stefan Arnhold
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura 35516, Egypt.
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen 35392, Giessen, Germany
| |
Collapse
|
18
|
Li W, Yuan L, Tong G, He Y, Meng Y, Hao S, Chen J, Guo J, Bringhurst R, Yang D. Phospholipase C signaling activated by parathyroid hormone mediates the rapid osteoclastogenesis in the fracture healing of orchiectomized mice. BMC Musculoskelet Disord 2018; 19:311. [PMID: 30157832 PMCID: PMC6116492 DOI: 10.1186/s12891-018-2231-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background The age-related osteoporosis is an increasing risk severely threatening the live quality of aged people. Human parathyroid hormone (hPTH) is applied to the therapy of osteoporosis successfully, however, the mechanism, especially the signaling pathway activated in the healing fracture by PTH is still unknown. Methods The once daily injections of hPTH(1–34) and GR (1–34) (the PLC deficient analog) into the orchiectomized male mice with bone fracture, were started at the second day after fracture and lasted for 4 weeks. To explore the role of phospholipase C signaling in the androgen-deficient fracture healing, the fracture healing were evaluated via radiography, micro-CT, biomechanics testing, serum biochemistry, bone marrow cell culture and gene expression quantification. Results After two weeks of fracture, both peptides significantly increased bone mineral density (BMD), bone mass content (BMC) and bone volume (BV/TV) in the healing area. However, compared to hPTH(1–34), GR(1–34) induced more woven bones, the higher BMC and BMD, as well as the less serum TRAP and osteoclasts. After four weeks of treatment, the effects of hPTH(1–34) on fracture healing showed no difference to those of GR(1–34). Consistently, GR(1–34) induced the similar osteogenesis but less osteoclastogenesis under the ex vivo condition immediately after administration compared to hPTH(1–34), which was verified by the weaker activation of RANKL, NFATC1, TRAP and Cathepsin K in GR(1–34) treatment. Conclusion These results indicated that the PLC signaling activated by the intermittent injection of hPTH(1–34) leads to the bone resorption by rapidly activating the osteoclastogenesis in the fracture healing zone. Electronic supplementary material The online version of this article (10.1186/s12891-018-2231-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liang Yuan
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guojun Tong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Youhua He
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Meng
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Hao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Dehong Yang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies. Front Med 2018; 13:160-188. [PMID: 30047029 DOI: 10.1007/s11684-018-0629-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuelong Huang
- Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - Chi Ma
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Tian
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China. .,Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China.
| |
Collapse
|
20
|
Ball AN, Donahue SW, Wojda SJ, McIlwraith CW, Kawcak CE, Ehrhart N, Goodrich LR. The challenges of promoting osteogenesis in segmental bone defects and osteoporosis. J Orthop Res 2018; 36:1559-1572. [PMID: 29280510 PMCID: PMC8354209 DOI: 10.1002/jor.23845] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Conventional clinical management of complex bone healing scenarios continues to result in 5-10% of fractures forming non-unions. Additionally, the aging population and prevalence of osteoporosis-related fractures necessitate the further exploration of novel ways to augment osteogenesis in this special population. This review focuses on the current clinical modalities available, and the ongoing clinical and pre-clinical research to promote osteogenesis in segmental bone defects, delayed unions, and osteoporosis. In summary, animal models of fracture repair are often small animals as historically significant large animal models, like the dog, continue to gain favor as companion animals. Small rodents have well-documented limitations in comparing to fracture repair in humans, and few similarities exist. Study design, number of studies, and availability of funding continue to limit large animal studies. Osteoinduction with rhBMP-2 results in robust bone formation, although long-term quality is scrutinized due to poor bone mineral quality. PTH 1-34 is the only FDA approved osteo-anabolic treatment to prevent osteoporotic fractures. Limited to 2 years of clinical use, PTH 1-34 has further been plagued by dose-related ambiguities and inconsistent results when applied to pathologic fractures in systematic human clinical studies. There is limited animal data of PTH 1-34 applied locally to bone defects. Gene therapy continues to gain popularity among researchers to augment bone healing. Non-integrating viral vectors and targeted apoptosis of genetically modified therapeutic cells is an ongoing area of research. Finally, progenitor cell therapies and the content variation of patient-side treatments (e.g., PRP and BMAC) are being studied. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1559-1572, 2018.
