1
|
Feng W, Yang K, Zou Y, Xiao Z, Qian R, Qian R. Progress of ursolic acid on the regulation of macrophage: summary and prospect. Front Immunol 2025; 16:1576771. [PMID: 40421013 PMCID: PMC12104263 DOI: 10.3389/fimmu.2025.1576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/28/2025] Open
Abstract
Ursolic acid (UA), a prevalent pentacyclic triterpenoid found in numerous fruits and herbs, has garnered significant attention for its vital role in anti-inflammatory processes and immune regulation. The study of immune cells has consistently been a focal point, particularly regarding macrophages, which play crucial roles in antigen presentation, immunomodulation, the inflammatory response, and pathogen phagocytosis. This paper reveals the underlying regulatory effects of UA on the function of macrophages and the specific therapeutic effects of UA on a variety of diseases. Owing to the superior effect of UA on macrophages, different types of macrophages in different tissues have been described. Through the multifaceted regulation of macrophage function, UA may provide new ideas for the development of novel anti-inflammatory and immunomodulatory drugs. However, to facilitate its translation into actual medical means, the specific mechanism of UA in macrophages and its clinical application still need to be further studied.
Collapse
Affiliation(s)
- Wenjing Feng
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Kehong Yang
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Zou
- Department of Anatomy, Anatomy Teaching Center of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaohua Xiao
- Xiangya Hospital, Central South University, Changsha, China
| | - Rongkang Qian
- Department of Integrated Traditional Chinese and Western Medicine, Qian Rongkang Clinic, Loudi, China
| | - Ronghua Qian
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Liu C, Luo Y, Zhou H, Lin M, Zang D, Chen J. Immune cell-derived exosomal non-coding RNAs in tumor microenvironment: Biological functions and potential clinical applications. Chin J Cancer Res 2025; 37:250-267. [PMID: 40353080 PMCID: PMC12062983 DOI: 10.21147/j.issn.1000-9604.2025.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
The intricate interactions between immune cells and tumors exert a profound influence on cancer progression and therapeutic efficacy. Within the tumor microenvironment, exosomes have emerged as pivotal mediators of intercellular communication, with their cargo of non-coding RNAs (ncRNAs) serving as key regulatory elements. This review examines the multifaceted roles of immune cell-derived exosomal ncRNAs in tumor biology. The involvement of various immune cells, including T cells, B cells, natural killer cells, macrophages, neutrophils, and myeloid-derived suppressor cells, in utilizing exosomal ncRNAs to regulate tumor initiation and progression is explored. Additionally, the biogenesis and delivery mechanisms of these immune cell-derived exosomal ncRNAs are discussed, alongside their potential clinical applications in cancer.
Collapse
Affiliation(s)
- Chenguang Liu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Yawen Luo
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Huan Zhou
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Meixi Lin
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Dan Zang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jun Chen
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
3
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Tang S, Xu J, Wan P, Jin S, Zhang Y, Xun L, Wang J, Luo M, Chen W, Zuo Z, Tang H, Qi J. Recent advances in the role of high-salt diet in anti- and pro-cancer progression. Front Immunol 2025; 16:1542157. [PMID: 39944693 PMCID: PMC11814453 DOI: 10.3389/fimmu.2025.1542157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Dietary behaviors significantly influence tumor progression, with increasing focus on high-salt diets (HSD) in recent years. Traditionally, HSD has been regarded as a major risk factor for multiple health issues, including hypertension, cardiovascular disease, kidney disease, cancer, and osteoporosis. However, recent studies have uncovered a novel aspect of HSD, suggesting that HSD may inhibit tumor growth in specific pathological conditions by modulating the activity of immune cells that infiltrate tumors and enhancing the effectiveness of PD-1 immunotherapy. This review focused on the duel molecular mechanisms of HSD in cancer development, which are based on the tumor microenvironment, the gut microbiota, and the involvement of sodium transporter channels. The objective of this review is to explore whether HSD could be a potential future oncological therapeutic strategy under specific situation.
Collapse
Affiliation(s)
- Shiwei Tang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juan Xu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ping Wan
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Senile Diseases, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Shumen Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kuming, Yunnan, China
| | - Ying Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Linting Xun
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinli Wang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mei Luo
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenjie Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Zan Zuo
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hui Tang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jialong Qi
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Senile Diseases, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
5
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Miroshnichenko E, Kosyreva A, Fatkhudinov T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers (Basel) 2025; 17:342. [PMID: 39941714 PMCID: PMC11815841 DOI: 10.3390/cancers17030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In solid tumors, tumor-associated macrophages (TAMs) are one of the most numerous populations and play an important role in the processes of tumor cell invasion, metastasis, and angiogenesis. Therefore, TAMs are considered promising diagnostic and prognostic biomarkers of tumors, and many attempts have been made to influence these cells as part of antitumor therapy. There are several key principles of action on ТАМs: the inhibition of monocyte/macrophage transition; the destruction of macrophages; the reprogramming of macrophage phenotypes (polarization of M2 macrophages to M1); the stimulation of phagocytic activity of macrophages and CAR-M therapy. Despite the large number of studies in this area, to date, there are no adequate approaches using antitumor therapy based on alterations in TAM functioning that would show high efficacy when administered in a mono-regimen for the treatment of malignant neoplasms. Studies devoted to the evaluation of the efficacy of drugs acting on TAMs are characterized by a small sample and the large heterogeneity of patient groups; in addition, in such studies, chemotherapy or immunotherapy is used, which significantly complicates the evaluation of the effectiveness of the agent acting on TAMs. In this review, we attempted to systematize the evidence on attempts to influence TAMs in malignancies such as lung cancer, breast cancer, colorectal cancer, cervical cancer, prostate cancer, gastric cancer, head and neck squamous cell cancer, and soft tissue sarcomas.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
6
|
Schöning J, Rösner L, Depke DA, Hüwel S, Kukhar A, Schäfers M, Rentmeister A. Toolbox of Clickable Benzylguanines for Labeling of HoxB8-Derived Macrophages via SNAP-Tag and Bioorthogonal Chemistry. Bioconjug Chem 2025; 36:34-43. [PMID: 39762144 DOI: 10.1021/acs.bioconjchem.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their in vivo imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods. We generated the first reported SNAP-tag expressing conditionally immortalized early hematopoietic progenitor cells (ER-HoxB8) and synthesized benzylguanine (BG) analogs with bioorthogonal groups for SNAP-tag mediated cell surface labeling. Comparative investigation of SNAP-tag positive HeLa cells, ER-HoxB8 progenitor cells and ER-HoxB8-derived macrophages as well as neutrophiles revealed remarkable differences in labeling depending on the bioorthogonal group and fluorescent reporter used. HeLa cells and ER-HoxB8 progenitor cells were efficiently labeled with BG analogs bearing an azide and a dioxolan-fused trans-cyclooctene (dTCO). When we differentiated ER-HoxB8 cells into macrophages, labeling was less bright due to lower SNAP-tag expression and only the tetrazine ligation of dTCO proved suitable for cell-type specific labeling. These results show that exploring different reactions and bioorthogonal groups is important to address the challenge of labeling differentiated immune cells. Combining the SNAP-tag with click chemistry provides a modular approach for cell-specific labeling and the combination of SNAP-tag and dTCO presents an improved system for labeling ER-HoxB8-derived macrophages.
