1
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
2
|
Luo X, Ni H, Lu J, Feng J, Mou X, Zhang J. Injectable and Degradable Zwitterionic Cryogels as Cancer Vaccine Platforms to Prevent Cancer Recurrence after Surgery. ACS APPLIED BIO MATERIALS 2024; 7:8696-8708. [PMID: 39630107 DOI: 10.1021/acsabm.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cancer has become a highly prevalent disease and poses serious threats to human health. Conventional cancer treatments still face high risks of recurrence. Training the immune system to recognize and eliminate tumors via external stimulation, such as vaccines, emerges as a promising approach for cancer prevention and treatment. However, injectable vaccines may have limited immune activation, causing difficulties in maintaining long-term immune surveillance of tumorigenesis by tumor-specific cytotoxic T cells. Here, degradable zwitterionic cryogels were prepared using the cryogelation technique. The cryogenic preparation maintained the biological activities of tumor antigens and immune adjuvants loaded in the cryogels. The macroporous structure endowed the injectability of cryogels into the body via conventional syringes. In the presence of proteases, the cryogels degraded, allowing sustained release of antigens and adjuvants, ensuring continued dendritic cell (DC) recruitment and antigen presentation to maturing tumor-specific cytotoxic T cells. In vivo experiments demonstrated that the cryogel cancer vaccines elicited robust immune activation and effectively modulated tumor microenvironments. The combination with photothermal therapy significantly inhibited tumor growth, showing great potential for preventing postoperative recurrence. Additionally, the zwitterionic cryogels were biocompatible without obvious toxicities during degradation. The cryogels could serve as effective vaccine platforms to prevent cancer recurrence after surgery.
Collapse
Affiliation(s)
- Xinxin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Haifeng Ni
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jie Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, PR China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
3
|
Challapalli RS, Hong C, Sorushanova A, Covarrubias-Zambrano O, Mullen N, Feely S, Covarrubias J, Varghese SN, Hantel C, Owens P, O’Halloran M, Prakash P, Bossmann SH, Dennedy MC. Adrenocortical Cancer Cell uptake of Iron Oxide Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626790. [PMID: 39677699 PMCID: PMC11643051 DOI: 10.1101/2024.12.04.626790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis, treated primarily through surgery and chemotherapy. Other treatments like radiation or thermal ablation for metastases have limited success, and recurrence is common. More effective management options are needed. Magnetic iron oxide nanoparticles (IONP) show promise in cancer treatment due to their ability to be modified for selective uptake by cancer cells. This study investigated IONP uptake in ACC cell lines (H295R, HAC-15, MUC-1) using a multicellular model with endothelial cells (HUVEC) and monocytes. IONP uptake was concentration- and time-dependent, with optimal uptake at 10 μg/mL. IONP were found in the cytoplasm and intracellular vesicles of ACC cells. However, endothelial cells and monocytes also absorbed IONP, reducing uptake by ACC cells. These findings suggest ACC cells actively take up IONP, but better targeting is needed to enhance uptake specificity and efficiency.
Collapse
Affiliation(s)
| | - Cong Hong
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Anna Sorushanova
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | | | - Nathan Mullen
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Sarah Feely
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Jose Covarrubias
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS. USA
| | - Sunita N. Varghese
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS. USA
| | - Constanze Hantel
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hopsital Carl Gustav Carus Dresden, Dresden, Germany
| | - Peter Owens
- Centre for Microscopy & Imaging, University of Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab, University of Galway, Galway, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS. USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS. USA
| | - Michael Conall Dennedy
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
6
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
8
|
Ortegon Blanco AE, Alonzo Canul ME. Successful Biological Treatment of a Patient With Psoriasis and HIV. Cureus 2024; 16:e71970. [PMID: 39569269 PMCID: PMC11578624 DOI: 10.7759/cureus.71970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The use of biological agents for the management of chronic dermatological pathologies such as psoriasis is becoming more common every day. Until now, antibodies against tumor necrosis factors (TNF-α) inhibitors, interleukin IL-17 inhibitors, IL-12/23 inhibitors, and IL-23 inhibitors have been marketed as biological therapies for psoriasis, showing excellent results with a minimal number of adverse events. Initially, the first biological treatments were associated primarily with opportunistic infections. Later, specific adverse events were described depending on the biological agent used: TNF-α inhibitors were linked to tuberculosis, while anti-IL-17 agents were associated with candidiasis and worsening of inflammatory bowel disease (IBD). However, such therapies warrant a cautious screening protocol to detect pre-existing infections, mainly tuberculosis and chronic viral infections such as hepatitis. Human immunodeficiency virus (HIV) is only screened in case of suspicion and in some institutional protocols. We present the clinical case of a person living with HIV under optimal virological control, in which the use of biological therapy was imperative to control psoriasis and he also presented with great severity. Until now there is no official statement on the use or not of biologicals in this particular population.