Collapse
Affiliation(s)
- Alyssa N. Ball
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Seth W. Donahue
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Samantha J. Wojda
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Christopher E. Kawcak
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| |
Collapse
|
21
|
Yao CJ, Lv Y, Zhang CJ, Jin JX, Xu LH, Jiang J, Geng B, Li H, Xia YY, Wu M. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501:55-63. [PMID: 29678580 DOI: 10.1016/j.bbrc.2018.04.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
Fracture healing is a repair process of a mechanical discontinuity loss of force transmission, and pathological mobility of bone. Increasing evidence suggests that microRNA (miRNA) could regulate chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. Hence, during this study, we established a right femur fracture mouse model to explore the effect microRNA-185 (miR-185) has on osteoblasts in mice during fracture healing and its underlying mechanism. After successfully model establishment, osteoblasts were extracted and treated with a series of mimics or inhibitors of miR-185, or siRNA against PTH. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were performed to determine the levels of miR-185, PTH, β-catenin and Wnt5b. Cell viability, cycle distribution and apoptosis were detected by means of MTT and flow cytometry assays. Dual luciferase reporter gene assay verified that PTH is a target gene of miR-185. Osteoblasts transfected with miR-185 mimics or siRNA against PTH presented with decreased levels of PTH, β-catenin and Wnt5b which indicated that miR-185 blocks the Wnt/β -catenin axis by inhibiting PTH. Moreover, miR-185 inhibitors promoted the osteoblast viability and reduced apoptosis with more cells arrested at the G1 stage. MiR-185 mimics were observed to have inhibitory effects on osteoblasts as opposed to those induced by miR-185 inhibitors. Above key results indicated that suppression of miR-185 targeting PTH could promote osteoblast growth and proliferation in mice during fracture healing through activating Wnt/β -catenin axis.
Collapse
Affiliation(s)
- Chang-Jiang Yao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yang Lv
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Cheng-Jun Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Xin Jin
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Hu Xu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Jiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Geng
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Li
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ya-Yi Xia
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| | - Meng Wu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
22
|
Komatsu J, Nagura N, Iwase H, Igarashi M, Ohbayashi O, Nagaoka I, Kaneko K. Effect of intermittent administration of teriparatide on the mechanical and histological changes in bone grafted with β-tricalcium phosphate using a rabbit bone defect model. Exp Ther Med 2018; 15:19-30. [PMID: 29387179 PMCID: PMC5768114 DOI: 10.3892/etm.2017.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Grafting β-tricalcium phosphate (TCP) is a well-established method for restoring bone defects; however, there is concern that the mechanical stability of the grafted β-TCP is not maintained during bone translation. Teriparatide has an anabolic effect, stimulating bone formation and increasing bone mineral density for the treatment of osteoporosis. The aim of the present study was to evaluate the effect of intermittent teriparatide treatment on changes in bone grafted with β-TCP using a rabbit bone defect model. Bone defects (5×15 mm) were created in the distal femoral condyle of Japanese white rabbits, and β-TCP granules of two different total porosities were manually grafted. Teriparatide (40 µg/kg) or 0.2% rabbit serum albumin solution as a vehicle control was subcutaneously injected three times per week following the surgery. At 4 or 8 weeks post-surgery, serum samples were obtained and the levels of γ-carboxylated osteocalcin (Gla-OC) were quantified using ELISA. Histomorphometry was also performed using sections of graft sites following staining for tartrate resistant acid phosphatase. Activity and mechanical strength (maximum shear strength, maximum shear stiffness and total energy absorption) were evaluated using an axial push-out load to failure test. Teriparatide treatment significantly increased (P<0.05) the serum levels of Gla-OC, a specific marker for bone formation, suggesting that teriparatide enhances bone formation in β-TCP-grafted rabbits. Furthermore teriparatide increased the degradation of β-TCP by bone remodeling (P<0.05) and promoted the formation of new bone following application of the graft compared with the control group (P<0.01). Furthermore, teriparatide suppressed the reduction in mechanical strength (P<0.05) during bone translation in bone defects grafted with β-TCP. The results of the present study demonstrate that teriparatide is effective in maintaining the mechanical stability of grafted β-TCP, possibly by promoting new bone formation.
