1
|
Kheder W, Sheela S, Samsudin AR, Kawas SA, Khalifa N, Qabbani A. Titanium Particles Released from Dental Implants Under Fluoride Exposure Interact with Macrophages. Braz Dent J 2025; 36:e246187. [PMID: 40243870 PMCID: PMC11996161 DOI: 10.1590/0103-644020256187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 04/18/2025] Open
Abstract
This study is designed to investigate the influence of fluoride and pH value on the release of titanium particles from Ti6Al4V dental implants with hydrophobic microrough surface produced by sandblasting and acid-etching techniques; and correlate particle size to their uptake by macrophages and expression of inflammatory cytokines. Fifteen dental implants were immersed in five test solutions with different fluoride concentrations and pH values. Three control implants were scanned using a scanning electron microscope and fifteen test implants were also scanned after their immersion in the test solutions. The immersion solutions were analyzed for titanium particles/ions size-range and amount. The uptake of titanium particles by macrophages and expression of Il-1 β and IL-8 following their exposure to titanium particles were investigated. Test solutions with high fluoride and acidity resulted in the release of micro-size titanium particles (4551.7 ± 114.5 nm and 2783 ± 101.13 nm); while those with low fluoride, neutral pH, and alkaline environment resulted in the release of nano-size titanium particles (431.2 ± 80.6 nm, 448.3 ± 112 nm, and 484.5 ± 85.3 nm respectively). There was an increase in the uptake of nanoparticles by macrophages without altering their membrane integrity. The increase in expression of IL-1β and IL-8 by M0 macrophages after exposure to titanium dioxide particles may facilitate our understanding of immune cell population-specific molecular events deriving the peri-implant inflammation in response to titanium particles. Fluoride and pH values influence the release of titanium particles from the implant's surface. The activated inflammatory mediators are key to imbalance in osteoblast-osteoclast activity and failure of implant osseointegration.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah,PO Box: 27272, Sharjah, UAE
| | - Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P. O. Box. 27272, UAE
| | - A. R. Samsudin
- College of Dental Medicine, University of Sharjah,PO Box: 27272, Sharjah, UAE
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah,PO Box: 27272, Sharjah, UAE
| | - Nadia Khalifa
- College of Dental Medicine, University of Sharjah,PO Box: 27272, Sharjah, UAE
| | - Ali Qabbani
- College of Dental Medicine, University of Sharjah,PO Box: 27272, Sharjah, UAE
| |
Collapse
|
2
|
Kurtz MA, Hallab NJ, Rainey JP, Pelt CE, Mihalko WM, Piuzzi NS, Mont MA, Spece H, Kurtz SM. Metal Release in Total Knee Arthroplasty: A Review of Mechanisms, Adverse Local Tissue Reactions, and Biological Effects. J Arthroplasty 2025:S0883-5403(25)00237-2. [PMID: 40090503 DOI: 10.1016/j.arth.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025] Open
Abstract
Compared to the hip, where investigators associate metal release with adverse local tissue reactions (ALTRs), metal-related complications in total knee arthroplasty (TKA) remain controversial and underexplored. Primary TKA systems use monobloc components, limiting corrosion and subsequent concerns. However, like the joints they replace, metal components degrade in vivo. In this narrative review, we aimed to summarize clinically relevant knowledge on metal release within the context of TKA for practicing orthopaedic surgeons. We asked: do ALTRs associated with metal release occur in the knee, and if so, to what extent? To answer this research question, we identified in vivo degradation mechanisms, including wear, mechanically assisted crevice corrosion, and electrocautery damage. Next, we synthesized case reports and retrospective clinical studies documenting ALTRs in primary and revision TKAs. Then, we reviewed the biological response to cobalt chrome debris, focusing on genotoxicity, immune responses, and hypersensitivity. While clinical evidence suggests that patients rarely experience severe biological reactions like pseudotumors, ALTRs associated with metal release can and do occur following TKA. To overcome knowledge gaps related to the prevalence of ALTR in TKA, prospective clinical trials are needed.
Collapse
Affiliation(s)
- Michael A Kurtz
- Drexel University Implant Research Core, Philadelphia, Pennsylvania
| | - Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Joshua P Rainey
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah
| | - Cristopher E Pelt
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah
| | - William M Mihalko
- University of Tennessee Health Science Center, Campbell Clinic Orthopaedics, Memphis, Tennessee
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michael A Mont
- The Rubin Institute, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Hannah Spece
- Drexel University Implant Research Core, Philadelphia, Pennsylvania
| | - Steven M Kurtz
- Drexel University Implant Research Core, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Obied B, Richard S, Zahavi A, Fixler D, Girshevitz O, Goldenberg-Cohen N. Structure-Function Correlation in Cobalt-Induced Brain Toxicity. Cells 2024; 13:1765. [PMID: 39513872 PMCID: PMC11545114 DOI: 10.3390/cells13211765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels accompanied by brain inflammation. Significant neurodegeneration was evidenced by demyelination, increased blood-brain barrier permeability, and mitochondrial dysfunction. Treated mice exhibited extended latency periods in the Morris water maze test and heightened anxiety in the open field test. Minocycline partially mitigated brain injury. The observed signs of neurodegeneration were dose- and time-dependent. The neurotoxicity after acute exposure was reversible, but the neurological and functional changes following chronic cobalt administration were not.
Collapse
Affiliation(s)
- Basel Obied
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Stephen Richard
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Alon Zahavi
- Department of Ophthalmology and Laboratory of Eye Research, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 4941492, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Olga Girshevitz
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa 31048, Israel
| |
Collapse
|
4
|
Yehia HM, El-Tantawy A, Elkady OA, Ghayad IM, Daoush WM. Fabrication and characterization of Ti-12Mo/xAl 2O 3 bio-inert composite for dental prosthetic applications. Front Bioeng Biotechnol 2024; 12:1412586. [PMID: 39081331 PMCID: PMC11287661 DOI: 10.3389/fbioe.2024.1412586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Titanium (Ti)-molybdenum(Mo) composites reinforced with ceramic nanoparticles have recently significant interest among researchers as a new type of bio-inert material used for dental prosthetic applications due to its biocompatibility, outstanding physical, mechanical and corrosion properties. The current work investigates the impact of alumina (Al2O3) nanoparticles on the properties of the Ti-12Mo composite, including microstructure, density, hardness, wear resistance, and electrochemical behavior. Methods: Ti-12Mo/xAl2O3 nanocomposites reinforced with different Al2O3 nanoparticles content were prepared. The composition of each sample was adjusted through the mechanical milling of the elemental constituents of the sample for 24 h under an argon atmosphere. The produced nanocomposite powders were then cold-pressed at 600 MPa and sintered at different temperatures (1,350°C, 1,450°C, and 1,500°C) for 90 min. Based on density measurements using the Archimedes method, the most suitable sintering temperature was found to be 1,450°C. The morphology and chemical composition of the milled and sintered composites were analyzed using back-scattering scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results and Discussion: The results showed that the addition of Mo increased the Ti density from 99.11% to 99.46%, while the incorporation of 15wt% Al2O3 in the Ti-12Mo composite decreased the density to 97.28%. Furthermore, the Vickers hardness and wear behavior of the Ti-Mo composite were enhanced with the addition of up to 5 wt% Al2O3. The sample contains 5 wt% Al2O3 exhibited a Vickers hardness of 593.4 HV, compared to 320 HV for pure Ti, and demonstrated the lowest wear rate of 0.0367 mg/min, compared to 0.307 mg/min for pure Ti. Electrochemical investigations revealed that the sintered Ti-12Mo/xAl2O3 nanocomposites displayed higher corrosion resistance against a simulated artificial saliva (AS) solution than pure Ti. The concentrations of Ti, Mo, and Al ions released from the Ti-12Mo/xAl2O3 nanocomposites in the AS solution were within the safe levels. It was found from this study that; the sample of the composition Ti-12Mo/5wt%Al2O3 exhibited appropriate mechanical properties, biocompatibility, corrosion resistance against the AS solution with acceptable ion concentration released in the biological fluids. Therefore, it can be considered as a new bio-inert material for potential applications in dental prosthetics.