Collapse
Affiliation(s)
| | - Maria E Alonzo Canul
- Dermatology, Instituto De Seguridad Y Servicios Sociales de Los Trabajadores Del Estado Merida Susula, Merida, MEX
| |
Collapse
|
9
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
10
|
Racca L, Liuzzi E, Comparato S, Giordano G, Pignochino Y. Nanoparticles-Delivered Circular RNA Strategy as a Novel Antitumor Approach. Int J Mol Sci 2024; 25:8934. [PMID: 39201617 PMCID: PMC11354327 DOI: 10.3390/ijms25168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Anticancer therapy urgently needs the development of novel strategies. An innovative molecular target is represented by circular RNAs (circRNAs), single-strand RNA molecules with the 5' and 3' ends joined, characterized by a high stability. Although circRNA properties and biological functions have only been partially elucidated, their relationship and involvement in the onset and progression of cancer have emerged. Specific targeting of circRNAs may be obtained with antisense oligonucleotides and silencing RNAs. Nanotechnology is at the forefront of research for perfecting their delivery. Continuous efforts have been made to develop novel nanoparticles (NPs) and improve their performance, materials, and properties regarding biocompatibility and targeting capabilities. Applications in various fields, from imaging to gene therapy, have been explored. This review sums up the smart strategies developed to directly target circRNAs with the fruitful application of NPs in this context.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisabetta Liuzzi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Simona Comparato
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
- Department of Oncology, University of Turin, 10060 Turin, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
11
|
Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, Chukwu JA, Ufebe GO, Ladokun J, Audu DT, Agwu AO, Obasi DC, Okoro CO. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules 2024; 29:2584. [PMID: 38893460 PMCID: PMC11173789 DOI: 10.3390/molecules29112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 06/21/2024] Open
Abstract
There is a myriad of diseases that plague the world ranging from infectious, cancer and other chronic diseases with varying interventions. However, the dynamism of causative agents of infectious diseases and incessant mutations accompanying other forms of chronic diseases like cancer, have worsened the treatment outcomes. These factors often lead to treatment failure via different drug resistance mechanisms. More so, the cost of developing newer drugs is huge. This underscores the need for a paradigm shift in the drug delivery approach in order to achieve desired treatment outcomes. There is intensified research in nanomedicine, which has shown promises in improving the therapeutic outcome of drugs at preclinical stages with increased efficacy and reduced toxicity. Regardless of the huge benefits of nanotechnology in drug delivery, challenges such as regulatory approval, scalability, cost implication and potential toxicity must be addressed via streamlining of regulatory hurdles and increased research funding. In conclusion, the idea of nanotechnology in drug delivery holds immense promise for optimizing therapeutic outcomes. This work presents opportunities to revolutionize treatment strategies, providing expert opinions on translating the huge amount of research in nanomedicine into clinical benefits for patients with resistant infections and cancer.
