1
|
Liu S, He Y, Jin L, Shi S, Zhang J, Xie W, Yang M, Zhang Q, Kong H. H3K18 lactylation-mediated SIX1 upregulation contributes to silica-induced epithelial-mesenchymal transition in airway epithelial cells. Toxicology 2025; 514:154109. [PMID: 40049282 DOI: 10.1016/j.tox.2025.154109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Silica exposure-induced airway epithelial-mesenchymal transition (EMT) is a critical pathological process in pulmonary fibrosis. This study investigated the role of NLRP3 inflammasome, glycolysis, and histone lactylation in silica-induced EMT of human bronchial epithelial cells (16HBE). Silica exposure activated NLRP3 inflammasome, enhanced glycolysis and H3K18 lactylation, as well as induced EMT in 16HBE cells. Selective inhibition of NLRP3 inflammasome with MCC950, blockade of the interleukin 1 (IL-1) receptor with AF12198, or suppression of lactate production with oxamate effectively reduced glycolysis-mediated histone lactylation and mitigated silica-induced EMT. Moreover, silica-induced upregulation of PFKFB3, a key enzyme of glycolysis, was significantly mitigated by MCC950 or AF12198. Cut&Tag analysis revealed silica treatment led to H3K18 lactylation enrichment at transcription start sites (TSS), particularly within the promoter region of the sine oculis homeobox 1 (SIX1), which enhanced transcription of SIX1, a key transcription factor involved in EMT. Consistently, inhibition of histone lactylation by the histone acetyltransferase P300 inhibitor A-485 suppressed silica-induced SIX1 expression and EMT. These findings indicate that silica activates NLRP3 inflammasome and promotes interleukin 1β (IL-1β) production, thereafter enhancing PFKFB3-mediated glycolysis by IL-1 receptor. Lactate accumulation by glycolysis enhances H3K18 lactylation at the TSS facilitating expression of SIX1. Together, this inflammation-glycolysis-lactylation cascade involved in EMT provides new insights into the molecular mechanisms underlying silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yiting He
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Linling Jin
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Shuangshuang Shi
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jiayi Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Weiping Xie
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Qun Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
2
|
Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16:97163. [PMID: 39867730 PMCID: PMC11528897 DOI: 10.5306/wjco.v16.i1.97163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
3
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
4
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
5
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tong X, Liu YS, Tong R, Tang WW, Li XM, Wang CY, Wang YP. TEAD4 predicts poor prognosis and transcriptionally targets PLAGL2 in serous ovarian cancer. Hum Cell 2023:10.1007/s13577-023-00908-4. [PMID: 37145265 DOI: 10.1007/s13577-023-00908-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The oncogenic function of TEA domain transcription factor 4 (TEAD4) has been confirmed in multiple human malignancies, while its potential role and regulatory mechanism in serous ovarian cancer progression are left unknown. By the gene expression analyses from Gene Expression Profiling Interactive Analysis (GEPIA) database, TEAD4 expression is shown to be up-regulated in serous ovarian cancer samples. Here, we confirmed the high expression of TEAD4 in clinical serous ovarian cancer specimens. In the following functional experiments, we found that TEAD4 overexpression promoted serous ovarian cancer malignant phenotypes, including proliferation, migration and invasion in serous ovarian cancer SK-OV-3 and OVCAR-3 cells, while TEAD4 knockout exerted the opposite function. The tumor growth inhibition of TEAD4 depletion was also affirmed by a Xenograft model in mice. In addition, this phenotypic deterioration induced by TEAD4 overexpression was diminished by PLAG1 like zinc finger 2 (PLAGL2) silencing. More importantly, combined with the results of the dual-luciferase assay, the transcriptional regulation of TEAD4 on PLAGL2 promoter was evidenced. Our results showed that the cancer-promoting gene TEAD4 was involved in serous ovarian cancer progression via targeting PLAGL2 at the transcriptional level.
