BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Tiwari A, Poduval M, Bagaria V. Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs. World J Orthop 2022; 13(6): 603-614 [PMID: 35949704 DOI: 10.5312/wjo.v13.i6.603]
URL: https://www.wjgnet.com/2218-5836/full/v13/i6/603.htm
Number Citing Articles
1
S. Y. Malathi, Geeta R. Bharamagoudar. A Novel Method Based on CNN-LSTM to Characterize Knee Osteoarthritis from RadiographyProceedings of the National Academy of Sciences, India Section B: Biological Sciences 2024; 94(2): 423 doi: 10.1007/s40011-023-01545-5
2
Pavan Mahendrakar, Dileep Kumar, Uttam Patil. Comprehensive Study on Scoring and Grading Systems for Predicting the Severity of Knee OsteoarthritisCurrent Rheumatology Reviews 2024; 20(2): 133 doi: 10.2174/0115733971253574231002074759
3
Kamil Kwolek, Dariusz Grzelecki, Konrad Kwolek, Dariusz Marczak, Jacek Kowalczewski, Marcin Tyrakowski. Automated patellar height assessment on high-resolution radiographs with a novel deep learning-based approachWorld Journal of Orthopedics 2023; 14(6): 387-398 doi: 10.5312/wjo.v14.i6.387
4
Yun Xin Teoh, Alice Othmani, Siew Li Goh, Juliana Usman, Khin Wee Lai. Predicting Knee Osteoarthritis Pain Severity through A Deep Hybrid Learning Model: Data from the Osteoarthritis Initiative2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2023; : 4148 doi: 10.1109/BIBM58861.2023.10385415
5
Ataberk Beydemir, Emin Suha Dedeogullari, Zeynep Beyza Arik, Erdi Özdemir, Gazi Huri. Artificial Intelligence in Orthopaedic Surgery Made Easy2024; : 33 doi: 10.1007/978-3-031-70310-2_4
6
Gauri Kitukale, Nitin Arvind Shelke, Rohit Agrawal, Navneet Pratap Singh, Sidharth Quamara. Predicting Knee Osteoarthritis using Deep Neural Network2024 IEEE 9th International Conference for Convergence in Technology (I2CT) 2024; : 1 doi: 10.1109/I2CT61223.2024.10543978
7
Jiajie Chen, Bitao Ma, Menghan Hu, Wendell Q. Sun. Predicting Severity of Knee Osteoarthritis Using Bimodal Data and Machine Learning2024 17th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe) 2024; : 1 doi: 10.1109/i-CREATe62067.2024.10776248
8
Uchenna Osuala, Megan H. Goh, Arian Mansur, John B. Smirniotopoulos, Arielle Scott, Christine Vassell, Bardia Yousefi, Neil K. Jain, Alan A. Sag, Allison Lax, Kevin W. Park, Alexander Kheradi, Marc Sapoval, Jafar Golzarian, Peiman Habibollahi, Osman Ahmed, Shamar Young, Nariman Nezami. Minimally Invasive Therapies for Knee OsteoarthritisJournal of Personalized Medicine 2024; 14(9): 970 doi: 10.3390/jpm14090970
9
Vijaya Kishore V, V. Kalpana, G Hemanth Kumar. Evaluating the efficacy of deep learning models for knee osteoarthritis prediction based on Kellgren-Lawrence grading systeme-Prime - Advances in Electrical Engineering, Electronics and Energy 2023; 5: 100266 doi: 10.1016/j.prime.2023.100266
10
A Comprehensive Review on Knee Osteoarthritis Detection using Medical Imaging and Machine Learning2024 International Conference on Intelligent Systems for Cybersecurity (ISCS) 2024; : 1 doi: 10.1109/ISCS61804.2024.10581051
11
S. Sushma, T. Anuradha, D. R. Denslin Brabin, A. Jose Anand. Handbook of Research on Advanced Functional Materials for Orthopedic ApplicationsAdvances in Chemical and Materials Engineering 2023; : 93 doi: 10.4018/978-1-6684-7412-9.ch006
12
Suman Rani, Minakshi Memoria, Ahmad Almogren, Salil Bharany, Kapil Joshi, Ayman Altameem, Ateeq Ur Rehman, Habib Hamam. Deep learning to combat knee osteoarthritis and severity assessment by using CNN-based classificationBMC Musculoskeletal Disorders 2024; 25(1) doi: 10.1186/s12891-024-07942-9
13
Sakshi Dhall, Abhishek Vaish, Raju Vaishya. Machine learning and deep learning for the diagnosis and treatment of ankylosing spondylitis- a scoping reviewJournal of Clinical Orthopaedics and Trauma 2024; 52: 102421 doi: 10.1016/j.jcot.2024.102421
14
Manas Ranjan Prusty, Rohit Madhavan Sudharsan, Philip Anand. Enhancing medical image classification with generative AI using latent denoising diffusion probabilistic model and wiener filtering approachApplied Soft Computing 2024; 161: 111714 doi: 10.1016/j.asoc.2024.111714
15
Effectiveness of Automatic Detection of Osteoarthritis using Convolutional Neural Network (CNN) Method with DenseNet201 on Digital Images of Knee Joint RadiographyE3S Web of Conferences 2023; 448: 02052 doi: 10.1051/e3sconf/202344802052
16
Anjali Tiwari, Amit Kumar Yadav, K.S. Akshay, Vaibhav Bagaria. Evaluation of machine learning models to identify hip arthroplasty implants using transfer learning algorithmsJournal of Clinical Orthopaedics and Trauma 2023; 47: 102312 doi: 10.1016/j.jcot.2023.102312
17
Yun Xin Teoh, Alice Othmani, Khin Wee Lai, Siew Li Goh, Juliana Usman. Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiativeComputer Methods and Programs in Biomedicine 2023; 242: 107807 doi: 10.1016/j.cmpb.2023.107807
18
Hassan A. Alshamrani, Mamoon Rashid, Sultan S. Alshamrani, Ali H. D. Alshehri. Osteo-NeT: An Automated System for Predicting Knee Osteoarthritis from X-ray Images Using Transfer-Learning-Based Neural Networks ApproachHealthcare 2023; 11(9): 1206 doi: 10.3390/healthcare11091206
19
Tejus Surendran, Lisa K. Park, Meagan V. Lauber, Baekdong Cha, Ray S. Jhun, Terence D. Capellini, Deepak Kumar, David T. Felson, Vijaya B. Kolachalama. Survival analysis on subchondral bone length for total knee replacementSkeletal Radiology 2024; 53(8): 1541 doi: 10.1007/s00256-024-04627-1
20
Ki-Young Song, Leslie Ching Ow Tiong, Yunli Lee. See through the noise: revolutionizing medical image diagnosis with quadratic convolutional neural network (Q-CNN)International Journal of Machine Learning and Cybernetics 2024;  doi: 10.1007/s13042-024-02411-0