Collapse
Affiliation(s)
- Chinedu O. Egwu
- Medical Research Council, London School of Hygiene and Tropical Medicine, Banjul 220, The Gambia
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Chinyere Aloke
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Kenneth T. Onwe
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Chukwunalu Igbudu Umoke
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Joseph Nwafor
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Robert A. Eyo
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Adaeze Chukwu
- World Health Organization, United Nations House Plot 617/618 Central Area District, P.M.B. 2861, Abuja 900211, Nigeria;
| | - Godswill O. Ufebe
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Ladokun
- Society for Family Health, 20 Omotayo Ojo Street, Allen, Ikeja 100246, Nigeria;
| | - David Tersoo Audu
- UNICEF Sokoto Field Office, 2 Rahamaniyya Street, Off Sama Road, Sokoto 840224, Nigeria;
| | - Anthony O. Agwu
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - David Chukwu Obasi
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| | - Chukwuemeka O. Okoro
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| |
Collapse
|
12
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
13
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
14
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
15
|
Kaur S, Saini AK, Tuli HS, Garg N, Joshi H, Varol M, Kaur J, Chhillar AK, Saini RV. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1311-1326. [PMID: 37695334 DOI: 10.1007/s00210-023-02699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hardeep Singh Tuli
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Nancy Garg
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Anil K Chhillar
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, 124 001, India
| | - Reena V Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
16
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
17
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Azizollahi F, Kamali H, Oroojalian F. Magnetic nanocarriers for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:349-401. [DOI: 10.1016/b978-0-443-18770-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
20
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
21
|
Rezaei Adriani R, Mousavi Gargari SL, Bakherad H, Amani J. Anti-EGFR bioengineered bacterial outer membrane vesicles as targeted immunotherapy candidate in triple-negative breast tumor murine model. Sci Rep 2023; 13:16403. [PMID: 37775519 PMCID: PMC10541432 DOI: 10.1038/s41598-023-43762-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Cancer immunotherapy employing checkpoint inhibitors holds great promise across diverse cancers; nonetheless, a substantial proportion of patients (ranging from 55 to 87%) remain unresponsive to this treatment. To amplify therapeutic efficiency, we propose a synergistic therapeutic strategy that entails the deployment of targeted nano-sized particles carrying Toll-like receptor (TLR) agonists to the tumor site. This innovative approach seeks to activate intratumoral antigen-presenting cells using bioengineered outer membrane vesicles (OMVs) derived from gram-negative bacteria. These OMVs possess inherent attributes of surface-exposed immune stimulators and TLR-activating components, rendering them intriguing candidates for investigation. These OMVs were meticulously designed to selectively target cancer cells exhibiting an overexpression of epidermal growth factor receptor (EGFR). To gauge the precision of this targeting, the conducted affinity-based assays aimed at determining the equilibrium dissociation constant of the single-chain variable fragment employed for this purpose. In vitro experiments confirmed the OMVs' proficiency in adhering to EGFR-overexpressed cancer cells. Moreover, the evaluation extended to an in vivo context, where the therapeutic effect of nanovesicles was appraised within the tumor microenvironment of the triple-negative breast cancer mouse model. Notably, both intraperitoneal and intratumoral administrations of nanovesicles exhibited the ability to activate natural killer cells and skew M2 macrophage towards an M1 phenotype. The combined scrutiny of in vitro and in vivo findings underscores the potential efficiency of OMVs as a promising strategy for future anti-tumor endeavors.
Collapse
Affiliation(s)
| | | | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, System Biology, and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
Newton HS, Zhang J, Donohue D, Unnithan R, Cedrone E, Xu J, Vermilya A, Malys T, Clogston JD, Dobrovolskaia MA. Multicolor flow cytometry-based immunophenotyping for preclinical characterization of nanotechnology-based formulations: an insight into structure activity relationship and nanoparticle biocompatibility profiles. FRONTIERS IN ALLERGY 2023; 4:1126012. [PMID: 37470031 PMCID: PMC10353541 DOI: 10.3389/falgy.2023.1126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Immunophenotyping, which is the identification of immune cell subsets based on antigen expression, is an integral technique used to determine changes of cell composition and activation in various disease states or as a response to different stimuli. As nanoparticles are increasingly utilized for diagnostic and therapeutic applications, it is important to develop methodology that allows for the evaluation of their immunological impact. Therefore, the development of techniques such as immunophenotyping are desirable. Currently, the most common technique used to perform immunophenotyping is multicolor flow cytometry. Methods We developed two distinct multicolor flow cytometry immunophenotyping panels which allow for the evaluation of the effects of nanoparticles on the composition and activation status of treated human peripheral blood mononuclear cells. These two panels assess the presence of various lymphoid and myeloid-derived cell populations as well as aspects of their activation statuses-including proliferation, adhesion, co-stimulation/presentation, and early activation-after treatment with controls or nanoparticles. To conduct assay performance qualification and determine the applicability of this method to preclinical characterization of nanoparticles, we used clinical-grade nanoformulations (AmBisome, Doxil and Feraheme) and research-grade PAMAM dendrimers of different sizes (G3, G4 and G5) and surface functionalities (amine-, carboxy- and hydroxy-). Results and Discussion We found that formulations possessing intrinsic fluorescent properties (e.g., Doxil and AmBisome) interfere with accurate immunophenotyping; such interference may be partially overcome by dilution. In the absence of interference (e.g., in the case of dendrimers), nanoparticle size and surface functionalities determine their effects on the cells with large amine-terminated dendrimers being the most reactive.
