1
|
Wang J, Liu ZX, Huang ZH, Wen J, Rao ZZ. Long non-coding RNA in the regulation of cell death in hepatocellular carcinoma. World J Clin Oncol 2025; 16:104061. [PMID: 40290684 PMCID: PMC12019274 DOI: 10.5306/wjco.v16.i4.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for 90% of all cases. Currently, early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection, B-ultrasound, and computed tomography scanning; however, their specificity and sensitivity are suboptimal. Despite significant advancements in HCC biomarker detection, the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis. Therefore, it is crucial to explore more sensitive HCC biomarkers for improved diagnosis, monitoring, and management of the disease. Long non-coding RNA (lncRNA) serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity. Moreover, investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC. We searched the PubMed database for literature, comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells. Furthermore, we prospectively summarize its potential implications in diagnosing and treating HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zi-Xuan Liu
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| |
Collapse
|
2
|
Song X, Liu S, Zeng Y, Cai Y, Luo H. BANCR-containing extracellular vesicles enhance breast cancer resistance. J Biol Chem 2025; 301:108304. [PMID: 39947472 PMCID: PMC11999273 DOI: 10.1016/j.jbc.2025.108304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 04/04/2025] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by many cell types-including tumor cells-and play key roles in cellular communication by transporting functional RNAs. This study aims to elucidate the role of long noncoding RNA BRAF-activated nonprotein coding RNA (BANCR) in EVs derived from breast cancer (BC) cells in trastuzumab resistance. Differentially expressed long noncoding RNA and downstream targets in BC-resistant samples were identified. SKBR-3 cells were treated with trastuzumab to generate resistant cells (SKBR-3TR), and EVs from these cells (SKBR-3TR-EVs) were isolated and characterized. Functional studies of BANCR were performed in SKBR-3 and SKBR-3TR cells. Coculturing SKBR-3 cells with SKBR-3TR-EVs assessed changes in cell behavior. A xenograft model in nude mice examined in vivo tumorigenicity and trastuzumab resistance. BANCR was highly expressed in SKBR-3TR cells and EVs, linked to trastuzumab resistance. SKBR-3TR-EVs transferred BANCR to SKBR-3 cells, where BANCR inhibited miR-34a-5p, reducing its expression. High-mobility group A1 (HMGA1) was identified as a miR-34a-5p target. BANCR activated the HMGA1/Wnt/β-catenin pathway by inhibiting miR-34a-5p, promoting resistance. In vivo experiments showed that BANCR inhibition delayed tumorigenesis and reversed trastuzumab resistance. BC cell-derived EVs containing BANCR may enhance resistance to trastuzumab by regulating the miR-34a-5p/HMGA1/Wnt/β-catenin axis, presenting a potential target for BC therapy.
Collapse
Affiliation(s)
- Xinming Song
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shen Liu
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Zeng
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yilin Cai
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haiqing Luo
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
3
|
Zheng Z, Wang W, Chen B, Huang M, Wang T, Xu Z, Dai X. LncRNA BANCR/miR-15a/MAPK1 Induces Apoptosis and Increases Proliferation of Vascular Smooth Muscle Cells in Aortic Dissection by Enhancing MMP2 Expression. Cell Biochem Biophys 2025:10.1007/s12013-025-01738-x. [PMID: 40156764 DOI: 10.1007/s12013-025-01738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Aortic dissection is associated with a high mortality rate, contributing to an unfavorable prognosis. Preventive measures are more effective than therapeutic interventions for aortic dissection. While LncRNA BANCR is recognized as a functional translational regulator in various diseases, its role in aortic dissection remains unexplored. This study aims to elucidate the functions and molecular mechanisms of BANCR in aortic dissection. Vascular smooth muscle cells were isolated from dissected aortic tunica media samples and their phenotypes were compared with those of commercial vascular smooth muscle cells. BANCR expression was modulated via transient transfection (overexpression) and small interfering RNA (knockdown). The involvement of the p38 MAPK pathway was examined using the inhibitor SB202190. The competing endogenous RNA network was validated through a dual luciferase assay. Cellular phenotypes were assessed using the CCK-8 assay, scratch assay, and flow cytometry. BANCR was overexpressed in dissected aortic tissues and isolated vascular smooth muscle cells. MiR-15a-5p exhibited binding affinity to both BANCR and MAPK1. Overexpression of BANCR activated p38 phosphorylation, enhanced cell proliferation and migration, and increased apoptosis. SB202190 mitigated these BANCR-induced phenotypes by inhibiting p38 phosphorylation. Additionally, MMP2 upregulation was linked to BANCR overexpression via the p38 MAPK pathway. Suppression of BANCR expression or inhibition of p38 phosphorylation reduced MMP2 levels, thereby reversing BANCR-induced phenotypes. The LncRNA BANCR/miR-15a-5p/MAPK1 axis forms a ceRNA network that modulates MMP2 expression through the p38 MAPK signaling pathway in vascular smooth muscle cells. BANCR overexpression activates p38 MAPK phosphorylation, leading to enhanced MMP2 expression and subsequent increases in cell proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Zihe Zheng
