1
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2025; 29:2691-2716. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
2
|
Hashemi SMA, Alipour AH, Emamifar S, Farhadi A, Sarvari J. Epstein-Barr virus nuclear antigen 1 (EBNA1) increases the expression levels of MDM2 and MDM4 genes in HeLa cells: a review on MDM2 and MDM4 roles in cancer. BMC Res Notes 2025; 18:221. [PMID: 40382619 PMCID: PMC12084995 DOI: 10.1186/s13104-025-07275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVE Epstein-Barr virus nuclear antigen 1 (EBNA1) is a key viral protein expressed in all latency phases and EBV-associated tumors. It can modulate the expression of various host and viral genes. This study aimed to investigate the impact of EBNA1 on the expression levels of two cellular genes involved in p53 pathway regulation-MDM2 and MDM4-in HeLa cells. This investigation was conducted as part of our broader research on EBV-related oncogenic mechanisms. RESULTS HeLa cells were transfected with either an EBNA1-expressing plasmid or a control plasmid. Gene expression levels of MDM2 and MDM4 were analyzed using real-time PCR. The results demonstrated a statistically significant increase in MDM4 expression in EBNA1-transfected cells compared to controls (p = 0.028). Although MDM2 expression was also elevated, the difference was not statistically significant (p = 0.11). These findings suggest that EBNA1 may play a role in cervical cancer development by upregulating genes that inhibit p53 tumor suppressor activity.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Alipour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Emamifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Karimi-Zarchi M, Khalili MA, Binesh F, Pourhosseini F, Talebi AR, Hassanpour A, Vatanparast M. Immunohistological localization of MDM2, MCM2, Fascin, PCNA, EGFR in paraffin section; in the normal and cancerous human ovary. Cancer Treat Res Commun 2025; 43:100932. [PMID: 40315767 DOI: 10.1016/j.ctarc.2025.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Many protein markers have been investigated in human tissues such as; Fascin, MDM2, MCM2, EGFR, and PCNA. These markers have important physiologic roles in cell proliferation, motility, adhesion, invasion, and survival. AIMS up to date, some researchers focused on these markers in ovarian cancer. However, the mentioned markers have not been investigated in the normal human ovary. Using the immunohistochemical technique we tried to localize these markers in the normal, and cancerous ovarian tissues. METHODS Paraffin-embedded from 10 normal ovarian tissue and 1 case with histologically confirmed ovarian cancer, underwent an immunohistological process, and five mentioned markers were localized in the human ovary. At first, each marker presentation was assessed and then it tried to quantify the amount of presentation. RESULTS Fascin, PCNA, and MCM2 are presented high in the normal ovarian tissue, while EGFR is restricted to the epithelium and very rarely in the granulosa cells. Also, MDM2 was negative for all normal ovaries. All markers had overexpression in ovarian cancer in different patterns. CONCLUSION Ovarian cancer tissue showed over-expression of the cell proliferation and motility markers compared with the normal ovary. These markers may have prognostic value in ovarian cancer.
Collapse
Affiliation(s)
- Mojgan Karimi-Zarchi
- department of Gynecology oncology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fariba Binesh
- Department of Pathology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourhosseini
- Department of Pathology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Recurrent Abortion Research Centre, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Hassanpour
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Clinical Research Development Unit (CRDU), Moradi Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Wang W, Du Y, Datta S, Fowler JF, Sang HT, Albadari N, Li W, Foster J, Zhang R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis 2025; 12:101156. [PMID: 39802403 PMCID: PMC11719324 DOI: 10.1016/j.gendis.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2025] Open
Abstract
Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions. Dysregulation of MYC, such as amplification of MYCN, is associated with tumorigenesis, especially for neuroblastoma. Although the general survival rate of neuroblastoma patients has significantly improved over the past few decades, high-risk neuroblastoma still presents a poor prognosis. Therefore, innovative and more potent therapeutic strategies are needed to eradicate these aggressive neoplasms. This review focuses on the oncogenic properties of MYCN and its molecular regulation and summarizes the major therapeutic strategies being developed based on preclinical findings. We also highlight the potential benefits of targeting both the MYCN and MDM2 oncogenes, providing preclinical evidence of the efficacy and safety of this approach. In conclusion, the development of effective small molecules that inhibit both MYCN and MDM2 represents a promising new strategy for the treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Josef F. Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hannah T. Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Najah Albadari
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Foster
- Texas Children's Hospital, Department of Pediatrics, Section of Hematology-Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Pervushin NV, Nilov DK, Pushkarev SV, Shipunova VO, Badlaeva AS, Yapryntseva MA, Kopytova DV, Zhivotovsky B, Kopeina GS. BH3-mimetics or DNA-damaging agents in combination with RG7388 overcome p53 mutation-induced resistance to MDM2 inhibition. Apoptosis 2024; 29:2197-2213. [PMID: 39222276 PMCID: PMC11550243 DOI: 10.1007/s10495-024-02014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The development of drug resistance reduces the efficacy of cancer therapy. Tumor cells can acquire resistance to MDM2 inhibitors, which are currently under clinical evaluation. We generated RG7388-resistant neuroblastoma cells, which became more proliferative and metabolically active and were less sensitive to DNA-damaging agents in vitro and in vivo, compared with wild-type cells. The resistance was associated with a mutation of the p53 protein (His193Arg). This mutation abated its transcriptional activity via destabilization of the tetrameric p53-DNA complex and was observed in many cancer types. Finally, we found that Cisplatin and various BH3-mimetics could enhance RG7388-mediated apoptosis in RG7388-resistant neuroblastoma cells, thereby partially overcoming resistance to MDM2 inhibition.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - A S Badlaeva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Russian Ministry of Health, Moscow, 117513, Russia
| | - M A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
McElhinney K, Irnaten M, O’Callaghan J, O’Brien C. p53 and the E3 Ubiquitin Ligase MDM2 in Glaucomatous Lamina Cribrosa Cells. Int J Mol Sci 2024; 25:12173. [PMID: 39596239 PMCID: PMC11595009 DOI: 10.3390/ijms252212173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Lamina cribrosa (LC) cells play an integral role in extracellular matrix remodeling and fibrosis in human glaucoma. LC cells bear similarities to myofibroblasts that adopt an apoptotic-resistant, proliferative phenotype, a process linked to dysregulation of tumor suppressor-gene p53 pathways, including ubiquitin-proteasomal degradation via murine-double-minute-2 (MDM2). Here, we investigate p53 and MDM2 in glaucomatous LC cells. Primary human LC cells were isolated from glaucomatous donor eyes (GLC) and age-matched normal controls (NLC) (n = 3 donors/group). LC cells were cultured under standard conditions ± 48-h treatment with p53-MDM2-interaction inhibitor RG-7112. Markers of p53-MDM2, fibrosis, and apoptosis were analyzed by real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Cellular proliferation and viability were assessed using colorimetric methyl-thiazolyl-tetrazolium salt assays (MTS/MTT). In GLC versus NLC cells, protein expression of p53 was significantly decreased (p < 0.05), MDM2 was significantly increased, and immunofluorescence showed reduced p53 and increased MDM2 expression in GLC nuclei. RG-7112 treatment significantly increased p53 and significantly decreased MDM2 gene and protein expression. GLC cells had significantly increased protein expression of αSMA, significantly decreased caspase-3 protein expression, and significantly increased proliferation after 96 h. RG-7112 treatment significantly decreased COL1A1 and αSMA, significantly increased BAX and caspase-3 gene expression, and significantly decreased proliferation in GLC cells. MTT-assay showed equivocal cellular viability in NLC/GLC cells with/without RG-7112 treatment. Our data suggests that proliferation and the ubiquitin-proteasomal pathway are dysregulated in GLC cells, with MDM2-led p53 protein degradation negatively impacting its protective role.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Jeffrey O’Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
7
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
9
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
10
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
11
|
Deng X, Wang J, Lu C, Zhou Y, Shen L, Ge A, Fan H, Liu L. Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review. Front Pharmacol 2023; 14:1226629. [PMID: 37818185 PMCID: PMC10560733 DOI: 10.3389/fphar.2023.1226629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer is currently the most common malignancy and has a high mortality rate. Ginsenosides, the primary bioactive constituents of ginseng, have been shown to be highly effective against breast cancer both in vitro and in vivo. This study aims to comprehensively understand the mechanisms underlying the antineoplastic effects of ginsenosides on breast cancer. Through meticulous bibliometric analysis and an exhaustive review of pertinent research, we explore and summarize the mechanism of action of ginsenosides in treating breast cancer, including inducing apoptosis, autophagy, inhibiting epithelial-mesenchymal transition and metastasis, and regulating miRNA and lncRNA. This scholarly endeavor not only provides novel prospects for the application of ginsenosides in the treatment of breast cancer but also suggests future research directions for researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
Albadari N, Xie Y, Liu T, Wang R, Gu L, Zhou M, Wu Z, Li W. Synthesis and biological evaluation of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold. Eur J Med Chem 2023; 255:115423. [PMID: 37130471 PMCID: PMC10246915 DOI: 10.1016/j.ejmech.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.