Collapse
Affiliation(s)
- Hannah S. Newton
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jenny Zhang
- Agilent Technologies, Santa Clara, CA, United States
| | - Duncan Donohue
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Ragi Unnithan
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jie Xu
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Alison Vermilya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Tyler Malys
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jeffrey D. Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
24
|
Anwar T, Kumam P, Almusawa MY, Lone SA, Suttiarporn P. Exact solutions via Prabhakar fractional approach to investigate heat transfer and flow features of hybrid nanofluid subject to shape and slip effects. Sci Rep 2023; 13:7810. [PMID: 37183197 PMCID: PMC10183471 DOI: 10.1038/s41598-023-34259-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The core devotion of this study is to develop a generalized model by means of a recently proposed fractional technique in order to anticipate the enhancement in the thermal efficiency of engine oil because of the dispersion of graphene and magnesia nanoparticles. In addition to investigating the synergistic attributes of the foregoing particles, this work evaluates shape impacts for column, brick, tetrahedron, blade, and lamina-like shapes. In the primary model, the flow equation is coupled with concentration and energy functions. This classical system is transmuted into a fractional environment by generalizing mathematical expressions of thermal and diffusion fluxes by virtue of the Prabhakar fractional operator. In this study, ramped flow and temperature slip conditions are simultaneously applied for the first time to examine the behavior of a hybrid nanofluid. The mathematical analysis of this problem involves the incorporation of dimension-independent parameters into the model and the execution of the Laplace transform for the consequent equations. By doing so, exact solutions are derived in the form of Mittag-Leffler functions. Multiple illustrations are developed by dint of exact solutions to chew over all aspects of temperature variations and flow dynamics. For the preparation of these illustrations, the details of parametric ranges are as follows: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. The contribution of differently shaped nanoparticles, volume proportions, and fractional parameters in boosting the heat-transferring attributes of engine oil is also anticipated. In this regard, results for Nusselt number are provided in tabular form. Additionally, a brief analysis of shear stress is carried out for fractional parameters and various combinations of magnesia, graphene, and engine oil. This investigation anticipates that engine oil's hybridization with magnesia and graphene would result in a 33% increase in its thermal performance, which evidently improves its industrial significance. The enhancement in Schmidt number yields an improvement in the mass transfer rate. An increment in collective volume fraction leads to raising the profile of the thermal field. However, the velocity indicates a decreasing behavior. Nusselt number reaches its highest value ([Formula: see text]) for the lamina shape of considered particles. When the intensity of the buoyancy force augments, it causes the velocity to increase.
Collapse
Affiliation(s)
- Talha Anwar
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Poom Kumam
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Musawa Yahya Almusawa
- Department of Mathematics, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Showkat Ahmad Lone
- Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, Riyadh, 11673, Saudi Arabia
| | - Panawan Suttiarporn
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, 21120, Thailand.
| |
Collapse
|
25
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Zhao P, Huang X, Li Y, Huo X, Feng Q, Zhao X, Xu C, Wang J. An artificialed protein corona coating the surface of magnetic nanoparicles:a simple and efficient method for label antibody. Heliyon 2023; 9:e13860. [PMID: 36923872 PMCID: PMC10008981 DOI: 10.1016/j.heliyon.2023.e13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background Protein Corona (PC) of nanoparticles is a structure which composed of one or more layers of proteins adsorbed on the surface of nanomaterials, and the formation of PC is a universal process of spontaneous randomness. We take advantage of the formation principle of the PC, developed a simple and efficient method for label protein to nanoparticles. Methods The artificialed protein corona (APC) on the surface of nanoparticles was synthesized via the artificialed methods of desolvation aggregation and crosslinking with control. Results The dosage of precipitator and the ratio of protein to magnetic nanoparticles (MNPs)(particle size: 3 nm) were optimized, and the core-shell nanoparticles with narrow particle size (particle size: 10 nm) distribution were obtained. The MNPs with APC were characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Additionally, a hemolysis test on prepared MNPs was conducted with APC. The presence of APC coating on the surface of MNPs showed an improving effect to reduce the cytotoxicity. Cellular toxicity of MNPs with APC was also investigated on HFF1 cell lines. And the cells survival in the presence of APC coated MNPs and display neither reduced metabolism nor cytostatic effect. The functional test of the MNPs with APC showed that proteins can be modified and labeled onto magnetic nanoparticles and retain their original activity. Conclusions This marking method is gentle and effective. And the properties of the APC propose MNPs as a promising candidate for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Penghua Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaping Li