Collapse
Affiliation(s)
- Jonas Schöning
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Lukas Rösner
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Dominic Alexej Depke
- European Institute for Molecular Imaging, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Anastasiia Kukhar
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
7
|
Ribeiro de Souza B, Oliveira G, Leme G, Brum Reis I, Augusto Tossini Cabral F, Lima Baggio de Paula J, Henrique da Silva Santos D, Ronca Felizzola C, Durán N, Anglesio M, José Fávaro W. A novel serous ovarian carcinoma model induced by DMBA: Results from OncoTherad® (MRB-CFI-1) immunotherapy preclinical testing. Biomed Pharmacother 2025; 182:117755. [PMID: 39693910 DOI: 10.1016/j.biopha.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The term ovarian carcinoma (OC) refers to a heterogeneous collection of five distinct diseases known as histotypes. While histotype-specific treatment is still a clinical challenge in OC, well-characterized models are required for testing new therapeutic strategies. We employed OncoTherad® (MRB-CFI-1), an interferon (IFN-γ)-stimulating nano-immunotherapy mediated by Toll-like receptors (TLR) 2/4, in association or not with Erythropoietin (EPO) in a chemically-induced ovarian cancer model. Besides characterization of the therapies effects, we also assessed whether the animal model was representative of human OC by providing histotype classification. MAIN METHODS Thirty-five Fischer rats were distributed into five groups: Control (Sham surgery); Cancer (7,12-dimethylbenzoanthracene - DMBA injection in the ovarian bursa, 1.25 mg/kg); OncoTherad® (20 mg/kg intraperitoneal); EPO (8.4 µg/kg intraperitoneal); and OncoTherad+EPO (same doses). Ovaries were formalin-fixed into paraffin-embedded blocks. TLR pathway and the inflammatory response profile were evaluated by immunohistochemistry (IHC). After DNA extraction and tissue microarray construction, we assessed typical gene mutations directly (Sanger sequencing) or indirectly (IHC surrogates) and examined biomarkers of different OC histotypes. KEY FINDINGS OC induction decreased TLR2, TLR4, and proinflammatory cytokines. OncoTherad® alone or associated with EPO modulated the OC microenvironment to a cytotoxic immune profile through stimulation of the TLR4-mediated non-canonical pathway. EPO stimulated TLR2-mediated canonical pathway and notably increased Tregs. SIGNIFICANCE The features analyzed favored interpretation of our DMBA-induced tumor model as predominantly low-grade, serous carcinoma-like, in which treatments with OncoTherad® and EPO showed immunomodulatory properties related to the reduction of ovarian lesions.
Collapse
Affiliation(s)
- Bianca Ribeiro de Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gabriela Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giovana Leme
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felippe Augusto Tossini Cabral
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliane Lima Baggio de Paula
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Henrique da Silva Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Ronca Felizzola
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nelson Durán
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wagner José Fávaro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024; 476:1789-1802. [PMID: 38573347 PMCID: PMC11582130 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
9
|
Mukherjee S, Kumar D, Guha D. Insights of probiotics as an alternative medicine for cancer therapy, mechanism, and applications. MEDICINE IN MICROECOLOGY 2024; 22:100111. [DOI: 10.1016/j.medmic.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
10
|
Yao M, Li M, Peng D, Wang Y, Li S, Zhang D, Yang B, Qiu HJ, Li LF. Unraveling Macrophage Polarization: Functions, Mechanisms, and "Double-Edged Sword" Roles in Host Antiviral Immune Responses. Int J Mol Sci 2024; 25:12078. [PMID: 39596148 PMCID: PMC11593441 DOI: 10.3390/ijms252212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous viruses that propagate through the respiratory tract may be initially engulfed by macrophages (Mφs) within the alveoli, where they complete their first replication cycle and subsequently infect the adjacent epithelial cells. This process can lead to significant pathological damage to tissues and organs, leading to various diseases. As essential components in host antiviral immune systems, Mφs can be polarized into pro-inflammatory M1 Mφs or anti-inflammatory M2 Mφs, a process involving multiple signaling pathways and molecular mechanisms that yield diverse phenotypic and functional features in response to various stimuli. In general, when infected by a virus, M1 macrophages secrete pro-inflammatory cytokines to play an antiviral role, while M2 macrophages play an anti-inflammatory role to promote the replication of the virus. However, recent studies have shown that some viruses may exhibit the opposite trend. Viruses have evolved various strategies to disrupt Mφ polarization for efficient replication and transmission. Notably, various factors, such as mechanical softness, the altered pH value of the endolysosomal system, and the homeostasis between M1/M2 Mφs populations, contribute to crucial events in the viral replication cycle. Here, we summarize the regulation of Mφ polarization, virus-induced alterations in Mφ polarization, and the antiviral mechanisms associated with these changes. Collectively, this review provides insights into recent advances regarding Mφ polarization in host antiviral immune responses, which will contribute to the development of precise prevention strategies as well as management approaches to disease incidence and transmission.
Collapse
Affiliation(s)
- Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| |
Collapse
|
11
|
Ozawa Y, Koh Y, Shibaki R, Harutani Y, Akamatsu H, Hayata A, Sugimoto T, Kitamura Y, Fukuoka J, Nakanishi M, Yamamoto N. Uncovering the role of tumor cGAS expression in predicting response to PD-1/L1 inhibitors in non-small cell lung cancer. Cancer Immunol Immunother 2024; 74:7. [PMID: 39487921 PMCID: PMC11531410 DOI: 10.1007/s00262-024-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES The impact of cGAS/STING tumor expression on PD-1/L1 inhibitor efficacy and the tumor microenvironment remain to be elucidated. METHODS In a post-hoc analysis of a prospective biomarker study with 106 advanced NSCLC patients treated with PD-1/L1 inhibitors from December 2015 to September 2018, tumor tissue before treatment from 68 patients was analyzed. cGAS and STING expression were measured using immunohistochemical staining and H-scores. Additionally, 40 serum proteins were quantified before and 4-6 weeks after treatment initiation. RESULTS Median cGAS and STING H-scores were 220 (range, 5-300) and 190 (range, 0-300), respectively. There were no differences in cGAS or STING H-scores between the high (tumor proportion score [TPS] ≥ 50) and low (TPS < 50) PD-L1groups (p = 0.990 and 0.283, respectively). Unexpectedly, patients with high cGAS (H-score ≥ 220) demonstrated significantly shorter progression-free survival (PFS) of PD-1/L1 inhibitors when the PD-L1 TPS was high (median PFS: 143 days vs. not reached; p = 0.028); PFS at 18 months was 7% and 53% in the high and low cGAS groups, respectively while STING expression did not impact PFS. In serum protein analyses, high cGAS H-score was associated with significantly higher TGF-β1 and TGF-β2 before PD-1/L1 inhibition (47.5 vs. 22.3 ng/l, p = 0.023; 2118 vs. 882 pg/ml, p = 0.037); additionally, the cGAS H-score significantly correlated with TGF-β1 (r = 0.451, p = 0.009) and TGF-β2 (r = 0.375, p = 0.031) basal levels. CONCLUSION cGAS expression, but not STING, predicts poor PD-1/L1 inhibitor efficacy in NSCLC with high PD-L1, potentially due to a TGF-β-mediated immunosuppressive environment (UMIN000024414).
Collapse
Affiliation(s)
- Yuichi Ozawa
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.
- Department of Respiratory Medicine, Hamamatsu Medical Center, 328, Tomitsuka, Hamamatsu City, Shizuoka, 432-8580, Japan.
- Medical Oncology, Hamamatsu Medical Center, Hamamatsu, Japan.