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Bo Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
- Department of Cardiovascular Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Ming Huang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zheng Xu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofu Dai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
4
|
Liu W, Ni Y, Bai H, Liu X, Shahzad A, Cui K, Duan Q, Bai Z, Dong Y, Yi Z, Sai B, Kuang Y, Guo C, Zhu Y, Zhang Q, Yang Z. A BRAF-activated noncoding RNA attenuates clear cell renal cell carcinoma via repression of glucose-6-phosphate dehydrogenase. J Biol Chem 2025; 301:108247. [PMID: 39894218 PMCID: PMC11889594 DOI: 10.1016/j.jbc.2025.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/04/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a disease rooted in metabolic disorders, distinguished by abnormally high activity of glucose 6-phosphate dehydrogenase (G6PD). G6PD serves as a key rate-limiting enzyme in the pentose phosphate pathway. Meanwhile, BRAF-activated noncoding RNA (BANCR) has emerged as a crucial regulatory factor linked to various cancers. The expression pattern of BANCR varies across different cancer types, exhibiting apparent duality in its function. However, the precise role and underlying mechanisms of BANCR in ccRCC tumorigenesis remain incompletely understood. Our study indicated that BANCR was downregulated in ccRCC and influenced cell survival by modulating cell proliferation, apoptosis, and G6PD enzyme activity. The underlying mechanism was that BANCR could directly bind to G6PD through a long noncoding RNA-protein interaction, ultimately inhibiting G6PD activity by impeding its dimer formation. Moreover, BANCR exhibited the capability to modulate the glucose metabolic flow in ccRCC cells. Subsequent experiments demonstrated a significant inhibition of tumor growth in vivo upon overexpression of BANCR, and G6PD played a pivotal role in mediating the tumor-suppressive effect of BANCR in ccRCC cells. In conclusion, this study provides novel insights into the molecular pathogenesis of ccRCC, highlights a distinct and new regulatory mechanism responsible for the ectopic overactivation of G6PD in ccRCC progression, and suggests that BANCR-mediated suppression of G6PD activity could emerge as a potential therapeutic strategy for ccRCC treatment.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Honggang Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China; Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou, Hubei, PR China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming, PR China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Chen Guo
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, PR China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China.
| |
Collapse
|
5
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
6
|
Liu C, Chen P, Yang Z, Zhang K, Chen F, Zhu Y, Liu J, Liu L, Wang D, Wang D. New insights into molecular mechanisms underlying malignant transformation of endometriosis: BANCR promotes miR-612/CPNE3 pathway activity. Reprod Biomed Online 2024; 49:104326. [PMID: 39389002 DOI: 10.1016/j.rbmo.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 10/12/2024]
Abstract
RESEARCH QUESTION Does LncRNA BANCR promote the malignant transformation of endometriosis by activating the miR-612/CPNE3 pathway? DESIGN The expression patterns of BANCR, miR-612 and CPNE3 in normal endometrium, eutopic endometrium from endometriosis, eutopic endometrium or malignant tissues from endometriosis-associated ovarian cancer. On the basis of primary normal endometrial stromal cells (NESC) and eutopic endometrial stromal cells (EESC), the regulatory relationships between BANCR, miR-612 and CPNE3, and the potential mechanisms that promote the malignant transformation of endometriosis, were elucidated in vitro and in vivo. RESULTS The expression levels of BANCR and CPNE3 were lowest in normal endometrium, significantly increased in eutopic endometrium (P < 0.05) and was significantly increased in eutopic endometrium (P < 0.05). During the malignant transformation of endometriosis, the expression levels of BANCR and CPNE3 were significantly upregulated (P < 0.05), whereas those of miR-612 were significantly downregulated (P < 0.05). miRNA-612 was found to target BANCR and CPNE3. The overexpression and knockdown of BANCR in NESC and EESC upregulated and downregulated the expression of CPNE3 and promoted or prevented cell proliferation and migration, respectively; these effects were reversed by miR-612 mimics and inhibitor. These changes were all statistically significant (P < 0.05). In-vivo experiments revealed that BANCR significantly increased the survival of subcutaneous endometrial cells by regulating miR-612/CPNE3 (P < 0.05). CONCLUSION The expression of BANCR gradually increased with the progression of endometriosis during malignant transformation, and promoted the proliferation and migration of endometrial cells via the miR-612/CPNE3 pathway. BANCR may represent a novel target for monitoring the malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Chang Liu
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Peng Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Keming Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Department of Gynaecology, People's Hospital of Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Liying Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Danni Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang 110000, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China.