Collapse
Affiliation(s)
- Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yang Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Rui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
13
|
Cai M, Xu S, Jin Y, Yu J, Dai S, Shi XJ, Guo R. hMOF induces cisplatin resistance of ovarian cancer by regulating the stability and expression of MDM2. Cell Death Discov 2023; 9:179. [PMID: 37291112 DOI: 10.1038/s41420-023-01478-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Histone acetyltransferase human males absent on the first (hMOF) is a member of MYST family which participates in posttranslational chromatin modification by controlling the acetylation level of histone H4K16. Abnormal activity of hMOF occurs in multiple cancers and biological alteration of hMOF expression can affect diverse cellular functions including cell proliferation, cell cycle progression and embryonic stem cells (ESCs) self-renewal. The relationship between hMOF and cisplatin resistance was investigated in The Cancer Genome Atlas (TCGA) and Genomics of Drug Sensitivity in Cancer (GDSC) database. Lentiviral-mediated hMOF-overexpressed cells or hMOF-knockdown cells were established to investigate its role on cisplatin-based chemotherapy resistance in vitro ovarian cancer cells and animal models. Furthermore, a whole transcriptome analysis with RNA sequencing was used to explore the underlying molecular mechanism of hMOF affecting cisplatin-resistance in ovarian cancer. The data from TCGA analysis and IHC identification demonstrated that hMOF expression was closely associated with cisplatin-resistance in ovarian cancer. The expression of hMOF and cell stemness characteristics increased significantly in cisplatin-resistant OVCAR3/DDP cells. In the low hMOF expressing ovarian cancer OVCAR3 cells, overexpression of hMOF improved the stemness characteristics, inhibited cisplatin-induced apoptosis and mitochondrial membrane potential impairment, as well as reduced the sensitivity of OVCAR3 cells to cisplatin treatment. Moreover, overexpression of hMOF diminished tumor sensitivity to cisplatin in a mouse xenograft tumor model, accompanied by decrease in the proportion of cisplatin-induced apoptosis and alteration of mitochondrial apoptosis proteins. In addition, opposite phenotype and protein alterations were observed when knockdown of hMOF in the high hMOF expressing ovarian cancer A2780 cells. Transcriptomic profiling analysis and biological experimental verification orientated that MDM2-p53 apoptosis pathway was related to hMOF-modulated cisplatin resistance of OVCAR3 cells. Furthermore, hMOF reduced cisplatin-induced p53 accumulation by stabilizing MDM2 expression. Mechanistically, the increased stability of MDM2 was due to the inhibition of ubiquitinated degradation, which resulted by increased of MDM2 acetylation levels by its direct interaction with hMOF. Finally, genetic inhibition MDM2 could reverse hMOF-mediated cisplatin resistance in OVCAR3 cells with up-regulated hMOF expression. Meanwhile, treatment with adenovirus expressing shRNA of hMOF improved OVCAR3/DDP cell xenograft sensitivity to cisplatin in mouse. Collectively, the results of the study confirm that MDM2 as a novel non-histone substrate of hMOF, participates in promoting hMOF-modulated cisplatin chemoresistance in ovarian cancer cells. hMOF/MDM2 axis might be a potential target for the treatment of chemotherapy-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mingbo Cai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Sulong Xu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi Jin
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingjing Yu
- Laboratory Animal Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan Dai
- Laboratory Animal Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Zhen DB, Safyan RA, Konick EQ, Nguyen R, Prichard CC, Chiorean EG. The role of molecular testing in pancreatic cancer. Therap Adv Gastroenterol 2023; 16:17562848231171456. [PMID: 37197396 PMCID: PMC10184226 DOI: 10.1177/17562848231171456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highly aggressive and has few treatment options. To personalize therapy, it is critical to delineate molecular subtypes and understand inter- and intra-tumoral heterogeneity. Germline testing for hereditary genetic abnormalities is recommended for all patients with PDA and somatic molecular testing is recommended for all patients with locally advanced or metastatic disease. KRAS mutations are present in 90% of PDA, while 10% are KRAS wild type and are potentially targetable with epidermal growth factor receptor blockade. KRASG12C inhibitors have shown activity in G12C-mutated cancers, and novel G12D and pan-RAS inhibitors are in clinical trials. DNA damage repair abnormalities, germline or somatic, occur in 5-10% of patients and are likely to benefit from DNA damaging agents and maintenance therapy with poly-ADP ribose polymerase inhibitors. Fewer than 1% of PDA harbor microsatellite instability high status and are susceptible to immune checkpoint blockade. Albeit very rare, occurring in <1% of patients with KRAS wild-type PDAs, BRAF V600E mutations, RET and NTRK fusions are targetable with cancer agnostic Food and Drug Administration-approved therapies. Genetic, epigenetic, and tumor microenvironment targets continue to be identified at an unprecedented pace, enabling PDA patients to be matched to targeted and immune therapeutics, including antibody-drug conjugates, and genetically engineered chimeric antigen receptor or T-cell receptor - T-cell therapies. In this review, we highlight clinically relevant molecular alterations and focus on targeted strategies that can improve patient outcomes through precision medicine.
Collapse
Affiliation(s)
- David B. Zhen
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachael A. Safyan
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Q. Konick
- University of Washington, School of Medicine Seattle, WA, USA
| | - Ryan Nguyen
- University of Washington, School of Medicine Seattle, WA, USA
| | | | - E. Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, 825 Eastlake Avenue East, LG-465, Seattle, WA 98109, USA Fred Hutchinson
| |
Collapse
|
15
|
Adams CM, Mitra R, Xiao Y, Michener P, Palazzo J, Chao A, Gour J, Cassel J, Salvino JM, Eischen CM. Targeted MDM2 Degradation Reveals a New Vulnerability for p53-Inactivated Triple-Negative Breast Cancer. Cancer Discov 2023; 13:1210-1229. [PMID: 36734633 PMCID: PMC10164114 DOI: 10.1158/2159-8290.cd-22-1131] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Triple-negative breast cancers (TNBC) frequently inactivate p53, increasing their aggressiveness and therapy resistance. We identified an unexpected protein vulnerability in p53-inactivated TNBC and designed a new PROteolysis TArgeting Chimera (PROTAC) to target it. Our PROTAC selectively targets MDM2 for proteasome-mediated degradation with high-affinity binding and VHL recruitment. MDM2 loss in p53 mutant/deleted TNBC cells in two-dimensional/three-dimensional culture and TNBC patient explants, including relapsed tumors, causes apoptosis while sparing normal cells. Our MDM2-PROTAC is stable in vivo, and treatment of TNBC xenograft-bearing mice demonstrates tumor on-target efficacy with no toxicity to normal cells, significantly extending survival. Transcriptomic analyses revealed upregulation of p53 family target genes. Investigations showed activation and a required role for TAp73 to mediate MDM2-PROTAC-induced apoptosis. Our data, challenging the current MDM2/p53 paradigm, show MDM2 is required for p53-inactivated TNBC cell survival, and PROTAC-targeted MDM2 degradation is an innovative potential therapeutic strategy for TNBC and superior to existing MDM2 inhibitors. SIGNIFICANCE p53-inactivated TNBC is an aggressive, therapy-resistant, and lethal breast cancer subtype. We designed a new compound targeting an unexpected vulnerability we identified in TNBC. Our MDM2-targeted degrader kills p53-inactivated TNBC cells, highlighting the requirement for MDM2 in TNBC cell survival and as a new therapeutic target for this disease. See related commentary by Peuget and Selivanova, p. 1043. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Clare M. Adams
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Peter Michener
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Juan Palazzo
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Allen Chao
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Christine M. Eischen
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Menon AA, Deshpande V, Suster D. MDM2 for the practicing pathologist: a primer. J Clin Pathol 2023; 76:285-290. [PMID: 36898827 DOI: 10.1136/jcp-2022-208687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
The mouse double minute 2 (MDM2) gene is located on the long arm of chromosome 12 and is the primary negative regulator of p53. The MDM2 gene encodes an E3 ubiquitin-protein ligase that mediates the ubiquitination of p53, leading to its degradation. MDM2 enhances tumour formation by inactivating the p53 tumour suppressor protein. The MDM2 gene also has many p53-independent functions. Alterations of MDM2 may occur through various mechanisms and contribute to the pathogenesis of many human tumours and some non-neoplastic diseases. Detection of MDM2 amplification is used in the clinical practice setting to help diagnose multiple tumour types, including lipomatous neoplasms, low-grade osteosarcomas and intimal sarcoma, among others. It is generally a marker of adverse prognosis, and MDM2-targeted therapies are currently in clinical trials. This article provides a concise overview of the MDM2 gene and discusses practical diagnostic applications pertaining to human tumour biology.