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
- Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Ryota Shibaki
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Yuhei Harutani
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Atsushi Hayata
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Takeya Sugimoto
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Yuka Kitamura
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masanori Nakanishi
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
- Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
13
|
Wisitpongpun P, Buakaew W, Pongcharoen S, Apiratmateekul N, Potup P, Daowtak K, Krobthong S, Yingchutrakul Y, Brindley PJ, Usuwanthim K. Proteomic profiling of oleamide-mediated polarization in a primary human monocyte-derived tumor-associated macrophages (TAMs) model: a functional analysis. PeerJ 2024; 12:e18090. [PMID: 39308806 PMCID: PMC11416084 DOI: 10.7717/peerj.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play a critical function in the development of tumors and are associated with protumor M2 phenotypes. Shifting TAMs towards antitumor M1 phenotypes holds promise for tumor immunotherapy. Oleamide, a primary fatty acid amide, has emerged as a potent anticancer and immunomodulatory compound. However, the regulatory effects of oleamide on TAM phenotypes remain unclear. METHODS We used real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques to study the influence of oleamide on primary human monocyte-derived TAM phenotypes, and we investigated the protein expression profiles based on mass spectrometry to analyze the effect of oleamide on macrophage polarization. Moreover, the advantageous binding scores between oleamide and these target candidate proteins are examined using molecular docking. RESULTS Our study revealed that oleamide effectively suppressed the M2-like TAM phenotype by reducing interleukin (IL)-10 production and downregulating M2-like markers, including vascular endothelial growth factor A (VEGFA), MYC proto-oncogene, bHLH transcription factor (c-Myc), and mannose receptor C-type 1 (CD206). Moreover, the conditioned medium derived from oleamide-treated TAMs induces apoptosis of MDA-MB-231 breast cancer cells. Proteomic analysis identified 20 candidate up- and down-regulation proteins targeted by oleamide, showing modulation activity associated with the promotion of the M1-like phenotype. Furthermore, molecular docking demonstrated favorable binding scores between oleamide and these candidate proteins. Collectively, our findings suggest that oleamide exerts a potent antitumor effect by promoting the antitumor M1-like TAM phenotype. These novel insights provide valuable resources for further investigations into oleamide and macrophage polarization which inhibit the progression of breast cancer, which may provide insight into immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Prapakorn Wisitpongpun
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Watunyoo Buakaew
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Napaporn Apiratmateekul
- Reference Material and Medical Laboratory Innovation Research Unit, Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, District of Columbia, WA, United States of America
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| |
Collapse
|
14
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
15
|
LIU S, LI J, QUE Z, YU P, TIAN J. [Advances of Fundamental Research on Traditional Chinese Medicine in Regulation of Tumor-associated Macrophages for the Prevention and Treatment of
Lung Cancer Metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:541-549. [PMID: 39147709 PMCID: PMC11331253 DOI: 10.3779/j.issn.1009-3419.2024.106.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 08/17/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with metastasis being the primary cause of mortality in lung cancer patients, and its prevention and control efficacy remain limited. In recent years, immunotherapy has emerged as a promising direction for overcoming the bottleneck of metastasis. Macrophages, as essential components of innate immunity, participate in the entire process of tumor initiation and progression. Tumor-associated macrophages (TAMs) represent the most abundant immune population in the tumor microenvironment (TME), displaying both anti-tumor M1-like and pro-tumor M2-like phenotypes. The latter promotes tumor invasion and metastasis, angiogenesis, lymphangiogenesis, immune suppression, and reactivation of dormant disseminated tumor cells (DTCs), thereby facilitating tumor metastasis. In recent years, traditional Chinese medicine (TCM) has shown significant efficacy in inhibiting tumor metastasis and has been extensively validated. It exerts anti-tumor effects by reducing the recruitment of TAMs, inhibiting M2-like polarization, and modulating cytokines and proteins in the TME. This paper reviews the relationship between TAMs and lung cancer metastasis, elucidates the targets and mechanisms of TCM in regulating TAMs to prevent and treat lung cancer metastasis, aiming to provide insights into lung cancer prevention and treatment.
.
Collapse
|
16
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
17
|
Peng Z, Yi Y, Nie Y, Wang T, Tang J, Hong S, Liu Y, Huang W, Sun S, Tan H, Wu M. Softening the tumor matrix through cholesterol depletion breaks the physical barrier for enhanced antitumor therapy. J Control Release 2024; 371:29-42. [PMID: 38763389 DOI: 10.1016/j.jconrel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.
Collapse
Affiliation(s)
- Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yichu Nie
- Department of Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
18
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Ding L. The emerging role and clinicopathological significance of MFSD12 in cancer and lysosomal storage diseases. Front Pharmacol 2024; 15:1398320. [PMID: 38903991 PMCID: PMC11187322 DOI: 10.3389/fphar.2024.1398320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
MFSD12 protein has recently risen as a key factor in malignancy and plays a potential role in a variety of complex oncogenic signaling cascades. Current studies suggest that MFSD12 has a positive complex role in the growth and progression of tumors such as melanoma, breast cancer, and lung cancer. At the same time, as a transporter of cysteine, MFSD12 is also involved in the development of lysosomal storage diseases. Therefore, MFSD12 may be an effective target to inhibit tumor development, block metastasis, and expand the therapeutic effect. This article reviews the molecular mechanisms of MFSD12 in a variety of cancers and lysosomal storage diseases.
Collapse
Affiliation(s)
- Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
20
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
21
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z, Hou J. Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol 2024; 223:116154. [PMID: 38513742 DOI: 10.1016/j.bcp.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
Collapse
Affiliation(s)
- Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Dapeng Wu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Cong Tan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Zhenhua Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| |
Collapse
|
22
|
Yi B, Zeng J, Li L, Zhang J, Chen Y, Gao Y. Prognostic and clinical significance of tumor-associated macrophages in esophageal squamous cell carcinoma after surgery: do biomarkers and distributions matter? Biosci Rep 2024; 44:BSR20231194. [PMID: 38501293 PMCID: PMC10994813 DOI: 10.1042/bsr20231194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The role of tumor-associated macrophages (TAMs) in patients with esophageal squamous cell carcinoma (ESCC) following surgery remains controversial. Hence, we performed the present study to systematically analyze the prognostic and clinical significance of distinct TAMs biomarkers and distributions in ESCC patients underwent surgery. METHODS PubMed, Web of Science, and EMBASE databases were searched up to March 31, 2023. The pooled analysis was conducted to evaluate the effects of TAMs on overall survival (OS), disease-free survival (DFS), and clinicopathological characteristics using fixed-effects or random-effect model. RESULTS Involving a total of 2,502 ESCC patients underwent surgery from 15 studies, the results suggested that the total count of CD68+ TAMs was inversely associated with OS and DFS in ESCC patients, which was also noticed in the relationship of CD68+ TAMs in tumor islet (TI) with OS (all P<0.05), although no association between CD68+ TAMs in tumor stroma (TS) and OS (P>0.05). Moreover, either islet or stromal CD163+ TAMs density was a prognostic factor ESCC (all P<0.05). Similarly, an elevated CD204+ TAMs density in TI predicted a poor DFS (P<0.05), although CD204+ TAMs in TI had no relationship with OS (P>0.05). Besides, a high CD68+ TAMs density was significantly associated with lymphatic vessel invasion, vascular invasion, and lymph node metastasis (all P<0.05). CONCLUSION Our results demonstrated the prognostic and clinical significance of TAMs in ESCC patients underwent surgery. TAMs should be considered a target that could improve prognostic stratification and clinical outcomes in ESCC after surgery.