| |
Collapse
|
7
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
8
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
10
|
Jia X, Shen L, Zhu L, Liu D. Sequential occurrence of primary cutaneous indeterminate cell histiocytosis after oesophageal cancer and subsequent bullous pemphigoid: a case report. Br J Hosp Med (Lond) 2024; 85:1-7. [PMID: 39078907 DOI: 10.12968/hmed.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Aims/Background Indeterminate cell histiocytosis is a rare proliferative histiocytic disease with an unknown aetiology, which shares immunophenotypic features of both Langerhans cells and macrophages. There is a relationship between indeterminate cell histiocytosis and cancer, while there are no reports about indeterminate cell histiocytosis and bullous pemphigoid. In this study, we reported the rare case of a patient with primary cutaneous indeterminate cell histiocytosis who had been diagnosed with oesophagal cancer and later developed bullous pemphigoid. The objective of this clinical case report is to analyse the association between solid tumours and indeterminate cell histiocytosis and focus on the coexistence of indeterminate cell histiocytosis and bullous pemphigoid in a patient with cancer. Case Presentation This study presented the case of a 75-year-old man who exhibited annular erythema lesions of variable size and papules scattered over his chest, abdomen, and limbs, along with four bullae on his thigh, persisting for 1.5 months. The patient also had a 9-month history of oesophageal cancer treated with radical radiotherapy. Histopathology and immunohistochemistry confirmed cutaneous indeterminate cell histiocytosis. Bullae and blisters developed on the lower limbs 38 days after treatment. A diagnosis of bullous pemphigoid was established based on clinical and histopathological features and results of direct immunofluorescence and enzyme-linked immunosorbent assay. Results Histopathological examination of the abdominal lesion revealed an accumulation of mononuclear cells in the dermis, with infiltration of eosinophils and lymphocytes in the superficial dermal layer. The histology of the blister on the thigh indicated the formation of an old subepidermal blister, with slurry and eosinophils present within the blister, and infiltration of eosinophils, lymphocytes, as well as histiocytoid cells in the superficial dermal layer. Immunohistochemical staining was positive for CD1a, S100, and CD68, and negative for CD207. Histopathological examination of blisters and bullae on the lower limbs revealed a subepidermal blister with infiltration of a large number of eosinophils within the blister and the dermis beneath it. Direct immunofluorescence showed that immunoglobulin Gs (IgGs) were linearly deposited in the basal membrane zone. Conclusion The coexistence of oesophageal carcinoma, indeterminate cell histiocytosis, and bullous pemphigoid in a single patient represents a rare case that warrants consideration of possible underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoxiao Jia
- Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, Zhejiang, China
| | - Liling Shen
- Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, Zhejiang, China
| | - Lu Zhu
- Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, Zhejiang, China
| | - Dun Liu
- Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, Zhejiang, China
| |
Collapse
|
11
|
Shafaee Arani S, Nejati M, Rastgoufar S, Raisi A, Eshraghi R, Ostadian A, Matini AH, Rahimain N, Mirzaei H. Evaluation of expression level of BANCR, MALAT1 and FER1L4 and their target genes in coumarin-treated AGS cell line. Pathol Res Pract 2024; 257:155291. [PMID: 38643553 DOI: 10.1016/j.prp.2024.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Because long non-coding RNAs (lncRNAs) can affect several interconnected processes, its value as a predictive marker for gastric cancer has been demonstrated. Coumarin - a natural compound known to contain some beneficial antitumor qualities - was tested for its effects on AGS gastric cancer cells. In this study, we investigated the expression level of selected cellular lncRNAs (BANCR, MALAT1 and FER1L4) and their target genes (PTEN, p-PI3K and p-AKT) in coumarin-treated AGS cell line. The expressions of the three lncRNAs: BANCR, MALAT1 and FER1L4, as well as their specified targets, PTEN, PI3K and AKT, were measured by qRT-PCR. To gauge the impact of coumarin on the AGS cells, a MTT assay was utilized. A Western blot has been employed to assess variations in PTEN, p-PI3K, and p-AKT expression. The experiment's results showed that AGS viability diminished with increasing doses of coumarin. Compared to the control cells, the cells exposed to coumarin had showed reduced levels of mRNAs which are known targets of the lncRNA BANCR. At the same time, levels of lncRNAs MALAT1 and FER1L4 within coumarin group have been higher comparing to those within control group. Additionally, the Western blot analysis revealed that the coumarin-treated cells expressed lower levels of p-PI3K, PTEN as well as p-AKT compared to control group. This information points to coumarin being a possible option in a treatment regimen for gastric cancer due to its ability to affect lncRNAs and the molecules they target.
Collapse
Affiliation(s)
- Shirin Shafaee Arani
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepide Rastgoufar
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimain
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Chang F, Liu H, Wan J, Gao Y, Wang Z, Zhang L, Feng Q. Construction and Validation of a Prognostic Risk Prediction Model for Lactate Metabolism-Related lncRNA in Endometrial Cancer. Biochem Genet 2024; 62:741-760. [PMID: 37423972 DOI: 10.1007/s10528-023-10443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Endometrial cancer (EC) is a common group of malignant epithelial tumors that mainly occur in the female endometrium. Lactate is a key regulator of signal pathways in normal and malignant tissues. However, there is still no research on lactate metabolism-related lncRNA in EC. Here, we intended to establish a prognostic risk model for EC based on lactate metabolism-related lncRNA to forecast the prognosis of EC patients. First, we found that 38 lactate metabolism-associated lncRNAs were significantly overall survival through univariate Cox regression analysis. Using minimum absolute contraction and selection operator (LASSO) regression analysis and multivariate Cox regression analysis, six lactate metabolism-related lncRNAs were established as independent predictor in EC patients and were used to establish a prognostic risk signature. We next used multifactorial COX regression analysis and receiver operating characteristic (ROC) curve analysis to confirm that risk score was an independent prognostic factor of overall patient survival. The survival time of patients with EC in different high-risk populations was obviously related to clinicopathological factors. In addition, lactate metabolism-related lncRNA in high-risk population participated in multiple aspects of EC malignant progress through Gene Set Enrichment Analysis, Genomes pathway and Kyoto Encyclopedia of Genes and Gene Ontology. And risk scores were strongly associated with tumor mutation burden, immunotherapy response and microsatellite instability. Finally, we chose a lncRNA SRP14-AS1 to validate the model we have constructed. Interestingly, we observed that the expression degree of SRP14-AS1 was lower in tumor tissues of EC patients than in normal tissues, which was consistent with our findings in the TCGA database. In conclusion, our study constructed a prognostic risk model through lactate metabolism-related lncRNA and validated the model, confirming that the model can be used to predict the prognosis of EC patients and providing a molecular analysis of potential prognostic lncRNA for EC.