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xueping Huo
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiangrong Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Cuixiang Xu
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| | - Jianhua Wang
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| |
Collapse
|
27
|
Polymer-based particles against pathogenic fungi: A non-uptake delivery of compounds. BIOMATERIALS ADVANCES 2023; 146:213300. [PMID: 36708684 DOI: 10.1016/j.bioadv.2023.213300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
The therapy of life-threatening fungal infections is limited and needs urgent improvement. This is in part due to toxic side effects of clinically used antifungal compounds or their limited delivery to fungal structures. Until today, it is a matter of debate how drugs or drug-delivery systems can efficiently reach the intracellular lumen of fungal cells and how this can be improved. Here, we addressed both questions by applying two different polymeric particles for delivery of compounds. Their formulation was based on two biocompatible polymers, i.e., poly(lactic-co-glycolic acid)50:50 and poly(methyl methacrylate-stat-methacrylic acid)90:10 yielding particles with hydrodynamic diameters ranging from 100 to 300 nm. The polymers were covalently labeled with the fluorescent dye DY-550 to monitor the interaction between particles and fungi by confocal laser scanning microscopy. Furthermore, the fluorescent dye coumarin-6 and the antifungal drug itraconazole were successfully encapsulated in particles to study the fate of both the cargo and the particle when interacting with the clinically most important human-pathogenic fungi Aspergillus fumigatus, A. terreus, Candida albicans, and Cryptococcus neoformans. While the polymers were exclusively located on the fungal surface, the encapsulated cargo was efficiently transported into fungal hyphae, indicated by increased intracellular fluorescence signals due to coumarin-6. In accordance with this finding, compared to the pristine drug a reduced minimal inhibitory concentration for itraconazole was determined, when it was encapsulated. Together, the herein used polymeric particles were not internalized by pathogenic fungi but were able to efficiently deliver hydrophobic cargos into fungal cells.
Collapse
|
28
|
Farhana A. Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects. Int J Mol Sci 2023; 24:3493. [PMID: 36834917 PMCID: PMC9959821 DOI: 10.3390/ijms24043493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
29
|
Muhammad S, Anwar T, Asifa, Yavuz M. Comprehensive Investigation of Thermal and Flow Features of Alloy Based Nanofluid Considering Shape and Newtonian Heating Effects via New Fractional Approach. FRACTAL AND FRACTIONAL 2023; 7:150. [DOI: 10.3390/fractalfract7020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The core purpose of this work is the formulation of a mathematical model by dint of a new fractional modeling approach to study the dynamics of flow and heat transfer phenomena. This approach involves the incorporation of the Prabhakar fractional operator in mathematical analysis to transform the governing system from a conventional framework to a generalized one. This generalized model evaluates the improvement in thermal efficacy of vacuum pump oil because of the inclusion of aluminum alloy nanoparticles. The flow of the under-observation nanofluid starts due to the combined effects of natural convection and the ramped velocity function at the boundary. Meanwhile, an analysis of the energy equation is conducted by taking the Newtonian heating mechanism into consideration. The characteristics of platelet-, brick-, cylinder-, and blade-shaped alloy nanoparticles are incorporated into the primary system using shape-dependent relations for thermal conductivity and viscosity. Both the classical and generalized models are solved to derive the exact solutions by first inserting some dimension-independent quantities and then operating the Laplace transform on the succeeding equations. These solutions are utilized for the development of graphical illustrations to serve the purpose of covering all features of the problem under consideration. Furthermore, changes in energy and flow functions due to the dominant influences of the relevant contributing factors are delineated with appropriate physical arguments. In addition, the numerical results of the skin friction coefficient and Nusselt number are displayed via multiple tables to analyze the disturbance in shear stress and discuss the contribution of the fractional parameters, the volume concentration of the considered nanoparticles, and the shape factor in the boost of the thermal potential of the considered nanofluid. The findings imply that aluminum alloy nanoparticles have the ability to produce a 44% enhancement in the thermal effectiveness of vacuum pump oil. Moreover, the flow velocity is reduced as the loading range of the nanoparticles rises.