Collapse
Affiliation(s)
- Bin Yi
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| | - Junjie Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| | - Yufan Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan, P.R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha,410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P.R. China
| |
Collapse
|
23
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
24
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
25
|
Nie F, Zhang J, Tian H, Zhao J, Gong P, Wang H, Wang S, Yang P, Yang C. The role of CXCL2-mediated crosstalk between tumor cells and macrophages in Fusobacterium nucleatum-promoted oral squamous cell carcinoma progression. Cell Death Dis 2024; 15:277. [PMID: 38637499 PMCID: PMC11026399 DOI: 10.1038/s41419-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Dysbiosis of the oral microbiota is related to chronic inflammation and carcinogenesis. Fusobacterium nucleatum (Fn), a significant component of the oral microbiota, can perturb the immune system and form an inflammatory microenvironment for promoting the occurrence and progression of oral squamous cell carcinoma (OSCC). However, the underlying mechanisms remain elusive. Here, we investigated the impacts of Fn on OSCC cells and the crosstalk between OSCC cells and macrophages. 16 s rDNA sequencing and fluorescence in situ hybridization verified that Fn was notably enriched in clinical OSCC tissues compared to paracancerous tissues. The conditioned medium co-culture model validated that Fn and macrophages exhibited tumor-promoting properties by facilitating OSCC cell proliferation, migration, and invasion. Besides, Fn and OSCC cells can recruit macrophages and facilitate their M2 polarization. This crosstalk between OSCC cells and macrophages was further enhanced by Fn, thereby amplifying this positive feedback loop between them. The production of CXCL2 in response to Fn stimulation was a significant mediator. Suppression of CXCL2 in OSCC cells weakened Fn's promoting effects on OSCC cell proliferation, migration, macrophage recruitment, and M2 polarization. Conversely, knocking down CXCL2 in macrophages reversed the Fn-induced feedback effect of macrophages on the highly invasive phenotype of OSCC cells. Mechanistically, Fn activated the NF-κB pathway in both OSCC cells and macrophages, leading to the upregulation of CXCL2 expression. In addition, the SCC7 subcutaneous tumor-bearing model in C3H mice also substantiated Fn's ability to enhance tumor progression by facilitating cell proliferation, activating NF-κB signaling, up-regulating CXCL2 expression, and inducing M2 macrophage infiltration. However, these effects were reversed by the CXCL2-CXCR2 inhibitor SB225002. In summary, this study suggests that Fn contributes to OSCC progression by promoting tumor cell proliferation, macrophage recruitment, and M2 polarization. Simultaneously, the enhanced CXCL2-mediated crosstalk between OSCC cells and macrophages plays a vital role in the pro-cancer effect of Fn.
Collapse
Affiliation(s)
- Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jie Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Haoyang Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Huiru Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Suli Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Wróblewska A, Szermer-Olearnik B, Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Kozień D, Żeliszewska P, Kruszakin R, Migdał P, Pędzich Z, Pajtasz-Piasecka E. Macrophages as carriers of boron carbide nanoparticles dedicated to boron neutron capture therapy. J Nanobiotechnology 2024; 22:183. [PMID: 38622691 PMCID: PMC11017526 DOI: 10.1186/s12951-024-02397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The use of cells as carriers for the delivery of nanoparticles is a promising approach in anticancer therapy, mainly due to their natural properties, such as biocompatibility and non-immunogenicity. Cellular carriers prevent the rapid degradation of nanoparticles, improve their distribution, reduce cytotoxicity and ensure selective delivery to the tumor microenvironment. Therefore, we propose the use of phagocytic cells as boron carbide nanoparticle carriers for boron delivery to the tumor microenvironment in boron neutron capture therapy. RESULTS Macrophages originating from cell lines and bone marrow showed a greater ability to interact with boron carbide (B4C) than dendritic cells, especially the preparation containing larger nanoparticles (B4C 2). Consequently, B4C 2 caused greater toxicity and induced the secretion of pro-inflammatory cytokines by these cells. However, migration assays demonstrated that macrophages loaded with B4C 1 migrated more efficiently than with B4C 2. Therefore, smaller nanoparticles (B4C 1) with lower toxicity but similar ability to activate macrophages proved to be more attractive. CONCLUSIONS Macrophages could be promising cellular carriers for boron carbide nanoparticle delivery, especially B4C 1 to the tumor microenvironment and thus prospective use in boron neutron capture therapy.
Collapse
Affiliation(s)
- Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland.
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Katarzyna Węgierek-Ciura
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Jagoda Mierzejewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Dawid Kozień
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, AGH University of Krakow, Krakow, Poland
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kracow, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Paweł Migdał
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Zbigniew Pędzich
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, AGH University of Krakow, Krakow, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| |
Collapse
|
27
|
Si G, Chen X, Li Y, Yuan X. Exosomes promote pre-metastatic niche formation in colorectal cancer. Heliyon 2024; 10:e27572. [PMID: 38509970 PMCID: PMC10950591 DOI: 10.1016/j.heliyon.2024.e27572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
It is well known that colorectal cancer (CRC) has a high morbidity rate, a poor prognosis when metastasized, and a greatly shortened 5-year survival rate. Therefore, understanding the mechanism of tumor metastasis is still important. Based on the "seed and soil" theory, the concept of " premetastatic niche (PMN)" was introduced by Kaplan et al. The complex interaction between primary tumors and the metastatic organ provides a beneficial microenvironment for tumor cells to colonize at a distance. With further exploration of the PMN, exosomes have gradually attracted interest from researchers. Exosomes are extracellular vesicles secreted from cells that include various biological information and are involved in communication between cells. As a key molecule in the PMN, exosomes are closely related to tumor metastasis. In this article, we obtained information by conducting a comprehensive search across academic databases including PubMed and Web of Science using relevant keywords. Only recent, peer-reviewed articles published in the English language were considered for inclusion. This study aims to explore in depth how exosomes promote the formation of pre-metastatic microenvironment (PMN) in colorectal cancer and its related mechanisms.
Collapse
Affiliation(s)
- Guifei Si
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xuemei Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Yuquan Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xuemin Yuan
- Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong, 276000, China
| |
Collapse
|
28
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Boemi I, Piccini S, Colombo FS, Smiroldo V, Zerbi A, Capretti G, Alloisio M, Trivellin G, Lavezzi E, Mazziotti G, Vitali E, Lania AG. Alteration of the immunophenotype and cytokine profiles in patients affected by neuroendocrine neoplasms. Endocrine 2024; 83:810-823. [PMID: 37845576 DOI: 10.1007/s12020-023-03563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are tumors that arise from cells of the endocrine system and are most common in the gastrointestinal tract, the pancreas, and the lungs. Their incidence is rapidly increasing and the therapeutic options available are limited. METHODS Since the immune system can interfere with tumor growth and response to therapy, using flow cytometry we investigated the immunophenotype in samples of peripheral blood leukocytes from patients with pancreatic (Pan-NENs) and pulmonary NENs (Lung-NENs). Moreover, we performed a multiplex analysis of 13 key cytokines and growth factors essential for the immune response in the plasma of NEN patients and controls. RESULTS Patients presented with a higher percentage of granulocytes, a lower percentage of lymphocytes, and an increase in the granulocytes to lymphocytes ratio compared to healthy donors. These alterations were more marked in patients with metastasis. Somatostatin analogs (SSAs) restored the immunophenotype of patients to that seen in healthy donors. Finally, Pan-NEN patients showed a higher plasma concentration of IP-10, MCP-1, and IL-8 compared to healthy donors, suggesting a potential role for these cytokines as diagnostic biomarkers. CONCLUSION This study highlighted differences in the immunophenotype of patients with Pan- and Lung-NENs compared to healthy individuals; these alterations were partially restored by therapy.
Collapse
Affiliation(s)
- Ilena Boemi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Sara Piccini
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Federico S Colombo
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Valeria Smiroldo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Pancreas Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Giovanni Capretti
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Pancreas Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Thoracic Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Elisabetta Lavezzi
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy.
| | - Andrea G Lania
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| |
Collapse
|
30
|
Alvarez-Arzola R, Oliver L, Messmer MM, Twum DYF, Lee KP, Muhitch JB, Mesa C, Abrams SI. A Bacterial and Ganglioside-based Nanoparticle Initiates Reprogramming of Macrophages and Promotes Antitumor Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:475-486. [PMID: 38117752 DOI: 10.4049/jimmunol.2300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.