Collapse
Affiliation(s)
- Hossam. M. Yehia
- Faculty of Technology and Education, Department of Production Technology, Helwan University, Cairo, Egypt
| | - Ahmed El-Tantawy
- Faculty of Technology and Education, Department of Production Technology, Helwan University, Cairo, Egypt
| | - Omayma A. Elkady
- Central Metallurgical Research and Development Institute (CMRDI), Powder Technology Department, Helwan, Cairo, Egypt
| | - Ibrahim M. Ghayad
- Central Metallurgical Research and Development Institute (CMRDI), Corrosion Control and Surface Protection Department, Helwan, Cairo, Egypt
| | - Walid M. Daoush
- Faculty of Technology and Education, Department of Production Technology, Helwan University, Cairo, Egypt
- College of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University(IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cocea AC, Stoica CI. Interactions and Trends of Interleukins, PAI-1, CRP, and TNF-α in Inflammatory Responses during the Perioperative Period of Joint Arthroplasty: Implications for Pain Management-A Narrative Review. J Pers Med 2024; 14:537. [PMID: 38793119 PMCID: PMC11122505 DOI: 10.3390/jpm14050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation during the perioperative period of joint arthroplasty is a critical aspect of patient outcomes, influencing both the pathophysiology of pain and the healing process. This narrative review comprehensively evaluates the roles of specific cytokines and inflammatory biomarkers in this context and their implications for pain management. Inflammatory responses are initiated and propagated by cytokines, which are pivotal in the development of both acute and chronic postoperative pain. Pro-inflammatory cytokines play essential roles in up-regulating the inflammatory response, which, if not adequately controlled, leads to sustained pain and impaired tissue healing. Anti-inflammatory cytokines work to dampen inflammatory responses and promote resolution. Our discussion extends to the genetic and molecular influences on cytokine production, which influence pain perception and recovery rates post-surgery. Furthermore, the role of PAI-1 in modulating inflammation through its impact on the fibrinolytic system highlights its potential as a therapeutic target. The perioperative modulation of these cytokines through various analgesic and anesthetic techniques, including the fascia iliac compartment block, demonstrates a significant reduction in pain and inflammatory markers, thus underscoring the importance of targeted therapeutic strategies. Our analysis suggests that a nuanced understanding of the interplay between pro-inflammatory and anti-inflammatory cytokines is required. Future research should focus on individualized pain management strategies.
Collapse
Affiliation(s)
- Arabela-Codruta Cocea
- Faculty of Medicine, Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Ioan Stoica
- Orthopedics, Anaesthesia Intensive Care Unit, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Hallab NJ, Hallab SR, Alexander A, Pourzal R. Characterization of residual debris on packaged hip arthroplasty stems demonstrates the dominance of less than 10 μm sized particulate: Updated USP788 guidelines for orthopedic implants. J Biomed Mater Res B Appl Biomater 2024; 112:e35387. [PMID: 38340016 DOI: 10.1002/jbm.b.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Past evaluation of particle contamination on packaged implants has typically been conducted using US Pharmacopeia (USP) 788, a 1970s pharmaceutical guideline created to evaluate contaminant particles in injectable fluids and syringes. Our objective was to reestablish relevant acceptance criteria for residual orthopedic and other implant debris, including smaller particles (i.e., <10 μm in diameter). Packaged total hip arthroplasty (THA) titanium (Ti6Al4V)-alloy femoral stems were used (hydroxyapatite [HA]-coated and non-coated stems). Short-term ultrasonication and longer-term 24-hour soak/agitation methods were used to elute surface-bound contaminant particles, and released particles were analyzed via scanning electron microscopy, energy-dispersive x-ray analysis, image analysis, and particle characterization. For HA-coated THA-stems, >99% of eluted particles were calcium phosphate. For plain non-coated THA-stems, >99% of eluted particles were titanium-alloy-based. The number-based median size of particles in both groups was approximately 1.5 μm in diameter despite being composed of different materials. The total volume of particulate removed from HA-coated stems was 0.037 mm3 (671 × 103 particles total), which was approximately >50-fold more volume than that on plain non-coated stems at 0.0006 mm3 (89 × 103 particles total). Only non-coated THA stems passed reestablished USP788 acceptance criteria, compared by using equivalent total volumes of contaminant particulate within new and legacy guideline ranges of >10 and >25 μm ECD, that is, <1.0 × 107 particles for <1 μm diameter in size, <600,000 for <1-10 μm, <6000 for 10-25 μm and <600 for >25 μm. These results fill a knowledge gap on how much residual debris can be expected to exist on packaged implants and can be used as a basis for updating acceptance criteria (i.e., termed USP788-Implant [USP788-I]). Residual implant particulate assessment is critical given the increasing implant complexity and new manufacturing techniques (e.g., additive manufacturing).
Collapse
Affiliation(s)
- Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Salem R Hallab
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Anastasia Alexander
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
8
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
9
|
Stolzer C, Müller M, Gosau M, Henningsen A, Fuest S, Aavani F, Smeets R. Do Titanium Dioxide Particles Stimulate Macrophages to Release Proinflammatory Cytokines and Increase the Risk for Peri-implantitis? J Oral Maxillofac Surg 2023; 81:308-317. [PMID: 36442535 DOI: 10.1016/j.joms.2022.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Titanium dioxide (TiO2) particles detached from titanium dental implants by tribocorrosion can be phagocytosed by macrophages, releasing various proinflammatory cytokines at the implant sites that may trigger peri-implantitis. The study objective was to measure the association between peri-implantitis and the presence of non-allergy-related proinflammatory cytokines associated with TiO2 particles. METHODS The investigators implemented a retrospective cross-sectional study and enrolled a sample of 60 subjects from a dental practice. Subjects were excluded if the plaque index was grade 3 (Silness and Löe). The predictor variable was a positive or negative TiO2 stimulation test, an in vitro macrophage proinflammatory response test. The outcome variable was peri-implantitis status defined as present or absent. Three groups were considered: control group with 20 patients without dental implants (group 1), 2 groups of patients with titanium dental implants, one without peri-implantitis (group 2), and the other with peri-implantitis (group 3) (n = 20 each). For patients with implants, depth of the gingival pockets of the implants were measured, and existing bleeding and suppuration were determined to assess peri-implantitis. Radiographs were taken if one or more factors applied to confirm the diagnosis of peri-implantitis. Further covariates were age, sex, duration of implant wear, and number of implants which were analyzed descriptively. Inferential analyses were undertaken using χ2 test, Kruskal-Wallis-, Wilcoxon-two-sample tests, and logistic regressions. RESULTS The sample was composed of 35 female and 25 male patients with a mean age of 54.2 years (standard deviation = 14.76). The overall TiO2 stimulation test positivity frequency was 28.3% and were 30.0%, 5.0%, and 50.0% in the control, implants without peri-implantitis, and implants with peri-implantitis groups. No statistically significant differences could be seen in the frequencies of the TiO2 stimulation test results between control group and combined groups 2 and 3 (P-value = .84). The risk for positive TiO2 patients with a titanium implant of developing peri-implantitis was statistically significant and higher compared to negative TiO2 patients (odds ratio, 19.0 with 95% confidence interval [2.12,170.38]; P-value< .01). CONCLUSIONS The data in this study showed a statistically significant relationship between a positive TiO2 stimulation test and peri-implantitis. Further studies with larger numbers of subjects are recommended to confirm this result.