Collapse
Affiliation(s)
- Shah Muhammad
- Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Talha Anwar
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Asifa
- Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Mehmet Yavuz
- Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
30
|
Bödder J, Kok LM, Fauerbach JA, Flórez-Grau G, de Vries IJM. Tailored PGE2 Immunomodulation of moDCs by Nano-Encapsulated EP2/EP4 Antagonists. Int J Mol Sci 2023; 24:ijms24021392. [PMID: 36674907 PMCID: PMC9866164 DOI: 10.3390/ijms24021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important maturation mediator for dendritic cells (DCs). However, increased PGE2 levels in the tumor exert immunosuppressive effects on DCs by signaling through two E-Prostanoid (EP) receptors: EP2 and EP4. Blocking EP-receptor signaling of PGE2 with antagonists is currently being investigated for clinical applications to enhance anti-tumor immunity. In this study, we investigated a new delivery approach by encapsulating EP2/EP4 antagonists in polymeric nanoparticles. The nanoparticles were characterized for size, antagonist loading, and release. The efficacy of the encapsulated antagonists to block PGE2 signaling was analyzed using monocyte-derived DCs (moDCs). The obtained nanoparticles were sized between 210 and 260 nm. The encapsulation efficacy of the EP2/EP4 antagonists was 20% and 17%, respectively, and was further increased with the co-encapsulation of both antagonists. The treatment of moDCs with co-encapsulation EP2/EP4 antagonists prevented PGE2-induced co-stimulatory marker expression. Even though both antagonists showed a burst release within 15 min at 37 °C, the nanoparticles executed the immunomodulatory effects on moDCs. In summary, we demonstrate the functionality of EP2/EP4 antagonist-loaded nanoparticles to overcome PGE2 modulation of moDCs.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Leanne M. Kok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jonathan A. Fauerbach
- R&D Reagents, Chemical Biology Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
31
|
Hajmomeni P, Sisakhtnezhad S, Bidmeshkipour A. Thymoquinone-treated mouse mesenchymal stem cells-derived conditioned medium inhibits human breast cancer cells in vitro. Chem Biol Interact 2023; 369:110283. [PMID: 36450322 DOI: 10.1016/j.cbi.2022.110283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer is now the most prevalent cancer in females, therefore, it is essential to identify factors affecting its initiation and progression. Mesenchymal stem cells (MSCs) have received considerable attention in stem cell-based therapies and drug delivery applications. Because the therapeutic potential of MSCs is primarily achieved by their paracrine effects, thus identifying and employing bioactive molecules that promote the paracrine activity of MSCs is crucial for their efficient use in cancer treatment. Thymoquinone (TQ) has many biomedical properties, including anti-inflammatory, anti-diabetic, anti-aging, anti-cancer, etc. In addition, it has been found that TQ affects the self-renewal and immunomodulatory properties of MSCs. The present study aimed to investigate the effect of TQ-treated mouse bone marrow-derived MSCs conditioned medium (TQ-MSC-CM) on the biological characteristics of breast cancer cell line MCF7. MSCs were cultured and treated with TQ for 24 h. The TQ-MSC-CM and MSC-CM were collected, and their effects were investigated on ROS production, mitochondrial membrane potential (MMP), cell death, cell cycle, and migration of MCF7 cells by DCFDA-cellular ROS assay, Rhodamine-123 MMP assay, Annexin-PI staining and Caspase-3/7 activity assays, PI-staining and flow-cytometry, and in vitro wound healing assay, respectively. Moreover, the effects of TQ-MSC-CM and MSC-CM were studied on Cdk4, Sox2, c-Met, and Bcl2 gene expression by real-time PCR. Results demonstrated that MSC-CM and TQ-MSC-CM did not have a significant effect on the apoptosis induction in MCF7 cells; however, they significantly stimulated necrosis in the cells. Although TQ-MSC-CM promoted ROS production in MCF7 cells, it decreased the MMP of the cells. TQ-MSC-CM also induced Bcl2 anti-apoptosis gene expression and Casp-3/7 activity in cells. In addition, although MSC-CM induced MCF7 cells to enter the cell cycle, TQ-MSC-CM inhibited its progression. TQ-MSC-CM also downregulated the Cdk4 and Sox2 gene expression. Furthermore, TQ-MSC-CM induced the migration potential of MCF7 in a c-Met-independent manner. Altogether, we conclude that TQ may induce programmed necrosis and inhibits the proliferation and migration of the breast cancer cells by affecting the paracrine activity of MSCs.