Collapse
Affiliation(s)
- Rydell Alvarez-Arzola
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kelvin P Lee
- IU Simon Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Circe Mesa
- Innovative Immunotherapy Alliance S.A., Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
31
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
32
|
Chen F, Gong M, Weng D, Jin Z, Han G, Yang Z, Han J, Wang J. Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:18. [PMID: 38240856 PMCID: PMC10799134 DOI: 10.1007/s00262-023-03592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor worldwide. Within HCC's tumor microenvironment, focal adhesion kinase (FAK) plays a critical role. Regulatory T cells (Treg) modulate the polarization of tumor-associated macrophages , but the relationship between FAK, Treg cells, and macrophages remains underexplored. Phellinus linteus (PL) shows promise as a treatment for HCC due to its pharmacological effects. This study aimed to explore the relationship between FAK and Treg-macrophages and to assess whether PL could exert a protective effect through the FAK process in HCC. Initially, C57BL/6-FAK-/- tumor-bearing mice were utilized to demonstrate that FAK stimulates HCC tumor development. High dosages (200 μM) of FAK and the FAK activator ZINC40099027 led to an increase in Treg (CD4+CD25+) cells, a decrease in M1 macrophages (F4/80+CD16/32+, IL-12, IL-2, iNOS), and an increase in M2 macrophages (F4/80+CD206+, IL-4, IL-10, Arg1, TGF-β1). Additionally, FAK was found to encourage cell proliferation, migration, invasion, and epithelial-mesenchymal transition while inhibiting apoptosis in HepG2 and SMMC7721 cells. These effects were mediated by the PI3K/AKT1/Janus Kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (p38 MAPK)/Jun N-terminal Kinase (JNK) signaling pathways. Furthermore, PL exhibited a potent antitumor effect in vivo in a dose-dependent manner, reducing FAK, Treg cells, and M2 macrophages, while increasing M1 macrophages. This effect was achieved through the inhibition of the PI3K/AKT/JAK/STAT3, and p38/JNK pathways. Overall, our findings suggest that FAK promotes HCC via Treg cells that polarize macrophages toward the M2 type through specific signaling pathways. PL, acting through FAK, could be a protective therapy against HCC.
Collapse
Affiliation(s)
- Feihua Chen
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Mouchun Gong
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Dengcheng Weng
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Zhaoqing Jin
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Guofeng Han
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Ziqiang Yang
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Junjun Han
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Jianjiang Wang
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
33
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
34
|
Corlett R, Button C, Scheel S, Agrawal S, Rai V, Nandipati KC. miRNA profiling of esophageal adenocarcinoma using transcriptome analysis. Cancer Biomark 2024; 39:245-264. [PMID: 38250763 DOI: 10.3233/cbm-230170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Esophageal adenocarcinoma (EAC) occurs following a series of histological changes through epithelial-mesenchymal transition (EMT). A variable expression of normal and aberrant genes in the tissue can contribute to the development of EAC through the activation or inhibition of critical molecular signaling pathways. Gene expression is regulated by various regulatory factors, including transcription factors and microRNAs (miRs). The exact profile of miRs associated with the pathogenesis of EAC is largely unknown, though some candidate miRNAs have been reported in the literature. To identify the unique miR profile associated with EAC, we compared normal esophageal tissue to EAC tissue using bulk RNA sequencing. RNA sequence data was verified using qPCR of 18 selected genes. Fourteen were confirmed as being upregulated, which include CDH11, PCOLCE, SULF1, GJA4, LUM, CDH6, GNA12, F2RL2, CTSZ, TYROBP, and KDELR3 as well as the downregulation of UGT1A1. We then conducted Ingenuity Pathway Analysis (IPA) to analyze for novel miR-gene relationships through Causal Network Analysis and Upstream Regulator Analysis. We identified 46 miRs that were aberrantly expressed in EAC compared to control tissues. In EAC tissues, seven miRs were associated with activated networks, while 39 miRs were associated with inhibited networks. The miR-gene relationships identified provide novel insights into potentially oncogenic molecular pathways and genes associated with carcinogenesis in esophageal tissue. Our results revealed a distinct miR profile associated with dysregulated genes. The miRs and genes identified in this study may be used in the future as biomarkers and serve as potential therapeutic targets in EAC.
Collapse
Affiliation(s)
- Ryan Corlett
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Charles Button
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Sydney Scheel
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
35
|
Qu B, Liu J, Peng Z, Xiao Z, Li S, Wu J, Li S, Luo J. CircSOD2 polarizes macrophages towards the M1 phenotype to alleviate cisplatin resistance in gastric cancer cells by targeting the miR-1296/STAT1 axis. Gene 2023; 887:147733. [PMID: 37625563 DOI: 10.1016/j.gene.2023.147733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Cisplatin is the first-line drug for gastric cancer (GC). Cisplatin resistance is the most important cause of poor prognosis for GC. Increasing evidence has identified the important role of macrophage polarization in chemoresistance. CircRNAs are newly discovered non-coding RNAs, characterized by covalently closed loops with high stability. Previous studies have reported a significant difference between circRNA profiles expressed in classically activated M1 macrophages, and those expressed in alternatively activated M2 macrophages. However, the underlying mechanism behind the regulation of GC cisplatin resistance by macrophages remains unclear. In our study, we observed the aberrant high expression of circSOD2 in M1 macrophages derived from THP-1. These expression patterns were confirmed in macrophages from patients with GC. Detection of the M1 and M2 markers confirmed that overexpression of circSOD2 enhances M1 polarization. The viability of cisplatin-treated GC cells was significantly reduced in the presence of macrophages overexpressing circSOD2, and cisplatin-induced apoptosis increased dramatically. In vivo experiments showed that macrophages expressing circSOD2 enhanced the effect of cisplatin. Moreover, we demonstrated that circSOD2 acts as a microRNA sponge for miR-1296 and regulates the expression of its target gene STAT1 (signal transducer and activator of transcription 1). CircSOD2 exerts its function through the miR-1296/STAT1 axis. Inhibition of circSOD2/miR-1296/STAT1 may therefore reduce M1 polarization. Overexpression of circSOD2 promotes the polarization of M1 macrophages and enhances the effect of cisplatin in GC. CircSOD2 is a novel positive regulator of M1 macrophages and may serve as a potential target for GC chemotherapy.
Collapse
Affiliation(s)
- Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiasheng Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiyang Peng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhe Xiao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shijun Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianguo Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shengbo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianfei Luo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
36
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
37
|
Veneziani AC, Gonzalez-Ochoa E, Alqaisi H, Madariaga A, Bhat G, Rouzbahman M, Sneha S, Oza AM. Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev Clin Oncol 2023; 20:820-842. [PMID: 37783747 DOI: 10.1038/s41571-023-00819-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Ovarian carcinoma is characterized by heterogeneity at the molecular, cellular and anatomical levels, both spatially and temporally. This heterogeneity affects response to surgery and/or systemic therapy, and also facilitates inherent and acquired drug resistance. As a consequence, this tumour type is often aggressive and frequently lethal. Ovarian carcinoma is not a single disease entity and comprises various subtypes, each with distinct complex molecular landscapes that change during progression and therapy. The interactions of cancer and stromal cells within the tumour microenvironment further affects disease evolution and response to therapy. In past decades, researchers have characterized the cellular, molecular, microenvironmental and immunological heterogeneity of ovarian carcinoma. Traditional treatment approaches have considered ovarian carcinoma as a single entity. This landscape is slowly changing with the increasing appreciation of heterogeneity and the recognition that delivering ineffective therapies can delay the development of effective personalized approaches as well as potentially change the molecular and cellular characteristics of the tumour, which might lead to additional resistance to subsequent therapy. In this Review we discuss the heterogeneity of ovarian carcinoma, outline the current treatment landscape for this malignancy and highlight potentially effective therapeutic strategies in development.
