1
|
Lei P, Yan YH, Jiang Y, Wang Y, Xiong R, Deng J, Zhang H, Yang Z, Zhang W, Wu JW, Liu W, Lei H, Li GB, Yang L. Discovery of New Azaindole Metallo-Deubiquitinase CSN5 Inhibitors. J Med Chem 2025; 68:6748-6765. [PMID: 40053484 DOI: 10.1021/acs.jmedchem.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
CSN5 is responsible for the deneddylation of cullin-RING E3 ubiquitin ligases and is closely linked to the development of various cancers. We previously developed a noncatalytic activity assay platform using novel fluorescent probes derived from azaindole inhibitors, which also highlighted the potential for further structural optimization of azaindoles. Herein, we report a series of new 4-NH-substituted azaindole derivatives, some of which showed nanomolar activity against the CSN5 subunit. Cellular assays revealed that the new azaindoles increase the cullin 1 neddylation in cancer cells. Importantly, they exhibit synergistic anticancer effects in combination with poly(ADP-ribose) polymerase inhibitors through increasing DNA damage. This work presents a new lead compound and a potential combination strategy for drug discovery targeting CSN5.
Collapse
Affiliation(s)
- Pengcheng Lei
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yu-Hang Yan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yingying Jiang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yanjun Wang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Rui Xiong
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jianlin Deng
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Hang Zhang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhiwen Yang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Weifeng Zhang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jing-Wei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenyi Liu
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Hui Lei
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| |
Collapse
|
2
|
Dubiel D, Naumann M, Dubiel W. CSN-CRL Complexes: New Regulators of Adipogenesis. Biomolecules 2025; 15:372. [PMID: 40149914 PMCID: PMC11940434 DOI: 10.3390/biom15030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions.
Collapse
Affiliation(s)
- Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | | | - Wolfgang Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| |
Collapse
|
3
|
Zhang X, Zhao J, Qi G, Chen Y, Guo X, Zhang J, Chen S, Xu X, Feng J, Zhang Q, Gao B, Wang Z, Jin J. USP48 inhibits colorectal cancer progression and promotes M1-like macrophage polarization by stabilizing TAK1. Exp Cell Res 2025; 446:114469. [PMID: 39971179 DOI: 10.1016/j.yexcr.2025.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Ubiquitination and deubiquitination have emerged as pivotal regulators of the development of colorectal cancer (CRC). However, the precise role of USP48 in CRC tumorigenesis is poorly understood. In this study, immunohistochemistry, protein blotting, MTT assays, plate cloning, scratch assays, transwell assays, and Hoechst 33258 staining were utilized to assess the expression level of USP48 and its involvement in CRC. The interaction between USP48 and Transforming growth factor-β activated kinase-1(TAK1) was confirmed using co-IP. Additionally, the impact of deubiquitination on downstream signaling was determined through qRT-PCR. Furthermore, the associations between USP48 and tumor-associated macrophages within the tumor microenvironment were investigated using flow cytometry. The findings of our study demonstrated that USP48 expression is downregulated in CRC patients. Through deubiquitination, USP48 interacts with and stabilizes TAK1, leading to the inhibition of TAK1-triggered NF-κB activation and effectively suppresses CRC tumorigenesis. Moreover, this study showed a positive correlation between USP48 expression and M1-type TAM polarization, revealed the potential of USP48 as a molecular target for the effective treatment of CRC in the future.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jiawei Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Guangying Qi
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Yujing Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaotong Guo
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Juzheng Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Siqi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Xiaochen Xu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jiayuan Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qinyu Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Bin Gao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jiamin Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
4
|
Yan YH, Wei LL, Wu JW, Wei SQ, Jiang YY, Yu JL, Yang LL, Li GB. Discovering New Metallo-Deubiquitinase CSN5 Inhibitors by a Non-Catalytic Activity Assay Platform. J Med Chem 2024; 67:14649-14667. [PMID: 39129245 DOI: 10.1021/acs.jmedchem.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
COP9 signalosome catalytic subunit CSN5 plays a key role in tumorigenesis and tumor immunity, showing potential as an anticancer target. Currently, only a few CSN5 inhibitors have been reported, at least partially, due to the challenges in establishing assays for CSN5 deubiquitinase activity. Here, we present the establishment and validation of a simple and reliable non-catalytic activity assay platform for identifying CSN5 inhibitors utilizing a new fluorescent probe, CFP-1, that exhibits enhanced fluorescence and fluorescence polarization features upon binding to CSN5. By using this platform, we identified 2-aminothiazole-4-carboxylic acids as new CSN5 inhibitors, which inhibited CSN5 but slightly downregulated PD-L1 in cancer cells. Furthermore, through the integration of deep learning-enabled virtual screening, we discovered that shikonins are nanomolar CSN5 inhibitors, which can upregulate PD-L1 in HCT116 cells. The binding modes of these structurally distinct inhibitors with CSN5 were explored by using microsecond-scale molecular dynamics simulations and tryptophan quenching assays.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liu-Liu Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Si-Qi Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Ying Jiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
6
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
7
|
Wang Y, Deng X, Xie J, Lu T, Qian R, Guo Z, Zeng X, Liao J, Ding Z, Zhou M, Niu X. The COP9 signalosome stabilized MALT1 promotes Non-Small Cell Lung Cancer progression through activation of NF-κB pathway. Cell Biol Toxicol 2024; 40:45. [PMID: 38864940 PMCID: PMC11169058 DOI: 10.1007/s10565-024-09888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tianhao Lu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Qian
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi Guo
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Zeng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Liao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China.
| |
Collapse
|
8
|
Liu M, Ding Z, Sun P, Zhou S, Wu H, Huo L, Yang L, Davis JS, Liang A. Neddylation inhibition affects early embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function in mice. Theriogenology 2024; 220:1-11. [PMID: 38457854 DOI: 10.1016/j.theriogenology.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Post-translational modifications (PTMs) are critical for early development in mice because early cleavage-stage embryos are characterized by transcriptional inactivity. Neddylation is an important ubiquitin-like PTM that regulates multiple biophysical processes. However, the exact roles of neddylation in regulating early embryonic development remain largely unknown. In the present study, we found that inhibition of neddylation by specific inhibitor MLN4924 led to severe arrest of early embryonic development. Transcriptomic analysis showed that neddylation inhibition changed the expression of 3959 genes at the 2-cell stage. Importantly, neddylation inhibition blocked zygotic genome activation and maternal mRNA degradation, thus disrupting the maternal-to-zygotic transition. Moreover, inhibition of neddylation induced mitochondrial dysfunction including aberrant mitochondrial distribution, decreased mitochondrial membrane potential, and reduced ATP content. Further analysis showed that inhibition of neddylation resulted in the accumulation of reactive oxygen species and superoxide anion, thereby resulting in oxidative stress and severe DNA damage at the 2-cell stage. Overall, this study demonstrates that neddylation is vital for early embryonic development in mice. Our findings suggest that proper neddylation regulation is essential for the timely inter-stage transition during early embryonic development.