Collapse
Affiliation(s)
- Xin Tong
- Department of Interventional, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Yi-Si Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Rui Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Wei-Wei Tang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Xue-Mei Li
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Chun-Yan Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yong-Peng Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
7
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Akrida I, Bravou V, Papadaki H. The deadly cross-talk between Hippo pathway and epithelial–mesenchymal transition (EMT) in cancer. Mol Biol Rep 2022; 49:10065-10076. [DOI: 10.1007/s11033-022-07590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
9
|
Chi M, Liu J, Mei C, Shi Y, Liu N, Jiang X, Liu C, Xue N, Hong H, Xie J, Sun X, Yin B, Meng X, Wang B. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:175. [PMID: 35581606 PMCID: PMC9112458 DOI: 10.1186/s13046-022-02377-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Background The distant metastasis is the primary cause of cancer morbidity and mortality for bladder cancer (BLCA) paitents. All the recommended therapy for it largely depends on how far the cancer has invaded. It has been confirmed that epithelial to mesenchymal transition (EMT) is the leading reason for the BLCA metastasis which makes BLCA difficult to cure. The aim of the present study is to identify the BLCA-related genes that can be used as the new prognostic biomarker and treatment target, and to investigate the functional mechanisms of TEAD4 in EMT dysregulation. Methods The "limma" R package was used to identify the differentially expressed genes (DEGs) between the normal and the tumor samples from TCGA BLCA and GTEx databases. Kaplan–Meier and UniCox analysis were used to filter DEGs with prognostic value in BLCA. Step muti-Cox analysis was used to construct a prognostic risk score model based on clinical phenotype characters. Gene set enrichment analysis (GSEA) was performed to explore the possible molecular mechanisms affecting the prognosis in BLCA. Unsupervised hierarchical clustering analysis was performed to evaluate the effects of EMT process on the prognosis. Single-sample GSEA (ssGSEA) was used to calculate the correlation betweeen the expression of DEGs and EMT enrichment scores. TEAD4 expression and its association with pathological grading and survival were appraised in samples from TCGA dataset and BLCA tissue microarray. Colony formation assays and CCK8 assays were performed to study the changes in BLCA cell proliferation when the TEAD4 levels was down- or up-regulated in BLCA cells. Transwell and wound healing assays were utilized to analyze the impact of TEAD4 on the invasion and metastasis of the BLCA cells. Western Blot was carried out to detect the changes of EMT-related markers and the active molecules involved in PI3K/AKT signaling in BLCA cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was conducted on the genes related to TEAD4 expression. 740Y-P (activator of PI3K/AKT pathway) and LY294002 (inhibitor of PI3K/AKT pathway) were applied to evaluate the contribution of PI3K/AKT signaling pathway in the EMT of BLCA cells. To examine the in vivo effect of TEAD4 on tumor metastasis, we designed a metastatic nude-mouse model by tail vein injection of TEAD4-knockdown BLCA cells. And PET/CT imaging was used to assess the extent of lung metastases. Results A total of 1592 DEGs were recognized, among which 4 DEGs have been identified as independent prognostic factors for BLCA, such as FASN, IGFL2, PLOD1 and TEAD4. TCGA BLCA samples were divided into significantly different low- and high-risk groups according to the median risk score; GSEA analysis showed that HALLMARK EMT pathway was the top enriched gene signature when compared high-risk and low-risk groups, which was also verified by unsupervised cluster analysis. EMT signature-derived ssGSEA scores demonstrated that TEAD4 had the most positive correlation with EMT process. In addition, TEAD4 expression was upregulated in TCGA BLCA samples and correlated with pT stage, tumor stage and tumor grade. Functional studies showed that TEAD4 knockdown via lentiviral TEAD4 shRNA inhibited cell migration and invasion in vitro and in vivo, with the reduced expression of EMT related markers in BLCA cell lines; the migration and invasion of TEAD4 knockdown cells could be restored by ectopic expression of TEAD4. Meanwhile, KEGG enrichment analysis of genes related to TEAD4 expression showed that enrichment was significantly related to PI3K/AKT pathway. The pathway inhibitor LY294002 blocked the TEAD4-induced enhancement of migration and invasion as well as the expression EMT-related markers, whereas the agonist 740Y-P rescued the decreased migration, invasion and EMT induced by TEAD4 knockdown. Conclusions TEAD4 is closely correlated with poor prognosis in BLCA and mediates its metastasis through regulating EMT via PI3K/AKT pathway, proving that TEAD4 is not only an effective biomarker for predicting the prognosis but also a great potential target for treatment of metastatic BLCA. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02377-3.