Collapse
Affiliation(s)
- Jun Komatsu
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nana Nagura
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideaki Iwase
- Department of Bio-Engineering, Juntendo University Institute of Casualty Center, Izunokuni, Shizuoka 410-2295, Japan
| | - Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Osamu Ohbayashi
- Department of Orthopaedic Surgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka 410-2295, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
23
|
Zhang H, Kot A, Lay YAE, Fierro FA, Chen H, Lane NE, Yao W. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Transl Med 2017; 6:1880-1893. [PMID: 28792122 PMCID: PMC6430058 DOI: 10.1002/sctm.17-0039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
In this study, we engineered mesenchymal stem cells (MSCs) to over‐express basic fibroblast growth factor (bFGF) and evaluated its effects on fracture healing. Adipose‐derived mouse MSCs were transduced to express bFGF and green fluorescence protein (ADSCbFGF‐GFP). Closed‐femoral fractures were performed with osterix‐mCherry reporter mice of both sexes. The mice received 3 × 105 ADSCs transfected with control vector or bFGF via intramuscular injection within or around the fracture sites. Mice were euthanized at days 7, 14, and 35 to monitor MSC engraftment, osteogenic differentiation, callus formation, and bone strength. Compared to ADSC culture alone, ADSCbFGF increased bFGF expression and higher levels of bFGF and vascular endothelial growth factor (VEGF) in the culture supernatant for up to 14 days. ADSCbFGF treatment increased GFP‐labeled MSCs at the fracture gaps and these cells were incorporated into the newly formed callus. quantitative reverse transcription polymerase chain reaction (qRT‐PCR) from the callus revealed a 2‐ to 12‐fold increase in the expression of genes associated with nervous system regeneration, angiogenesis, and matrix formation. Compared to the control, ADSCbFGF treatment increased VEGF expression at the periosteal region of the callus, remodeling of collagen into mineralized callus and bone strength. In summary, MSCbFGF accelerated fracture healing by increasing the production of growth factors that stimulated angiogenesis and differentiation of MSCs to osteoblasts that formed new bone and accelerated fracture repair. This novel treatment may reduce the time required for fracture healing. Stem Cells Translational Medicine2017;6:1880–1893
Collapse
Affiliation(s)
- Hongliang Zhang
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Department of Emergency Medicine, Center for Difficult Diagnoses and Rare Diseases, Second Xiangya Hospital of the Central-South University, Hunan, Changsha, People's Republic of China
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Yu-An E Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Fernando A Fierro
- Stem Cell Program, UC Davis Health System, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Adult Programs Division, California Department of Social Services, Sacramento, California, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| |
Collapse
|
24
|
Lu X, Ding Y, Niu Q, Xuan S, Yang Y, Jin Y, Wang H. ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts. PLoS One 2017; 12:e0176196. [PMID: 28437476 PMCID: PMC5402952 DOI: 10.1371/journal.pone.0176196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells. METHODS AND RESULTS A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well. CONCLUSIONS From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaolin Lu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yin Ding
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qiannan Niu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Xuan
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Yang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yulong Jin
- Department of Hematology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Huan Wang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
25
|
Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures. Stem Cell Res Ther 2017; 8:51. [PMID: 28279202 PMCID: PMC5345153 DOI: 10.1186/s13287-017-0502-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Background A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. Methods The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals’ fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 μg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 106 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (μCT), followed by histological analysis. Results Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. μCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the μCT scans, biomechanical analysis using the micro-finite element method demonstrated that the healed ribs were stiffer than intact ribs in torsion, compression, and bending simulations, as expected when examining bone callus composed of woven bone. Conclusions Administration of both hMSCs and PTH worked synergistically in rib fracture healing, suggesting this approach may pave the way to treat multiple rib fractures as well as additional fractures in various anatomical sites. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0502-9) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Lai K, Xi Y, Miao X, Jiang Z, Wang Y, Wang H, Yang G. PTH coatings on titanium surfaces improved osteogenic integration by increasing expression levels of BMP-2/Runx2/Osterix. RSC Adv 2017. [DOI: 10.1039/c7ra09738g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of this experiment was to assemble parathyroid hormone (PTH) coatings on titanium surfaces and evaluate the effect on implant osseointegration.
Collapse
Affiliation(s)
- Kaichen Lai
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yue Xi
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Xiaoyan Miao
- Department of Science and Education
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Zhiwei Jiang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Ying Wang
- Department of Oral Medicine
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Guoli Yang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| |
Collapse
|
27
|
Enderli TA, Burtch SR, Templet JN, Carriero A. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 2016; 8:41-55. [PMID: 30774469 PMCID: PMC6209373 DOI: 10.2147/orr.s85198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin) and mechanical (ie, vibrational) loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients.
Collapse
Affiliation(s)
- Tanya A Enderli
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Stephanie R Burtch
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Jara N Templet
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Alessandra Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| |
Collapse
|
28
|
Cavani F, Ferretti M, Smargiassi A, Palumbo C. PTH(1-34) effects on repairing experimentally drilled holes in rat femur: novel aspects - qualitative vs. quantitative improvement of osteogenesis. J Anat 2016; 230:75-84. [PMID: 27523886 DOI: 10.1111/joa.12533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
The timetable of effects on bone repair of the active fraction-parathyroid hormone, PTH(1-34), was analytically investigated from the morphometric viewpoint in 3-month-old male Sprague-Dawley rats, whose femurs were drilled at mid-diaphyseal level (transcortical holes). The animals were divided into groups with/without PTH(1-34) administration, and sacrificed at different times (10, 28, 45 days after surgery). The observations reported here need to be framed in the context of our previous investigations regarding bone histogenesis (Ferretti et al. Anat Embryol. 2002; 206: 21-29) in which we demonstrated the occurrence of two successive bone-forming processes during both skeletal organogenesis and bone repair, i.e. static and dynamic osteogenesis: the former (due to stationary osteoblasts, haphazardly grouped in cords) producing preliminary bad quality trabecular bone, the latter (due to typical polarized osteoblasts organized in ordered movable laminae) producing mechanically valid bone tissue. The primary function of static osteogenesis is to provide a rigid scaffold containing osteocytes (i.e. mechano-sensors) for osteoblast laminae acting in dynamic osteogenesis. In the present work, histomorphometric analysis revealed that, already 10 days after drilling, despite the holes being temporarily filled by the same amount of newly formed trabecular bone by static osteogenesis independently of the treatment, the extent of the surface of movable osteoblast-laminae (covering the trabecular surface) was statistically higher in animals submitted to PTH(1-34) administration than in control ones; this datum strongly suggests the effect of PTH(1-34) alone in anticipating the occurrence of dynamic osteogenesis involved in the production of good quality bone (with more ordered collagen texture) more suitable for loading. This study could be crucial in further translational clinical research in humans for defining the best therapeutic strategies to be applied in recovering severe skeletal lesions, particularly as regards the time of PTH(1-34) administration.