Collapse
Affiliation(s)
- Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhiming Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, PR China
| | - Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, and Veterans Affairs Medical Center, Omaha, NE, 68198, USA
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
9
|
Wu T, Ji MR, Luo LX. Mechanisms and potential applications of COPS6 in pan-cancer therapy. World J Clin Oncol 2024; 15:367-370. [PMID: 38576589 PMCID: PMC10989263 DOI: 10.5306/wjco.v15.i3.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The COP9 signalosome subunit 6 (COPS6) is abnormally overexpressed in many malignancies, yet its precise role in carcinogenesis is unknown. To gain a better understanding of COPS6's role, the authors conducted a pan-cancer analysis using various bioinformatics techniques such as differential expression patterns, prognostic value, gene mutations, immune infiltration, correlation analysis, and functional enrichment assessment. Results showed that COPS6 was highly correlated with prognosis, immune cell infiltration level, tumor mutation burden, and microsatellite instability in patients with a range of tumor types. This suggests that COPS6 may be a potential target for cancer treatment. Overall, this research provides insight into COPS6's role in cancer development and its potential therapeutic applications.
Collapse
Affiliation(s)
- Tong Wu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Miao-Rong Ji
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
10
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, origin, and evolution of the ESCRT systems. mBio 2024; 15:e0033524. [PMID: 38380930 PMCID: PMC10936438 DOI: 10.1128/mbio.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
12
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, Origin and Evolution of the ESCRT Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579148. [PMID: 38903064 PMCID: PMC11188069 DOI: 10.1101/2024.02.06.579148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The Last Archaeal Common Ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
13
|
Yoshioka S, Arakawa Y, Hasegawa M, Kato S, Hashimoto H, Mori S, Ueda H, Watanabe M. Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. Epigenomics 2024; 16:147-158. [PMID: 38264851 DOI: 10.2217/epi-2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.
Collapse
Affiliation(s)
- Saki Yoshioka
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mika Hasegawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Shiho Kato
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hinako Hashimoto
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Saho Mori
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Dong J, Li Y, Cheng S, Li X, Wei N. COP9 signalosome-mediated deneddylation of CULLIN1 is necessary for SCF EBF1 assembly in Arabidopsis thaliana. Cell Rep 2024; 43:113638. [PMID: 38184853 DOI: 10.1016/j.celrep.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Functions of the SKP1-CUL1-F box (SCF) ubiquitin E3 ligases are essential in plants. The F box proteins (FBPs) are substrate receptors that recruit substrates and assemble an active SCF complex, but the regulatory mechanism underlying the FBPs binding to CUL1 to activate the SCF cycle is not fully understood. We show that Arabidopsis csn1-10 is defective in SCFEBF1-mediated PIF3 degradation during de-etiolation, due to impaired association of EBF1 with CUL1 in csn1-10. EBF1 preferentially associates with un-neddylated CUL1 that is deficient in csn1-10 and the EBF1-CUL1 binding is rescued by the neddylation inhibitor MLN4924. Furthermore, we identify a subset of FBPs with impaired binding to CUL1 in csn1-10, indicating their assembly to form SCF complexes may depend on COP9 signalosome (CSN)-mediated deneddylation of CUL1. This study reports that a key role of CSN-mediated CULLIN deneddylation is to gate the binding of the FBP-substrate module to CUL1, thus initiating the SCF cycle of substrate ubiquitination.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuyang Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang 261325, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Piras IS, Braccagni G, Huentelman MJ, Bortolato M. A preliminary transcriptomic analysis of the orbitofrontal cortex of antisocial individuals. CNS Neurosci Ther 2023; 29:3173-3182. [PMID: 37269073 PMCID: PMC10580340 DOI: 10.1111/cns.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
AIMS Antisocial personality disorder (ASPD) and conduct disorder (CD) are characterized by a persistent pattern of violations of societal norms and others' rights. Ample evidence shows that the pathophysiology of these disorders is contributed by orbitofrontal cortex (OFC) alterations, yet the underlying molecular mechanisms remain elusive. To address this knowledge gap, we performed the first-ever RNA sequencing study of postmortem OFC samples from subjects with a lifetime diagnosis of ASPD and/or CD. METHODS The transcriptomic profiles of OFC samples from subjects with ASPD and/or CD were compared to those of unaffected age-matched controls (n = 9/group). RESULTS The OFC of ASPD/CD-affected subjects displayed significant differences in the expression of 328 genes. Further gene-ontology analyses revealed an extensive downregulation of excitatory neuron transcripts and upregulation of astrocyte transcripts. These alterations were paralleled by significant modifications in synaptic regulation and glutamatergic neurotransmission pathways. CONCLUSION These preliminary findings suggest that ASPD and CD feature a complex array of functional deficits in the pyramidal neurons and astrocytes of the OFC. In turn, these aberrances may contribute to the reduced OFC connectivity observed in antisocial subjects. Future analyses on larger cohorts are needed to validate these results.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Giulia Braccagni
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
16
|
Tang J, Wang S, Weng M, Guo Q, Ren L, He Y, Cui Z, Cong M, Qin M, Yu J, Su R, Li X. The IGF2BP3-COPS7B Axis Facilitates mRNA Translation to Drive Colorectal Cancer Progression. Cancer Res 2023; 83:3593-3610. [PMID: 37560971 DOI: 10.1158/0008-5472.can-23-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
Many studies have provided valuable information about genomic and transcriptomic changes that occur in colorectal cancer. However, protein abundance cannot be reliably predicted by DNA alteration or mRNA expression, which can be partially attributed to posttranscriptional and/or translational regulation of gene expression. In this study, we identified increased translational efficiency (TE) as a hallmark of colorectal cancer by evaluating the transcriptomic and proteomic features of patients with colorectal cancer, along with comparative transcriptomic and ribosome-protected mRNA analysis in colon epithelial cells and colon cancer cells. COP9 signalosome subunit 7B (COPS7B) was among the key genes that consistently showed both significant TE increase and protein elevation without transcriptional alteration in colorectal cancer. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) enhanced the TE of COPS7B mRNA to promote colorectal cancer growth and metastasis. COPS7B was found to be a component of the ribo-interactome that interacted with ribosomes to facilitate ribosome biogenesis and mRNA translation initiation. Collectively, this study revealed the proteomic features of colorectal cancer and highlighted elevated mRNA translation as a hallmark of colorectal cancer. The identification of the IGF2BP3-COPS7B axis underlying the increased protein synthesis rate in colorectal cancer provided a promising therapeutic target to treat this aggressive disease. SIGNIFICANCE Increased expression of COPS7B mediated by IGF2BP3 elevates the translational efficiency of genes enriched in mRNA translation and ribosome biogenesis pathways, promoting protein synthesis and driving progression in colorectal cancer.