Collapse
Affiliation(s)
- Carolin Stolzer
- Consultant, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Gosau
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Assistant Professor, Consultant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Research Assistant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Research Assistant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Connors JP, Stelzer JW, Garvin PM, Wellington IJ, Solovyova O. The Role of the Innate Immune System in Wear Debris-Induced Inflammatory Peri-Implant Osteolysis in Total Joint Arthroplasty. Bioengineering (Basel) 2022; 9:764. [PMID: 36550970 PMCID: PMC9774505 DOI: 10.3390/bioengineering9120764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Periprosthetic osteolysis remains a leading complication of total hip and knee arthroplasty, often resulting in aseptic loosening of the implant and necessitating revision surgery. Wear-induced particulate debris is the main cause initiating this destructive process. The purpose of this article is to review recent advances in understanding of how wear debris causes osteolysis, and emergent strategies for the avoidance and treatment of this disease. A strong activator of the peri-implant innate immune this debris-induced inflammatory cascade is dictated by macrophage secretion of TNF-α, IL-1, IL-6, and IL-8, and PGE2, leading to peri-implant bone resorption through activation of osteoclasts and inhibition of osteoblasts through several mechanisms, including the RANK/RANKL/OPG pathway. Therapeutic agents against proinflammatory mediators, such as those targeting tumor necrosis factor (TNF), osteoclasts, and sclerostin, have shown promise in reducing peri-implant osteolysis in vitro and in vivo; however, radiographic changes and clinical diagnosis often lag considerably behind the initiation of osteolysis, making timely treatment difficult. Considerable efforts are underway to develop such diagnostic tools, therapies, and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- John Patrick Connors
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - John W Stelzer
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Patrick M Garvin
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Ian J Wellington
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Olga Solovyova
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
11
|
Chen J, Ding J, Wu Y, Zhang S, Zheng N, Yang J, Xu J. Chromium Oxide Nanoparticle Impaired Osteogenesis and Cellular Response to Mechanical Stimulus. Int J Nanomedicine 2021; 16:6157-6170. [PMID: 34511912 PMCID: PMC8423495 DOI: 10.2147/ijn.s317430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Release of metallic wear particles from hip replacement implants is closely associated with aseptic loosening that affects the functionality and survivorship of the prostheses. Chromium oxide nanoparticles (CrNPs) are the dominant form of the wear particles found in the periprosthetic tissues. Whether CrNPs play a role in the clinically observed particle-induced osteolysis, tissue inflammatory reactions and functional activities of human mesenchymal stem cells (MSCs) remain unknown. Methods A tibia-defect rat model, cytotoxicity assays and flow cytometry were applied to study the effect of CrNPs on MSCs survival and macrophage inflammatory response. Also, oscillatory fluid flow stimulation was used to analyse the osteogenic differentiation of MSCs while treated by CrNPs. In addition, the influence of CrNPs on MSC biomechanical properties was determined via atomic force microscope (AFM) and fluorescence microscopy. Results It was found that implantation of CrNPs significantly decreased bone formation in vivo. CrNPs had no obvious effects on inflammatory cytokines release of U937 macrophages. Additionally, CrNPs did not interfere with MSCs osteogenic differentiation under static culture. However, the upregulated osteogenic differentiation of MSCs due to fluid flow stimulation was reduced by CrNPs in a dose-dependent manner. Moreover, osteogenic gene expression of OPN, Cox2 and Rnux2 after mechanical stimulation was also decreased by CrNPs treatments. Furthermore, cell elasticity and adhesion force of MSCs were affected by CrNPs over 3 days of exposure. We further verified that these effects of CrNPs could be associated with its interruption on cell mechanical properties. Conclusion The results demonstrated that CrNPs impaired cellular response to mechanical stimulus and osteogenesis without noticeable effects on the survival of the human MSCs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Paediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| | - Jing Ding
- Department of Paediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| | - Yuanhao Wu
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Shuqiong Zhang
- Department of Clinical Laboratory, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| | - Naisheng Zheng
- Department of Clinical Laboratory, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| | - Jing Xu
- Department of Paediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
12
|
An Interesting Case of Osteolysis With Accompanying Metallosis in a Primary Total Knee Arthroplasty. Arthroplast Today 2021; 11:81-87. [PMID: 34485655 PMCID: PMC8397922 DOI: 10.1016/j.artd.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Arthroplasty implants are comprised of metal alloys designed to function within the human body. Implant-related issues and associated soft-tissue reactions have been well documented for modular revision hip and knee constructs. This case highlights findings of metallosis in the context of polyethylene wear in a failed primary total knee arthroplasty. Fretting of a polyethylene reinforcement pin within the tibial baseplate as a direct result of knee joint instability appears to be the root cause of observed periprosthetic metallosis. Enhanced design principles and improved polyethylene locking mechanisms may be useful to potentially mitigate fretting-related issues in future knee replacement designs. The authors recommend surveillance in patients with this construct especially when prosthetic instability is present.
Collapse
|
13
|
Hallab NJ, Samelko L, Hammond D. Particulate Debris Released From Breast Implant Surfaces Is Highly Dependent on Implant Type. Aesthet Surg J 2021; 41:NP782-NP793. [PMID: 33564817 DOI: 10.1093/asj/sjab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although breast implants (BIs) have never been safer, factors such as implant debris may influence complications such as chronic inflammation and illness such as ALCL (anaplastic large cell lymphoma). Do different types of BIs produce differential particulate debris? OBJECTIVES The aim of this study was to quantify, investigate, and characterize the size, amount, and material type of both loosely bound and adherent surface particles on 5 different surface types of commercial BIs. METHODS Surface particles from BIs of 5 surface types (n = 5/group), Biocell, Microcell, Siltex, Smooth, SmoothSilk, and Traditional-Smooth, were: (1) removed by a rinsing procedure and (2) removed with ultrapure adhesive carbon tabs. Particles were characterized (ASTM 1877-16) by scanning electron microscopy and energy-dispersive X-ray chemical analysis. RESULTS Particles rinsed from Biocell, Microcell and Siltex were <1 μm in diameter whereas SmoothSilk and Traditional-Smooth surfaces had median sizes >1 μm (range, 0.4-2.7 μm). The total mass of particles rinsed from the surfaces indicated Biocell had >5-fold more particulate compared with all other implants, and >30-fold more than SmoothSilk or Traditional-Smooth implants (>100-fold more for post-rinse adhesion analysis). Energy-dispersive X-ray analysis indicated that the particulate material for Biocell, Microcell, and Siltex was silicone (>50%), whereas particulates from SmoothSilk and Traditional-Smooth implants were predominantly carbon-based polymers, eg, polycarbonate-urethane, consistent with packaging (and were detected on all implant types). Generally, SmoothSilk and Traditional-Smooth implant groups released >10-fold fewer particles than Biocell, Microcell, and Siltex surfaces. Pilot ex vivo tissue analysis supported these findings. CONCLUSIONS Particulate debris released from BIs are highly dependent on the type of implant surface and are a likely key determinant of in vivo performance. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | - Lauryn Samelko
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | | |
Collapse
|
14
|
Ou P, Hao C, Liu J, He R, Wang B, Ruan J. Cytocompatibility of Ti-xZr alloys as dental implant materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:50. [PMID: 33891193 PMCID: PMC8064977 DOI: 10.1007/s10856-021-06522-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
Ti-xZr (x = 5, 15, 25, 35, 45% wt%) alloys with low elastic modulus and high mechanical strength were fabricated as a novel implant material. The biocompatibility of the Ti-xZr alloys was evaluated by osteoblast-like cell line (MG63) in terms of cytotoxicity, proliferation, adhesion, and osteogenic induction using CCK-8 and live/dead cell assays, electron microscopy, and real-time PCR. The Ti-xZr alloys were non-toxic and showed superior biomechanics compared to commercially pure titanium (cpTi). Ti-45Zr had the optimum strength/elastic modulus ratio and osteogenic activity, thus is a promising to used as dental implants.
Collapse
Affiliation(s)
- Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Cong Hao
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, 410008, Hunan, PR China
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Rengui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Baoqi Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Odri GA, Sanchez J, Sverzut JM, Laredo JD, Sedel L, Bizot P. Does load-bearing materials influence hip capsule thickness in total hip replacement? An MRI case-matched study. Orthop Traumatol Surg Res 2021; 107:102497. [PMID: 31901431 DOI: 10.1016/j.otsr.2019.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ceramic-on-ceramic (COC) total hip replacements (THR) have exhibited less instability and late dislocation. Hip capsule plays an important role in hip stability. Different surrounding soft tissue reactions have been observed according to the bearing material used but no study compared these data using MRI investigation. Therefore, we performed a retrospective case control study to compare hip capsule thicknesses according to the bearing materials in THR and in native hips. HYPOTHESIS Hip capsule is thicker after COC THR compared to ceramic- or metal-on-polyethylene (PE) bearings, or native hips. MATERIALS AND METHOD Magnetic resonance imaging (MRI) images, combined with a multi acquisition variable resonance image combination (MAVRIC) sequence, was used to measure the hip capsule thickness in 16 patients (29 hips) who had either COC (13 hips, median age at surgery: 64.8 years old, median follow-up at imaging: 2482 days), PE bearings (11 hips, median age at surgery: 48.4 years old (significantly different from COC THR), median follow-up at imaging: 1860 days (NS)), or a native hip with no implant (5 hips). Two independent radiologists measured capsular thicknesses in 4 different zones and were blinded regarding the bearing components. The imaged hips were classified into three groups: native, COC and PE. RESULTS The COC THR group had the thickest capsules (median 7.0mm, range 2.9-15.5mm). This result was statistically significant (p<0.0001) when compared to PE THR (median 4.9mm, range 2.2-10.5mm), and to native hips (median 4.1mm, range 2.7-6.9mm) measurements, respectively. Furthermore, painful hips had thinner capsules (4.6mm, range 2-10.5) compared to not painful hips (6.8mm, range 2.3-15.5) (p=0.0006). DISCUSSION This is the first in-vivo study measuring capsular thickness in THR with the objective of measuring variations according to the hip implant materials used. The results revealed a significantly thicker capsule for the COC bearing compared to either PE or native hips, and a thinner capsule in painful hips. LEVEL OF EVIDENCE III, retrospective non-consecutive cohort study.