Collapse
Affiliation(s)
- Aswathy Ashok Menon
- Department of Pathology, Neuberg Anand Reference Laboratory, Bengaluru, Karnataka, India
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Suster
- Department of Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
17
|
Deng M, Zhang L, Zheng W, Chen J, Du N, Li M, Chen W, Huang Y, Zeng N, Song Y, Chen Y. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:9. [PMID: 36609449 PMCID: PMC9817303 DOI: 10.1186/s13046-022-02586-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), a widespread modification in human mRNAs that is catalyzed by the N-acetyltransferase 10 (NAT10) enzyme, plays an important role in promoting mRNA stability and translation. However, the biological functions and regulatory mechanisms of NAT10-mediated ac4C were poorly defined. METHODS ac4C mRNA modification status and NAT10 expression levels were analyzed in gastric cancer (GC) samples and compared with the corresponding normal tissues. The biological role of NAT10-mediated ac4C and its upstream and downstream regulatory mechanisms were determined in vitro and in vivo. The therapeutic potential of targeting NAT10 in GC was further explored. RESULTS Here, we demonstrated that both ac4C mRNA modification and its acetyltransferase NAT10 were increased in GC, and increased NAT10 expression was associated with disease progression and poor patient prognosis. Functionally, we found that NAT10 promoted cellular G2/M phase progression, proliferation and tumorigenicity of GC in an ac4C-depedent manner. Mechanistic analyses demonstrated that NAT10 mediated ac4C acetylation of MDM2 transcript and subsequently stabilized MDM2 mRNA, leading to its upregulation and p53 downregulation and thereby facilitating gastric carcinogenesis. In addition, Helicobacter pylori (Hp) infection contributed to NAT10 induction, causing MDM2 overexpression and subsequent p53 degradation. Further investigations revealed that targeting NAT10 with Remodelin showed anti-cancer activity in GC and augmented the anti-tumor activity of MDM2 inhibitors in p53 wild-type GC. CONCLUSIONS These results suggest the critical role of NAT10-mediated ac4C modification in GC oncogenesis and reveal a previously unrecognized signaling cascade involving the Hp-NAT10-MDM2-p53 axis during GC development.
Collapse
Affiliation(s)
- Min Deng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Long Zhang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Wenying Zheng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Jiale Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Nan Du
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Meiqi Li
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Weiqing Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Yonghong Huang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Ning Zeng
- grid.417404.20000 0004 1771 3058First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, 510280 China
| | - Yuanbin Song
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Yongming Chen
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| |
Collapse
|
18
|
Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment. Cancers (Basel) 2022; 14:cancers14246212. [PMID: 36551697 PMCID: PMC9777536 DOI: 10.3390/cancers14246212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
Collapse
|
19
|
Gołąbek K, Rączka G, Gaździcka J, Miśkiewicz-Orczyk K, Zięba N, Krakowczyk Ł, Misiołek M, Strzelczyk JK. Expression Profiles of CDKN2A, MDM2, E2F2 and LTF Genes in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10123011. [PMID: 36551770 PMCID: PMC9775533 DOI: 10.3390/biomedicines10123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most commonly detected neoplasms worldwide. Not all mechanisms associated with cell cycle disturbances are known in OSCC. Examples of genes involved in the control of the cell cycle are CDKN2A, MDM2, E2F2 and LTF. The aim of this study was to examine the possible association between CDKN2A, MDM2, E2F2 and LTF mRNA expression and influence on clinical variables. METHODS The study group consisted of 88 Polish patients. The gene expression levels were assessed by quantitative reverse transcription PCR. RESULTS We found no statistically significant differences in the expression level of CDKN2A, MDM2, E2F2 and LTF genes in tumour samples compared to margin samples. No association was found between the gene expression levels and clinical parameters, except E2F2. The patients with G2 tumours had a significantly higher gene expression level of E2F2 than patients with low-grade G1 tumours. CONCLUSIONS We have not demonstrated that a change in expression profiles of genes has a significant impact on the pathogenesis of OSCC. It may also be useful to conduct further studies on the use of E2F2 expression profile changes as a factor to describe the invasiveness and dynamics of OSCC development.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
- Correspondence:
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, 71 C Wojska Polskiego Str., 60-625 Poznan, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Natalia Zięba
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 15 Wybrzeże Armii Krajowej Str., 44-102 Gliwice, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
| |
Collapse
|
20
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Casadei L, Sarchet P, de Faria FCC, Calore F, Nigita G, Tahara S, Cascione L, Wabitsch M, Hornicek FJ, Grignol V, Croce CM, Pollock RE. In situ hybridization to detect DNA amplification in extracellular vesicles. J Extracell Vesicles 2022; 11:e12251. [PMID: 36043432 PMCID: PMC9428764 DOI: 10.1002/jev2.12251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022] Open
Abstract
EVs have emerged as an important component in tumour initiation, progression and metastasis. Although notable progresses have been made, the detection of EV cargoes remain significantly challenging for researchers to practically use; faster and more convenient methods are required to validate the EV cargoes, especially as biomarkers. Here we show, the possibility of examining embedded EVs as substrates to be used for detecting DNA amplification through ultrasensitive in situ hybridization (ISH). This methodology allows the visualization of DNA targets in a more direct manner, without time consuming optimization steps or particular expertise. Additionally, formalin-fixed paraffin-embedded (FFPE) blocks of EVs allows long-term preservation of samples, permitting future studies. We report here: (i) the successful isolation of EVs from liposarcoma tissues; (ii) the EV embedding in FFPE blocks (iii) the successful selective, specific ultrasensitive ISH examination of EVs derived from tissues, cell line, and sera; (iv) and the detection of MDM2 DNA amplification in EVs from liposarcoma tissues, cell lines and sera. Ultrasensitive ISH on EVs would enable cargo study while the application of ISH to serum EVs, could represent a possible novel methodology for diagnostic confirmation. Modification of probes may enable researchers to detect targets and specific DNA alterations directly in tumour EVs, thereby facilitating detection, diagnosis, and improved understanding of tumour biology relevant to many cancer types.
Collapse
Affiliation(s)
- Lucia Casadei
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Patricia Sarchet
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Federica Calore
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Giovanni Nigita
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Sayumi Tahara
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI), Bellinzona, Switzerland, Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and AdolescentsUlm University HospitalUlmGermany
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Centerand the University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Valerie Grignol
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Carlo M. Croce
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | | |
Collapse
|
22
|
Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, Kienle SM, Rieth S, Scheffner M, Lopes M, Dobbelstein M. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep 2022; 39:110879. [PMID: 35649362 DOI: 10.1016/j.celrep.2022.110879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022] Open
Abstract
The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.