Collapse
Affiliation(s)
- Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Mingjiao Weng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Sciences & Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
- Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
17
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
18
|
Du WQ, Zhu ZM, Jiang X, Kang MJ, Pei DS. COPS6 promotes tumor progression and reduces CD8 + T cell infiltration by repressing IL-6 production to facilitate tumor immune evasion in breast cancer. Acta Pharmacol Sin 2023; 44:1890-1905. [PMID: 37095198 PMCID: PMC10462724 DOI: 10.1038/s41401-023-01085-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
Due to poor T cell infiltration, tumors evade immune surveillance. Increased CD8+ T cell infiltration in breast cancer suggests a satisfactory response to immunotherapy. COPS6 has been identified as an oncogene, but its role in regulating antitumor immune responses has not been defined. In this study, we investigated the impact of COPS6 on tumor immune evasion in vivo. Tumor transplantation models were established in C57BL/6 J mice and BALB/c nude mice. Flow cytometry was conducted to identify the role of COPS6 on tumor-infiltrating CD8+ T cells. By analyzing the TCGA and GTEx cohort, we found that COPS6 expression was significantly up-regulated in a variety of cancers. In human osteosarcoma cell line U2OS and non-small cell lung cancer cell line H1299, we showed that p53 negatively regulated COPS6 promoter activity. In human breast cancer MCF-7 cells, COPS6 overexpression stimulated p-AKT expression as well as the proliferation and malignant transformation of tumor cells, whereas knockdown of COPS6 caused opposite effects. Knockdown of COPS6 also significantly suppressed the growth of mouse mammary cancer EMT6 xenografts in BALB/c nude mice. Bioinformatics analysis suggested that COPS6 was a mediator of IL-6 production in the tumor microenvironment and a negative regulator of CD8+ T cell tumor infiltration in breast cancer. In C57BL6 mice bearing EMT6 xenografts, COPS6 knockdown in the EMT6 cells increased the number of tumor-infiltrating CD8+ T cells, while knockdown of IL-6 in COPS6KD EMT6 cells diminished tumor infiltrating CD8+ T cells. We conclude that COPS6 promotes breast cancer progression by reducing CD8+ T cell infiltration and function via the regulation of IL-6 secretion. This study clarifies the role of p53/COPS6/IL-6/CD8+ tumor infiltrating lymphocytes signaling in breast cancer progression and immune evasion, opening a new path for development of COPS6-targeting therapies to enhance tumor immunogenicity and treat immunologically "cold" breast cancer.
Collapse
Affiliation(s)
- Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng-Jie Kang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
19
|
Bakti F, Stupperich H, Schmitt K, Valerius O, Köhler AM, Meister C, Strohdiek A, Harting R, Sasse C, Heimel K, Neumann P, Ficner R, Braus GH. Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase. Proc Natl Acad Sci U S A 2023; 120:e2305049120. [PMID: 37603767 PMCID: PMC10477865 DOI: 10.1073/pnas.2305049120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.
Collapse
Affiliation(s)
- Fruzsina Bakti
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Helena Stupperich
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Cindy Meister
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Anja Strohdiek
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Christoph Sasse
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| |
Collapse
|
20
|
Zang Y, Bashaw GJ. Systematic analysis of the Frazzled receptor interactome establishes previously unreported regulators of axon guidance. Development 2023; 150:dev201636. [PMID: 37526651 PMCID: PMC10445734 DOI: 10.1242/dev.201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
The Netrin receptor Dcc and its Drosophila homolog Frazzled play crucial roles in diverse developmental process, including axon guidance. In Drosophila, Fra regulates midline axon guidance through a Netrin-dependent and a Netrin-independent pathway. However, what molecules regulate these distinct signaling pathways remain unclear. To identify Fra-interacting proteins, we performed affinity purification mass spectrometry to establish a neuronal-specific Fra interactome. In addition to known interactors of Fra and Dcc, including Netrin and Robo1, our screen identified 85 candidate proteins, the majority of which are conserved in humans. Many of these proteins are expressed in the ventral nerve cord, and gene ontology, pathway analysis and biochemical validation identified several previously unreported pathways, including the receptor tyrosine phosphatase Lar, subunits of the COP9 signalosome and Rho-5, a regulator of the metalloprotease Tace. Finally, genetic analysis demonstrates that these genes regulate axon guidance and may define as yet unknown signaling mechanisms for Fra and its vertebrate homolog Dcc. Thus, the Fra interactome represents a resource to guide future functional studies.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
22
|
Xu S, Chuang CY, Hawkins CL, Hägglund P, Davies MJ. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite. Redox Biol 2023; 64:102799. [PMID: 37413764 PMCID: PMC10363479 DOI: 10.1016/j.redox.2023.102799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) is a powerful oxidizing/nitrating system formed at sites of inflammation, which can modify biological targets, and particularly proteins. Here, we show that multiple proteins from primary human coronary artery smooth muscle cells are nitrated, with LC-MS peptide mass mapping providing data on the sites and extents of changes on cellular and extracellular matrix (ECM) proteins. Evidence is presented for selective and specific nitrations at Tyr and Trp on 11 cellular proteins (out of 3668, including 205 ECM species) in the absence of added reagent ONOOH/ONOO-, with this being consistent with low-level endogenous nitration. A number of these have key roles in cell signaling/sensing and protein turnover. With added ONOOH/ONOO-, more proteins were modified (84 total; with 129 nitrated Tyr and 23 nitrated Trp, with multiple modifications on some proteins), with this occurring at the same and additional sites to endogenous modification. With low concentrations of ONOOH/ONOO- (50 μM) nitration occurs on specific proteins at particular sites, and is not driven by protein or Tyr/Trp abundance, with modifications detected on some low abundance proteins. However, with higher ONOOH/ONOO- concentrations (500 μM), modification is primarily driven by protein abundance. ECM species are major targets and over-represented in the pool of modified proteins, with fibronectin and thrombospondin-1 being particularly heavily modified (12 sites in each case). Both endogenous and exogenous nitration of cell- and ECM-derived species may have significant effects on cell and protein function, and potentially be involved in the development and exacerbation of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