Collapse
Affiliation(s)
- Guillaume-Anthony Odri
- Service de chirurgie orthopédique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France.
| | - Julien Sanchez
- Service de radiologie ostéo-articulaire, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France
| | - Jean-Michel Sverzut
- Service de radiologie ostéo-articulaire, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France
| | - Jean-Denis Laredo
- Service de radiologie ostéo-articulaire, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France
| | - Laurent Sedel
- Service de chirurgie orthopédique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France
| | - Pascal Bizot
- Service de chirurgie orthopédique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 4, rue Ambroise-Paré, 75010 Paris, France
| |
Collapse
|
16
|
Ou P, Hao C, Liu J, He R, Zhang T, Wang Y, Yang H, Ruan J. Evaluation of biocompatibility and osseointegration of Nb-xTi-Zr alloys for use as dental implant materials. Biomed Mater 2020; 16. [PMID: 33296892 DOI: 10.1088/1748-605x/abd1f8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the biocompatibility and osteogenic potential of 50%Nb-xTi-Zr (NTZ, x=20%, 30%, 40% by weight) alloys as compared with dental commercial pure titanium (cpTi). Cell cytotoxity assay, fluorescence microscopy and electron microscopy were used to measure the in vitro biocompatibility of NTZ. The expression of alkaline phosphatase (ALP), integrin β1, osteocalcin (OC), Ki67 and collagen-I (Col-I) at the mRNA level was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). Osseointegration ability was determined using X-ray evaluation and histological analysis in vivo. Compared with the MG63 cells grown on cpTi on day 3, the viability, adherence and proliferation rates of cells cultured on NTZ alloys were significantly improved (p < 0.05). Furthermore, similar expression levels of Ki67, Col-Ⅰ, OC and ALP were found in the MG63 cells grown on NTZ alloys and those grown on cpTi. The Cbf α1 level was significantly higher for the 50%Nb-30%Ti-Zr (NTZ3) than for the cpTi group on day 6 (p < 0.01), indicating that NTZ alloys can induce osteogenesis. A considerable amount of new bone formation and osseointegration was observed around NTZ3 implants compared with cpTi implants in vivo. Collectively, NTZ3 showed superior biocompatibility and osteogenic activity; therefore, NTZ3 may be an excellent replacement for dental Ti implants.
Collapse
Affiliation(s)
- Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Cong Hao
- Department of Orthopedics, Xiangya Hospital Central South University, Xiangya Hospital, Central South University, Changsha 410008, PR China, Changsha, Hunan, 410008, CHINA
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China, Changsha, Hunan, 410004, CHINA
| | - Rengui He
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Yali Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, PR China, Changsha, Hunan, 410008, CHINA
| | - Hailin Yang
- Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| |
Collapse
|
17
|
Abstract
Niobium (Nb), Titanium (Ti), and Zirconium (Zr) have attracted much attention as implant materials due to it's excellent mechanical properties and biocompatibility. However, little attention has been paid to high Nb-containing biomedical alloys. Here, the 50 wt.%Nb-XTi-Zr ternary alloy(x = 20wt.%, 30 wt.%, 40 wt.%) with relative density over 90% was prepared by powder metallurgy method. The massive α(Zr) distributed along the grain boundaries and lamellar β(Zr) appeared in the grains of β(Nb) in the 50 wt.%Nb-20wt.%Ti-Zr alloy. The acicular α phase is mainly distributed in the β-grain of 50 wt.%Nb-30wt.%Ti-Zr alloy. And α(Ti)-colonies in the β-grains and continuous α(Ti)GB at β-grain boundary can be observed in the 50 wt.%Nb-40wt.%Ti-Zr alloy. Comparing with Nb-20wt.%Ti-Zr alloy and 50 wt.%Nb-40wt.%Ti-Zr alloy, the 50 wt.%Nb-30wt.%Ti-Zr alloy showed lower Vickers hardness and elastic modulus. Furthermore, the as-sintered 50 wt.%Nb-XTi-Zr alloy promoted the cell proliferation and cell adhesion of MG-63 cells on the surface of alloys. In conclusion, the 50 wt.%Nb-XTi-Zr alloy combines excellent mechanical and biological properties, and the 50 wt.%Nb-30wt.%Ti-Zr alloy with lower elastic modulus (close to the bone) is a more promising candidate for bone implant material.
Collapse
Affiliation(s)
- Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| |
Collapse
|
18
|
Mehta N, Hall DJ, Pourzal R, Garrigues GE. The Biomaterials of Total Shoulder Arthroplasty: Their Features, Function, and Effect on Outcomes. JBJS Rev 2020; 8:e1900212. [PMID: 32890047 DOI: 10.2106/jbjs.rvw.19.00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The materials that are used in total shoulder arthroplasty (TSA) implants have been carefully chosen in an attempt to minimize hardware-related complications. The 2 main metal alloys used in TSA implants are Ti-6Al-4V (titanium-aluminum-vanadium) and CoCrMo (cobalt-chromium-molybdenum). Ti alloys are softer than CoCr alloys, making them less wear-resistant and more susceptible to damage, but they have improved osseointegration and osteoconduction properties. Although controversial, metal allergy may be a concern in patients undergoing TSA and may lead to local tissue reaction and aseptic loosening. Numerous modifications to polyethylene, including cross-linking, minimizing oxidation, and vitamin E impregnation, have been developed to minimize wear and reduce complications. Alternative bearing surfaces such as ceramic and pyrolytic carbon, which have strong track records in other fields, represent promising possibilities to enhance the strength and the durability of TSA prostheses.
Collapse
Affiliation(s)
- Nabil Mehta
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Grant E Garrigues
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
19
|
Xu J, Yang J, Chen J, Zhang X, Wu Y, Hart A, Nyga A, Shelton JC. Activation of synovial fibroblasts from patients at revision of their metal-on-metal total hip arthroplasty. Part Fibre Toxicol 2020; 17:42. [PMID: 32854727 PMCID: PMC7450933 DOI: 10.1186/s12989-020-00374-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background The toxicity of released metallic particles generated in metal-on-metal (MoM) total hip arthroplasty (THA) using cobalt chromium (CoCr) has raised concerns regarding their safety amongst both surgeons and the public. Soft tissue changes such as pseudotumours and metallosis have been widely observed following the use of these implants, which release metallic by-products due to both wear and corrosion. Although activated fibroblasts, the dominant cell type in soft tissues, have been linked to many diseases, the role of synovial fibroblasts in the adverse reactions caused by CoCr implants remains unknown. To investigate the influence of implants manufactured from CoCr, the periprosthetic synovial tissues and synovial fibroblasts from patients with failed MoM THA, undergoing a revision operation, were analysed and compared with samples from patients undergoing a primary hip replacement, in order to elucidate histological and cellular changes. Results Periprosthetic tissue from patients with MoM implants was characterized by marked fibrotic changes, notably an increase in collagen content from less than 20% to 45–55%, an increase in α-smooth muscle actin positive cells from 4 to 9% as well as immune cells infiltration. Primary cell culture results demonstrated that MoM synovial fibroblasts have a decreased apoptosis rate from 14 to 6% compared to control synovial fibroblasts. In addition, synovial fibroblasts from MoM patients retained higher contractility and increased responsiveness to chemotaxis in matrix contraction. Their mechanical properties at a single cell level increased as observed by a 60% increase in contraction force and higher cell stiffness (3.3 kPa in MoM vs 2.18 kPa in control), as measured by traction force microscopy and atomic force microscopy. Further, fibroblasts from MoM patients promoted immune cell invasion by secreting monocyte chemoattractant protein 1 (MCP-1, CCL2) and induced monocyte differentiation, which could also be associated with excess accumulation of synovial macrophages. Conclusion Synovial fibroblasts exposed in vivo to MoM THA implants that release CoCr wear debris displayed dramatic phenotypic alteration and functional changes. These findings unravelled an unexpected effect of the CoCr alloy and demonstrated an important role of synovial fibroblasts in the undesired tissue reactions caused by MoM THAs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Paediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London, SE5 9NU, UK
| | - Jian Chen
- Department of Spine Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaoli Zhang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Alister Hart
- Institute of Orthopaedics & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4AP, UK
| | - Agata Nyga
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, University College London, London, NW3 2QG, UK. .,Current affiliation: MRC LMB, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
21
|
Abstract
The “pulsed electron deposition” (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine.