Collapse
Affiliation(s)
- Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Maria Dilia Palumbieri
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sonja Rieth
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
23
|
Huang X, Wang B, Shen H, Huang D, Shi G. Farnesoid X receptor functions in cervical cancer via the p14 ARF-mouse double minute 2-p53 pathway. Mol Biol Rep 2022; 49:3617-3625. [PMID: 35347542 PMCID: PMC9174312 DOI: 10.1007/s11033-022-07201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cervical cancer is the second most common cancer among women living in developing countries. Farnesoid X receptor (FXR) is a member of the nuclear receptor family, which regulates the development and proliferation of cancer. However, the role of and molecular mechanism by which FXR acts in cervical cancer are still unknown. METHODS AND RESULTS The relationship between FXR and the proliferation of cervical cancer cell lines was detected by MTT and colony formation assays. Immunohistochemistry was used to detect the expression of FXR in cervical cancer tissue slides. Western blotting was used to detect the expression of p14ARF, mouse double minute 2 (MDM2) and p53 when FXR was overexpressed or siRNA was applied. Western blotting was used to detect the expression of MDM2 and p53 when pifithrin-α (PFT-α) was applied. FXR activation inhibited the proliferation of cervical cancer cell lines. FXR was significantly decreased in cervical squamous cell carcinoma, which was correlated with TNM stage, but not with metastasis. Overexpression of FXR activated the p14ARF-MDM2-p53 pathway. As a p53 inhibitor, PFT-α increased MDM2 in Lenti-vector cells, but had no effect on MDM2 in Lenti-FXR cells. CONCLUSIONS FXR inhibits cervical cancer by upregulating the p14ARF-MDM2-p53 pathway. Activation of FXR may be a potential strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Huimin Shen
- Department of Neurology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
24
|
Targeting an MDM2/MYC Axis to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14061592. [PMID: 35326742 PMCID: PMC8945937 DOI: 10.3390/cancers14061592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MDM2 is elevated in multiple myeloma (MM). Although traditionally, MDM2 negatively regulates p53, a growing body of research suggests that MDM2 plays several p53-independent roles in cancer pathogenesis as a regulator of oncogene mRNA stability and translation. Yet, the molecular mechanisms underlying MDM2 overexpression and its role in drug resistance in MM remain undefined. METHODS Both myeloma cell lines and primary MM samples were employed. Cell viability, cell cycle and apoptosis assays, siRNA transfection, quantitative real-time PCR, immunoblotting, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), soft agar colony formation and migration assay, pulse-chase assay, UV cross-linking, gel-shift assay, RNA-protein binding assays, MEME-analysis for discovering c-Myc DNA binding motifs studies, reporter gene constructs procedure, gene transfection and reporter assay, MM xenograft mouse model studies, and statistical analysis were applied in this study. RESULTS We show that MDM2 is associated with poor prognosis. Importantly, its upregulation in primary MM samples and human myeloma cell lines (HMCLs) drives drug resistance. Inhibition of MDM2 by RNAi, or by the MDM2/XIAP dual inhibitor MX69, significantly enhanced the sensitivity of resistant HMCLs and primary MM samples to bortezomib and other anti-myeloma drugs, demonstrating that MDM2 can modulate drug response. MDM2 inhibition resulted in a remarkable suppression of relapsed MM cell growth, colony formation, migration and induction of apoptosis through p53-dependent and -independent pathways. Mechanistically, MDM2 was found to reciprocally regulate c-Myc in MM; MDM2 binds to AREs on c-Myc 3'UTR to increase c-Myc mRNA stability and translation, while MDM2 is a direct transcriptional target of c-Myc. MDM2 inhibition rendered c-Myc mRNA unstable, and reduced c-Myc protein expression in MM cells. Importantly, in vivo delivery of MX69 in combination with bortezomib led to significant regression of tumors and prolonged survival in an MM xenograft model. CONCLUSION Our findings provide a rationale for the therapeutic targeting of MDM2/c-Myc axis to improve clinical outcome of patients with refractory/relapsed MM.
Collapse
|
25
|
Zhang A, Yang Y, Zeng L, Zhao Z, Zhou Y, Yang Z, Liao Q, Xiao S, Ma H, Li J, Mao F, Qin Y, Zhang Y, Zhang Y, Yu Z, Xiang Z. MDM2 is involved in the regulation of p53 expression in the immune response of oyster Crassostrea hongkongensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104321. [PMID: 34798199 DOI: 10.1016/j.dci.2021.104321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
MDM2 (mouse double-minute) and p53 form a negative feedback loop and play a prominent role in preventing the induction of uncontrolled apoptosis. To better understand their potential roles in oyster Crassostrea hongkongensis, MDM2 and p53 homologs were first isolated and cloned in C. hongkongensis (named ChMDM2 and Chp53), and their mRNA expression patterns in tissues and developmental stages were analyzed. Multiple sequence alignment analysis and phylogenetic analysis of ChMDM2 and Chp53 displayed a high degree of homology and conservation. In addition, exposure to Vibrio coralliilyticus resulted in DNA damage and apoptosis in the hemocytes of C. hongkongensis, and found that the mRNA expression level of ChMDM2 was decreased, while the relative expression of Chp53 was significantly increased in the hemocytes and gills. Furthermore, fluorescence from ChMDM2-EGFP and Chp53-Red were found to be distributed in the nucleus of HEK293T cells. Besides, dual-luciferase reporter assays showed that ChMDM2 antagonized with Chp53 and participates in p53 signaling pathway. In addition, the interaction between ChMDM2 and Chp53 was confirmed strongly by Co-immunoprecipitation assays. Furthermore, the results of RNAi showed that ChMDM2 and Chp53 participated in apoptosis which induced infection of V. coralliilyticus. Taken together, our results characterized the features of ChMDM2 and Chp53, which played a critical role in apoptosis of C. hongkongensis.
Collapse
Affiliation(s)
- Aijiao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zehui Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Liao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China.
| |
Collapse
|
26
|
Jiao Y, Xu P, Luan S, Wang X, Gao Y, Zhao C, Fu P. Molecular imaging and treatment of PSMA-positive prostate cancer with 99mTc radiolabeled aptamer-siRNA chimeras. Nucl Med Biol 2021; 104-105:28-37. [PMID: 34847481 DOI: 10.1016/j.nucmedbio.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer (PCa). The aptamer (Apt) A10-3.2 can be used as a specific ligand for the early diagnosis and targeted treatment of PCa. siRNA-Apt has been used to therapeutically target PSMA-positive PCa. We aimed to synthesize a new type of molecular probe to facilitate the integration of diagnosis and treatment for PSMA-positive PCa. METHODS Chimeras were obtained by covalent linking PSMA Apt-A10-3.2 and the MDM2 siRNA. SHNH, a bifunctional chelating agent, was used to couple 99mTc with chimeras to synthesize a new molecular probe. Labeling efficiency, radiochemical purity, and stability were confirmed using a γ-well counter and Whatman paper No.1. SPECT imaging and biodistribution studies were performed on BALB/c mice bearing 22Rv1 or PC-3 xenografts. Tumor inhibition and cytotoxicity of Chimeras were evaluated. LNCaP, 22RV1, and PC-3 PCa cell lines were used for in vitro and in vivo experiments. RESULTS [99mTc]Tc-chimeras showed high labeling efficiency (61.47% ± 2.85%, n = 3), radiochemical purity (>95%), and stability. Biodistribution studies and SPECT imaging with 99mTc-chimeras in mice bearing 22Rv1 xenografts demonstrated a high T/M ratio (4.63 ± 0.68, n = 3) and a high T/B ratio (3.61 ± 0.7, n = 3) at 2 h post-injection. 99mTc-chimeras showed rapid renal clearance. Compared with the PBS group, tumor growth in the chimera group was significantly inhibited (P < 0.01, n = 4), but there was no significant difference in body weight (p > 0.05, n = 4). H&E staining showed no obvious liver or kidney damage. CONCLUSIONS Our study proved that [99mTc]Tc-Aptamer-siRNA chimeras could be used to diagnose and treat PSMA-positive PCa in vivo.
Collapse
Affiliation(s)
- Yuying Jiao
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China
| | - Peng Xu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China
| | - Sha Luan
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Xinyu Wang
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yue Gao
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Changjiu Zhao
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China.