23
|
Böhm K, Schulze-Niemand E, Kähne T, Siddiqui E, Täger C, Ramsbeck D, Buchholz M, Naumann M. Synthesis and structure-activity relationships of USP48 deubiquitinylase inhibitors. Arch Pharm (Weinheim) 2023:e2200661. [PMID: 37196427 DOI: 10.1002/ardp.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Ubiquitin-specific proteases represent a family of enzymes that catalyze the cleavage of ubiquitin from specific substrate proteins to regulate their activity. USP48 is a rarely studied USP, which has recently been linked to inflammatory signaling via regulation of the transcription factor nuclear factor kappa B. Nonetheless, a crystal structure of USP48 has not yet been resolved and potent inhibitors are not known. We screened a set of 14 commercially available USP inhibitors for their activity against USP48 and identified the USP2 inhibitor "ML364" as a candidate for further optimization. Using a ligand-based approach, we derived and synthesized a series of ML364 analogs. The IC50 concentrations of the new compounds to inhibit USP48 were determined in a deubiquitinylase activity assay by measuring the fluorescence intensity using tetra-ubiquitin rhodamine110 as substrate. A compound containing a carboxylic acid functionalization (17e) inhibited USP48 activity toward tetra-ubiquitin rhodamine110 with an IC50 of 12.6 µM. Further structure-based refinements are required to improve the inhibition activity and specificity.
Collapse
Affiliation(s)
- Kevin Böhm
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle, Germany
| | - Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Elisa Siddiqui
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Christian Täger
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle, Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Dubiel D, Wang J, Hartig R, Chaithongyot S, Dubiel W, Naumann M. Latent CSN-CRL complexes are crucial for curcumin-induced apoptosis and recruited during adipogenesis to lipid droplets via small GTPase RAB18. iScience 2023; 26:106468. [PMID: 37091236 PMCID: PMC10119602 DOI: 10.1016/j.isci.2023.106468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The COP9 signalosome (CSN) and cullin-RING ubiquitin ligases (CRLs) form latent CSN-CRL complexes detectable in cells. We demonstrate that the CSN variants CSNCSN7A and CSNCSN7B preferentially bind to CRL3 or CRL4A and CRL4B, respectively. Interestingly, the interacting protein ubiquitin-specific protease 15 exclusively binds to latent CSNCSN7A-CRL3, while p27KIP attaches to latent CSNCSN7B-CRL4A complex. Inhibition of deneddylation by CSN5i-3 or neddylation by MLN4924 do not impede the formation of latent complexes. Latent CSNCSN7A-CRL3 and latent CSNCSN7B-CRL4A/B particles are essential for specific cellular functions. We found that curcumin-induced cell death requires latent CSNCSN7B-CRL4A. Knockout of CSN7B in HeLa cells leads to resistance against curcumin. Remarkably, the small GTPase RAB18 recruits latent CSNCSN7A-CRL3 complex to lipid droplets (LDs), where CRL3 is activated by neddylation, an essential event for LD formation during adipogenesis. Knockdown of CSN7A or RAB18 or destabilization of latent complexes by cutting off CSN7A C-terminal 201-275 amino acids blocks adipogenesis.
Collapse
|
25
|
La Paglia L, Vazzana M, Mauro M, Dumas F, Fiannaca A, Urso A, Arizza V, Vizzini A. Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta. Int J Mol Sci 2023; 24:ijms24044112. [PMID: 36835523 PMCID: PMC9960688 DOI: 10.3390/ijms24044112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs).
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
26
|
Zhu XN, Wei YS, Yang Q, Liu HR, Zhi Z, Zhu D, Xia L, Hong DL, Yu Y, Chen GQ. FBXO22 promotes leukemogenesis by targeting BACH1 in MLL-rearranged acute myeloid leukemia. J Hematol Oncol 2023; 16:9. [PMID: 36774506 PMCID: PMC9922468 DOI: 10.1186/s13045-023-01400-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selectively targeting leukemia stem cells (LSCs) is a promising approach in treating acute myeloid leukemia (AML), for which identification of such therapeutic targets is critical. Increasing lines of evidence indicate that FBXO22 plays a critical role in solid tumor development and therapy response. However, its potential roles in leukemogenesis remain largely unknown. METHODS We established a mixed lineage leukemia (MLL)-AF9-induced AML model with hematopoietic cell-specific FBXO22 knockout mice to elucidate the role of FBXO22 in AML progression and LSCs regulation, including self-renewal, cell cycle, apoptosis and survival analysis. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry analysis, Western blotting and rescue experiments were performed to study the mechanisms underlying the oncogenic role of FBXO22. RESULTS FBXO22 was highly expressed in AML, especially in MLL-rearranged (MLLr) AML. Upon FBXO22 knockdown, human MLLr leukemia cells presented markedly increased apoptosis. Although conditional deletion of Fbxo22 in hematopoietic cells did not significantly affect the function of hematopoietic stem cells, MLL-AF9-induced leukemogenesis was dramatically abrogated upon Fbxo22 deletion, together with remarkably reduced LSCs after serial transplantations. Mechanistically, FBXO22 promoted degradation of BACH1 in MLLr AML cells, and overexpression of BACH1 suppressed MLLr AML progression. In line with this, heterozygous deletion of BACH1 significantly reversed delayed leukemogenesis in Fbxo22-deficient mice. CONCLUSIONS FBXO22 promotes MLLr AML progression by targeting BACH1 and targeting FBXO22 might be an ideal strategy to eradicate LSCs without influencing normal hematopoiesis.