Collapse
Affiliation(s)
- Francesco Cavani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sez. Morfologia umana, Università di Modena e Reggio Emilia, Modena, Italy
| | - Marzia Ferretti
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sez. Morfologia umana, Università di Modena e Reggio Emilia, Modena, Italy
| | - Alberto Smargiassi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sez. Morfologia umana, Università di Modena e Reggio Emilia, Modena, Italy
| | - Carla Palumbo
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sez. Morfologia umana, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
29
|
Yao W, Lay YAE, Kot A, Liu R, Zhang H, Chen H, Lam K, Lane NE. Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference. Stem Cells 2016; 34:2587-2600. [PMID: 27334693 DOI: 10.1002/stem.2433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation has been tested in animal and clinical fracture studies. We have developed a bone-seeking compound, LLP2A-Alendronate (LLP2A-Ale) that augments MSC homing to bone. The purpose of this study was to determine whether treatment with LLP2A-Ale or a combination of LLP2A-Ale and MSCs would accelerate bone healing in a mouse closed fracture model and if the effects are sex dependent. A right mid-femur fracture was induced in two-month-old osterix-mCherry (Osx-mCherry) male and female reporter mice. The mice were subsequently treated with placebo, LLP2A-Ale (500 μg/kg, IV), MSCs derived from wild-type female Osx-mCherry adipose tissue (ADSC, 3 x 105 , IV) or ADSC + LLP2A-Ale. In phosphate buffered saline-treated mice, females had higher systemic and surface-based bone formation than males. However, male mice formed a larger callus and had higher volumetric bone mineral density and bone strength than females. LLP2A-Ale treatment increased exogenous MSC homing to the fracture gaps, enhanced incorporation of these cells into callus formation, and stimulated endochondral bone formation. Additionally, higher engraftment of exogenous MSCs in fracture gaps seemed to contribute to overall fracture healing and improved bone strength. These effects were sex-independent. There was a sex-difference in the rate of fracture healing. ADSC and LLP2A-Ale combination treatment was superior to on callus formation, which was independent of sex. Increased mobilization of exogenous MSCs to fracture sites accelerated endochondral bone formation and enhanced bone tissue regeneration. Stem Cells 2016;34:2587-2600.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA.
| | - Yu-An Evan Lay
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Alexander Kot
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Hongliang Zhang
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Nancy E Lane
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
30
|
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:6240794. [PMID: 27110251 PMCID: PMC4826709 DOI: 10.1155/2016/6240794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Collapse
|
31
|
Chen B, Lin T, Yang X, Li Y, Xie D, Cui H. Intermittent parathyroid hormone (1-34) application regulates cAMP-response element binding protein activity to promote the proliferation and osteogenic differentiation of bone mesenchymal stromal cells, via the cAMP/PKA signaling pathway. Exp Ther Med 2016; 11:2399-2406. [PMID: 27284327 DOI: 10.3892/etm.2016.3177] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The potential effects of intermittent parathyroid hormone (1-34) [PTH (1-34)] administration on bone formation have previously been investigated. A number of studies have suggested that the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway is associated with PTH-induced osteogenic differentiation. However, the precise signaling pathways and molecular mechanism by which PTH (1-34) induces the osteogenic differentiation of bone mesenchymal stromal cells (BMSCs) remain elusive. The purpose of the present study was to investigate the mechanism underlying the effect of intermittent PTH (1-34) application on the proliferation and osteogenic differentiation of BMSCs. BMSCs were randomly divided into four groups, as follows: Osteogenic medium (control group); osteogenic medium and intermittent PTH (1-34); osteogenic medium and intermittent PTH (1-34) plus the adenylyl cyclase activator forskolin; and osteogenic medium and intermittent PTH (1-34) plus the PKA inhibitor H-89. A cell proliferation assay revealed that PTH (1-34) stimulates BMSC proliferation via the cAMP/PKA pathway. Furthermore, reverse transcription-quantitative polymerase chain reaction, alkaline phosphatase activity testing and cell examination using Alizarin Red S staining demonstrated that PTH (1-34) administration promotes osteogenic differentiation and mineralization, mediated by the cAMP/PKA pathway. Crucially, the results of western blot analyses suggested that PTH (1-34) treatment and, to a greater degree, PTH (1-34) plus forskolin treatment caused an increase in phosphorylated cAMP response element binding protein (p-CREB) expression, but the effect of PTH on p-CREB expression was blocked by H-89. In conclusion, the current study demonstrated that intermittent PTH (1-34) administration regulates downstream proteins, particularly p-CREB, in the cAMP/PKA signaling pathway, to enhance the proliferation, osteogenic differentiation and mineralization of BMSCs.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
32
|
Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:4027542. [PMID: 27069479 PMCID: PMC4812479 DOI: 10.1155/2016/4027542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(-) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(-) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.