| | - Peng Fu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
27
|
Zhou Z, Zalutsky MR, Chitneni SK. Fluorine-18 Labeling of the MDM2 Inhibitor RG7388 for PET Imaging: Chemistry and Preliminary Evaluation. Mol Pharm 2021; 18:3871-3881. [PMID: 34523337 DOI: 10.1021/acs.molpharmaceut.1c00531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RG7388 (Idasanutlin) is a potent inhibitor of oncoprotein murine double minute 2 (MDM2). Herein we investigated the feasibility of developing 18F-labeled RG7388 as a radiotracer for imaging MDM2 expression in tumors with positron emission tomography (PET). Two fluorinated analogues of RG7388, 6 and 7, were synthesized by attaching a fluoronicotinyl moiety to RG7388 via a polyethylene glycol (PEG3) or a propyl linker. The inhibitory potency (IC50) of 6 and 7 against MDM2 was determined by a fluorescence polarization (FP)-based assay. Next, compound 6 was labeled with 18F using a trimethylammonium triflate precursor to obtain [18F]FN-PEG3-RG7388 ([18F]6), and its properties were evaluated in MDM2 expressing wild-type p53 tumor cell lines (SJSA-1 and HepG2) in vitro and in tumor xenografts in vivo. The FP assays revealed an IC50 against MDM2 of 119 nM and 160 nM for 6 and 7, respectively. 18F-labeling of 6 was achieved in 50.3 ± 7.5% radiochemical yield. [18F]6 exhibited a high uptake (∼70% of input dose) and specificity in SJSA-1 and HepG2 cell lines. Saturation binding assays revealed a binding affinity (Kd) of 128 nM for [18F]6 on SJSA-1 cells. In mice, [18F]6 showed fast clearance from blood with a maximum tumor uptake of 3.80 ± 0.85% injected dose per gram (ID/g) in HepG2 xenografts at 30 min postinjection (p.i.) and 1.32 ± 0.32% ID/g in SJSA-1 xenografts at 1 h p.i. Specificity of [18F]6 uptake in tumors was demonstrated by pretreatment of mice with SJSA-xenografts with a blocking dose of RG7388 (35 mg/kg body weight, i.p.). In vivo stability studies in mice using HPLC showed ∼60% and ∼30% intact [18F]6 remaining in plasma at 30 min and 1 h p.i., respectively, with the remaining activity attributed to polar peaks. Our results suggest that RG7388 is a promising molecular scaffold for 18F-labeled probe development for MDM2. Additional labeling strategies and functionalizing locations on RG7388 are under development to improve binding affinity and in vivo stability of the 18F-labeled compound to make it more amenable for PET imaging of MDM2 in vivo.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Satish K Chitneni
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
28
|
Chemotherapy of HER2- and MDM2-Enriched Breast Cancer Subtypes Induces Homologous Recombination DNA Repair and Chemoresistance. Cancers (Basel) 2021; 13:cancers13184501. [PMID: 34572735 PMCID: PMC8471926 DOI: 10.3390/cancers13184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MDM2 is a protein responsible for negative regulation of the p53 tumor suppressor. In addition, MDM2 exhibits chaperone-like properties similar to the HSP90 molecular chaperone. Multiple studies revealed that MDM2 is deeply involved in cancer development and progression. Some recently published results indicate that the role of MDM2 in DNA repair inhibition is more complex than previously thought. We show that MDM2 is directly involved in the homologous recombination DNA repair, and its chaperone-like activity is crucial for this function. The DNA repair inhibition is a result of inefficient MDM2 dissociation from the NBN protein complex. When cancer cells are treated with chemotherapy, MDM2 can be easily released from the interaction and degraded, resulting in effective homologous recombination DNA repair, which translates into the acquisition of a chemoresistant phenotype by the tumor. This knowledge may allow for identification of the patients that are at particular risk of tumor chemoresistance. Abstract Analyzing the TCGA breast cancer database, we discovered that patients with the HER2 cancer subtype and overexpression of MDM2 exhibited decreased post-treatment survival. Inhibition of MDM2 expression in the SKBR3 cell line (HER2 subtype) diminished the survival of cancer cells treated with doxorubicin, etoposide, and camptothecin. Moreover, we demonstrated that inhibition of MDM2 expression diminished DNA repair by homologous recombination (HR) and sensitized SKBR3 cells to a PARP inhibitor, olaparib. In H1299 (TP53−/−) cells treated with neocarzinostatin (NCS), overexpression of MDM2 WT or E3-dead MDM2 C478S variant stimulated the NCS-dependent phosphorylation of ATM, NBN, and BRCA1, proteins involved in HR DNA repair. However, overexpression of chaperone-dead MDM2 K454A variant diminished phosphorylation of these proteins as well as the HR DNA repair. Moreover, we demonstrated that, upon NCS treatment, MDM2 K454A interacted with NBN more efficiently than MDM2 WT and that MDM2 WT was degraded more efficiently than MDM2 K454A. Using a proliferation assay, we showed that overexpression of MDM2 WT, but not MDM2 K454A, led to acquisition of resistance to NCS. The presented results indicate that, following chemotherapy, MDM2 WT was released from MDM2-NBN complex and efficiently degraded, hence allowing extensive HR DNA repair leading to the acquisition of chemoresistance by cancer cells.
Collapse
|
29
|
Domostegui A, Peddigari S, Mercer CA, Iannizzotto F, Rodriguez ML, Garcia-Cajide M, Amador V, Diepstraten ST, Kelly GL, Salazar R, Kozma SC, Kusnadi EP, Kang J, Gentilella A, Pearson RB, Thomas G, Pelletier J. Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Blood 2021; 137:3351-3364. [PMID: 33512431 PMCID: PMC8212515 DOI: 10.1182/blood.2020007452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eμ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eμ-Myc but not Trp53-/-;Eμ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eμ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.
Collapse
Affiliation(s)
- Ana Domostegui
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Suresh Peddigari
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Carol A Mercer
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta L Rodriguez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Virginia Amador
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ramón Salazar
- Catalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, IDIBELL, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eric P Kusnadi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - George Thomas
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
30
|
Putri HE, Nutho B, Rungrotmongkol T, Sritularak B, Vinayanuwattikun C, Chanvorachote P. Bibenzyl analogue DS-1 inhibits MDM2-mediated p53 degradation and sensitizes apoptosis in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153534. [PMID: 33773191 DOI: 10.1016/j.phymed.2021.153534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lung cancer is a leading fatal malignancy due to the high incidence of treatment failure. Dysfunction of the tumor suppressor p53 contributes to cancer initiation, progression, and therapeutic resistance. Targeting MDM2, a negative regulator of p53, has recently attracted interest in cancer drug research as it may restore tumor suppressive function. PURPOSE The present study aimed to investigate the effect of 3,4-dihydroxy-5,4'-dimethoxybibenzyl (DS-1) on targeting MDM2 and restoring p53 function in lung cancer cells. METHODS The efficacy of DS-1 alone or in combination with cisplatin in lung cancer cells was determined by MTT, nuclear staining, and annexin V/PI assay. The expression of apoptosis-related proteins was determined by western blot analysis. To evaluate the role of DS-1 on the stabilization and degradation of p53, cycloheximide chasing assay and immunoprecipitation were conducted, and the active form of p53 was investigated by immunofluorescent staining assay. To confirm and demonstrate the site interaction between DS-1 and the MDM2 protein, in silico computational analysis was performed. RESULTS DS-1 exhibited a cytotoxic effect and sensitized lung cancer cells to cisplatin-induced apoptosis. DS-1 caused a significant increase in the cellular level of p53 protein, while the active form of p53 (phosphorylation at Ser15) was unaltered. DS-1 treatment in combination with cisplatin could enhance activated p-p53 (Ser15) and p53 downstream signaling (Bax, Bcl-2, and Akt), leading to a higher level of apoptosis. Immunoprecipitation analysis revealed that DS-1 decreased the p53-ubiquitin complex, a prerequisite step in p53 proteasomal degradation. Molecular docking simulation further evidenced that DS-1 interacts with MDM2 within the p53-binding domain by carbon-hydrogen bond interaction at Lys27, π-alkyl interactions at Ile37 and Leu30, and van der Waals interactions at Ile75, Val51, Val69, Phe67, Met38, Tyr43, Gly34, and Phe31. Treatment by DS-1 and cisplatin in patient-derivated primary lung cancer cells showed consistent effects by increasing cisplatin sensitivity. CONCLUSIONS Our findings provide evidence that DS-1 is an MDM2 inhibitor and its underlying mechanism involves MDM2 binding and p53 induction, which may benefit the development of this compound for lung cancer treatment.
Collapse
Affiliation(s)
- Hardyanti Eka Putri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS. Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM2 15kDa. Mol Immunol 2021; 135:191-203. [PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yuya Ishikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
32
|
Feasibility of Developing Radiotracers for MDM2: Synthesis and Preliminary Evaluation of an 18F-Labeled Analogue of the MDM2 Inhibitor SP-141. Pharmaceuticals (Basel) 2021; 14:ph14040358. [PMID: 33924734 PMCID: PMC8070256 DOI: 10.3390/ph14040358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Murine double minute 2 (MDM2), a negative regulator of the p53 tumor suppressor protein, is overexpressed in several human cancers. Herein we investigate the feasibility of developing 18F-labeled compounds based on the small molecule inhibitor SP-141 for imaging tumor MDM2 expression levels with positron emission tomography (PET). Three nonradioactive fluorinated SP-141 analogues, 1–3, were synthesized, and their binding to the MDM2 protein was analyzed by surface plasmon resonance (SPR). One of these, a fluoroethoxy analogue, was labeled with fluorine-18 (18F) using 18F-fluorethyl bromide to provide [18F]1 and evaluated in vitro and in vivo. SPR analysis confirmed the binding of the fluorinated analogues to MDM2 at 1.25–20 µM concentrations. Cell uptake studies revealed high uptake (67.5–71.4%/mg protein) and specificity of [18F]1 in MCF7 and HepG2 cells. The uptake of [18F]1 in these cells could be modulated using 100 µM SP-141, potentially reflecting changes in MDM2 expression because of p53 activation by SP-141. [18F]1 exhibited stable uptake and retention in HepG2 tumor xenografts (~3 %ID/g) in vivo, but poor clearance from blood and other normal tissues, yielding low tumor-to-background ratios (<2) at 2 h post injection. Our results suggest that [18F]1 has suboptimal characteristics for in vivo evaluation as a PET tracer for MDM2, but warrant radiolabeling and assessment of the other fluorinated analogues synthesized in this work, 2 and 3, and potentially other molecular scaffolds for developing MDM2 targeted radiotracers.