Collapse
Affiliation(s)
- Fenghua Chang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junhu Wan
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiting Wang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lindong Zhang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanling Feng
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Xu J, Xue D, Li Y, Zhou J, Chen H, Fan L. Mechanisms of vemurafenib-induced anti-tumor effects in ATC FRO cells. Heliyon 2024; 10:e27629. [PMID: 38509927 PMCID: PMC10951592 DOI: 10.1016/j.heliyon.2024.e27629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Background Anaplastic Thyroid Carcinoma (ATC) is a rare and deadly malignant tumor in humans. It is prone to developing resistance to radiotherapy and chemotherapy. Molecular targeted therapy offers a novel way to treat ATC. The BRAF mutation is closely associated with many cancers, including thyroid carcinoma. Vemurafenib, a small-molecule inhibitor, is specifically designed to target the mutant serine/threonine kinase BRAF. The objective of this study is to elucidate the regulatory mechanisms underlying the effects of vemurafenib on human anaplastic thyroid carcinoma cell line FRO and to assess its potential therapeutic role. Methods The effects of vemurafenib on the proliferation of FRO cells were assessed by the CCK-8 method and Colony-forming assay. Transwell chambers and scratch tests were employed to examine the impact of vemurafenib on the invasion and migration of FRO cells. Apoptosis and cycle distribution of FRO cells were analyzed by tunel assay and flow cytometry. The effects of vemurafenib on the expression of BRAF-activated non-protein coding RNA (BANCR), Bax, Bcl2, and E-cadherin were evaluated by qRT-PCR. Furthermore, the effects of vemurafenib on the expression of phosphoinositol-3-kinase (PI3K)/phosphoinositol-3-kinase (AKT) pathway-related proteins, BRAF, CyclinD1, Bcl-2, Bax, and E-cadherin proteins in FRO cells were investigated through the western-blot method. All experiments were conducted in three replicates. Results Vemurafenib was observed to inhibit proliferation and induce apoptosis in a dose- and time-dependent manner (P < 0.05). The formation of FRO cell colonies, as well as migration and invasion, all showed a dose-dependent reduction (P < 0.05). Flow cytometric analysis indicated G0/G1 cell cycle arrest (P < 0.05). QRT-PCR revealed that vemurafenib could suppress the expression of BANCR and Bcl2 while increasing the expression of Bax and E-cadherin in a dose-dependent manner (P < 0.05). The protein expression levels of Bax and E-cadherin were up-regulated significantly, and the expression levels of BRAF, CyclinD1, Bcl-2, p-PI3K, p-AKT, and p-mTOR were markedly down-regulated with increasing concentrations of vemurafenib (P < 0.05). Conclusions The proliferation and metastasis of FRO cells can be suppressed by vemurafenib through the silencing of BRAF and BANCR expression, inhibition of PI3K/AKT signaling pathway activation, induction of apoptosis, and cell cycle arrest.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of General Surgery, The First Affiliated Hospital of Qiqihar Medical University, Heilongjiang, 161041, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Yang Li
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Jianwen Zhou
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Hongyue Chen
- Department of General Surgery, The First Affiliated Hospital of Qiqihar Medical University, Heilongjiang, 161041, China
| | - Li Fan
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| |
Collapse
|
14
|
Zhang J, Yao L, Guo Y. Interaction of BANCR in the relationship between Hashimoto's thyroiditis and papillary thyroid carcinoma expression patterns and possible molecular mechanisms. J Gene Med 2024; 26:e3663. [PMID: 38342961 DOI: 10.1002/jgm.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Previous studies have established a connection between Hashimoto's thyroiditis (HT) and an increased risk of papillary thyroid carcinoma (PTC). However, the molecular mechanisms driving this association are not well understood. The long non-coding RNA (lncRNA) BRAF-activated non-coding RNA (BANCR) has been implicated in various cancers, suggesting a potential role in the HT-PTC linkage. METHODS This study investigated the expression levels of BANCR in PTC and HT samples, compared to control tissues. We also examined the association between BANCR expression and clinicopathological features, including lymph node metastasis. Furthermore, we explored the molecular mechanisms of BANCR in PTC pathogenesis and its potential as a therapeutic target. RESULTS BANCR expression was significantly lower in PTC samples than in controls, while it was moderately increased in HT samples. In PTC cases with concurrent HT, BANCR expression was markedly reduced compared to normal tissues. Our analysis revealed BANCR's role as an oncogene in PTC, influencing various cancer-related signaling pathways. Interestingly, no significant correlation was found between BANCR expression and lymph node metastasis. CONCLUSION Our findings underscore the involvement of BANCR in the connection between HT and PTC. The distinct expression patterns of BANCR in PTC and HT, especially in PTC with concurrent HT, provide new insights into the molecular interplay between these conditions. This study opens avenues for the development of innovative diagnostic and therapeutic strategies targeting BANCR in PTC and HT.
Collapse
Affiliation(s)
- Jiabo Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lingli Yao
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yu Guo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
16
|
Shu J, Xia K, Luo H, Wang Y. DARS-AS1: A Vital Oncogenic LncRNA Regulator with Potential for Cancer Prognosis and Therapy. Int J Med Sci 2024; 21:571-582. [PMID: 38322590 PMCID: PMC10845261 DOI: 10.7150/ijms.90611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
DARS-AS1, short for Aspartyl-tRNA synthetase antisense RNA 1, has emerged as a pivotal player in cancers. Upregulation of this lncRNA is a recurrent phenomenon observed across various cancer types, where it predominantly assumes oncogenic roles, exerting influence on multiple facets of tumor cell biology. This aberrant expression of DARS-AS1 has triggered extensive research investigations, aiming to unravel its roles and clinical values in cancer. In this review, we elucidate the significant correlation between dysregulated DARS-AS1 expression and adverse survival prognoses in cancer patients, drawing from existing literature and pan-cancer analyses from The Cancer Genome Atlas (TCGA). Additionally, we provide comprehensive insights into the diverse functions of DARS-AS1 in various cancers. Our review encompasses the elucidation of the molecular mechanisms, ceRNA networks, functional mediators, and signaling pathways, as well as its involvement in therapy resistance, coupled with the latest advancements in DARS-AS1-related cancer research. These recent updates enrich our comprehensive comprehension of the pivotal role played by DARS-AS1 in cancer, thereby paving the way for future applications of DARS-AS1-targeted strategies in tumor prognosis evaluation and therapeutic interventions. This review furnishes valuable insights to advance the ongoing efforts in combating cancer effectively.