Collapse
|
33
|
Antebi B, Zhang L, Sheyn D, Pelled G, Zhang X, Gazit Z, Schwarz EM, Gazit D. Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering (Basel) 2016; 3. [PMID: 27141513 PMCID: PMC4851447 DOI: 10.3390/bioengineering3010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although most fractures heal, critical defects in bone fail due to aberrant differentiation of mesenchymal stem cells towards fibrosis rather than osteogenesis. While conventional bioengineering solutions to this problem have focused on enhancing angiogenesis, which is required for bone formation, recent studies have shown that fibrotic non-unions are associated with arteriogenesis in the center of the defect and accumulation of mast cells around large blood vessels. Recently, recombinant parathyroid hormone (rPTH; teriparatide; Forteo) therapy have shown to have anti-fibrotic effects on non-unions and critical bone defects due to inhibition of arteriogenesis and mast cell numbers within the healing bone. As this new direction holds great promise towards a solution for significant clinical hurdles in craniofacial reconstruction and limb salvage procedures, this work reviews the current state of the field, and provides insights as to how teriparatide therapy could be used as an adjuvant for healing critical defects in bone. Finally, as teriparatide therapy is contraindicated in the setting of cancer, which constitutes a large subset of these patients, we describe early findings of adjuvant therapies that may present future promise by directly inhibiting arteriogenesis and mast cell accumulation at the defect site.
Collapse
Affiliation(s)
- Ben Antebi
- US Army Institute of Surgical Research, Multi-Organ Support Technology, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA;
| | - Longze Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +1-310-248-8575
| |
Collapse
|
34
|
PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Mol Ther 2015; 24:318-330. [PMID: 26585691 DOI: 10.1038/mt.2015.211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.
Collapse
|
35
|
Scanlon V, Soung DY, Adapala NS, Morgan E, Hansen MF, Drissi H, Sanjay A. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair. PLoS One 2015; 10:e0138194. [PMID: 26393915 PMCID: PMC4578922 DOI: 10.1371/journal.pone.0138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Collapse
Affiliation(s)
- Vanessa Scanlon
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Do Yu Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Elise Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
| | - Marc F. Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| | - Archana Sanjay
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| |
Collapse
|
36
|
Abstract
Normal bone healing is a complex process that eventually restores original structure and function to the site of trauma. However, clinical circumstances such as nonunion, critical-sized defects, systemic bone disease, and fusion procedures have stimulated a search for ways to enhance this normal healing process. Biologics are an important part of this search and many, including bone marrow aspirate concentrate, demineralized bone matrix, platelet-rich plasma, bone morphogenic proteins, and platelet-derived growth factor, are currently in clinical use. Many others, including mesenchymal stem cells, parathyroid hormone, and Nel-like molecule-1 (NELL-1) will likely be in use in the future depending on the results of preclinical and clinical trials.
Collapse
Affiliation(s)
- Benjamin Smith
- Department of Orthopedic Surgery and Orthopedic Research Laboratory, Feinstein Institute for Medical Research and North Shore-LIJ Health System, Manhasset, NY, USA,
| | | | | |
Collapse
|
37
|
Jacome-Galarza C, Soung DY, Adapala NS, Pickarski M, Sanjay A, Duong LT, Lorenzo JA, Drissi H. Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice. J Cell Biochem 2015; 115:1449-57. [PMID: 24590570 DOI: 10.1002/jcb.24801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022]
Abstract
Cathepsin K (CatK) is a lysosomal cysteine protease necessary for bone resorption by osteoclasts (OCs), which originate from myeloid hematopoietic precursors. CatK-deficient (CatK(-/-) ) mice show osteopetrosis due to defective resorption by OCs, which are increased in number in these mice. We investigated whether genetic ablation of CatK altered the number of hematopoietic stem cells (HSCs) and OC precursor cells (OCPs) using two mouse models: CatK(-/-) mice and a knock-in mouse model in which the CatK gene (ctsk) is replaced by cre recombinase. We found that CatK deletion in mice significantly increased the number of HSCs in the spleen and decreased their number in bone marrow. In contrast, the number of early OCPs was unchanged in the bone marrow. However, the number of committed CD11b(+) OCPs was increased in the bone marrow of CatK(-/-) compared to wild-type (WT) mice. In addition, the percentage but not the number of OCPs was decreased in the spleen of CatK(-/-) mice relative to WT. To understand whether increased commitment to OC lineage in CatK(-/-) mice is influenced by the bone marrow microenvironment, CatK(Cre/+) or CatK(Cre/Cre) red fluorescently labeled OCPs were injected into WT mice, which were also subjected to a mid-diaphyseal femoral fracture. The number of OCs derived from the intravenously injected CatK(Cre/Cre) OCPs was lower in the fracture callus compared to mice injected with CatK(+/Cre) OCPs. Hence, in addition to its other effects, the absence of CatK in OCP limits their ability to engraft in a repairing fracture callus compared to WT OCP.