Collapse
|
22
|
Goodman SB, Pajarinen J, Yao Z, Lin T. Inflammation and Bone Repair: From Particle Disease to Tissue Regeneration. Front Bioeng Biotechnol 2019; 7:230. [PMID: 31608274 PMCID: PMC6761220 DOI: 10.3389/fbioe.2019.00230] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
When presented with an adverse stimulus, organisms evoke an immediate, pre-programmed, non-specific innate immune response. The purpose of this reaction is to maintain the organism's biological integrity and function, mitigate or eradicate the injurious source, and re-establish tissue homeostasis. The initial stage of this protective reaction is acute inflammation, which normally reduces or terminates the offending stimulus. As the inflammatory reaction recedes, the stage of tissue repair and regeneration follows. If the above sequence of events is perturbed, reconstitution of normal biological form and function will not be achieved. Dysregulation of these activities may result in incomplete healing, fibrosis, or chronic inflammation. Our laboratory has studied the reaction to wear particles from joint replacements as a paradigm for understanding the biological pathways of acute and chronic inflammation, and potential translational treatments to reconstitute lost bone. As inflammation is the cornerstone for healing in all anatomical locations, the concepts developed have relevance to tissue engineering and regenerative medicine in all organ systems. To accomplish our goal, we developed novel in vitro and in vivo models (including the murine femoral continuous intramedullary particle infusion model), translational strategies including modulation of macrophage chemotaxis and polarization, and methods to interfere with key transcription factors NFκB and MyD88. We purposefully modified MSCs to facilitate bone healing in inflammatory scenarios: by preconditioning the MSCs, and by genetically modifying MSCs to first sense NFκB activation and then overexpress the anti-inflammatory pro-regenerative cytokine IL-4. These advancements provide significant translational opportunities to enhance healing in bone and other organs.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Pajarinen
- Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Pantaroto HN, Amorim KP, Matozinho Cordeiro J, Souza JGS, Ricomini-Filho AP, Rangel EC, Ribeiro ALR, Vaz LG, Barão VAR. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. BIOFOULING 2019; 35:173-186. [PMID: 30935231 DOI: 10.1080/08927014.2019.1580360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The chemical composition of biomaterials can drive their biological responses; therefore, this in vitro study aimed to evaluate the proteomic profile of the salivary pellicle formed on titanium (Ti) alloys containing niobium (Nb) and zirconium (Zr). The experimental groups consisted of Ti35NbxZr (x = 5 and 10 wt%) alloys, and commercially pure titanium (cpTi); titanium aluminium vanadium (Ti6Al4V) alloys were used as controls. The physical and chemical characteristics of the Ti materials were analysed. The proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry. Bacterial adhesion (2 h) of mixed species (Streptococcus sanguinis and Actinomyces naeslundii) was investigated as colony-forming units (n = 6). This paper reports the finding that salivary pellicle composition can be modulated by the composition of the Ti material. The Ti35NbxZr group showed a significant ability to adsorb proteins from saliva, which can favour interactions with cells and compatibility with the body.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Karina Pintaudi Amorim
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Jairo Matozinho Cordeiro
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - João Gabriel S Souza
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Antônio Pedro Ricomini-Filho
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Elidiane C Rangel
- c Laboratory of Technological Plasmas, Engineering College , University Estadual Paulista (UNESP) , Sorocaba , São Paulo , Brazil
- d Faculdade de Ciências do Tocantins (FACIT) , Araguaína , Tocantins , Brazil
| | - Ana Lúcia R Ribeiro
- e Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC) , Araguaína , Tocantins , Brazil
| | - Luís Geraldo Vaz
- f Department of Dental Materials and Prosthodontics , University Estadual Paulista (UNESP), Araraquara Dental School , Araraquara , São Paulo , Brazil
| | - Valentim A R Barão
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| |
Collapse
|
24
|
Hallab NJ, Samelko L, Hammond D. The Inflammatory Effects of Breast Implant Particulate Shedding: Comparison With Orthopedic Implants. Aesthet Surg J 2019; 39:S36-S48. [PMID: 30715176 PMCID: PMC6355107 DOI: 10.1093/asj/sjy335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Currently, there is a dearth of information regarding the degree of particle shedding from breast implants (BIs) and what are the general biological consequences of BI debris. Thus, it is unclear to what degree BI debris compromises the long-term biological performance of BIs. For orthopedic implants, it is well established that the severity of biological reactivity to implant debris governs long-term clinical performance. Orthopedic implant particulate debris is generally in the range of 0.01 to 100 μm in diameter. Implant debris-induced bioreactivity/inflammation is mostly a peri-implant phenomenon caused by local innate immune cells (eg, macrophages) that produce proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and prostaglandin 2 (PGE2). In orthopedics, there have been few systemic concerns associated with polymeric implant debris (like silicone) other than documented dissemination to remote organs (eg, liver, spleen, etc.) with no known associated pathogenicity. This is not true of metal implant debris where normal (well-functioning) implants can induce systemic reactions such as delayed type hypersensitivity. Diagnostic analysis of orthopedic tissues has focused on innate (macrophage mediated) and adaptive (lymphocyte-mediated hypersensitivity) immune responses. Orthopedic implant debris-associated lymphocyte cancers have not been reported in over 40 years of orthopedic literature. Adaptive immune responses such as hypersensitivity reactions to orthopedic implant debris have been dominated by certain implant types that produce specific kinds of debris (eg, metal-on-metal total joint prostheses). Orthopedic hypersensitivity responses and atypical BI bioreactivity such as BI-associated anaplastic large cell lymphoma share crossover markers for diagnosis. Differentiating normal innate immune reactivity to particles from anaplastic large cell lymphoma reactions from delayed type hypersensitivity reactions to BI-associated implant debris remains unclear but vital to patients and surgeons.
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Lauryn Samelko
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | | |
Collapse
|
25
|
Cordeiro JM, Faverani LP, Grandini CR, Rangel EC, da Cruz NC, Nociti Junior FH, Almeida AB, Vicente FB, Morais BR, Barão VA, Assunção WG. Characterization of chemically treated Ti-Zr system alloys for dental implant application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:849-861. [DOI: 10.1016/j.msec.2018.07.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
|
26
|
Wei G, Liang T, Wei C, Nong X, Lu Q, Zhao J. Arctigenin inhibits RANKL‐induced osteoclastogenesis and hydroxyapatite resorption in vitro and prevents titanium particle–induced bone loss in vivo. J Cell Biochem 2018; 120:5367-5376. [PMID: 30317692 DOI: 10.1002/jcb.27815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gejin Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
- Department of Orthopedics, Hospital of PLA Guangxi China
| | - Tihong Liang
- Department of Orthopedics Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Chengming Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Xiaolian Nong
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Qiteng Lu
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Jinmin Zhao
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| |
Collapse
|
27
|
Bhaskar N, Sarkar D, Basu B. Probing Cytocompatibility, Hemocompatibility, and Quantitative Inflammatory Response in Mus musculus toward Oxide Bioceramic Wear Particulates and a Comparison with CoCr. ACS Biomater Sci Eng 2018; 4:3194-3210. [DOI: 10.1021/acsbiomaterials.8b00583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Debasish Sarkar
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769004, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore-560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
28
|
Polyethylene particles inserted over calvarium induce cancellous bone loss in femur in female mice. Bone Rep 2018; 9:84-92. [PMID: 30094298 PMCID: PMC6073052 DOI: 10.1016/j.bonr.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Focal bone resorption (osteolysis) induced by wear particles contributes to long-term orthopedic joint failure. However, the impact of focal osteolysis on remote skeletal sites has received less attention. The goal of this study was to determine the effects of polyethylene particles placed over calvaria on representative axial and appendicular skeletal sites in female mice. Because recent work has identified housing temperature as an important biological variable in mice, response to particle treatment was measured in animals housed at room (22 °C) and thermoneutral (32 °C) temperature. Osteolysis was evident in skeletal tissue adjacent to particle insertion. In addition, cancellous bone loss was observed in distal femur metaphysis. The bone loss was associated with lower osteoblast-lined perimeter and lower mineralizing perimeter in distal femur, lower osteocalcin gene expression in tibia, and lower serum osteocalcin, suggesting the response was due, at least in part, to reduced bone formation. Mild cold stress induced by sub-thermoneutral housing resulted in cancellous bone loss in distal femur and lumbar vertebra but did not influence skeletal response to particles. In summary, the results indicate that focal inflammation induced by polyethylene particles has the potential to result in systemic bone loss. This is significant because bone loss is a risk factor for fracture.
Wear particles contribute to orthopedic joint failure by promoting focal inflammation- mediated osteolysis. Here we investigated effects of polyethylene particles placed over calvaria on remote skeletal sites in female mice. Particles placed over calvaria resulted in focal inflammation and cancellous bone loss in distal femur metaphysis. Lower osteoblast-lined perimeter suggests reduced bone formation contributed to bone loss in distal femur. Our results suggest focal inflammation induced by polyethylene particles has the potential to result in systemic bone loss.
Collapse
|
29
|
Mahon OR, Dunne A. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets. Front Immunol 2018; 9:1145. [PMID: 29892292 PMCID: PMC5985611 DOI: 10.3389/fimmu.2018.01145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
It is now well established that intra-articular deposition of endogenous particulates, such as osteoarthritis-associated basic calcium phosphate crystals, gout-associated monosodium urate crystals, and calcium deposition disease-associated calcium pyrophosphate crystals, contributes to joint destruction through the production of cartilage-degrading enzymes and pro-inflammatory cytokines. Furthermore, exogenous wear-debris particles, generated from prosthetic implants, drive periprosthetic osteolysis which impacts on the longevity of total joint replacements. Over the last few years, significant insight has been gained into the mechanisms through which these particulates exert their effects. Not only has this increased our understanding of the pathological processes associated with crystal deposition but it has also led to the identification of a number of therapeutic targets to treat particulate-associated disease. In this review, we discuss recent developments regarding the cellular events triggered by joint-associated particulates, as well as future directions in therapy for particulate-related arthropathies.
