1
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mesalam NM, Ibrahim MA, Mousa MR, Said NM. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of heat shock proteins, and NF-kB production. J Trace Elem Med Biol 2023; 79:127256. [PMID: 37442019 DOI: 10.1016/j.jtemb.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Lead exposure results in a terrible rise in heat shock protein levels. OBJECTIVE This research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects. METHODS Eight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers. RESULTS our results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant. CONCLUSION Pb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.
Collapse
Affiliation(s)
- Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
AlDreini S, Fatfat Z, Abou Ibrahim N, Fatfat M, Gali-Muhtasib H, Khalife H. Thymoquinone enhances the antioxidant and anticancer activity of Lebanese propolis. World J Clin Oncol 2023; 14:203-214. [PMID: 37275937 PMCID: PMC10236984 DOI: 10.5306/wjco.v14.i5.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are produced by multiple cellular processes and are maintained at optimal levels in normal cells by endogenous antioxidants. In recent years, the search for potential exogenous antioxidants from dietary sources has gained considerable attention to eliminate excess ROS that is associated with oxidative stress related diseases including cancer. Propolis, a resinous honeybee product, has been shown to have protective effects against oxidative stress and anticancer effects against several types of neoplasms. AIM To investigate the antioxidant and anticancer potential of Lebanese propolis when applied alone or in combination with the promising anticancer compound Thymoquinone (TQ) the main constituent of Nigella sativa essential oil. METHODS Crude extracts of Lebanese propolis collected from two locations, Rashaya and Akkar-Danniyeh, were prepared in methanol and the total phenolic content was determined by Folin-Ciocalteu method. The antioxidant activity was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and to inhibit H2O2-induced oxidative hemolysis of human erythrocytes. The anticancer activity was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] MTT assay against HCT-116 human colorectal cancer cells and MDA-MB-231 human breast cancer cells. RESULTS The total phenolic content of propolis extract from Rashaya and Akkar-Danniyeh were 56.81 µg and 83.503 µg of gallic acid equivalent /mg of propolis, respectively. Both natural agents exhibited strong antioxidant activities as evidenced by their ability to scavenge DPPH free radical and to protect erythrocytes against H2O2-induced hemolysis. They also dose-dependently decreased the viability of both cancer cell lines. The IC50 value of each of propolis extract from Rashaya and Akkar-Danniyeh or TQ was 22.3, 61.7, 40.44 µg/mL for breast cancer cells at 72 h and 33.3, 50.9, 33.5 µg/mL for colorectal cancer cells at the same time point, respectively. Importantly, the inhibitory effects of propolis on DPPH radicals and cancer cell viability were achieved at half its concentration when combined with TQ. CONCLUSION Our results indicate that Lebanese propolis extract has antioxidant and anticancer potential and its combination with TQ could possibly prevent ROS- mediated diseases.
Collapse
Affiliation(s)
- Sima AlDreini
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najwa Abou Ibrahim
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Khalife
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
- Applied Biochemistry Laboratory, School of Pharmacy, Camerino University, Camerino 62032, Italy
| |
Collapse
|
4
|
Ghasemi F, Ghaffari F, Omidifar N, Taheri Azandaryani M, Nili-Ahmadabadi A. Hepatic Response to the Interaction Between Thymoquinone and Iron-Dextran: an In Vitro and In Vivo Study. Biol Trace Elem Res 2023; 201:1358-1367. [PMID: 35484332 DOI: 10.1007/s12011-022-03249-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
Abstract
Iron is one of the most important essential elements for cell function. However, iron overload can exert destructive effects on various tissues, especially the liver. The present study was designed to evaluate the effect of thymoquinone (TQ) on hepatotoxicity induced by iron-overload in in vitro and mouse model. After in vitro studies, thirty mice were divided into five groups, six each. Group 1 received normal saline. Group 2 received five doses of iron dextran (i.p; 100 mg/kg, one dose every 2 days). Group 3 received TQ (orally, 2 mg/kg/day). Groups 4 and 5 were administrated iron dextran saline (i.p; 100 mg/kg, one dose every 2 days) following treatment with 0.5 and 2 mg/kg/day of TQ, respectively. Based on the findings of the DPPH experiment, although TQ has significant anti-radical potential, at a safe dose of 15 × 10+3 nM, it reduced the IC50 of iron dextran on HepG2 cells by about 25%, in in vitro. Following administration of low-dose TQ (0.5 mg/kg), a significant improvement was observed in serum hepatic enzymes activity and hepatic lipid peroxidation compared to iron dextran. However, administration of TQ-high dose (2 mg/kg) led to decrease antioxidant defense alongside increased serum hepatic enzymes and pathological damages in iron dextran-treated animals. Due to the different efficacy of TQ in treatment groups, it seems that the TQ therapeutic index is low and does not have significant safety in the iron overload status.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, 99628, Via Mersin 10, Famagusta, North Cyprus, Turkey
| | - Fatemeh Ghaffari