Collapse
Affiliation(s)
- Christian Jacome-Galarza
- New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, 06030; Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee DJ, Southgate RD, Farhat YM, Loiselle AE, Hammert WC, Awad HA, O'Keefe RJ. Parathyroid hormone 1-34 enhances extracellular matrix deposition and organization during flexor tendon repair. J Orthop Res 2015; 33:17-24. [PMID: 25266795 PMCID: PMC4241167 DOI: 10.1002/jor.22735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
Parathyroid hormone (PTH) 1-34 is known to enhance fracture healing. Tendon repair is analogous to bone healing in its dependence on the proliferation and differentiation of mesenchymal stem cells, matrix formation, and tissue remodeling.(1,2,3) We hypothesized that PTH 1-34 enhances tendon healing in a flexor digitorum longus (FDL) tendon repair model. C57Bl/6J mice were treated with either intraperitoneal PTH 1-34 or vehicle-control (PBS). Tendons were harvested at 3-28 days for histology, gene expression, and biomechanical testing. The metatarsophalangeal joint range of motion was reduced 1.5-2-fold in PTH 1-34 mice compared to control mice. The gliding coefficient, a measure of adhesion formation, was 2-3.5-fold higher in PTH 1-34 mice. At 14 days post-repair, the tensile strength was twofold higher in PTH 1-34 specimens, but at 28 days there were no differences. PTH 1-34 mice had increased fibrous tissue deposition that correlated with elevated expression of collagens and fibronectin as seen on quantitative PCR. PTH 1-34 accelerated the deposition of reparative tissue but increased adhesion formation.
Collapse
Affiliation(s)
- Daniel J. Lee
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Richard D. Southgate
- Department of Orthopaedic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Youssef M. Farhat
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Alayna E. Loiselle
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Warren C. Hammert
- Department of Orthopaedic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Hani A. Awad
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Regis J. O'Keefe
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| |
Collapse
|
39
|
Abstract
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases.
Collapse
|
40
|
Yukata K, Xie C, Li TF, Takahata M, Hoak D, Kondabolu S, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment. Bone 2014; 62:79-89. [PMID: 24530870 PMCID: PMC4085793 DOI: 10.1016/j.bone.2014.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/17/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
A stabilized tibia fracture model was used in young (8-week old) and aged (1-year old) mice to define the relative bone regenerative potential and the relative responsiveness of the periosteal progenitor population with aging and PTH 1-34 (PTH) systemic therapy. Bone regeneration was assessed through gene expressions, radiographic imaging, histology/histomorphometry, and biomechanical testing. Radiographs and microCT showed increased calcified callus tissue and enhanced bone healing in young compared to aged mice. A key mechanism involved reduced proliferation, expansion, and differentiation of periosteal progenitor cell populations in aged mice. The experiments showed that PTH increased calcified callus tissue and torsional strength with a greater response in young mice. Histology and quantitative histomorphometry confirmed that PTH increased callus tissue area due primarily to an increase in bone formation, since minimal changes in cartilage and mesenchyme tissue area occurred. Periosteum examined at 3, 5, and 7 days showed that PTH increased cyclin D1 expression, the total number of cells in the periosteum, and width of the periosteal regenerative tissue. Gene expression showed that aging delayed differentiation of both bone and cartilage tissues during fracture healing. PTH resulted in sustained Col10a1 expression consistent with delayed chondrocyte maturation, but otherwise minimally altered cartilage gene expression. In contrast, PTH 1-34 stimulated expression of Runx2 and Osterix, but resulted in reduced Osteocalcin. β-Catenin staining was present in mesenchymal chondroprogenitors and chondrocytes in early fracture healing, but was most intense in osteoblastic cells at later times. PTH increased active β-catenin staining in the osteoblast populations of both young and aged mice, but had a lesser effect in cartilage. Altogether the findings show that reduced fracture healing in aging involves decreased proliferation and differentiation of stem cells lining the bone surface. While PTH 1-34 enhances the proliferation and expansion of the periosteal stem cell population and accelerates bone formation and fracture healing, the effects are proportionately reduced in aged mice compared to young mice. β-Catenin is induced by PTH in early and late fracture healing and is a potential target of PTH 1-34 effects.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Tokushima University Hospital, Kuramoto, Tokushima, Japan.
| | - Chao Xie
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Tian-Fang Li
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Masahiko Takahata
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Donna Hoak
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Sirish Kondabolu
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Xinping Zhang
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Hani A Awad
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Edward M Schwarz
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Christopher A Beck
- Department of Biostatistics and Computational Biology, University of Rochester, USA.
| | - Jennifer H Jonason
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Regis J O'Keefe
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
41
|
Abstract
Bone healing is a complex process that can be influenced by both host and environmental factors. In this article, we review the biology involved in the regeneration of new bone after fracture, and factors influencing bone healing, including diabetes, smoking, NSAID use, and bisphosphonates.