Collapse
Affiliation(s)
- Pouria Hajmomeni
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
32
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
33
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Belkouchi Y, Nebot-Bral L, Lawrance L, Kind M, David C, Ammari S, Cournède PH, Talbot H, Vuagnat P, Smolenschi C, Kannouche PL, Chaput N, Lassau N, Hollebecque A. Predicting immunotherapy outcomes in patients with MSI tumors using NLR and CT global tumor volume. Front Oncol 2022; 12:982790. [PMID: 36387101 PMCID: PMC9641225 DOI: 10.3389/fonc.2022.982790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Anti-PD-(L)1 treatment is indicated for patients with mismatch repair-deficient (MMRD) tumors, regardless of tumor origin. However, the response rate is highly heterogeneous across MMRD tumors. The objective of the study is to find a score that predicts anti-PD-(L)1 response in patients with MMRD tumors. METHODS Sixty-one patients with various origin of MMRD tumors and treated with anti-PD-(L)1 were retrospectively included in this study. An expert radiologist annotated all tumors present at the baseline and first evaluation CT-scans for all the patients by circumscribing them on their largest axial axis (single slice), allowing us to compute an approximation of their tumor volume. In total, 2120 lesions were annotated, which led to the computation of the total tumor volume for each patient. The RECIST sum of target lesions' diameters and neutrophile-to-lymphocyte (NLR) were also reported at both examinations. These parameters were determined at baseline and first evaluation and the variation between the first evaluation and baseline was calculated, to determine a comprehensive score for overall survival (OS) and progression-free survival (PFS). RESULTS Total tumor volume at baseline was found to be significantly correlated to the OS (p-value: 0.005) and to the PFS (p-value:<0.001). The variation of the RECIST sum of target lesions' diameters, total tumor volume and NLR were found to be significantly associated to the OS (p-values:<0.001, 0.006,<0.001 respectively) and to the PFS (<0.001,<0.001, 0.007 respectively). The concordance score combining total tumor volume and NLR variation was better at stratifying patients compared to the tumor volume or NLR taken individually according to the OS (pairwise log-rank test p-values: 0.033,<0.001, 0.002) and PFS (pairwise log-rank test p-values: 0.041,<0.001, 0.003). CONCLUSION Total tumor volume appears to be a prognostic biomarker of anti-PD-(L)1 response to immunotherapy in metastatic patients with MMRD tumors. Combining tumor volume and NLR with a simple concordance score stratifies patients well according to their survival and offers a good predictive measure of response to immunotherapy.
Collapse
Affiliation(s)
- Younes Belkouchi
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Villejuif, France
- OPtimisation Imagerie et Santé (OPIS), Inria, CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Laetitia Nebot-Bral
- UMR9019 - CNRS, Intégrité du Génome et Cancer, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Littisha Lawrance
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Villejuif, France
| | - Michele Kind
- Département d’Imagerie Médicale, Institut Bergonié, Bordeaux, France
| | - Clémence David
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Villejuif, France
| | - Samy Ammari
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Villejuif, France
- Département d’Imagerie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Paul-Henry Cournède
- Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Hugues Talbot
- OPtimisation Imagerie et Santé (OPIS), Inria, CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Perrine Vuagnat
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Cristina Smolenschi
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Patricia L. Kannouche
- UMR9019 - CNRS, Intégrité du Génome et Cancer, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- UMR9019 - CNRS, Intégrité du Génome et Cancer, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
- Laboratoire d’Immunomonitoring en Oncologie, Gustave Roussy, Villejuif, France
| | - Nathalie Lassau
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Villejuif, France
- Département d’Imagerie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Hollebecque
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
35
|
Mfouo-Tynga IS, Mouinga-Ondeme AG. Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals (Basel) 2022; 15:ph15101273. [PMID: 36297385 PMCID: PMC9608479 DOI: 10.3390/ph15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative “or smart” PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.
Collapse
|
36
|
Asifa, Anwar T, Kumam P, Muhammad S. New fractional model to analyze impacts of Newtonian heating, shape factor and ramped flow function on MgO– SiO2–Kerosene oil hybrid nanofluid. CASE STUDIES IN THERMAL ENGINEERING 2022; 38:102361. [DOI: 10.1016/j.csite.2022.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Abdelgalil RM, Elmorshedy YM, Elkhodairy KA, Teleb M, Bekhit AA, Khattab SN, Elzoghby AO. Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy. Nanomedicine (Lond) 2022; 17:1721-1745. [PMID: 36621872 DOI: 10.2217/nnm-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases worldwide. Immunotherapeutic agents for CRC treatment have shown limited efficacy due to the immunosuppressive tumor microenvironment (TME). In this context, various types of nanoparticles (NPs) have been used to reverse the immunosuppressive TME, potentiate the effect of immunotherapeutic agents and reduce their systemic side effects. Many advantages could be offered by NPs, related to drug-loading efficiency, particle size and others that can potentially aid the delivery of immunotherapeutic agents. The recent research on how nano-based immunotherapy can remodel the immunosuppressive TME of CRC and hence boost the antitumor immune response, as well as the challenges that face clinical translation of NPs and future perspectives, are summarized in this review article.