Collapse
Affiliation(s)
- Ana C Veneziani
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Husam Alqaisi
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Medical Oncology Department, 12 De Octubre University Hospital, Madrid, Spain
| | - Gita Bhat
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Toronto General Hospital, Toronto, Ontario, Canada
| | - Suku Sneha
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Liu S, Jia M, Dai R. Deciphering the tumour immune microenvironment of hepatocellular carcinoma. Scand J Immunol 2023; 98:e13327. [PMID: 38441331 DOI: 10.1111/sji.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024]
Abstract
Current treatments for hepatocellular carcinoma (HCC) are less effective and prone to recurrence after surgery, so it's needed to seek new ideas for its therapy. Tumour immune microenvironment (TME) is crucial for the pathogenesis, development and metastasis of HCC. Interactions between immune cells and tumour cells significantly impact responses to immunotherapies and patient prognosis. In recent years, immunotherapies for HCC have shown promising potential, but the response rate is still unsatisfactory. Understanding their cross-talks is helpful for selecting potential therapeutic targets, predicting immunotherapy responses, determining immunotherapy efficacy, identifying prognostic markers and selecting individualized treatment options. In this paper, we reviewed the research advances on the roles of immune cells and multi-omic research associated with HCC pathogenesis and therapy, and future perspectives on TME.
Collapse
Affiliation(s)
- Sha Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Pain, Daping Hospital, Army Medical University, Chongqing, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Han X, Wang X, Yan J, Song P, Wang Y, Shang C, Wu Y, Zhang H, Wang Z, Zhang H, Li X. Bacterial Magnetosome-Hitchhiked Quick-Frozen Neutrophils for Targeted Destruction of Pre-Metastatic Niche and Prevention of Tumor Metastasis. Adv Healthc Mater 2023; 12:e2301343. [PMID: 37586109 DOI: 10.1002/adhm.202301343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Premetastatic niche (PMN) is a prerequisite for tumor metastasis. Destruction of PMN can significantly suppress the tumor metastasis. Bone marrow-derived cells are usually recruited into the premetastatic organs to support PMN formation, which can be orchestrated by tumor-derived secreted factors. Neutrophils can chemotactically migrate towards the inflammatory sites and consume tumor-derived secreted factors, capable of acting as therapeutic agents for a broad-spectrum suppression of PMN formation and metastasis. However, neutrophils in response to inflammatory signals can release neutrophil extracellular traps (NETs), promoting the tumor metastasis. Herein, live neutrophils are converted into dead neutrophils (C NE) through a quick-frozen process to maintain PMN-targeting and tumor-derived secreted factor-consuming abilities but eliminate NET-releasing shortcomings. Considering macrophages-regulated remodeling of the extracellular matrix in PMN, bacterial magnetosomes (Mag) are further hitchhiked on the surface of C NE to form C NEMag , which can repolarize macrophages from M2 to M1 phenotype for further disruption of PMN formation. A series of in vitro and in vivo assessments have been applied to confirm the effectiveness of C NEMag in suppression of PMN formation and metastasis. This study presents a promising strategy for targeted anti-metastatic therapy in clinics.
Collapse
Affiliation(s)
- Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
40
|
Kauffman K, Manfra D, Nowakowska D, Zafari M, Nguyen PA, Phennicie R, Vollmann EH, O'Nuallain B, Basinski S, Komoroski V, Rooney K, Culyba EK, Wahle J, Ries C, Brehm M, Sazinsky S, Feldman I, Novobrantseva TI. PSGL-1 Blockade Induces Classical Activation of Human Tumor-associated Macrophages. CANCER RESEARCH COMMUNICATIONS 2023; 3:2182-2194. [PMID: 37819238 PMCID: PMC10601817 DOI: 10.1158/2767-9764.crc-22-0513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The immune suppressive microenvironment is a major culprit for difficult-to-treat solid cancers. Particularly, inhibitory tumor-associated macrophages (TAM) define the resistant nature of the tumor milieu. To define tumor-enabling mechanisms of TAMs, we analyzed molecular clinical datasets correlating cell surface receptors with the TAM infiltrate. Though P-selectin glycoprotein ligand-1 (PSGL-1) is found on other immune cells and functions as an adhesion molecule, PSGL-1 is highly expressed on TAMs across multiple tumor types. siRNA-mediated knockdown and antibody-mediated inhibition revealed a role for PSGL-1 in maintaining an immune suppressed macrophage state. PSGL-1 knockdown or inhibition enhanced proinflammatory mediator release across assays and donors in vitro. In several syngeneic mouse models, PSGL-1 blockade alone and in combination with PD-1 blockade reduced tumor growth. Using a humanized tumor model, we observed the proinflammatory TAM switch following treatment with an anti-PSGL-1 antibody. In ex vivo patient-derived tumor cultures, a PSGL-1 blocking antibody increased expression of macrophage-derived proinflammatory cytokines, as well as IFNγ, indicative of T-cell activation. Our data demonstrate that PSGL-1 blockade reprograms TAMs, offering a new therapeutic avenue to patients not responding to T-cell immunotherapies, as well as patients with tumors devoid of T cells. SIGNIFICANCE This work is a significant and actionable advance, as it offers a novel approach to treating patients with cancer who do not respond to T-cell checkpoint inhibitors, as well as to patients with tumors lacking T-cell infiltration. We expect that this mechanism will be applicable in multiple indications characterized by infiltration of TAMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kate Rooney
- Verseau Therapeutics, Auburndale, Massachusetts
| | | | | | - Carola Ries
- Dr. Carola Ries Consulting, Penzberg, Germany
| | - Michael Brehm
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Igor Feldman
- Verseau Therapeutics, Auburndale, Massachusetts
- Currently employed by Moderna Therapeutics, Cambridge, Massachusetts
| | - Tatiana I. Novobrantseva
- Verseau Therapeutics, Auburndale, Massachusetts
- Currently employed by Moderna Therapeutics, Cambridge, Massachusetts
| |
Collapse
|
41
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
42
|
Lam RCT, Hui CWC, Wong CH, Lo KW, Tsang ACM, Hui EP, Chan ATC, Ma BBY. Preclinical evaluation of the VEGF/Ang2 bispecific nanobody BI 836880 in nasopharyngeal carcinoma models. Invest New Drugs 2023; 41:699-709. [PMID: 37572231 DOI: 10.1007/s10637-023-01384-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is endemic to parts of Asia and overexpression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α are common in NPC. Anti-vascular agents have known clinical activity in patients with recurrent/ metastatic NPC and in this study, we investigated the anti-tumor effect of BI 836880, a humanized bispecific nanobody against VEGF and angiopoietin-2 (Ang2), in preclinical models of EBV-positive and EBV-negative NPC. The efficacy of BI 836880 was also compared with bevacizumab, a recombinant humanized monoclonal antibody against VEGF. We found that BI 836880 could exert growth-inhibitory effect on endothelial cells (HUVEC-C) and the EBV-negative NPC cell line (HK1), but to a lesser extent in the EBV-positive NPC cell lines, C17C and C666-1. In patients-derived xenograft (PDX) models of NPC - Xeno-2117 and Xeno-666, BI 836880 could suppress tumor growth and Ki67, as well as induce tumor necrosis and reduce microvessel density. Moreover, treatment with BI 836880 increased the level of macrophage infiltration in both PDX tumor models of NPC, suggesting that BI 836880 may exert immunomodulatory effect on the NPC immune microenvironment. When compared with bevacizumab, BI 836880 appeared to show at least comparable activity as bevacizumab in terms of its anti-proliferative and anti-angiogenic effects. This study showed that BI 836880 has anti-proliferative, anti-angiogenic and possibly immunomodulatory effect in clinical models of NPC, therefore the dual targeting of VEGF and Ang2 signaling in NPC should be further investigated.