Collapse
Affiliation(s)
- Jian Shu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332000, Jiangxi, China
| | - Kejiang Xia
- Department of Neurosurgery, Yingtan People's Hospital, Yingtan 335000, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| |
Collapse
|
17
|
Hong A, Cao M, Li D, Wang Y, Zhang G, Fang F, Zhao L, Wang Q, Lin T, Wang Y. Lnc-PKNOX1-1 inhibits tumor progression in cutaneous malignant melanoma by regulating NF-κB/IL-8 axis. Carcinogenesis 2023; 44:871-883. [PMID: 37843471 PMCID: PMC10818096 DOI: 10.1093/carcin/bgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cutaneous malignant melanoma is one of the most lethal cutaneous malignancies. Accumulating evidence has demonstrated the potential influence of long non-coding RNAs (lncRNAs) in biological behaviors of melanoma. Herein, we reported a novel lncRNA, lnc-PKNOX1-1 and systematically studied its functions and possible molecular mechanisms in melanoma. Reverse transcription-quantitative PCR assay showed that lnc-PKNOX1-1 was significantly decreased in melanoma cells and tissues. Low lnc-PKNOX1-1 expression was significantly correlated with invasive pathological type and Breslow thickness of melanoma. In vitro and in vivo experiments showed lnc-PKNOX1-1 dramatically inhibited melanoma cell proliferation, migration and invasion. Mechanically, protein microarray analysis suggested that interleukin-8 (IL-8) was negatively regulated by lnc-PKNOX1-1 in melanoma, which was confirmed by western blot and ELISA. Western blot analysis also showed that lnc-PKNOX1-1 could promote p65 phosphorylation at Ser536 in melanoma. Subsequent rescue assays proved IL-8 overexpression could partly reverse the tumor-suppressing function of lnc-PKNOX1-1 overexpression in melanoma cells, indicating that lnc-PKNOX1-1 suppressed the development of melanoma by regulating IL-8. Taken together, our study demonstrated the tumor-suppressing ability of lnc-PKNOX1-1 in melanoma, suggesting its potential as a novel diagnostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Anlan Hong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Meng Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yixin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guoqiang Zhang
- Department of Dermatology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Fang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liang Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiang Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Tong Lin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yan Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
18
|
Stojanović S, Šelemetjev S, Đorić I, Janković Miljuš J, Tatić S, Živaljević V, Išić Denčić T. BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines 2023; 11:3338. [PMID: 38137560 PMCID: PMC10742276 DOI: 10.3390/biomedicines11123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In order to enhance the risk stratification of papillary thyroid carcinoma (PTC) patients, we assessed the presence of the most common mutation in PTC (BRAFV600E) with the expression profiles of long non-coding RNA activated by BRAFV600E (BANCR) and microRNAs, which share complementarity with BANCR (miR-203a-3p and miR-204-3p), and thereafter correlated it with several clinicopathological features of PTC. BRAFV600E was detected by mutant allele-specific PCR amplification. BANCR and miRs levels were determined by quantitative RT-PCR. Bioinformatic analysis was applied to determine the miRs' targets. The expression profile of miR-203a-3p/204-3p in PTC was not affected by BRAFV600E. In the BRAFV600E-positive PTC, high expression of miR-203a-3p correlated with extrathyroidal invasion (Ei), but the patients with both high miR-203a-3p and upregulated BANCR were not at risk of Ei. In the BRAFV600E-negative PTC, low expression of miR-204-3p correlated with Ei, intraglandular dissemination and pT status (p < 0.05), and the mutual presence of low miR-204-3p and upregulated BANCR increased the occurrence of Ei. Bioinformatic analysis predicted complementary binding between miR-203a-3p/204-3p and BANCR. The co-occurrence of tested factors might influence the spreading of PTC. These findings partially describe the complicated network of interactions that may occur during the development of PTC aggressiveness, potentially providing a new approach for high-risk PTC patient selection.