Collapse
Affiliation(s)
- Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China.
| |
Collapse
|
27
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
28
|
Schulze-Niemand E, Naumann M. The COP9 signalosome: A versatile regulatory hub of Cullin-RING ligases. Trends Biochem Sci 2023; 48:82-95. [PMID: 36041947 DOI: 10.1016/j.tibs.2022.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022]
Abstract
The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.
Collapse
Affiliation(s)
- Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
29
|
A Subunit of the COP9 Signalosome, MoCsn6, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Rice Blast Fungus. Microbiol Spectr 2022; 10:e0202022. [PMID: 36445131 PMCID: PMC9769505 DOI: 10.1128/spectrum.02020-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, affecting various development and signaling processes. To date, the biological functions of the COP9 signalosome and its subunits have not been determined in Magnaporthe oryzae. In this study, we characterized the CSN in M. oryzae (which we named MoCsn6) and analyzed its biological functions. MoCsn6 is involved in fungal development, autophagy, and plant pathogenicity. Compared with the wild-type strain 70-15, ΔMocsn6 mutants showed a significantly reduced growth rate, sporulation rate, and germ tube germination rate. Pathogenicity assays showed that the ΔMocsn6 mutants did not cause or significantly reduced the number of disease spots on isolated barley leaves. After the MoCSN6 gene was complemented into the ΔMocsn6 mutant, vegetative growth, sporulation, and pathogenicity were restored. The Osm1 and Pmk1 phosphorylation pathways were also disrupted in the ΔMocsn6 mutants. Furthermore, we found that MoCsn6 participates in the autophagy pathway by interacting with the autophagy core protein MoAtg6 and regulating its ubiquitination level. Deletion of MoCSN6 resulted in rapid lipidation of MoAtg8 and degradation of the autophagic marker protein green fluorescent protein-tagged MoAtg8 under nutrient and starvation conditions, suggesting that MoCsn6 negatively regulates autophagic activity. Taken together, our results demonstrate that MoCsn6 plays a crucial role in regulating fungal development, pathogenicity, and autophagy in M. oryzae. IMPORTANCE Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) has been extensively studied in ubiquitin pathways, but its regulation of autophagy has rarely been reported in plant-pathogenic fungi. Investigations on the relationship between CSN and autophagy will deepen our understanding of the pathogenic mechanism of M. oryzae and provide new insights into the development of new drug targets to control fungal diseases. In this study, the important function of Csn6 in the autophagy regulation pathway and its impact on the pathogenicity of M. oryzae were determined. We showed that Csn6 manages autophagy by interacting with the autophagy core protein Atg6 and regulating its ubiquitination level. Furthermore, future investigations that explore the function of CSN will deepen our understanding of autophagy mechanisms in rice blast fungus.
Collapse
|
30
|
Meszka I, Polanowska J, Xirodimas DP. Mixed in chains: NEDD8 polymers in the Protein Quality Control system. Semin Cell Dev Biol 2022; 132:27-37. [PMID: 35078718 DOI: 10.1016/j.semcdb.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Post-translational modification of proteins with the Ubiquitin-like molecule NEDD8 is a critical regulatory mechanism for several biological processes and a potential target for therapeutic intervention. The role of NEDD8 has been mainly characterised through its modification as single moiety on the cullin family of proteins and control of Cullin-Ring-Ligases, but also on non-cullin substrates. In addition to monoNEDDylation, recent studies have now revealed that NEDD8 can also generate diverse polymers. This is either through modification of the 9 available lysines in NEDD8 and the formation of polyNEDD8 chains, or NEDDylation of Ubiquitin and SUMO-2 for the generation of hybrid NEDD8 chains. Here, we review recent findings that characterise the formation of NEDD8 polymers under distinct modes of protein NEDDylation (canonical/atypical) and their potential role as regulatory signals of the proteotoxic stress response and the Protein Quality Control system.
Collapse
Affiliation(s)
- Igor Meszka
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
31
|
Mehine M, Ahvenainen T, Khamaiseh S, Härkönen J, Reinikka S, Heikkinen T, Äyräväinen A, Pakarinen P, Härkki P, Pasanen A, Levonen AL, Bützow R, Vahteristo P. A novel uterine leiomyoma subtype exhibits NRF2 activation and mutations in genes associated with neddylation of the Cullin 3-RING E3 ligase. Oncogenesis 2022; 11:52. [PMID: 36068196 PMCID: PMC9448808 DOI: 10.1038/s41389-022-00425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Uterine leiomyomas, or fibroids, are the most common tumors in women of reproductive age. Uterine leiomyomas can be classified into at least three main molecular subtypes according to mutations affecting MED12, HMGA2, or FH. FH-deficient leiomyomas are characterized by activation of the NRF2 pathway, including upregulation of the NRF2 target gene AKR1B10. Here, we have identified a novel leiomyoma subtype showing AKR1B10 expression but no alterations in FH or other known driver genes. Whole-exome and whole-genome sequencing revealed biallelic mutations in key genes involved in neddylation of the Cullin 3-RING E3 ligase, including UBE2M, NEDD8, CUL3, and NAE1. 3′RNA sequencing confirmed a distinct molecular subtype with activation of the NRF2 pathway. Most tumors displayed cellular histopathology, perivascular hypercellularity, and characteristics typically seen in FH-deficient leiomyomas. These results suggest a novel leiomyoma subtype that is characterized by distinct morphological features, genetic alterations disrupting neddylation of the Cullin 3-RING E3 ligase, and oncogenic NRF2 activation. They also present defective neddylation as a novel mechanism leading to aberrant NRF2 signaling. Molecular characterization of uterine leiomyomas provides novel opportunities for targeted treatment options.