Collapse
Affiliation(s)
- Olwyn R Mahon
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Xu J, Yang J, Nyga A, Ehteramyan M, Moraga A, Wu Y, Zeng L, Knight MM, Shelton JC. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta Biomater 2018; 72:434-446. [PMID: 29649639 PMCID: PMC5953279 DOI: 10.1016/j.actbio.2018.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Histological assessments of synovial tissues from patients with failed CoCr alloy hip prostheses demonstrate extensive infiltration and accumulation of macrophages, often loaded with large quantities of particulate debris. The resulting adverse reaction to metal debris (ARMD) frequently leads to early joint revision. Inflammatory response starts with the recruitment of immune cells and requires the egress of macrophages from the inflamed site for resolution of the reaction. Metal ions (Co2+ and Cr3+) have been shown to stimulate the migration of T lymphocytes but their effects on macrophages motility are still poorly understood. To elucidate this, we studied in vitro and in vivo macrophage migration during exposure to cobalt and chromium ions and nanoparticles. We found that cobalt but not chromium significantly reduces macrophage motility. This involves increase in cell spreading, formation of intracellular podosome-type adhesion structures and enhanced cell adhesion to the extracellular matrix (ECM). The formation of podosomes was also associated with the production and activation of matrix metalloproteinase-9 (MMP9) and enhanced ECM degradation. We showed that these were driven by the down-regulation of RhoA signalling through the generation of reactive oxygen species (ROS). These novel findings reveal the key mechanisms driving the wear/corrosion metallic byproducts-induced inflammatory response at non-toxic concentrations. Statement of significance Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to surgeons and patients. Macrophages are the key regulators of these adverse responses to the ions and debris generated. We demonstrated that cobalt, rather than chromium, causes macrophage retention by restructuring the cytoskeleton and inhibiting cell migration via ROS production that affects Rho Family GTPase. This distinctive effect of cobalt on macrophage behaviour can help us understand the pathogenesis of ARMD and the cellular response to cobalt based alloys, which provide useful information for future implant design and biocompatibility testing.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Department of Laboratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Agata Nyga
- Division of Surgery and Interventional Sciences, University College London, London NW3 2QG, United Kingdom; Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Mazdak Ehteramyan
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Ana Moraga
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.
| | - Martin M Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
31
|
Vaishnavi R, Joseph J, Jyothi Prasanth M, Mohanty M, Sabareeswaran A. TLR-4 expression in corrosion metal debri induced hypoxic milieu around stainless steel fracture plates. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaad83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Yan X, Liu Y, Xie T, Liu F. α-Tocopherol protected against cobalt nanoparticles and cocl2 induced cytotoxicity and inflammation in Balb/3T3 cells. Immunopharmacol Immunotoxicol 2018; 40:179-185. [PMID: 29350096 DOI: 10.1080/08923973.2018.1424901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Yan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tian Xie
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
33
|
Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses. Oncotarget 2017. [PMID: 29541407 PMCID: PMC5834256 DOI: 10.18632/oncotarget.23757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 108 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro, with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo. Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses.
Collapse
|
34
|
Liu Y, Zhu H, Hong H, Wang W, Liu F. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017; 6:649-655. [PMID: 29203637 PMCID: PMC5935811 DOI: 10.1302/2046-3758.612.bjr-2016-0137.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results CoNPs and Co2+ can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co2+, decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co2+ in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2.
Collapse
Affiliation(s)
- Y Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - H Zhu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - H Hong
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - W Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - F Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
35
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
36
|
Cordeiro JM, Beline T, Ribeiro ALR, Rangel EC, da Cruz NC, Landers R, Faverani LP, Vaz LG, Fais LMG, Vicente FB, Grandini CR, Mathew MT, Sukotjo C, Barão VAR. Development of binary and ternary titanium alloys for dental implants. Dent Mater 2017; 33:1244-1257. [PMID: 28778495 DOI: 10.1016/j.dental.2017.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. METHODS The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). RESULTS The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. SIGNIFICANCE The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements.
Collapse
Affiliation(s)
- Jairo M Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Thamara Beline
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Ana Lúcia R Ribeiro
- Faculdade de Ciências do Tocantins (FACIT), Rua D 25, Qd 11, Lt 10, Setor George Yunes, Araguaína, Tocantins 77818-650, Brazil; Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC), Av. Filadélfia, 568, Araguaína, Tocantins 77816-540, Brazil
| | - Elidiane C Rangel
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Nilson C da Cruz
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Institute of Physics Gleb Wataghin, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, São Paulo 13083-859, Brazil
| | - Leonardo P Faverani
- Univ Estadual Paulista (UNESP), Aracatuba Dental School, Department of Surgery and Integrated Clinic, R. José Bonifácio, 1193, Aracatuba, São Paulo 16015-050, Brazil
| | - Luís Geraldo Vaz
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Laiza M G Fais
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Fabio B Vicente
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Universidade Paulista (UNIP), Av. Nossa Sra. de Fátima, 9-50, Bauru, São Paulo 17017-337, Brazil
| | - Carlos R Grandini
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Univ Estadual Paulista (UNESP), Laboratório de Anelasticidade e Biomateriais, Av. Eng. Luiz Edmundo Carrijo Coube, Bauru, São Paulo 17033-360, Brazil
| | - Mathew T Mathew
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois College of Medicine at Rockford, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Cortino Sukotjo
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA.
| |
Collapse
|
37
|
Deng Z, Jin J, Wang Z, Wang Y, Gao Q, Zhao J. The metal nanoparticle-induced inflammatory response is regulated by SIRT1 through NF-κB deacetylation in aseptic loosening. Int J Nanomedicine 2017; 12:3617-3636. [PMID: 28553103 PMCID: PMC5439723 DOI: 10.2147/ijn.s124661] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aseptic loosening is the most common cause of total hip arthroplasty (THA) failure, and osteolysis induced by wear particles plays a major role in aseptic loosening. Various pathways in multiple cell types contribute to the pathogenesis of osteolysis, but the role of Sirtuin 1 (SIRT1), which can regulate inflammatory responses through its deacetylation, has never been investigated. We hypothesized that the downregulation of SIRT1 in macrophages induced by metal nanoparticles was one of the reasons for osteolysis in THA failure. In this study, the expression of SIRT1 was examined in macrophages stimulated with metal nanoparticles from materials used in prosthetics and in specimens from patients suffering from aseptic loosening. To address whether SIRT1 downregulation triggers these inflammatory responses, the effects of the SIRT1 activator resveratrol on the expression of inflammatory cytokines in metal nanoparticle-stimulated macrophages were tested. The results demonstrated that SIRT1 expression was significantly downregulated in metal nanoparticle-stimulated macrophages and clinical specimens of prosthesis loosening. Pharmacological activation of SIRT1 dramatically reduced the particle-induced expression of inflammatory cytokines in vitro and osteolysis in vivo. Furthermore, SIRT1 regulated particle-induced inflammatory responses through nuclear factor kappa B (NF-κB) acetylation. Thus, the results of this study suggest that SIRT1 plays a key role in metal nanoparticle-induced inflammatory responses and that targeting the SIRT1 pathway may lead to novel therapeutic approaches for the treatment of aseptic prosthesis loosening.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Jiewen Jin
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Zhenheng Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
| | - Yong Wang
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Gao
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
| |
Collapse
|
38
|
Baskey SJ, Lehoux EA, Catelas I. Effects of cobalt and chromium ions on lymphocyte migration. J Orthop Res 2017; 35:916-924. [PMID: 27302629 DOI: 10.1002/jor.23336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/05/2016] [Indexed: 02/04/2023]
Abstract
A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co2+ and Cr3+ in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co2+ or Cr3+ , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co2+ and Cr3+ was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co2+ (8 ppm) and Cr3+ (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co2+ and Cr3+ can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co2+ or Cr3+ were not statistically different from those in culture supernatants of macrophages exposed to Co2+ or Cr3+ , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co2+ and Cr3+ are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017.