Collapse
Affiliation(s)
- Stefana Stojanović
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Sonja Šelemetjev
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Ilona Đorić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Jelena Janković Miljuš
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Svetislav Tatić
- Institute for Pathology, Faculty of Medicine, University of Belgrade, Doctor Subotic Street 1, 11000 Belgrade, Serbia;
| | - Vladan Živaljević
- Clinic for Endocrine Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Tijana Išić Denčić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| |
Collapse
|
19
|
Hao S, Sun H, Sun H, Zhang B, Ji K, Liu P, Nie F, Han W. STM2457 Inhibits the Invasion and Metastasis of Pancreatic Cancer by Down-Regulating BRAF-Activated Noncoding RNA N6-Methyladenosine Modification. Curr Issues Mol Biol 2023; 45:8852-8863. [PMID: 37998732 PMCID: PMC10670688 DOI: 10.3390/cimb45110555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system that is highly malignant, difficult to treat, and confers a poor prognosis for patients. BRAF-activated noncoding RNA (BANCR) has been proven to play an important role in the invasion and metastasis of pancreatic cancer. In this study, we focused on BANCR as a potential therapeutic target for human pancreatic cancer. The BANCR level in pancreatic cancer tissues and cells is affected by m6A methylation. Based on this, the aim of our study was to investigate the effect of a highly potent and selective first-in-class catalytic inhibitor of METTL3 (STM2457) on BANCR m6A methylation and its malignant biological behaviors in pancreatic cancer. The relationship between BANCR expression and BANCR m6A modification was detected with RT-qPCR and MeRIP-PCR. The expression of methyltransferase-like 3 (METTL3), the key enzyme involved in m6A methylation, in pancreatic cancer tissues was detected using a Western blot. STM2457 was used in vitro to investigate its resistance to the proliferation, invasion, and metastasis of pancreatic cancer cells. BANCR was overexpressed in pancreatic cancer tissues and cells, which was associated with poor clinical outcomes and validated in pancreatic cancer cell lines. m6A modification was highly enriched within BANCR and enhanced its expression. Remarkably, STM2457 inhibited the proliferation, invasion, and metastasis of pancreatic cancer cells by down-regulating BANCR m6A modifications. This study demonstrates the promise of BANCR as a new diagnostic and therapeutic target for pancreatic cancer and reveals the therapeutic effect that STM2457 exerts on pancreatic cancer by down-regulating BANCR m6A modifications.
Collapse
Affiliation(s)
- Shaolong Hao
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| | - Hao Sun
- Department of Central Laboratory, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (H.S.); (F.N.)
| | - Bo Zhang
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| | - Kailun Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| | - Peng Liu
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| | - Fang Nie
- Department of Central Laboratory, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (H.S.); (F.N.)
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua South Road, Tongzhou, Beijing 101149, China; (S.H.); (H.S.); (B.Z.); (K.J.); (P.L.)
| |
Collapse
|
20
|
Kolenda T, Poter P, Guglas K, Kozłowska-Masłoń J, Braska A, Kazimierczak U, Teresiak A. Biological role and diagnostic utility of ribosomal protein L23a pseudogene 53 in cutaneous melanoma. Rep Pract Oncol Radiother 2023; 28:255-270. [PMID: 37456695 PMCID: PMC10348336 DOI: 10.5603/rpor.a2023.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Skin melanoma is one of the deadliest types of skin cancer and develops from melanocytes. The genetic aberrations in protein-coding genes are well characterized, but little is known about changes in non-coding RNAs (ncRNAs) such as pseudogenes. Ribosomal protein pseudogenes (RPPs) have been described as the largest group of pseudogenes which are dispersed in the human genome. Materials and methids We looked deeply at the role of one of them, ribosomal protein L23a pseudogene 53 (RPL23AP53), and its potential diagnostic use. The expression level of RPL23AP53 was profiled in melanoma cell lines using real time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and analyzed based on the Cancer Genome Atlas (TCGA) data depending on BRAF status and clinicopathological parameters. Cellular phenotype, which was associated with RPL23AP53 levels, was described based on the REACTOME pathway browser, Gene Set Enrichment Analysis (GSEA) analysis as well as Immune and ESTIMATE Scores. Results We indicted in vitro changes in RPL23AP53 level depending on a cell line, and based on in silico analysis of TCGA samples demonstrated significant differences in RPL23AP53 expression between primary and metastatic melanoma, as well as correlation between RPL23AP53 and overall survival. No differences depending on BRAF status were observed. RPL23AP53 is associated with several signaling pathways and cellular processes. Conclusions This study showed that patients with higher expression of RPL23AP53 displayed changed infiltration of lymphocytes, macrophages, and neutrophils compared to groups with lower expression of RPL23AP53. RPL23AP53 pseudogene is differently expressed in melanoma compared with normal tissue and its expression is associated with cellular proliferation. Thus, it may be considered as an indicator of patients' survival and a marker for the immune profile assessment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Paulina Poter
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Center, Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Braska
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
21
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
22
|
Ghafouri-Fard S, Ahmadi Teshnizi S, Hussen BM, Taheri M, Zali H. A review on the role of GHET1 in different cancers. Pathol Res Pract 2023; 247:154545. [PMID: 37244053 DOI: 10.1016/j.prp.2023.154545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Gastric cancer High Expressed Transcript 1 (GHET1) is an RNA gene located on chromosome 7q36.1. This non-coding RNA is involved in the pathology of different cancers. It can regulate cell proliferation, apoptosis and cell cycle transition. Moreover, it induces epithelial-mesenchymal transition. Up-regulation of GHET1 has been correlated with poor prognosis of patients with different malignancies. Besides, its up-regulation has been mostly detected in later stages and advanced grades of cancers. This review summarizes recent studies on the expression of GHET1, its in vitro functions, and its impact on the beginning and progression of cancer based on xenograft models of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadi Teshnizi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hakimeh Zali
- Proteomics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X, Li S, Guo Y. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother 2023; 162:114672. [PMID: 37060662 DOI: 10.1016/j.biopha.2023.114672] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
In recent years, breakthroughs in bioinformatics have been made with the discovery of many functionally significant non-coding RNAs (ncRNAs). The discovery of these ncRNAs has further demonstrated the multi-level characteristics of intracellular gene expression regulation, which plays an important role in assisting diagnosis, guiding clinical drug use and determining prognosis in the treatment process of various diseases. microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are the three major types of ncRNAs that interact with each other. Studies have shown that lncRNAs and circRNAs can sponge miRNAs, thereby influencing normal physiological processes and regulating mRNA expression and, thus, the physiological state of cells. This paper summarizes the mechanism of action and research progress of the three ncRNA and seven types of modalities. This summary is intended to provide new ideas for diagnosing and treating diseases and researching and developing new drugs.