Collapse
Affiliation(s)
- Miika Mehine
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Terhi Ahvenainen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Sara Khamaiseh
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jouni Härkönen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Siiri Reinikka
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Tuomas Heikkinen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Anna Äyräväinen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Härkki
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Pia Vahteristo
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
32
|
Ubiquitin Specific Protease USP48 Destabilizes NF-κB/p65 in Retinal Pigment Epithelium Cells. Int J Mol Sci 2022; 23:ijms23179682. [PMID: 36077078 PMCID: PMC9456453 DOI: 10.3390/ijms23179682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of NF-κB transcription factor is strictly regulated to accurately direct cellular processes including inflammation, immunity, and cell survival. In the retina, the modulation of the NF-κB pathway is essential to prevent excessive inflammatory responses, which plays a pivotal role in many retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and inherited retinal dystrophies (IRDs). A critical cytokine mediating inflammatory responses in retinal cells is tumor necrosis factor-alpha (TNFα), leading to the activation of several transductional pathways, including NF-κB. However, the multiple factors orchestrating the appropriate regulation of NF-κB in retinal cells still remain unclear. The present study explores how the ubiquitin-specific protease 48 (USP48) downregulation impacts the stability and transcriptional activity of NF-κB/p65 in retinal pigment epithelium (RPE), at both basal conditions and following TNFα stimulation. We described that USP48 downregulation stabilizes p65. Notably, the accumulation of p65 is mainly detectable in the nuclear compartment and it is accompanied by an increased NF-κB transcriptional activity. These results delineate a novel role of USP48 in negatively regulating NF-κB in retinal cells, providing new opportunities for therapeutic intervention in retinal pathologies.
Collapse
|
33
|
USP48 and A20 synergistically promote cell survival in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:461. [PMID: 35913642 PMCID: PMC9343311 DOI: 10.1007/s00018-022-04489-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.
Collapse
|
34
|
Bernard C, Locard-Paulet M, Noël C, Duchateau M, Giai Gianetto Q, Moumen B, Rattei T, Hechard Y, Jensen LJ, Matondo M, Samba-Louaka A. A time-resolved multi-omics atlas of Acanthamoeba castellanii encystment. Nat Commun 2022; 13:4104. [PMID: 35835784 PMCID: PMC9283445 DOI: 10.1038/s41467-022-31832-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.
Collapse
Affiliation(s)
- Clément Bernard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Marie Locard-Paulet
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Cyril Noël
- IFREMER-IRSI-Service de Bioinformatique (SeBiMER), Centre Bretagne, Plouzane, France
| | - Magalie Duchateau
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
- Institut Pasteur, Université de Paris, Department of Computation Biology, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science; Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yann Hechard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Mariette Matondo
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France.
| |
Collapse
|
35
|
Gil-Sánchez MDM, Cea-Sánchez S, Luque EM, Cánovas D, Corrochano LM. Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa. BMC Biol 2022; 20:149. [PMID: 35761233 PMCID: PMC9238092 DOI: 10.1186/s12915-022-01351-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fungi use light as an environmental signal to regulate developmental transitions that are key aspects of their biological cycles and that are also relevant for their dispersal and infectivity as plant or animal pathogens. In addition, light regulates the accumulation of photoprotective pigments, like carotenoids, and other secondary metabolites. Most fungal light responses occur after changes in gene transcription and we describe here a novel effect of light in the regulation of degradation of VE-1, a key component of the velvet complex, in the model fungus Neurospora crassa. The velvet complex is a fungal-specific protein complex that coordinates fungal development, secondary metabolism, and light regulation by interacting with other regulators and photoreceptors and modifying gene expression. RESULTS We have characterized the role of VE-1 during conidiation in N. crassa. In vegetative mycelia, VE-1 is localized in the cytoplasm and nuclei and is required for light-dependent transcription but does not interact with the photoreceptor and transcription factor WC-1. VE-1 is more stable in light than in darkness during asexual development (conidiation). We have shown that this light effect requires the blue-light photoreceptor WC-1. We have characterized the role of the proteasome, the COP9 signalosome (CSN), and the adaptor component of cullin-RING ubiquitin ligases, FWD-1, in the degradation of VE-1. CONCLUSIONS We propose that this new effect of light allows the fungal cell to adapt quickly to changes in light exposure by promoting the accumulation of VE-1 for the regulation of genes that participate in the biosynthesis of photoprotective pigments.
Collapse
Affiliation(s)
| | - Sara Cea-Sánchez
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Luis M Corrochano
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain.