Collapse
Affiliation(s)
- Rachel C T Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong , SAR, China
| | - Connie W C Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, SAR, China
- Cancer Drug Testing Unit, Li Ka Shing Institute of Health Sciences, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - C H Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, SAR, China
- Cancer Drug Testing Unit, Li Ka Shing Institute of Health Sciences, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - K W Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Anna C M Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, SAR, China
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, SAR, China
- Cancer Drug Testing Unit, Li Ka Shing Institute of Health Sciences, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, SAR, China.
- Cancer Drug Testing Unit, Li Ka Shing Institute of Health Sciences, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
43
|
Karger A, Mansouri S, Leisegang MS, Weigert A, Günther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, Klotz LV, Winter H, Mahavadi P, Fleming I, Ruppert C, Witte B, Alkoudmani I, Gattenlöhner S, Grimminger F, Seeger W, Pullamsetti SS, Savai R. ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J 2023; 42:e111620. [PMID: 37545364 PMCID: PMC10505917 DOI: 10.15252/embj.2022111620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Annika Karger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Medical FacultyGoethe University FrankfurtFrankfurtGermany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Ilka Wittig
- Functional Proteomics, Medical SchoolGoethe University FrankfurtFrankfurtGermany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Stephan Klatt
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Blerina Aliraj
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
| | - Laura V Klotz
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Hauke Winter
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Poornima Mahavadi
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Clemens Ruppert
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Biruta Witte
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | | | - Friedrich Grimminger
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| |
Collapse
|
44
|
Wróblewska A, Szczygieł A, Szermer-Olearnik B, Pajtasz-Piasecka E. Macrophages as Promising Carriers for Nanoparticle Delivery in Anticancer Therapy. Int J Nanomedicine 2023; 18:4521-4539. [PMID: 37576466 PMCID: PMC10422973 DOI: 10.2147/ijn.s421173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Macrophages play a critical role in the immune response due to their ability to recognize and remove pathogens, as well as present antigens, which are involved in inflammation, but they are also one of the most abundant immune cell populations present in the tumor microenvironment. In recent years, macrophages have become promising cellular carriers for drug and nanoparticle delivery to the tumor microenvironment, mainly due to their natural properties such as biocompatibility, degradability, lack of immunogenicity, long half-life in circulation, crossing biological barriers, and the possibility of migration and accumulation at a site of inflammation such as a tumor. For the effectiveness of this therapeutic strategy, known as "Trojan horse", it is important that the nanoparticles engulfed by macrophages do not affect their proper functioning. In our review, we discussed how the size, shape, chemical and mechanical properties of nanoparticles influence their internalization by macrophages. In addition, we described the promising research utilizing macrophages, their cell membranes and macrophage-derived exosomes as drug carriers in anticancer therapy. As a prospect of the wider use of this therapeutic strategy, we postulate its future application in boron delivery to the tumor environment in boron neutron capture therapy.
Collapse
Affiliation(s)
- Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
45
|
Silva KMR, França DCH, de Queiroz AA, Fagundes-Triches DLG, de Marchi PGF, Morais TC, Honorio-França AC, França EL. Polarization of Melatonin-Modulated Colostrum Macrophages in the Presence of Breast Tumor Cell Lines. Int J Mol Sci 2023; 24:12400. [PMID: 37569777 PMCID: PMC10419558 DOI: 10.3390/ijms241512400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Human colostrum and milk contain diverse cells and soluble components that have the potential to act against tumors. In breast cancer, macrophages play a significant role in immune infiltration and contribute to the progression and spread of tumors. However, studies suggest that these cells can be reprogrammed to act as an antitumor immune response. This study aimed to evaluate the levels of melatonin and its receptors, MT1 (melatonin receptor 1) and MT2 (melatonin receptor 2), in colostrum and assess the differentiation and polarization of the colostrum macrophages modulated by melatonin in the presence of breast tumor cells. Colostrum samples were collected from 116 mothers and tested for their melatonin and receptor levels. The colostrum cells were treated with or without melatonin and then cultured for 24 h in the presence or absence of breast tumor cells. The results showed that melatonin treatment increased the expression of MT1 and MT2 in the colostrum cells. Furthermore, melatonin treatment increased the percentage of M1 macrophages and decreased the percentage of M2 macrophages. When the colostrum macrophages were cocultured with breast tumor cells, melatonin reduced the percentage of both macrophage phenotypes and the cytokines tumor necrosis factor-alpha (TNF-α) and interleukin 8 (IL-8). These data suggest that melatonin can regulate the inflammatory process via M1 macrophages in the tumor microenvironment and, simultaneously, the progression of M2 macrophages that favor tumorigenesis.
Collapse
Affiliation(s)
- Kenia Maria Rezende Silva
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
| | - Danielle Cristina Honório França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Adriele Ataídes de Queiroz
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
| | - Danny Laura Gomes Fagundes-Triches
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Patrícia Gelli Feres de Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Tassiane Cristina Morais
- Postgraduate Program in Public Policies and Local Development, Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória EMESCAM, Vitória 29045-402, ES, Brazil;
| | - Adenilda Cristina Honorio-França
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Eduardo Luzía França
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| |
Collapse
|
46
|
Ma J, Huang L, Gao YB, Li MX, Chen LL, Yang L. Circ_TNFRSF21 promotes cSCC metastasis and M2 macrophage polarization via miR-214-3p/CHI3L1. J Dermatol Sci 2023; 111:32-42. [PMID: 37442735 DOI: 10.1016/j.jdermsci.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a highly invasive disease with the potential to metastasize and cause fatality. Therefore, it is crucial to understand the mechanism behind cSCC in order to devise effective strategies to combat this disease. OBJECTIVE We investigated the function of circ_TNFRSF21/miR-214-3p/CHI3L1 axis in cSCC. METHODS The features of circ_TNFRSF21 was characterized using Sanger sequencing, and RNase R/actinomycin D treatment. Genes and M1/M2 markers levels were assessed by qRT-PCR and IHC. The proliferation, migration, and invasion of cells were evaluated by CCK-8, colony formation, EdU incorporation, and transwell assays. Tumor growth and metastasis in vivo were evaluated by nude mouse xenograft model. Interactions of circ_TNFRSF21/miR-214-3p and miR-214-3p/CHI3L1 were validated by RNA immunoprecipitation and dual luciferase assay. RESULTS Circ_TNFRSF21 and CHI3L1 expression were elevated in both human cSCC tissues and cells, whereas miR-214-3p was reduced. Circ_TNFRSF21 silencing or miR-214-3p overexpression suppressed cSCC cell proliferation, migration, invasion, and M2 macrophage polarization. Circ_TNFRSF21 functioned as a sponge for miR-214-3p while miR-214-3p directly targeted CHI3L1. Knockdown of miR-214-3p reversed the effects of circ_TNFRSF21 knockdown on cSCC development, while CHI3L1 upregulation reversed the effects of miR-214-3p overexpression. Furthermore, knockdown of circ_TNFRSF21 inhibited cSCC tumor growth and metastasis in vivo. CONCLUSION Circ_TNFRSF21 plays a significant role in cSCC progression by enhancing cell proliferation, migration, invasion, and M2 macrophage polarization through inhibiting miR-214-3p and subsequent disinhibition of CHI3L1. These findings deepen our understanding of the molecular mechanism of cSCC and propose the circ_TNFRSF21/miR-214-3p/CHI3L1 axis as promising diagnosis markers or therapeutic targets for cSCC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Yan-Bin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Min-Xiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Liang-Long Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China.