Collapse
Affiliation(s)
- Benchi Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Pufan Shan
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Yufan Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Liping Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Shuyan Li
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China; Laboratory of Liver Viscera-State & Syndrome of Emotional Disease, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| |
Collapse
|
24
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
26
|
LncRNA BANCR Promotes Endometrial Stromal Cell Proliferation and Invasion in Endometriosis via the miR-15a-5p/TRIM59 Axis. Int J Genomics 2022; 2022:9083822. [PMID: 36262826 PMCID: PMC9576446 DOI: 10.1155/2022/9083822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNA (LncRNA) emerges as a regulator in various diseases, including endometriosis (EM). This study aims to uncover the role of long non-coding RNA BRAF-activated non-protein coding RNA (lncRNA BANCR)-mediated competing endogenous RNA mechanism in endometrial stromal cell (ESC) proliferation and invasion in EM by regulating miR-15a-5p/TRIM59. ESCs were isolated from eutopic and ectopic endometrial tissues, followed by the determination of Cytokeratin 19 and Vimentin expressions in cells. Then, expressions of lncRNA BANCR, microRNA (miR)-15a-5p, and tripartite motif-containing 59 (TRIM59) in tissues and cells were determined by real-time quantitative polymerase chain reaction or Western blot assay, and cell proliferation and invasion were evaluated by cell counting kit-8 and transwell assays. After that, the subcellular localization of lncRNA BANCR and binding of miR-15a-5p to lncRNA BANCR or TRIM59 were analyzed. LncRNA BANCR was upregulated in ectopic endometrial tissues and ectopic ESCs (Ect-ESCs). Silencing lncRNA BANCR suppressed Ect-ESC proliferation and invasion. LncRNA BANCR inhibited miR-15a-5p to promote TRIM59 expression. miR-15a-5p downregulation or TRIM59 overexpression both reversed the effects of silencing lncRNA BANCR on Ect-ESC proliferation and invasion. In summary, our findings suggested that lncRNA BANCR facilitated Ect-ESC proliferation and invasion by inhibiting miR-15a-5p and promoting TRIM59.
Collapse
|
27
|
Kim D, Yu J, Kim J, Hwang YA, Kim JK, Ku CR, Yoon JH, Kwak JY, Nam KH, Lee EJ. Use of long non-coding RNAs for the molecular diagnosis of papillary thyroid cancer. Front Oncol 2022; 12:924409. [PMID: 36132147 PMCID: PMC9483125 DOI: 10.3389/fonc.2022.924409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Improved molecular testing for common somatic mutations and the identification of mRNA and microRNA expression classifiers are promising approaches for the diagnosis of thyroid nodules. However, there is a need to improve the diagnostic accuracy of such tests for identifying thyroid cancer. Recent findings have revealed a crucial role of long non-coding RNAs (lncRNAs) in gene modulation. Thus, we aimed to evaluate the diagnostic value of selected lncRNAs from The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset. Methods LncRNAs in TANRIC thyroid cancer dataset that have significantly increased or decreased expression in papillary thyroid cancer (PTC) tissues were selected as candidates for PTC diagnosis. Surgical specimens from patients who underwent thyroidectomy were used to determine the separation capability of candidate lncRNAs between malignant and benign nodules. Fine needle aspiration samples were obtained and screened for candidate lncRNAs to verify their diagnostic value. Results LRRC52-AS1, LINC02471, LINC02082, UNC5B-AS1, LINC02408, MPPED2-AS1, LNCNEF, LOC642484, ATP6V0E2-AS1, and LOC100129129 were selected as the candidate lncRNAs. LRRC52-AS1, LINC02082, UNC5B-AS1, MPPED2-AS1, LNCNEF, and LOC100129129 expression levels were significantly increased or decreased in malignant nodules compared to those in benign nodules and paired normal thyroid tissues. The combination of LRRC52-AS1, LINC02082, and UNC5B-AS1 showed favorable results for the diagnosis of PTC from fine needle aspirates, with 88.9% sensitivity and 100.0% specificity. Conclusions LncRNA expression analysis is a promising approach for advancing the molecular diagnosis of PTC. Further studies are needed to identify lncRNAs of additional diagnostic value.
Collapse
Affiliation(s)
- Daham Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Juyeon Yu
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon-a Hwang
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Kyong Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Yoon
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Kwak
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee-Hyun Nam
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kee-Hyun Nam,
| | - Eun Jig Lee
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Holm TM, Yeo S, Turner KM, Guan JL. Targeting Autophagy in Thyroid Cancer: EMT, Apoptosis, and Cancer Stem Cells. Front Cell Dev Biol 2022; 10:821855. [PMID: 35846375 PMCID: PMC9277179 DOI: 10.3389/fcell.2022.821855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a highly conserved recycling process through which cellular homeostasis is achieved and maintained. With respect to cancer biology, autophagy acts as a double-edged sword supporting tumor cells during times of metabolic and therapeutic stress, while also inhibiting tumor development by promoting genomic stability. Accumulating evidence suggests that autophagy plays a role in thyroid cancer, acting to promote tumor cell viability and metastatic disease through maintenance of cancer stem cells (CSCs), supporting epithelial-to-mesenchymal transition (EMT), and preventing tumor cell death. Intriguingly, well-differentiated thyroid cancer is more prevalent in women as compared to men, though the underlying molecular biology driving this disparity has not yet been elucidated. Several studies have demonstrated that autophagy inhibitors may augment the anti-cancer effects of known thyroid cancer therapies. Autophagy modulation has become an attractive target for improving outcomes in thyroid cancer. This review aims to provide a comprehensive picture of the current knowledge regarding the role of autophagy in thyroid cancer, focusing on the potential mechanism(s) through which inhibition of autophagy may enhance cancer therapy and outcomes.