Collapse
|
33
|
Overexpression of the TRIM24 E3 Ubiquitin Ligase is Linked to Genetic Instability and Predicts Unfavorable Prognosis in Prostate Cancer. Appl Immunohistochem Mol Morphol 2021; 29:e29-e38. [PMID: 33491944 DOI: 10.1097/pai.0000000000000901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Tripartite motif containing 24 (TRIM24) is a multifunctional protein involved in p53 degradation, chromatin binding, and transcriptional modulation of nuclear receptors. Emerging research has revealed that upregulation of TRIM24 in numerous tumor types is linked to poor prognosis, attributing an important role to TRIM24 in tumor biology. In order to better understand the role of TRIM24 in prostate cancer, we analyzed its immunohistochemical expression on a tissue microarray containing >17,000 prostate cancer specimens. TRIM24 immunostaining was detectable in 61% of 15,321 interpretable cancers, including low expression in 46% and high expression in 15% of cases. TRIM24 upregulation was associated with high Gleason grade, advanced pathologic tumor stage, lymph node metastasis, higher preoperative prostate-specific antigen level, increased cell proliferation as well as increased genomic instability, and predicted prognosis independent of clinicopathologic parameters available at the time of the initial biopsy (all P<0.0001). TRIM24 upregulation provides additional prognostic information in prostate cancer, particularly in patients with low Gleason grade tumors who may be eligible for active surveillance strategies, suggesting promising potential for TRIM24 in the routine diagnostic work-up of these patients.
Collapse
|
34
|
Mashima E, Sawada Y, Nakamura M. Recent Advancement in Atypical Lipomatous Tumor Research. Int J Mol Sci 2021; 22:994. [PMID: 33498189 PMCID: PMC7863944 DOI: 10.3390/ijms22030994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
After Evans and colleagues identified the lipomatous tumor with a well-differentiated liposarcoma in a subcutaneous location or within a muscle layer, namely, atypical lipomatous tumor (ALT), this malignancy has been investigated to clarify the characteristics of clinical behavior and genomic changes. As one of the important issues for clinicians, it is a hot topic of how to distinguish ALT from benign lipoma in the clinical aspect. Recent studies revealed novel findings to clarify the risk factor for the diagnosis of ALT and molecular targets for the treatment of ALT. Clinical characteristics of superficial-type ALT well reflect the subcutaneous location of the tumor and are slightly different compared to deep-type ALT, such as tumor size. In addition, there has been a recent discovery of novel findings in ALT-related genes, namely, HMG2A (high mobility group protein 2a), YEATS4 (YEATS domain containing 4), and CPM (Carboxypeptidase M). Recent updates on treatment for advanced ALT are well developed including immunotherapy and conducting clinical trials. Finally, this review introduces one of the hot topics of ALT research focused on epigenetic changes: their attention in recent updates on clinical characteristics and the novel discovery of related genes, treatment, and epigenetic modifications in atypical lipomatous tumors.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555, Japan; (E.M.); (M.N.)
| | | |
Collapse
|
35
|
Targeting MDM2 for Neuroblastoma Therapy: In Vitro and In Vivo Anticancer Activity and Mechanism of Action. Cancers (Basel) 2020; 12:cancers12123651. [PMID: 33291373 PMCID: PMC7762001 DOI: 10.3390/cancers12123651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroblastoma is a malignant tumor of the sympathetic nervous system that causes aggressive disease in children. The overall survival rate of high-risk patients is very low, therefore developing effective and safe therapies for neuroblastoma is an urgent unmet medical need. The mouse double minute 2 (MDM2) homolog gene is amplified and overexpressed in neuroblastoma and contributes to the poor response to treatment and poor prognosis in patients with high-risk neuroblastoma. Therefore, targeting MDM2 provides a promising approach to neuroblastoma therapy, especially for advanced disease. In the present study, we tested a unique MDM2 inhibitor, SP141, for its therapeutic efficacy and safety in neuroblastoma tumor models. We found that SP141 has significant anti- neuroblastoma activity in cell culture and inhibits tumor growth in animal models of human neuroblastoma, without any noticeable host toxicity. These results provide the basis for targeting MDM2 to treat high-risk neuroblastoma. Abstract Background: Neuroblastoma is an aggressive pediatric solid tumor with an overall survival rate of <50% for patients with high-risk disease. The majority (>98%) of pathologically-diagnosed neuroblastomas have wild-type p53 with intact functional activity. However, the mouse double minute 2 (MDM2) homolog, an E3 ubiquitin ligase, is overexpressed in neuroblastoma and leads to inhibition of p53. MDM2 also exerts p53-independent oncogenic functions. Thus, MDM2 seems to be an attractive target for the reactivation of p53 and attenuation of oncogenic activity in neuroblastoma. Methods: In this study, we evaluated the anticancer activities and underlying mechanisms of action of SP141, a first-in-class MDM2 inhibitor, in neuroblastoma cell lines with different p53 backgrounds. The findings were confirmed in mouse xenograft models of neuroblastoma. Results: We demonstrate that SP141 reduces neuroblastoma cell viability, induces apoptosis, arrests cells at the G2/M phase, and prevents cell migration, independent of p53. In addition, in neuroblastoma xenograft models, SP141 inhibited MDM2 expression and suppressed tumor growth without any host toxicity at the effective dose. Conclusions: MDM2 inhibition by SP141 results in the inhibition of neuroblastoma growth and metastasis, regardless of the p53 status of the cells and tumors. These findings provide proof-of-concept that SP141 represents a novel treatment option for both p53 wild-type and p53 null neuroblastoma.
Collapse
|
36
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
37
|
Singh A, Jain A, Shetty DC, Rathore AS, Juneja S. Immunohistochemical expression of p53 and murine double minute 2 protein in odontogenic keratocyst versus variants of ameloblastoma. J Cancer Res Ther 2020; 16:521-529. [PMID: 32719261 DOI: 10.4103/jcrt.jcrt_659_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Oncogenes and tumor suppressor genes play a major role in cancer formation, growth, and progression. One of the important findings in this area is that murine double minute 2 (MDM2) oncogene is a negative regulator of wild-type p53. In tumors, expressing wild-type p53, inhibition of MDM2 expression will stabilize p53 and allow it to perform its proapoptotic function, while simultaneously preventing MDM2 from exerting its p53-independent oncogenic effects. The intracellular levels of p53 are tightly regulated by MDM2, as it is a key player in autoregulatory feedback loop under nonstressed conditions. The p53-MDM2 relationship is vital not only for essential functions of the cell, but it also appears to be an integrated part of the complex cellular network which supports the importance of this affair and is a hallmark for its coexistence. Subjects and Methods This study was designed to identify immunohistochemically the expression of p53 and MDM2 gene using monoclonal antibody in 60 cases of formalin-fixed paraffin-embedded tissue blocks, of which 20 cases were of solid multicystic ameloblastoma (SMA), 20 cases were of odontogenic keratocyst (OKC), and 20 cases were of unicystic ameloblastoma (UA). Results Immunoexpression of p53 and MDM2 was highest in OKC followed by SMA and was minimum in UA. Further results showed positive correlation between both the molecules. Conclusion The studied showed that the relationship has a significant role in cancer etiology and progression and therefore is an important topic for future research which should help in the development of new therapeutic agent against cancer.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Oral Pathology and Microbiology, ITS Dental College, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Anshi Jain
- Department of Oral Pathology and Microbiology, ITS Dental College, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Devi Charan Shetty
- Department of Oral Pathology and Microbiology, ITS Dental College, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Ajit Singh Rathore
- Department of Oral Pathology and Microbiology, ITS Dental College, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Saurabh Juneja
- Department of Oral Pathology and Microbiology, ITS Dental College, Muradnagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
38
|
Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett 2020; 496:16-29. [PMID: 33007410 DOI: 10.1016/j.canlet.2020.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Despite being the subject of extensive research and clinical trials, neuroblastoma remains a major therapeutic challenge in pediatric oncology. The p53 protein is a central safeguard that protects cells against genome instability and malignant transformation. Mutated TP53 (the gene encoding p53) is implicated in many human cancers, but the majority of neuroblastomas have wild type p53 with intact transcriptional function. In fact, the TP53 mutation rate does not exceed 1-2% in neuroblastomas. However, overexpression of the murine double minute 2 (MDM2) gene in neuroblastoma is relatively common, and leads to inhibition of p53. It is also associated with other non-canonical p53-independent functions, including drug resistance and increased translation of MYCN and VEGF mRNA. The p53-MDM2 pathway in neuroblastoma is also modulated at several different molecular levels, including via interactions with other proteins (MYCN, p14ARF). In addition, the overexpression of MDM2 in tumors is linked to a poorer prognosis for cancer patients. Thus, restoring p53 function by inhibiting its interaction with MDM2 is a potential therapeutic strategy for neuroblastoma. A number of p53-MDM2 antagonists have been designed and studied for this purpose. This review summarizes the current understanding of p53 biology and the p53-dependent and -independent oncogenic functions of MDM2 in neuroblastoma, and also the regulation of the p53-MDM2 axis in neuroblastoma. This review also highlights the use of MDM2 as a molecular target for the disease, and describes the MDM2 inhibitors currently being investigated in preclinical and clinical studies. We also briefly explain the various strategies that have been used and future directions to take in the development of effective MDM2 inhibitors for neuroblastoma.