Collapse
Affiliation(s)
- Stephen J Baskey
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
| | - Eric A Lehoux
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
| | - Isabelle Catelas
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5.,Department of Surgery, University of Ottawa, The Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, Ontario, Canada, K1H 8L6.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| |
Collapse
|
39
|
Hallab NJ, Jacobs JJ. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front Endocrinol (Lausanne) 2017; 8:5. [PMID: 28154552 PMCID: PMC5243846 DOI: 10.3389/fendo.2017.00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/06/2017] [Indexed: 01/19/2023] Open
Abstract
Despite the success in returning people to health saving mobility and high quality of life, the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after approximately 15-25 years of use, due to slow progressive subtle inflammation to implant debris compromising the bone implant interface. This local inflammatory pseudo disease state is primarily caused by implant debris interaction with innate immune cells, i.e., macrophages. This implant debris can also activate an adaptive immune reaction giving rise to the concept of implant-related metal sensitivity. However, a consensus of studies agree the dominant form of this response is due to innate reactivity by macrophages to implant debris danger signaling (danger-associated molecular pattern) eliciting cytokine-based and chemokine inflammatory responses. This review covers implant debris-induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and how this leads to subsequent implant failure through loosening and osteolysis, i.e., what is known of central chemokines (e.g., IL-8, monocyte chemotactic protein-1, MIP-1, CCL9, CCL10, CCL17, and CCL22) associated with implant debris reactivity as related to the innate immune system activation/cytokine expression, e.g., danger signaling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, tumor necrosis factor α, etc.), bone catabolism (e.g., TRAP5b), and hypoxia responses (HIF-1α). More study is needed, however, to fully understand these interactions to effectively counter cytokine- and chemokine-based orthopedic implant-related inflammation.
Collapse
Affiliation(s)
- Nadim J. Hallab
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Joshua J. Jacobs
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Sartori M, Vincenzi F, Ravani A, Cepollaro S, Martini L, Varani K, Fini M, Tschon M. RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an in vitro model of periprosthetic osteolysis. J Biomed Mater Res A 2016; 105:510-520. [PMID: 27667508 DOI: 10.1002/jbm.a.35912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Wear-particle osteolysis affects prosthesis survival leading to implant loosening up to 70% of revisions. Therapeutic strategies are increasing, however alternative testing methods to experimentally evaluate such treatments are lacking. The aim of this study was to reproduce an in vitro osteolysis model recapitulating the events that, starting from the exposure of macrophages to polyethylene, lead to the establishment of osteoclastogenesis and inflammation. Responses to polyethylene, at 3 and 7 days, in a macrophage cell line, RAW 264.7, were determined by DNA quantification, immunofluorescence, pit assay, gene expression, cytokine production and NF-kB activation. Results showed that 3 days exposure to particles could induce a significant production of Tumor Necrosis Factor alpha (p < 0.0005) and Prostaglandin E2 (p < 0.005) compared to controls. Particles also induced macrophages to spontaneously differentiate into mature and active osteoclasts, in terms of identification of multinucleated cells by Phalloidin staining and by the analysis of osteoclast-specific gene markers. In particular, at 3 days polyethylene induced a significant up-regulation of Nuclear Factor of Activated T-cells, cytoplasmic 1, Receptor Activator of Nuclear factor Kappa-B and Receptor Activator of Nuclear Factor Kappa-B Ligand genes (p < 0.0005) compared to controls. At protein level, the particles induced a significant increase of Receptor Activator of Nuclear Factor Kappa-B Ligand at day 7 over controls (p < 0.0005). Osteoclasts were capable to resorb bone even in absence of differentiating factors. The possible mechanism, beside spontaneous osteoclastogenesis mediated by wear debris, was identified in an autocrine up-regulation of Receptor activator of nuclear factor kappa-B ligand gene expression and protein synthesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 510-520, 2017.
Collapse
Affiliation(s)
- M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, BITTA, Rizzoli Orthopaedic Institute- Research, Innovation and Technology Department (RIT), via di Barbiano 1/10, 40136, Bologna, Italy
| | - F Vincenzi
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - A Ravani
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - S Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - L Martini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - K Varani
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - M Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| |
Collapse
|
41
|
Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, Shi T, He W, Wang L, Guo T, Bao N, Wang R, Huang Z, Chen J, Dong L, Zhao J, Zhang J. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy 2016; 11:2358-69. [PMID: 26566231 PMCID: PMC4835204 DOI: 10.1080/15548627.2015.1106779] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Wear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model. Our study demonstrated that CoPs stimulated autophagy in osteoblasts and PIO (particle-induced osteolysis) animal models. Both autophagy inhibitor 3-MA (3-methyladenine) and siRNA of Atg5 could dramatically reduce CoPs-induced apoptosis in osteoblasts. Further, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Moreover, 3-MA also prevented osteoblast apoptosis in an antiautophagic way when tested in PIO model. Collectively, these results suggest that autophagy plays a key role in CoPs-induced osteolysis and that targeting autophagy-related pathways may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.
Collapse
Affiliation(s)
- Zhenheng Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Naicheng Liu
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Kang Liu
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Gang Zhou
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jingjing Gan
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Zhenzhen Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Tongguo Shi
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Wei He
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Lintao Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Ting Guo
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Nirong Bao
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China
| | - Rui Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China
| | - Zhen Huang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jiangning Chen
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Lei Dong
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jianning Zhao
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Junfeng Zhang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China.,c Jiangsu Provincial Laboratory for Nano-Technology; Nanjing University , Nanjing , China
| |
Collapse
|
42
|
Jämsen E, Kouri VP, Ainola M, Goodman SB, Nordström DC, Eklund KK, Pajarinen J. Correlations between macrophage polarizing cytokines, inflammatory mediators, osteoclast activity, and toll-like receptors in tissues around aseptically loosened hip implants. J Biomed Mater Res A 2016; 105:454-463. [DOI: 10.1002/jbm.a.35913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/04/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Eemeli Jämsen
- Department of Medicine, Clinicum; University of Helsinki, and Helsinki University Hospital; Helsinki Finland
| | - Vesa-Petteri Kouri
- Department of Medicine, Clinicum; University of Helsinki, and Helsinki University Hospital; Helsinki Finland
| | - Mari Ainola
- Department of Medicine, Clinicum; University of Helsinki, and Helsinki University Hospital; Helsinki Finland
| | - Stuart B. Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery; Stanford University School of Medicine; Stanford California
| | - Dan C. Nordström
- Department of Medicine, Clinicum; University of Helsinki, and Helsinki University Hospital; Helsinki Finland
- Internal Medicine and Rehabilitation; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Kari K. Eklund
- Department of Medicine, Clinicum; University of Helsinki, and Helsinki University Hospital; Helsinki Finland
- Rheumatology, University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Jukka Pajarinen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery; Stanford University School of Medicine; Stanford California
| |
Collapse
|
43
|
Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z, Hamadouche M, Goodman SB. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J Biomed Mater Res B Appl Biomater 2016; 105:2162-2173. [PMID: 27328111 DOI: 10.1002/jbm.b.33734] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Joint replacement is a commonly performed, highly successful orthopaedic procedure, for which surgeons have a large choice of different materials and implant designs. The materials used for joint replacement must be both biologically acceptable to minimize adverse local tissue reactions, and robust enough to support weight bearing during common activities of daily living. Modern joint replacements are made from metals and their alloys, polymers, ceramics, and composites. This review focuses on the biological response to the different biomaterials used for joint replacement. In general, modern materials for joint replacement are well tolerated by the body as long as they are in bulk (rather than in particulate or ionic) form, are mechanically stable and noninfected. If the latter conditions are not met, the prosthesis will be associated with an acute/chronic inflammatory reaction, peri-prosthetic osteolysis, loosening and failure. This article (Part 1 of 2) is dedicated to the use of metallic devices in orthopaedic surgery including the associated biological response to metallic byproducts is a review of the basic science literature regarding this topic. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2162-2173, 2017.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires - UMR CNRS 7052, Faculté de Médecine - Université Paris7, Paris, France.,Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Florence Loi
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Moussa Hamadouche
- Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
44
|
Borthwick LA, Suwara MI, Carnell SC, Green NJ, Mahida R, Dixon D, Gillespie CS, Cartwright TN, Horabin J, Walker A, Olin E, Rangar M, Gardner A, Mann J, Corris PA, Mann DA, Fisher AJ. Pseudomonas aeruginosa Induced Airway Epithelial Injury Drives Fibroblast Activation: A Mechanism in Chronic Lung Allograft Dysfunction. Am J Transplant 2016; 16:1751-65. [PMID: 26714197 PMCID: PMC4879508 DOI: 10.1111/ajt.13690] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 01/25/2023]
Abstract
Bacterial infections after lung transplantation cause airway epithelial injury and are associated with an increased risk of developing bronchiolitis obliterans syndrome. The damaged epithelium is a source of alarmins that activate the innate immune system, yet their ability to activate fibroblasts in the development of bronchiolitis obliterans syndrome has not been evaluated. Two epithelial alarmins were measured longitudinally in bronchoalveolar lavages from lung transplant recipients who developed bronchiolitis obliterans syndrome and were compared to stable controls. In addition, conditioned media from human airway epithelial cells infected with Pseudomonas aeruginosa was applied to lung fibroblasts and inflammatory responses were determined. Interleukin-1 alpha (IL-1α) was increased in bronchoalveolar lavage of lung transplant recipients growing P. aeruginosa (11.5 [5.4-21.8] vs. 2.8 [0.9-9.4] pg/mL, p < 0.01) and was significantly elevated within 3 months of developing bronchiolitis obliterans syndrome (8.3 [1.4-25.1] vs. 3.6 [0.6-17.1] pg/mL, p < 0.01), whereas high mobility group protein B1 remained unchanged. IL-1α positively correlated with elevated bronchoalveolar lavage IL-8 levels (r(2) = 0.6095, p < 0.0001) and neutrophil percentage (r(2) = 0.25, p = 0.01). Conditioned media from P. aeruginosa infected epithelial cells induced a potent pro-inflammatory phenotype in fibroblasts via an IL-1α/IL-1R-dependent signaling pathway. In conclusion, we propose that IL-1α may be a novel therapeutic target to limit Pseudomonas associated allograft injury after lung transplantation.