Collapse
Affiliation(s)
- Tammy M Holm
- Department of Surgery, The University of Cincinnati, Cincinnati, OH, United States.,Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Syn Yeo
- Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Kevin M Turner
- Department of Surgery, The University of Cincinnati, Cincinnati, OH, United States.,Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Jun-Lin Guan
- Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
30
|
Fu P, Gong B, Li H, Luo Q, Huang Z, Shan R, Li J, Yan S. Combined identification of three lncRNAs in serum as effective diagnostic and prognostic biomarkers for hepatitis B virus-related hepatocellular carcinoma. Int J Cancer 2022; 151:1824-1834. [PMID: 35802466 DOI: 10.1002/ijc.34201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/09/2022]
Abstract
Hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) is a common, highly invasive malignant tumor associated with a high mortality rate. This study aimed to identify the effective diagnostic and prognostic biomarkers for HBV-related HCC. With HBV-related HCC RNA-sequencing data of The Cancer Genome Atlas (TCGA) database, 159 differentially expressed long non-coding RNAs (lncRNAs) between HBV-related HCC and para-carcinoma normal samples were identified, and 12 lncRNAs were eventually assessed for deeper research. Classification analysis developed a three-lncRNA signature of AC005332.5, ELF3-AS1, and LINC00665, which was demonstrated to be the most discriminatory with an AUC (Area Under the Curve) value of 0.913 (95% CI: 0.8610-0.9665) and verified in validation patients. The expression levels of AC005332.5, ELF3-AS1, and LINC00665 were significantly changed with different tumor stages or grades. Survival analysis revealed that AC005332.5, ELF3-AS1, and LINC00665 were highly associated with the prognosis of overall survival. Additionally, the lncRNA signature yielded statistical significance to predict clinical outcomes independently from other clinical variables in validation patients, as suggested in the multivariate Cox hazards analysis. Conclusively, a three-lncRNA signature of AC005332.5, ELF3-AS1, and LINC00665 may serve as an excellent diagnostic biomarker for HBV-related HCC and potential prognostic significance for HBV-related HCC sufferers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peng Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Afliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer Cell Int 2022; 22:225. [PMID: 35790972 PMCID: PMC9258118 DOI: 10.1186/s12935-022-02644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Minichromosome Maintenance Complex Component 3 Associated Protein Antisense 1 (MCM3AP-AS1) is an RNA gene located on 21q22.3. The sense transcript from this locus has dual roles in the pathogenesis of solid tumors and hematological malignancies. MCM3AP-AS1 has been shown to sequester miR-194-5p, miR-876-5p, miR-543-3p, miR-28-5p, miR-93, miR-545, miR-599, miR‐193a‐5p, miR-363-5p, miR-204-5p, miR-211-5p, miR-15a, miR-708-5p, miR-138, miR-138-5p, miR-34a, miR-211, miR‐340‐5p, miR-148a, miR-195-5p and miR-126. Some cancer-related signaling pathway, namely PTEN/AKT, PI3K/AKT and ERK1/2 are influenced by this lncRNA. Cell line studies, animal studies and clinical studies have consistently reported oncogenic role of MCM3AP-AS1 in different tissues except for cervical cancer in which this lncRNA has tumor suppressor role. In the current manuscript, we collected evidence from these three sources of evidence to review the impact of MCM3AP-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
The diagnostic utility of microRNA 222-3p, microRNA 21-5p, and microRNA 122-5p for HCV-related hepatocellular carcinoma and its relation to direct-acting antiviral therapy. Arab J Gastroenterol 2022; 23:108-114. [DOI: 10.1016/j.ajg.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
33
|
Wang B, Wang M, Jia S, Li T, Yang M, Ge F. Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells. J Proteome Res 2022; 21:1137-1152. [DOI: 10.1021/acs.jproteome.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Du W, Shi X, Fang Q, Zhang X, Liu S. Feasibility of Apatinib in Radioiodine-Refractory Differentiated Thyroid Carcinoma. Front Endocrinol (Lausanne) 2022; 13:768028. [PMID: 35282451 PMCID: PMC8904562 DOI: 10.3389/fendo.2022.768028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Our aim was to describe our experience in using apatinib as treatment for radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC). METHODS Forty-seven patients undergoing apatinib treatment for RAIR-DTC were prospectively enrolled in this study. The study endpoints were objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and rate of adverse events. RESULTS No patients achieved complete response, while 36 (76.6%) and 8 (17.0%) patients achieved partial response and stable disease, respectively. The ORR and DCR were 76.6% and 93.6%, respectively. The median PFS and OS were 18 and 59 months, respectively. A total of 91 adverse events occurred, of which 21 were graded as grade 3 or higher. There were no drug-related deaths. CONCLUSIONS Apatinib has distinct anti-RAIR-DTC efficacy in terms of ORR, PFS, and OS and has a favorable safety profile. It is a feasible treatment option for RAIR-DTC.
Collapse
Affiliation(s)
- Wei Du
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiangyu Shi
- Department of Breast and Thyroid Surgery, People’s Hospital of Changshou District, Chongqing, China
| | - Qigen Fang
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xu Zhang
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shanting Liu
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Shanting Liu,
| |
Collapse
|