Collapse
|
42
|
Nardi A, Ventura L, Cozzi L, Tonini G, Zennaro R, Celi M, Ramazzina E. The bone anabolic therapy. Aging Clin Exp Res 2013; 25 Suppl 1:S121-4. [PMID: 24078441 DOI: 10.1007/s40520-013-0133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022]
Abstract
Teriparatide (TPTD), the amino-terminal parathyroid hormone recombinant peptide [PTH (1–34)], is a drug with a proven anabolic action on the bone, effective in preventing vertebral and non-vertebral fragility fractures. Recent publications have investigated in great detail the TPTD action on the cortical bone, highlighting the increased strength in the critical zone of the hip with high risk of fracture in osteoporotic patients Poole (PLoS ONE 6:e16190, 2011). In November 2002, TPTD was approved by the FDA for use in post-menopausal women and men with osteoporosis at high risk of fracture and in patients with glucocorticoid-induced osteoporosis and, since then, has been used to treat more than 1 million patients worldwide (J Bone Miner Res 27(12):2429-2437, 2012). The unchanged safety profile and the well-known mechanism of action of this drug have led doctors to explore the use of TPTD in other conditions such as delayed fracture healing, non-union, osteonecrosis of the jaw, etc. The positive reports that have resulted from these studies are helping to hypothesize a new perspective on the wider use of this drug, but warrant further clinical investigation to consolidate these results.
Collapse
|
43
|
Soung DY, Gentile MA, Duong LT, Drissi H. Effects of pharmacological inhibition of cathepsin K on fracture repair in mice. Bone 2013; 55:248-55. [PMID: 23486186 DOI: 10.1016/j.bone.2013.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 01/12/2023]
Abstract
Cathepsin K inhibitors (CatK-I) have been developed and established to restore bone mass in both animal models of bone loss and postmenopausal osteoporotic patients. We investigated the effects of a CatK-I L-006235 on bone repair and compared to alendronate (ALN) for its known effects on fracture healing in preclinical models. Femoral fractures were performed on wild type mice that were given vehicle (CON), CatK-I or ALN from day 0 post-fracture until euthanasia. Radiologic and micro-CT analyses demonstrated that CatK-I enhanced mineralization within the calluses at day 21 post-fracture, but to a lesser degree than ALN. Histological analyses showed residual unmineralized and mineralized cartilage in the calluses of CatK-I and ALN treated groups at day 21 post-fracture compared to that in CON. CatK-I enhanced the number of tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in the fracture calluses compared to ALN and CON treated groups. However, relative levels of serum C-terminal telopeptides of type I collagen (CTX) normalized to the number of TRAP+ osteoclasts within the calluses were significantly decreased in both CatK-I and ALN groups compared to CON. Additionally, the percentages of osteoblast surface over mineralized calluses and levels of the bone formation marker serum N-terminal propeptide of type I procollagen (P1NP) were comparable between CatK-I versus CON groups, while these bone formation parameters were decreased by ALN. Taken together, these results indicate that unlike ALN, CatK-I inhibits osteoclastic activity without changing bone formation, and the inhibition of CatK delayed but did not abrogate callus remodeling during bone repair.
Collapse
Affiliation(s)
- Do Y Soung
- New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
44
|
Tsuchie H, Miyakoshi N, Kasukawa Y, Aonuma H, Shimada Y. Intermittent administration of human parathyroid hormone before osteosynthesis stimulates cancellous bone union in ovariectomized rats. TOHOKU J EXP MED 2013; 229:19-28. [PMID: 23221107 DOI: 10.1620/tjem.229.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been reported that intermittent administration of human parathyroid hormone (h-PTH) promotes bone healing after surgery for osteoporotic fractures. If bone healing is promoted by the administration of h-PTH during pre-operative waiting period, we can prevent prolonged bed rest. Therefore, we evaluated the effects of pre-operative h-PTH treatment on cancellous bone union and its mechanism for fracture healing in ovariectomized rats as a model for osteoporosis. Ovariectomized 7-month-old female Sprague-Dawley rats underwent an osteotomy of the proximal tibia as a fracture model, and h-PTH (30 μg/kg body weight) or vehicle was administered as a pre-operative treatment for one week. After the one-week treatment, tibiae were fixed with wire for osteosynthesis, and h-PTH or vehicle was administered for 1 or 3 weeks following wire fixation. In addition to bone histomorphometry, we used alcian blue/hematoxylin stained sections for evaluating cartilage volume and immunostained sections for analyzing the expression of proliferating cell nuclear antigen (PCNA) for cell proliferation and that of Sox9 and Runx2, differentiation markers for cartilage cells and osteoblasts, respectively. Pre-operative treatment with PTH significantly increased bone volume. Pre-operative and pre- to post-operative treatment with PTH for 2 weeks significantly promoted bone union. Pre-operative treatment with PTH significantly increased cartilage volume, and pre- to post-operative treatment with PTH for 2 weeks significantly increased the percentage of cells positive for Runx2 (p < 0.01), but not PCNA or Sox9. Pre-operative administration of h-PTH enhances bone union by promoting cartilage formation and cell differentiation to osteoblasts, but not by promoting cell proliferation.