| |
Collapse
|
47
|
Zheng X, Sarode P, Weigert A, Turkowski K, Chelladurai P, Günther S, Kuenne C, Winter H, Stenzinger A, Reu S, Grimminger F, Stiewe T, Seeger W, Pullamsetti SS, Savai R. The HDAC2-SP1 Axis Orchestrates Protumor Macrophage Polarization. Cancer Res 2023; 83:2345-2357. [PMID: 37205635 DOI: 10.1158/0008-5472.can-22-1270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Tumor-associated macrophages (TAM), including antitumor M1-like TAMs and protumor M2-like TAMs, are transcriptionally dynamic innate immune cells with diverse roles in lung cancer development. Epigenetic regulators are key in controlling macrophage fate in the heterogeneous tumor microenvironment. Here, we demonstrate that the spatial proximity of HDAC2-overexpressing M2-like TAMs to tumor cells significantly correlates with poor overall survival of lung cancer patients. Suppression of HDAC2 in TAMs altered macrophage phenotype, migration, and signaling pathways related to interleukins, chemokines, cytokines, and T-cell activation. In coculture systems of TAMs and cancer cells, suppressing HDAC2 in TAMs resulted in reduced proliferation and migration, increased apoptosis of cancer cell lines and primary lung cancer cells, and attenuated endothelial cell tube formation. HDAC2 regulated the M2-like TAM phenotype via acetylation of histone H3 and transcription factor SP1. Myeloid cell-specific deletion of Hdac2 and pharmacologic inhibition of class I HDACs in four different murine lung cancer models induced the switch from M2-like to M1-like TAMs, altered infiltration of CD4+ and CD8+ T cells, and reduced tumor growth and angiogenesis. TAM-specific HDAC2 expression may provide a biomarker for lung cancer stratification and a target for developing improved therapeutic approaches. SIGNIFICANCE HDAC2 inhibition reverses the protumor phenotype of macrophages mediated by epigenetic modulation induced by the HDAC2-SP1 axis, indicating a therapeutic option to modify the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Xiang Zheng
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Kati Turkowski
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Hauke Winter
- Translational Lung Research Center Heidelberg (TLRC), Member of the DZL; Department of Thoracic Surgery, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | | | - Simone Reu
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Philipps-University, Marburg, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| |
Collapse
|
48
|
Chohan MH, Perry M, Laurance-Young P, Salih VM, Foey AD. Prognostic Role of CD68 + and CD163 + Tumour-Associated Macrophages and PD-L1 Expression in Oral Squamous Cell Carcinoma: A Meta-Analysis. Br J Biomed Sci 2023; 80:11065. [PMID: 37397243 PMCID: PMC10310926 DOI: 10.3389/bjbs.2023.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 07/04/2023]
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a common malignant cancer in humans. An abundance of tumour associated macrophages (TAMs) create an immunosuppressive tumour microenvironment (TME). TAM markers (CD163 and CD68) are seen to serve as prognostic factors in OSCC. PD-L1 has seen to widely modulate the TME but its prognostic significance remains controversial. The aim of this meta-analysis is to evaluate the prognostic role of CD163+, CD68+ TAMs and PD-L1 in OSCC patients. Methods: Searches in PubMed, Scopus and Web of Science were performed; 12 studies were included in this meta-analysis. Quality assessment of included studies was performed according to REMARK guidelines. Risk of bias across studies was investigated according to the rate of heterogeneity. Meta-analysis was performed to investigate the association of all three biomarkers with overall survival (OS). Results: High expression of CD163+ TAMs were associated with poor overall survival (HR = 2.64; 95% Cl: [1.65, 4.23]; p < 0.0001). Additionally, high stromal expression of CD163+ TAMs correlated with poor overall survival (HR = 3.56; 95% Cl: [2.33, 5.44]; p < 0.00001). Conversely, high CD68 and PD-L1 expression was not associated with overall survival (HR = 1.26; 95% Cl: [0.76, 2.07]; p = 0.37) (HR = 0.64; 95% Cl: [0.35, 1.18]; p = 0.15). Conclusion: In conclusion, our findings indicate CD163+ can provide prognostic utility in OSCC. However, our data suggests CD68+ TAMs were not associated with any prognostic relevance in OSCC patients, whereas PD-L1 expression may prove to be a differential prognostic marker dependent on tumour location and stage of progression.
Collapse
Affiliation(s)
- Mohammed Haseeb Chohan
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Matthew Perry
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Paul Laurance-Young
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Vehid M. Salih
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Andrew D. Foey
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
49
|
Kwok HH, Yang J, Lam DCL. Breaking the Invisible Barriers: Unleashing the Full Potential of Immune Checkpoint Inhibitors in Oncogene-Driven Lung Adenocarcinoma. Cancers (Basel) 2023; 15:2749. [PMID: 37345086 DOI: 10.3390/cancers15102749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid development of targeted therapy paved the way toward personalized medicine for advanced non-small cell lung cancer (NSCLC). Lung adenocarcinoma (ADC) harboring actionable genetic alternations including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma virus (ALK) and c-ros oncogene 1 (ROS1) treated with tyrosine kinase inhibitors (TKIs) incurred lesser treatment toxicity but better therapeutic responses compared with systemic chemotherapy. Angiogenesis inhibitors targeting vascular endothelial growth factor (VEGF) have also shown an increase in overall survival (OS) for NSCLC patients. However, acquired resistance to these targeted therapies remains a major obstacle to long-term maintenance treatment for lung ADC patients. The emergence of immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) or programmed cell death-ligand 1 (PD-L1) has changed the treatment paradigm for NSCLC tumors without actionable genetic alternations. Clinical studies have suggested, however, that there are no survival benefits with the combination of targeted therapy and ICIs. In this review, we will summarize and discuss the current knowledge on the tumor immune microenvironment and the dynamics of immune phenotypes, which could be crucial in extending the applicability of ICIs for this subpopulation of lung ADC patients.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiashuang Yang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Xie L, Liu G, Huang Z, Zhu Z, Yang K, Liang Y, Xu Y, Zhang L, Du Z. Tremella fuciformis Polysaccharide Induces Apoptosis of B16 Melanoma Cells via Promoting the M1 Polarization of Macrophages. Molecules 2023; 28:molecules28104018. [PMID: 37241759 DOI: 10.3390/molecules28104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-tumor activity of Tremella fuciformis polysaccharides (TFPS) has been widely reported, but its mechanism remains poorly understood. In this study, we established an in vitro co-culture system (B16 melanoma cells and RAW 264.7 macrophage-like cells) to explore the potential anti-tumor mechanism of TFPS. Based on our results, TFPS exhibited no inhibition on the cell viability of B16 cells. However, significant apoptosis was observed when B16 cells were co-cultured with TFPS-treated RAW 264.7 cells. We further found that mRNA levels of M1 macrophage markers including iNOS and CD80 were significantly upregulated in TFPS-treated RAW 264.7 cells, while M2 macrophage markers such as Arg-1 and CD 206 remained unchanged. Besides, the migration, phagocytosis, production of inflammatory mediators (NO, IL-6 and TNF-α), and protein expression of iNOS and COX-2 were markedly enhanced in TFPS-treated RAW 264.7 cells. Network pharmacology analysis indicated that MAPK and NF-κB signaling pathways may be involved in M1 polarization of macrophages, and this hypothesis was verified by Western blot. In conclusion, our research demonstrated that TFPS induced apoptosis of melanoma cells by promoting M1 polarization of macrophages, and suggested TFPS may be applied as an immunomodulatory for cancer therapy.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangrong Liu
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Zebin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaiye Yang
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Yiheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yani Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|