Collapse
Affiliation(s)
- Riham M Abdelgalil
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Yomna M Elmorshedy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Adnan A Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Pharmacy Program, Allied Health Department, College of Health & Sport Sciences, University of Bahrain, 32038, Riffa, Kingdom of Bahrain
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, 21521, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA 02115, Boston, USA
| |
Collapse
|
38
|
Nteli P, Bajwa DE, Politakis D, Michalopoulos C, Kefala-Narin A, Efstathopoulos EP, Gazouli M. Nanomedicine approaches for treatment of hematologic and oncologic malignancies. World J Clin Oncol 2022; 13:553-566. [PMID: 36157164 PMCID: PMC9346428 DOI: 10.5306/wjco.v13.i7.553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Nowadays, the therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology and novel nanomedicine products represents an opportunity to achieve sophisticated targeting strategies and multi-functionality. Nanomedicine is increasingly used to develop new cancer diagnosis and treatment methods since this technology can modulate the biodistribution and the target site accumulation of chemotherapeutic drugs, thereby reducing their toxicity. Cancer nanotechnology and cancer immunotherapy are two parallel themes that have emerged over the last few decades while searching for a cure for cancer. Immunotherapy is revolutionizing cancer treatment, as it can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. A deeper understanding of the human immune system allows the establishment of combination regimens in which immunotherapy is combined with other treatment modalities (as in the case of the nanodrug Ferumoxytol). Furthermore, the combination of gene therapy approaches with nanotechnology that aims to silence or express cancer-relevant genes via one-time treatment is gradually progressing from bench to bedside. The most common example includes lipid-based nanoparticles that target VEGF-Α and KRAS pathways. This review focuses on nanoparticle-based platforms utilized in recent advances aiming to increase the efficacy of currently available cancer therapies. The insights provided and the evidence obtained in this paper indicate a bright future ahead for immuno-oncology applications of engineering nanomedicines.
Collapse
Affiliation(s)
- Polyxeni Nteli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Danae Efremia Bajwa
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios Politakis
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Charalampos Michalopoulos
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastasia Kefala-Narin
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, General University Hospital Attikon, Athens12462, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
39
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
40
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
41
|
He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis 2022; 13:264. [PMID: 35332127 PMCID: PMC8948362 DOI: 10.1038/s41419-022-04639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Our previous study demonstrates that a juxtamembrane 2 (JM2) mimic peptide can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism remains unclear. In this study, JM2 is found to suppress the growth of 4T1 breast tumors by inducing apoptosis and inhibiting the proliferation of 4T1 tumor cells. Further study indicates that JM2 can stimulate the mitochondria to gather near the microtubule-organizing center of tumor cells and subsequently induce ROS-induced ROS release responses, which results in mitochondrial dysfunction and mitochondria-mediated apoptosis. In addition, JM2 can arrest cell cycle in S phase by regulating the expression of cell cycle-related proteins and consequently inhibit proliferation of tumor cells. Then, a previously designed JM2 grafted hyaluronic acid (HA) injectable hydrogel system (HA-JM2) is injected in a breast tumor-resected model and the HA-JM2 hydrogel can inhibit the malignant proliferation of residual tumor cells and suppress the breast tumor recurrence. These findings not only confirm the application potentials of JM2 in anti-tumor therapy and tumor post-surgery treatments but also provide greater understanding on the mechanisms by which JM2 inhibits tumor growth.
Collapse
Affiliation(s)
- Dan He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhijie Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, 200011, China.
| | - Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Chemical and Environmental Engineering, School of Engineering, RMIT University, 124 La Trobe Stø, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
42
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
43
|
Editorial on Special Issue “Immunotherapy, Tumor Microenvironment and Survival Signaling”. Cancers (Basel) 2021; 14:cancers14010091. [PMID: 35008254 PMCID: PMC8750357 DOI: 10.3390/cancers14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, novel types of immunotherapies such as CAR-T cell therapy demonstrated efficacy in leukemia, lymphoma, and multiple myeloma [...]
Collapse
|