Collapse
|
39
|
Dar KB, Bhat AH, Amin S, Anjum S, Reshi BA, Zargar MA, Masood A, Ganie SA. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Curr Cancer Drug Targets 2020; 19:430-448. [PMID: 30073927 DOI: 10.2174/1568009618666180803104631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Syed Anjum
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
40
|
Suarez OJ, Vega CJ, Sanchez EN, González-Santiago AE, Rodríguez-Jorge O, Alanis AY, Chen G, Hernandez-Vargas EA. Pinning Control for the p53-Mdm2 Network Dynamics Regulated by p14ARF. Front Physiol 2020; 11:976. [PMID: 32982771 PMCID: PMC7485292 DOI: 10.3389/fphys.2020.00976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
p53 regulates the cellular response to genotoxic damage and prevents carcinogenic events. Theoretical and experimental studies state that the p53-Mdm2 network constitutes the core module of regulatory interactions activated by cellular stress induced by a variety of signaling pathways. In this paper, a strategy to control the p53-Mdm2 network regulated by p14ARF is developed, based on the pinning control technique, which consists into applying local feedback controllers to a small number of nodes (pinned ones) in the network. Pinned nodes are selected on the basis of their importance level in a topological hierarchy, their degree of connectivity within the network, and the biological role they perform. In this paper, two cases are considered. For the first case, the oscillatory pattern under gamma-radiation is recovered; afterward, as the second case, increased expression of p53 level is taken into account. For both cases, the control law is applied to p14ARF (pinned node based on a virtual leader methodology), and overexpressed Mdm2-mediated p53 degradation condition is considered as carcinogenic initial behavior. The approach in this paper uses a computational algorithm, which opens an alternative path to understand the cellular responses to stress, doing it possible to model and control the gene regulatory network dynamics in two different biological contexts. As the main result of the proposed control technique, the two mentioned desired behaviors are obtained.
Collapse
Affiliation(s)
- Oscar J. Suarez
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Carlos J. Vega
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Edgar N. Sanchez
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Ana E. González-Santiago
- Biomedical Sciences Department, Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá, Mexico
| | - Otoniel Rodríguez-Jorge
- Biochemistry and Molecular Biology Department, Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alma Y. Alanis
- Computer Sciences Department, Universidad de Guadalajara, Guadalajara, Mexico
| | - Guanrong Chen
- Electrical Engineering Department, City University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
41
|
Wolf ER, Mabry AR, Damania B, Mayo LD. Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors. Oncogene 2020; 39:5228-5239. [PMID: 32555333 PMCID: PMC7368819 DOI: 10.1038/s41388-020-1359-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023]
Abstract
Mutations in the tumor suppressor TP53 are rare in renal cell carcinomas. p53 is a key factor for inducing antiangiogenic genes and RCC are highly vascularized, which suggests that p53 is inactive in these tumors. One regulator of p53 is the Mdm2 oncogene, which is correlated with high-grade, metastatic tumors. However, the sole activity of Mdm2 is not just to regulate p53, but it can also function independent of p53 to regulate the early stages of metastasis. Here, we report that the oncoprotein Mdm2 can bind directly to the tumor suppressor VHL, and conjugate nedd8 to VHL within a region that is important for the p53-VHL interaction. Nedd8 conjugated VHL is unable to bind to p53 thereby preventing the induction of antiangiogenic factors. These results highlight a previously unknown oncogenic function of Mdm2 during the progression of cancer to promote angiogenesis through the regulation of VHL. Thus, the Mdm2-VHL interaction represents a pathway that impacts tumor angiogenesis.
Collapse
Affiliation(s)
- Eric R Wolf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander R Mabry
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lindsey D Mayo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
42
|
Association Analysis of TP53 rs1042522, MDM2 rs2279744, rs3730485, MDM4 rs4245739 Variants and Acute Myeloid Leukemia Susceptibility, Risk Stratification Scores, and Clinical Features: An Exploratory Study. J Clin Med 2020; 9:jcm9061672. [PMID: 32492903 PMCID: PMC7355701 DOI: 10.3390/jcm9061672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to explore the associations between the TP53 rs1042522 (TP53 Arg72Pro), MDM2 rs2279744 (MDM2 309T>G), rs3730485 (MDM2 del1518), MDM4 rs4245739 (MDM4 34091 C>A) variants and odds of developing acute myeloid leukemia (AML) in a cohort of 809 adult subjects, consisting of 406 healthy controls and 403 AML patients. Model-based multifactor dimensionality reduction (MB-MDR) framework was used to identify the interactions of the mentioned variants and their association with AML risk. Associations of the mentioned variants with clinical features of AML, somatic mutations, and response to treatment were also evaluated. Significant associations between TP53 rs1042522 and MDM4 rs4245739 variants and AML susceptibility were noticed. MB-MDR and logistic regression analysis revealed an interaction between MDM2 rs2279744 and TP53 rs1042522, between MDM4 rs4245739 and MDM2 rs3730485, as well as significant associations with AML susceptibility. Several associations between the mentioned variants and clinical features of AML and somatic mutations were also noticed. Individually, the variant genotypes of TP53 rs1042522 and MDM4 rs4245739 were associated with AML susceptibility, but their interaction with MDM2 rs2279744 and rs3730485 modulated the risk for AML. The variant genotypes of TP53 rs1042522 were associated with adverse molecular and cytogenetic risk and also with NPM1 mutations.
Collapse
|
43
|
Lobo J, Alzamora MA, Guimarães R, Cantante M, Lopes P, Braga I, Maurício J, Jerónimo C, Henrique R. p53 and MDM2 expression in primary and metastatic testicular germ cell tumors: Association with clinical outcome. Andrology 2020; 8:1233-1242. [PMID: 32384200 DOI: 10.1111/andr.12814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) are highly sensitive to platinum-based chemotherapy, and wild-type p53 seems to play a pivotal role in this susceptibility. On the other hand, overexpression of MDM2 seems to entail treatment resistance and unfavorable prognosis. OBJECTIVES We aimed to describe p53 and MDM2 immunoexpression in a well-characterized cohort of primary and metastatic TGCTs and evaluate associations with clinicopathological and prognostic variables, including survival. MATERIALS AND METHODS 237 primary tumor samples and 12 metastases were evaluated for p53 and MDM2 immunoexpression using digital image analysis. Clinical records of all patients were reviewed for baseline clinical/pathologic characteristics and follow-up. RESULTS A significant positive correlation between p53 and MDM2 H-scores was found (rs = 0.590, P < .0001). Non-seminomas showed significantly higher expression levels of both p53 and MDM2 (P = .0002, P < .0001), which peaked in embryonal carcinomas and choriocarcinomas. Percentage of immunoexpressing cells and H-score were significantly higher in chemo-treated metastases compared with chemo-naïve primary tumors for MDM2 (P ≤ .0001 for both), but not for p53 (P = .919 and P = .703, respectively). Cases with higher MDM2 immunoexpression showed a statistically significant trend for association with poorer prognosis (P = .043). Relapse/progression-free survival at 12 months post-diagnosis was lower in the "MDM2-high" (≥P50) vs. the "MDM2-low" (<P50) expression groups. DISCUSSION AND CONCLUSION In TGCTs, MDM2 overexpression may indicate a more aggressive tumor phenotype, with propensity for therapy resistance and recurrence. If validated in larger multi-institutional studies with precise quantification, it may be envisioned as a useful predictive biomarker of poor response to cisplatin.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maria Ana Alzamora
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
44
|
Wang X, Wang F, Zhong M, Yarden Y, Fu L. The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol Cancer 2020. [PMID: 32359357 DOI: 10.1186/s12943-020-01200-x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies (Abs) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) Abs, are effective for patients with various cancers. However, low response rates to ICI monotherapies and even hyperprogressive disease (HPD) have limited the clinical application of ICIs. HPD is a novel pattern of progression, with an unexpected and fast progression in tumor volume and rate, poor survival of patients and early fatality. Considering the limitations of ICI due to HPD incidence, valid biomarkers are urgently needed to predict the occurrence of HPD and the efficacy of ICI. Here, we reviewed and summarized the known biomarkers of HPD, including tumor cell biomarkers, tumor microenvironment biomarkers, laboratory biomarkers and clinical indicators, which provide a potential effective approach for selecting patients sensitive to ICI cancer treatments.