Collapse
Affiliation(s)
- Ming Chi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Jiao Liu
- Department of Urology, the First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Chenxue Mei
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yaxing Shi
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Nanqi Liu
- Institute of Health Science, China Medical University, Shenyang, 110122, China
| | - Xuefeng Jiang
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Chang Liu
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Xue
- Department of Orthodontics, School and Hospital of Stomatology of China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jisheng Xie
- Department of Histology and Embryology, Youjiang Medical College for Nationalities, Baise City, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Bo Yin
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Hsu SC, Lin CY, Lin YY, Collins CC, Chen CL, Kung HJ. TEAD4 as an Oncogene and a Mitochondrial Modulator. Front Cell Dev Biol 2022; 10:890419. [PMID: 35602596 PMCID: PMC9117765 DOI: 10.3389/fcell.2022.890419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4’s functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Yu Lin
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yi Lin
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin C. Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chia-Lin Chen
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| | - Hsing-Jien Kung
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| |
Collapse
|
11
|
Ren X, Wang X, Peng B, Liang Q, Cai Y, Gao K, Hu Y, Xu Z, Yan Y. Significance of TEAD Family in Diagnosis, Prognosis and Immune Response for Ovarian Serous Carcinoma. Int J Gen Med 2021; 14:7133-7143. [PMID: 34737608 PMCID: PMC8558638 DOI: 10.2147/ijgm.s336602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To explore the molecular profiles of transcriptional enhanced associate domain (TEAD) family in ovarian serous carcinoma (OSC). METHODS In this study, we use bioinformatics methods including GEPIA, GE-mini, Oncomine 3.0, Kaplan-Meier plotter, cBioPortal, WebGestalt, TIMER2.0 and DiseaseMeth2.0, and in vitro experimental RT-PCR to assess the expression profiles and prognostic significance of TEAD family in OSC. RESULTS According to the bioinformatics analysis, TEAD family was abnormally expressed in OSC. In terms of prognosis, Kaplan-Meier plotter indicated that OSC patients with high level of TEAD4 showed poor overall survival (OS), progression-free survival (PFS) and post progression survival (PPS). TEAD family also had significantly diagnostic values for OSC patients. Tumor Immune Estimation Resource (TIMER) algorithm indicated that TEAD family was significantly associated with different types of infiltrating immune cells, including B cells, macrophages, dendritic cells, neutrophils, CD8+ T cells and CD4+ T cells. Gene set enrichment analysis of TEAD family-associated coexpression genes was further explored. In in vitro experiments, the RT-PCR results showed the upregulated TEAD2/4 in OSC tissues and cells (A2780 and TOV112D). Moreover, decreased expression of TEAD2 could induce the ferroptosis through increasing the ROS accumulation. CONCLUSION Thus, TEAD family correlated with the diagnosis, prognosis and immune infiltration in OSC. These results could provide comprehensive understanding of TEAD family in the diagnosis and prognosis of OSC patients.
Collapse
Affiliation(s)
- Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Kewa Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
12
|
Zheng T, Huang J, Xiang X, Li S, Yu J, Qu K, Xu Z, Han P, Dong Z, Liu Y, Xu F, Yang H, Jäättelä M, Luo Y, Liu B. Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell Int 2021; 21:530. [PMID: 34641874 PMCID: PMC8507136 DOI: 10.1186/s12935-021-02224-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
The transcription factor cyclic-AMP response element-binding protein 1 (CREB1) responds to cAMP level and controls the expression of target genes, which regulates nutrition partitioning. The promoters of CREB1-targeted genes responsive to cAMP have been extensively investigated and characterized with the presence of both cAMP response element and TATA box. Compelling evidence demonstrates that CREB1 also plays an essential role in promoting tumor development. However, only very few genes required for cell survival, proliferation and migration are known to be constitutively regulated by CREB1 in tumors. Their promoters mostly do not harbor any cAMP response element. Thus, it is very likely that CREB1 regulates the expressions of distinct sets of target genes in normal tissues and tumors. The whole gene network constitutively regulated by CREB1 in tumors has remained unrevealed. Here, we employ a systematical and integrative approach to decipher this gene network in the context of both tissue cultured cancer cells and patient samples. We combine transcriptomic, Rank-Rank Hypergeometric Overlap, and Chipseq analysis, to define and characterize CREB1-regulated genes in a multidimensional fashion. A strong cancer relevance of those top-ranked targets, which meet the most stringent criteria, is eventually verified by overall survival analysis of cancer patients. These findings strongly suggest the importance of genes constitutively regulated by CREB1 for their implicative involvement in promoting tumorigenesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jinrong Huang
- BGI-Shenzhen, Shenzhen, China, 518083.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Siyuan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jiaying Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | | | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China. .,BGI-Shenzhen, Shenzhen, China, 518083. .,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark. .,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|