| |
Collapse
|
36
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
37
|
Mesa-Herrera F, Marín R, Torrealba E, Santos G, Díaz M. Neuronal ER-Signalosome Proteins as Early Biomarkers in Prodromal Alzheimer's Disease Independent of Amyloid-β Production and Tau Phosphorylation. Front Mol Neurosci 2022; 15:879146. [PMID: 35600079 PMCID: PMC9119323 DOI: 10.3389/fnmol.2022.879146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
There exists considerable interest to unveil preclinical period and prodromal stages of Alzheimer's disease (AD). The mild cognitive impairment (MCI) is characterized by significant memory and/or other cognitive domains impairments, and is often considered the prodromal phase of AD. The cerebrospinal fluid (CSF) levels of β-amyloid (βA), total tau (t-tau), and phosphorylated tau (p-tau) have been used as biomarkers of AD albeit their significance as indicators during early stages of AD remains far from accurate. The new biomarkers are being intensively sought as to allow identification of pathological processes underlying early stages of AD. Fifty-three participants (75.4 ± 8.3 years) were classified in three groups as cognitively normal healthy controls (HC), MCI, and subjective memory complaints (SMC). The subjects were subjected to a battery of neurocognitive tests and underwent lumbar puncture for CSF extraction. The CSF levels of estrogen-receptor (ER)-signalosome proteins, βA, t-tau and p-tau, were submitted to univariate, bivariate, and multivariate statistical analyses. We have found that the components of the ER-signalosome, namely, caveolin-1, flotilin-1, and estrogen receptor alpha (ERα), insulin growth factor-1 receptor β (IGF1Rβ), prion protein (PrP), and plasmalemmal voltage dependent anion channel 1 (VDAC) could be detected in the CSF from all subjects of the HC, MCI, and SMC groups. The six proteins appeared elevated in MCI and slightly increased in SMC subjects compared to HC, suggesting that signalosome proteins undergo very early modifications in nerve cells. Using a multivariate approach, we have found that the combination of ERα, IGF-1Rβ, and VDAC are the main determinants of group segregation with resolution enough to predict the MCI stage. The analyses of bivariate relationships indicated that collinearity of ER-signalosome proteins vary depending on the stage, with some pairs displaying opposed relationships between HC and MCI groups, and the SMC stage showing either no relationships or behaviors similar to either HC or MCI stages. The multinomial logistic regression models of changes in ER-signalosome proteins provide reliable predictive criteria, particularly for the MCI. Notably, most of the statistical analyses revealed no significant relationships or interactions with classical AD biomarkers at either disease stage. Finally, the multivariate functions were highly correlated with outcomes from neurocognitive tests for episodic memory. These results demonstrate that alterations in ER-signalosome might provide useful diagnostic information on preclinical stages of AD, independently from classical biomarkers.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine Section, Health Sciences School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, University of La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Guido Santos
- Systems Biology and Mathematical Modelling Group, Department of Department of Biochemistry, Microbiology, Cell Biology and Genetics Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mario Díaz
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
38
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
39
|
Du W, Zhang R, Muhammad B, Pei D. Targeting the COP9 signalosome for cancer therapy. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0605. [PMID: 35315259 PMCID: PMC9196064 DOI: 10.20892/j.issn.2095-3941.2021.0605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex composed of 8 subunits (CSN1 to CSN8). The individual subunits of the CSN play essential roles in cell proliferation, tumorigenesis, cell cycle regulation, DNA damage repair, angiogenesis, and microenvironmental homeostasis. The CSN complex has an intrinsic metalloprotease that removes the ubiquitin-like activator NEDD8 from cullin-RING ligases (CRLs). Binding of neddylated CRLs to CSN is sensed by CSN4 and communicated to CSN5 with the assistance of CSN6, thus leading to the activation of deneddylase. Therefore, CSN is a crucial regulator at the intersection between neddylation and ubiquitination in cancer progression. Here, we summarize current understanding of the roles of individual CSN subunits in cancer progression. Furthermore, we explain how the CSN affects tumorigenesis through regulating transcription factors and the cell cycle. Finally, we discuss individual CSN subunits as potential therapeutic targets to provide new directions and strategies for cancer therapy.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Bilal Muhammad
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
40
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
41
|
Chaithongyot S, Naumann M. Helicobacter pylori-induced reactive oxygen species direct turnover of CSN-associated STAMBPL1 and augment apoptotic cell death. Cell Mol Life Sci 2022; 79:86. [PMID: 35066747 PMCID: PMC8784504 DOI: 10.1007/s00018-022-04135-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Deubiquitinylases (DUBs) are central regulators of the ubiquitin system involved in protein regulation and cell signalling and are important for a variety of physiological processes. Most DUBs are cysteine proteases, and few other proteases are metalloproteases of the JAB1/MPN +/MOV34 protease family (JAMM). STAM-binding protein like 1 (STAMBPL1), a member of the JAMM family, cleaves ubiquitin bonds and has a function in regulating cell survival, Tax-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and epithelial-mesenchymal transition. However, the molecular mechanism by which STAMBPL1 influences cell survival is not well defined, especially with regard to its deubiquitinylation function. Here, we show that reactive oxygen species (ROS) induced by chemotherapeutic agents or the human microbial pathogen Helicobacter pylori can induce cullin 1-RING ubiquitin ligase (CRL1) and 26S proteasome-dependent degradation STAMBPL1. Interestingly, STAMBPL1 has a direct interaction with the constitutive photomorphogenic 9 (COP9 or CSN) signalosome subunits CSN5 and CSN6. The interaction with the CSN is required for the stabilisation and function of the STAMBPL1 protein. In addition, STAMBPL1 deubiquitinylates the anti-apoptotic protein Survivin and thus ameliorates cell survival. In summary, our data reveal a previously unknown mechanism by which the deubiquitinylase STAMBPL1 and the E3 ligase CRL1 balance the level of Survivin degradation and thereby determine apoptotic cell death. In response to genotoxic stress, the degradation of STAMBPL1 augments apoptotic cell death. This new mechanism may be useful to develop therapeutic strategies targeting STAMBPL1 in tumours that have high STAMBPL1 and Survivin protein levels.
Collapse
|
42
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
43
|
Zhou H, Sun W, Zou J. Analysis of expression profiles and prognostic value of COP9 signalosome subunits for patients with head and neck squamous cell carcinoma. Oncol Lett 2021; 22:803. [PMID: 34630710 PMCID: PMC8477071 DOI: 10.3892/ol.2021.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been associated with poor prognosis, due to its strong invasive ability and resistance to chemotherapy. Thus, there is an urgent requirement to identify effective biomarkers for the early diagnosis and prognostic evaluation of HNSCC. COP9 signalosome (COPS) regulates numerous cancer-associated biological processes in various malignancies. The aim of the present study was to investigate the association between COPS and HNSCC. The mRNA expression profiles of COPS in HNSCC were analyzed using UALCAN, Oncomine and UCSC Xena databases. The association between overall survival time in patients with HNSCC and the COPS genes was investigated using the Kaplan-Meier plotter database. The CERES score was obtained and evaluated to determine the importance of the COPS genes for survival of the HNSCC cell lines. Functional analysis for Gene Ontology and Gene Set Enrichment Analysis (GSEA) was performed using The Database for Annotation, Visualization and Integrated Discovery and GSEA software, respectively. After knocking down COPS5 and COPS6, cell Counting Kit-8 and wound healing assays were used to detect cell growth and migration of the CAL27 and SCC25 cell lines, respectively. Among the 10 COPS genes examined, most COPS subunits were upregulated in HNSCC samples compared with that in normal tissues, except for COPS9. Increased mRNA expression level of COPS5, COPS6, COPS7B, COPS8 and COPS9 was associated with TNM stage in patients with HNSCC. High mRNA expression level of COPS2, COPS5, COPS6, COPS7A, COPS7B, COPS8 and COPS9 had prognostic significance of patients with HNSCC. Knockdown of COPS5 and COPS6 inhibited cell growth and migration of the CAL27 and SCC25 cell lines. The results from the present study suggested that COPS subunits could be potential biomarkers in patients with HNSCC. COPS5 and COPS6 were important for cell survival and migration of the HNSCC cells.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Wei Sun
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jiaruan Zou
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
44
|
Vijayasimha K, Dolan BP. The Many Potential Fates of Non-Canonical Protein Substrates Subject to NEDDylation. Cells 2021; 10:2660. [PMID: 34685640 PMCID: PMC8534235 DOI: 10.3390/cells10102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.