Collapse
Affiliation(s)
- Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Japan.
| | | | | | | | | |
Collapse
|
45
|
Riancho JA, Hernández JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics 2012; 13:815-29. [PMID: 22594513 DOI: 10.2217/pgs.12.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is frequent in postmenopausal women and old men. As with other prevalent disorders, it is the consequence of complex interactions between genetic and acquired factors. Candidate gene and genome-wide association studies have pointed to several genes as determinants of the risk of osteoporosis. Some of them were previously unsuspected and may help to find new therapeutic targets. Several drugs already available are very effective in increasing bone mass and decreasing fracture risk. However, not all patients respond properly and some of them suffer fragility fractures despite therapy. Investigators have tried to identify the genetic features influencing the response to antiosteoporotic therapy. In this article we will review recent data providing insight into new genes involved in osteoporosis and the pharmacogenetic data currently available.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital UM Valdecilla-IFIMAV, University of Cantabria, Av Valdecilla s/n, Santander 39008, Spain.
| | | |
Collapse
|
46
|
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8:114-24. [PMID: 23247591 DOI: 10.4161/org.23306] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one's intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics.
Collapse
Affiliation(s)
- Timothy T Roberts
- Division of Orthopaedic Surgery; Albany Medical Center; Albany, NY USA
| | | |
Collapse
|
47
|
Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 2012; 227:3731-43. [DOI: 10.1002/jcp.24083] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Cairns DM, Liu R, Sen M, Canner JP, Schindeler A, Little DG, Zeng L. Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS One 2012; 7:e39642. [PMID: 22768305 PMCID: PMC3388093 DOI: 10.1371/journal.pone.0039642] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 05/26/2012] [Indexed: 01/04/2023] Open
Abstract
Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing.
Collapse
Affiliation(s)
- Dana M. Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Renjing Liu
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Manpreet Sen
- Building Diversity in Biomedical Research Program (BDBS), Tufts University School of Medicine, Massachusetts, United States of America
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James P. Canner
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G. Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Li Zeng
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Building Diversity in Biomedical Research Program (BDBS), Tufts University School of Medicine, Massachusetts, United States of America
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Orthopaedic Surgery, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Soung DY, Talebian L, Matheny CJ, Guzzo R, Speck ME, Lieberman JR, Speck NA, Drissi H. Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J Bone Miner Res 2012; 27:1585-97. [PMID: 22431360 PMCID: PMC3377839 DOI: 10.1002/jbmr.1601] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Runx1 is expressed in skeletal elements, but its role in fracture repair has not been analyzed. We created mice with a hypomorphic Runx1 allele (Runx1(L148A) ) and generated Runx1(L148A/-) mice in which >50% of Runx1 activity was abrogated. Runx1(L148A/-) mice were viable but runted. Their growth plates had extended proliferating and hypertrophic zones, and the percentages of Sox9-, Runx2-, and Runx3-positive cells were decreased. Femoral fracture experiments revealed delayed cartilaginous callus formation, and the expression of chondrogenic markers was decreased. Conditional ablation of Runx1 in the mesenchymal progenitor cells of the limb with Prx1-Cre conferred no obvious limb phenotype; however, cartilaginous callus formation was delayed following fracture. Embryonic limb bud-derived mesenchymal cells showed delayed chondrogenesis when the Runx1 allele was deleted ex vivo with adenoviral-expressed Cre. Collectively, our data suggest that Runx1 is required for commitment and differentiation of chondroprogenitor cells into the chondrogenic lineage.
Collapse
Affiliation(s)
- Do Y Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06034, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Milner PI, Clegg PD, Stewart MC. Stem cell-based therapies for bone repair. Vet Clin North Am Equine Pract 2012; 27:299-314. [PMID: 21872760 DOI: 10.1016/j.cveq.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article provides an overview of the cellular and molecular events involved in bone repair and the current approaches to using stem cells as an adjunct to this process. The article emphasizes the key role of osteoprogenitor cells in the formation of bone and where the clinical applications of current research may lend themselves to large animal orthopaedics. The processes involved in osteogenic differentiation are presented and strategies for bone formation, including induction by osteogenic factors, bioscaffolds, and gene therapy, are reviewed.
Collapse
Affiliation(s)
- Peter I Milner
- Department of Musculoskeletal Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
| | | | | |
Collapse
|