Collapse
Affiliation(s)
- L. A. Borthwick
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - M. I. Suwara
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - S. C. Carnell
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - N. J. Green
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - R. Mahida
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - D. Dixon
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - C. S. Gillespie
- School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneUK
| | - T. N. Cartwright
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - J. Horabin
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - A. Walker
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - E. Olin
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - M. Rangar
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK,Institute of TransplantationNewcastle Upon Tyne Hospitals NHS Foundation TrustFreeman HospitalNewcastle upon TyneUK
| | - A. Gardner
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - J. Mann
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - P. A. Corris
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK,Institute of TransplantationNewcastle Upon Tyne Hospitals NHS Foundation TrustFreeman HospitalNewcastle upon TyneUK
| | - D. A. Mann
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - A. J. Fisher
- Tissue Fibrosis and Repair GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK,Institute of TransplantationNewcastle Upon Tyne Hospitals NHS Foundation TrustFreeman HospitalNewcastle upon TyneUK
| |
Collapse
|
45
|
Schoenenberger AD, Schipanski A, Malheiro V, Kucki M, Snedeker JG, Wick P, Maniura-Weber K. Macrophage Polarization by Titanium Dioxide (TiO2) Particles: Size Matters. ACS Biomater Sci Eng 2016; 2:908-919. [DOI: 10.1021/acsbiomaterials.6b00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Angelina D. Schoenenberger
- Department
of Orthopaedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland
- Institute
for Biomechanics, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | - Jess G. Snedeker
- Department
of Orthopaedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland
- Institute
for Biomechanics, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | |
Collapse
|
46
|
Gibon E, Córdova LA, Lu L, Lin TH, Yao Z, Hamadouche M, Goodman SB. The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater 2016; 105:1685-1691. [PMID: 27080740 DOI: 10.1002/jbm.b.33676] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/02/2016] [Accepted: 03/20/2016] [Indexed: 11/10/2022]
Abstract
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1685-1691, 2017.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopedic Surgery, Stanford University, Stanford, California.,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, Faculté de Médecine-Université Paris 7, Paris, France.,Department of Orthopedic Surgery, Hopital Cochin, APHP, Paris, France
| | - Luis A Córdova
- Department of Orthopedic Surgery, Stanford University, Stanford, California.,Department of Oral and Maxillofacial Surgery, University of Chile-Conicyt, Santiago, Chile
| | - Laura Lu
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Tzu-Hua Lin
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Zhenyu Yao
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Moussa Hamadouche
- Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, Faculté de Médecine-Université Paris 7, Paris, France.,Department of Orthopedic Surgery, Hopital Cochin, APHP, Paris, France
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
47
|
Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016; 84:262-275. [DOI: 10.1016/j.biomaterials.2016.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
|
48
|
Chen L, Zhang Y, Liu J, Wei L, Song B, Shao L. Exposure of the murine RAW 264.7 macrophage cell line to dicalcium silicate coating: assessment of cytotoxicity and pro-inflammatory effects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:59. [PMID: 26800690 DOI: 10.1007/s10856-016-5668-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Inflammatory effects are significant elements of the immune response to biomaterials. Previously, we reported inflammatory effects in response to dicalcium silicate (Ca2SiO4, C2S) particles. However, the immunological effects of C2S coatings have not been studied. C2S often used as coatings materials in orthopedic and dentistry applications. It may have different effect from C2S particles. Further, it remains unclear whether C2S coating is equally biocompatible as 45S5 coating. The aim of this study was to test the cytotoxicity and pro-inflammatory effects of C2S coating on RAW 264.7 macrophages. C2S and 45S5 coatings were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive analysis (EDS) and X-ray diffraction (XRD). inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to detect ionic concentrations after soaking coated discs in medium. The cytotoxicity of C2S and 45S5 coatings against RAW 264.7 macrophages was measured using the LDH Cytotoxicity Assay Kit, Cell Counting Kit-8 (CCK-8) assays and flow cytometry for apoptosis assays. The gene and protein expression of TNF-α, IL-6 and IL-1β were detected using RT-q PCR and ELISA, respectively. The tested coating materials are not cytotoxic to macrophages. The C2S-coated surface stimulated macrophages to express pro-inflammatory mediators, such as TNF-α, IL-6 and IL-1β, and C2S coating caused less IL-6 but greater IL-1β production than the 45S5 coating. C2S coating have no cytotoxicity when directly cultured with macrophages. C2S and 45S5 coatings both have the potential to induce pro-inflammatory effects, and the biocompatibility of C2S is similar to that of 45S5.
Collapse
Affiliation(s)
- Liangjiao Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, People's Republic of China
| | - Yanli Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou, 510515, People's Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou, 510515, People's Republic of China
| | - Limin Wei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou, 510515, People's Republic of China
| | - Bin Song
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou, 510515, People's Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
49
|
Ormsby RT, Cantley M, Kogawa M, Solomon LB, Haynes DR, Findlay DM, Atkins GJ. Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis. Acta Biomater 2016; 33:242-51. [PMID: 26796208 DOI: 10.1016/j.actbio.2016.01.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 01/04/2023]
Abstract
Periprosthetic osteolysis (PO) leading to aseptic loosening, is the most common cause of failure of total hip replacement (THR) in the mid- to long-term. Polyethylene (PE) particulates from the wear of prosthesis liners are bioactive and are implicated in the initiation and or progression of osteolysis. Evidence exists that cells of the osteoblast/osteocyte lineage are affected by PE particles and contribute to the catabolic response by promoting osteoclastic bone resorption. In this study, we hypothesised that osteocytes contribute directly to PO by removing bone from their perilacunar matrix. Osteocyte responses to ultra-high molecular weight PE (UHMWPE) particles were examined in vitro in human primary osteocyte-like cultures, in vivo in the mouse calvarial osteolysis model, and in the acetabulum of patients undergoing revision total hip replacement (THR) surgery for PO. Osteocytes exposed to UHMWPE particles showed upregulated expression of catabolic markers, MMP-13, carbonic anhydrase 2 (CA2), cathepsin K (CTSK) and tartrate resistant acid phosphatase (TRAP), with no effect on cell viability, as assessed by Caspase 3 activity. Consistent with this catabolic activity causing perilacunar bone loss, histological analysis of calvarial sections from mice exposed to UHMWPE revealed a significant (p<0.001) increase in osteocyte lacunar area (Lac.Ar) compared to sham-operated animals. Furthermore, acetabular biopsies from patients with PO also showed significantly (p<0.001) increased osteocyte lacunar size in trabecular bone adjacent to PE particles, compared with osteocyte lacunar size in bone from primary THR patients. Together, these findings suggest a previously unrecognised action of UHMWPE wear particles on osteocytes, which directly results in a loss of osteocyte perilacunar bone. This action may exacerbate the indirect pro-osteoclastic action of UHMWPE-affected osteocytes, previously shown to contribute to aseptic loosening of orthopaedic implants. STATEMENT OF SIGNIFICANCE This study addresses the clinical problem of periprosthetic osteolysis, bone loss in response to polyethylene wear particles derived from materials used in orthopaedic implants. Periprosthetic osteolysis has been thought to be due largely to wear particles stimulating the activity of bone resorbing osteoclasts. However, in this study we demonstrate for the first time that polyethylene particles stimulate another type of bone loss, mediated by the direct activity of bone mineral embedded osteocytes, termed osteocytic osteolysis or osteocyte perilacunar remodelling. This study provides new mechanistic insight into wear-particle mediated bone loss and represents a new paradigm for the way in which bone cells, namely osteocytes, the key controlling cell type in bone, react to biomaterials.
Collapse
|
50
|
Wang S, Liu F, Zeng Z, Yang H, Jiang H. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro. Biol Trace Elem Res 2016; 169:94-105. [PMID: 26054709 DOI: 10.1007/s12011-015-0381-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023]
Abstract
Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-β and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells.
Collapse
Affiliation(s)
- Songhua Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fan Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhaoxun Zeng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Haitao Jiang
- Department of Orthopedics, The First People's Hospital of Taizhou City, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|