Collapse
Affiliation(s)
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
45
|
Essential Role of COP9 Signalosome Subunit 5 (Csn5) in Insect Pathogenicity and Asexual Development of Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7080642. [PMID: 34436181 PMCID: PMC8401740 DOI: 10.3390/jof7080642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Csn5 is a subunit ofthe COP9/signalosome complex in model fungi. Here, we report heavier accumulation of orthologous Csn5 in the nucleus than in the cytoplasm and its indispensability to insect pathogenicity and virulence-related cellular events of Beauveria bassiana. Deletion of csn5 led to a 68% increase in intracellular ubiquitin accumulation and the dysregulation of 18 genes encoding ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes and ubiquitin-specific proteases, suggesting the role of Csn5 in balanced ubiquitination/deubiquitination. Consequently, the deletion mutant displayed abolished insect pathogenicity, marked reductions in conidial hydrophobicity and adherence to the insect cuticle, the abolished secretion of cuticle penetration-required enzymes, blocked haemocoel colonisation, and reduced conidiation capacity despite unaffected biomass accumulation. These phenotypes correlated well with sharply repressed or abolished expressions of key hydrophobin genes required for hydrophobin biosynthesis/assembly and of developmental activator genes essential for aerial conidiation and submerged blastospore production. In the mutant, increased sensitivities to heat shock and oxidative stress also correlated with reduced expression levels of several heat-responsive genes and decreased activities of antioxidant enzymes. Altogether, Csn5-reliant ubiquitination/deubiquitination balance coordinates the expression of those crucial genes and the quality control of functionally important enzymes, which are collectively essential for fungal pathogenicity, virulence-related cellular events, and asexual development.
Collapse
|
46
|
The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis. LIVERS 2021. [DOI: 10.3390/livers1030011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression. Flag-pulldowns in both LiSa-2 and HepG2 cells and human primary hepatocytes revealed binding of CYLD preferentially to CSNCSN7A. This was influenced by PA treatment. Silencing of CSNCSN7B blocked lipid droplet formation caused a compensatory increase of CSNCSN7A stabilizing CYLD. Our results demonstrate that CSNCSN7A-mediated CYLD stabilization impedes hepatic steatosis. Therefore, stabilizing CSNCSN7A-CYLD interaction might be a strategy to retard hepatic steatosis.
Collapse
|
47
|
Ruidiaz SF, Dreier JE, Hartmann-Petersen R, Kragelund BB. The disordered PCI-binding human proteins CSNAP and DSS1 have diverged in structure and function. Protein Sci 2021; 30:2069-2082. [PMID: 34272906 PMCID: PMC8442969 DOI: 10.1002/pro.4159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) regularly constitute components of larger protein assemblies contributing to architectural stability. Two small, highly acidic IDPs have been linked to the so-called PCI complexes carrying PCI-domain subunits, including the proteasome lid and the COP9 signalosome. These two IDPs, DSS1 and CSNAP, have been proposed to have similar structural propensities and functions, but they display differences in their interactions and interactome sizes. Here we characterized the structural properties of human DSS1 and CSNAP at the residue level using NMR spectroscopy and probed their propensities to bind ubiquitin. We find that distinct structural features present in DSS1 are completely absent in CSNAP, and vice versa, with lack of relevant ubiquitin binding to CSNAP, suggesting the two proteins to have diverged in both structure and function. Our work additionally highlights that different local features of seemingly similar IDPs, even subtle sequence variance, may endow them with different functional traits. Such traits may underlie their potential to engage in multiple interactions thereby impacting their interactome sizes.
Collapse
Affiliation(s)
- Sarah F Ruidiaz
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper E Dreier
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
48
|
Jones TM, Carew JS, Bauman JE, Nawrocki ST. Targeting NEDDylation as a Novel Approach to Improve the Treatment of Head and Neck Cancer. Cancers (Basel) 2021; 13:3250. [PMID: 34209641 PMCID: PMC8268527 DOI: 10.3390/cancers13133250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is diagnosed in nearly 900,000 new patients worldwide each year. Despite this alarming number, patient outcomes, particularly for those diagnosed with late-stage and human papillomavirus (HPV)-negative disease, have only marginally improved in the last three decades. New therapeutics that target novel pathways are desperately needed. NEDDylation is a key cellular process by which NEDD8 proteins are conjugated to substrate proteins in order to modulate their function. NEDDylation is closely tied to appropriate protein degradation, particularly proteins involved in cell cycle regulation, DNA damage repair, and cellular stress response. Components of the NEDDylation pathway are frequently overexpressed or hyperactivated in many cancer types including head and neck cancer, which contribute to disease progression and drug resistance. Therefore, targeting NEDDylation could have a major impact for malignancies with alterations in the pathway, and this has already been demonstrated in preclinical studies and clinical trials. Here, we will survey the mechanisms by which aberrant NEDDylation contributes to disease pathogenesis and discuss the potential clinical implications of inhibiting NEDDylation as a novel approach for the treatment of head and neck cancer.
Collapse
Affiliation(s)
| | | | | | - Steffan T. Nawrocki
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.); (J.E.B.)
| |
Collapse
|
49
|
Lewno MT, Cui T, Wang X. Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes. Front Physiol 2021; 12:690423. [PMID: 34262479 PMCID: PMC8273387 DOI: 10.3389/fphys.2021.690423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin-proteasome system (UPS) but also the autophagic-lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1-RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.
Collapse
Affiliation(s)
- Megan T Lewno
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
50
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|