Collapse
Affiliation(s)
- Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
45
|
The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol Cancer 2020; 19:81. [PMID: 32359357 PMCID: PMC7195736 DOI: 10.1186/s12943-020-01200-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies (Abs) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) Abs, are effective for patients with various cancers. However, low response rates to ICI monotherapies and even hyperprogressive disease (HPD) have limited the clinical application of ICIs. HPD is a novel pattern of progression, with an unexpected and fast progression in tumor volume and rate, poor survival of patients and early fatality. Considering the limitations of ICI due to HPD incidence, valid biomarkers are urgently needed to predict the occurrence of HPD and the efficacy of ICI. Here, we reviewed and summarized the known biomarkers of HPD, including tumor cell biomarkers, tumor microenvironment biomarkers, laboratory biomarkers and clinical indicators, which provide a potential effective approach for selecting patients sensitive to ICI cancer treatments.
Collapse
|
46
|
Das P, Mattaparthi VSK. Computational Investigation on the p53-MDM2 Interaction Using the Potential of Mean Force Study. ACS OMEGA 2020; 5:8449-8462. [PMID: 32337406 PMCID: PMC7178334 DOI: 10.1021/acsomega.9b03372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Murine double minute 2 (MDM2) proteins are found to be overproduced by many human tumors in order to inhibit the functioning of p53 molecules, a tumor suppressor protein. Thus, reactivating p53 functioning in cancer cells by disrupting p53-MDM2 interactions may offer a significant approach in cancer treatment. However, the structural characterization of the p53-MDM2 complex at the atomistic level and the mechanism of binding/unbinding of the p53-MDM2 complex still remain unclear. Therefore, we demonstrate here the probable binding (unbinding) pathway of transactivation domain 1 of p53 during the formation (dissociation) of the p53-MDM2 complex in terms of free energy as a function of reaction coordinate from the potential of mean force (PMF) study using two different force fields: ff99SB and ff99SB-ILDN. From the PMF plot, we noticed the PMF to have a minimum value at a p53-MDM2 separation of 12 Å, with a dissociation energy of 30 kcal mol-1. We also analyzed the conformational dynamics and stability of p53 as a function of its distance of separation from MDM2. The secondary structure content (helix and turns) in p53 was found to vary with its distance of separation from MDM2. The p53-MDM2 complex structure with lowest potential energy was isolated from the ensemble at the reaction coordinate corresponding to the minimum PMF value and subjected to molecular dynamics simulation to identify the interface surface area, interacting residues at the interface, and the stability of the complex. The simulation results highlight the importance of hydrogen bonds and the salt bridge between Lys94 of MDM2 and Glu17 of p53 in the stability of the p53-MDM2 complex. We also carried out the binding free energy calculations and the per residue energy decomposition analyses of the interface residues of the p53-MDM2 complex. We found that the binding affinity between MDM2 and p53 is indeed high [ΔG bind = -7.29 kcal mol-1 from molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) and ΔG bind = -53.29 kcal mol-1 from molecular mechanics/generalized borne surface area]. The total binding energy obtained using the MM/PBSA method was noticed to be closer to the experimental values (-6.4 to -9.0 kcal mol-1). The p53-MDM2 complex binding profile was observed to follow the same trend even in the duplicate simulation run and also in the simulation carried out with different force fields. We found that Lys51, Leu54, Tyr100, and Tyr104 from MDM2 and the residues Phe19, Trp23, and Leu26 from p53 provide the highest energy contributions for the p53-MDM2 interaction. Our findings highlight the prominent structural and binding characteristics of the p53-MDM2 complex that may be useful in designing potential inhibitors to disrupt the p53-MDM2 interactions.
Collapse
|
47
|
Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:101-115. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.
Collapse
Affiliation(s)
- Leena Arpalahti
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina I Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
48
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
49
|
Wang W, Hu B, Qin JJ, Cheng JW, Li X, Rajaei M, Fan J, Yang XR, Zhang R. A novel inhibitor of MDM2 oncogene blocks metastasis of hepatocellular carcinoma and overcomes chemoresistance. Genes Dis 2019; 6:419-430. [PMID: 31832522 PMCID: PMC6889017 DOI: 10.1016/j.gendis.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the MDM2 oncogene and mutations in the p53 tumor suppressor commonly occur in hepatocellular carcinoma (HCC) and are associated with increased mortality due to this disease. Inhibiting MDM2 has been demonstrated to be a valid approach for the treatment of HCC. However, most of the MDM2 inhibitors evaluated to date have been designed to block the MDM2 and p53 binding, and have limited efficacy against tumors with mutant or deficient p53. In the present study, we developed a novel MDM2 inhibitor (termed SP141) that has direct effects on MDM2 and exerts anti-HCC activity independent of the p53 status of the cancer cells. We demonstrate that SP141 inhibits cell growth and prevents cell migration and invasion, independent of p53. Mechanistically, SP141 directly binds the MDM2 protein and promotes MDM2 degradation. The inhibition of MDM2 by SP141 also increases the sensitivity of HCC cells to sorafenib. In addition, in orthotopic and patient-derived xenograft models, SP141 inhibits MDM2 expression and suppresses tumor growth and metastasis, without any host toxicity. Furthermore, the inhibition of MDM2 by SP141 is essential for its anti-HCC activities. These results provide support for the further development of SP141 as a lead candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Jian-Wen Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
50
|
Kanagasabai T, Venkatesan T, Natarajan U, Alobid S, Alhazzani K, Algahtani M, Rathinavelu A. Regulation of cell cycle by MDM2 in prostate cancer cells through Aurora Kinase-B and p21WAF1 /CIP1 mediated pathways. Cell Signal 2019; 66:109435. [PMID: 31706019 DOI: 10.1016/j.cellsig.2019.109435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Overexpression of MDM2 oncoprotein has been detected in a large number of diverse human malignancies and has been shown to play both p53-dependent and p53-independent roles in oncogenesis. Our study was designed to explore the impact of MDM2 overexpression on the levels of various cell cycle regulatory proteins including Aurora kinase-B (AURK-B), CDC25C and CDK1, which are known to promote tumor progression and increase metastatic potential. Our data from human cell cycle RT2 profiler PCR array experiments revealed significant changes in the expression profile of genes that are involved in different phases of cell cycle regulation in LNCaP-MST (MDM2 transfected) prostate cancer cells. Our current study has demonstrated a significant increase in the expression level of AURK-B, CDC25C, Cyclin A2, Cyclin B and CDK1 in LNCaP-MST cells as compared with wild type LNCaP cells that were modulated by MDM2 specific inhibitor Nutlin-3. In fact, the expression levels of the above- mentioned proteins were significantly altered at both mRNA and protein levels after treating the cells with 20 μM Nutlin-3 for 24h. Additionally, the pro-apoptotic proteins including p53, p21, and Bax were elevated with the concomitant decrease in the key anti-apoptotic proteins following MDM2 inhibitor treatment. Also, Nutlin-3 treated cells demonstrated caspase-3 activation was observed with an in-vitro caspase-3 fluorescent assay performed with caspase 3/7 specific DEVD-amc substrate. Our results offer significant evidence towards the effectiveness of MDM2 inhibition in causing cell cycle arrest via blocking the transmission of signals through AURKB-CDK1 axis and inducing apoptosis in LNCaP-MST cancer cells. It is evident from our data that MDM2 overexpression probably is the primary cause for CDK1 up-regulation in the LNCaP-MST cells, which might have occurred possibly through activation of AURK-B. However, further studies in this direction should shed more light on the intracellular mechanisms involved in the regulation of Aurora kinase-B and CDK1 axis in MDM2 positive cancers.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; VRR Institute of Biomedical Sciences, Kattupakkam, Chennai, TN 600056, India
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohammad Algahtani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA.
| |
Collapse
|