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Nithya G, Santhanasabapathy R, Vanitha MK, Anandakumar P, Sakthisekaran D. Antioxidant, antiproliferative, and apoptotic activity of thymoquinone against benzo(a)pyrene-induced experimental lung cancer. J Biochem Mol Toxicol 2023; 37:e23230. [PMID: 36193556 DOI: 10.1002/jbt.23230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Several studies have suggested that increased consumption of phytochemicals is a comparatively easy and practical strategy to significantly decrease the incidence of cancer. In the present study, we have reported the protective effect of a natural compound, thymoquinone (TQ) against benzo(a)pyrene (B(a)P)-induced lung carcinogenesis in Swiss albino mice. B(a)P (50 mg/kg body weight) was administered twice weekly for four successive weeks and left until 20 weeks to induce lung cancer in mice. TQ (20 mg/kg body weight) was given orally as a pretreatment and posttreatment drug to determine its chemopreventive and therapeutic effects. B(a)P-induced lung cancer-bearing animals displayed cachexia-like symptoms along with an abnormal increase in lung weight and the activities of marker enzymes adenosine deaminase, aryl hydrocarbon hydroxylase, gamma-glutamyl transpeptidase, 5'-nucleotidase and lactate dehydrogenase; tumor marker carcinoembryonic antigen levels. Furthermore, B(a)P-induced animals showed elevated levels of lipid peroxides with subsequent depletion in the antioxidant status and histological aberrations. These anomalies were accompanied by increased expressions of proliferating cell nuclear antigen and cyclin D1 in the lung sections derived from B(a)P-induced animals. On TQ treatment, all the above alterations were returned to near normalcy. Furthermore, TQ administration in B(a)P-induced animals downregulated phosphatidylinositol 3-kinase/protein kinase B signaling pathway and induced apoptosis as evidenced by a decrease in cytochrome c, proapoptotic Bax, caspase-3, and p53 with a parallel increase in antiapoptotic Bcl-2. Our present results demonstrate the potential effectiveness of TQ as an antioxidant, antiproliferative, and apoptotic agent against B(a)P-induced experimental lung tumorigenesis.
Collapse
Affiliation(s)
- Gajendran Nithya
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Dhanapalan Sakthisekaran
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
7
|
Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective Effects of Black Cumin ( Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. Int J Mol Sci 2021; 22:ijms22169078. [PMID: 34445781 PMCID: PMC8396533 DOI: 10.3390/ijms22169078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-β signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|
8
|
Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin ( Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13:1784. [PMID: 34073784 PMCID: PMC8225153 DOI: 10.3390/nu13061784] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Gyeonggi-do, Anseong 17546, Korea;
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Research and Development Center, KNOTUS Co., Ltd., Yeounsu-gu, Incheon 22014, Korea;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
9
|
Shahid F, Farooqui Z, Alam T, Abidi S, Parwez I, Khan F. Thymoquinone supplementation ameliorates cisplatin-induced hepatic pathophysiology. Hum Exp Toxicol 2021; 40:1673-1684. [PMID: 33832332 DOI: 10.1177/09603271211003645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatotoxicity is a major dose-limiting side effect of CP chemotherapy besides nephrotoxicity and gastrointestinal dysfunction. TQ, a principal Nigella sativa seed oil constituent, has been shown to improve hepatic functions in various in vivo models of acute hepatic injury. In view of this, the present study aimed to evaluate the effect of TQ against CP-induced hepatotoxicity. Rats were divided into four experimental groups; control, CP, CP+TQ and TQ. Animals in CP+TQ and TQ groups were administered TQ (1.5 mg/kg bwt, orally), with or without a single hepatotoxic dose of CP (6 mg/kg bwt, i.p.) respectively, for 14 days before and four days following the CP treatment. CP induced an upsurge in serum ALT and AST activities, indicating liver injury, as also confirmed by the histopathological findings. CP caused significant alterations in the activities of membrane marker enzymes, carbohydrate metabolic enzymes, and the enzymatic and nonenzymatic components of the antioxidant defense system. TQ supplementation ameliorated all these adverse biochemical and histological changes in CP-treated rats. Thus, TQ may have excellent scope for clinical applications in combating CP-induced hepatic pathophysiology.
Collapse
Affiliation(s)
- F Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Z Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - T Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - S Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - I Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - F Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
10
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
11
|
Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion. Food Chem Toxicol 2020; 143:111533. [PMID: 32645464 DOI: 10.1016/j.fct.2020.111533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metals and is harmful to human health. The liver is considered as a major target organ for Pb poisoning. Although probiotics have been shown to alleviate liver injury, the protective effect of Lactobacillus plantarum LP33 (LP33) against Pb-induced hepatotoxicity remains unclear. In order to explore the hepatoprotective effect of LP33, LP33 was administered to Pb-intoxicated Sprague-Dawley rats once daily by oral gavage for 8 weeks. The present results showed that LP33 supplementation alleviated liver injury, and inhibited oxidative stress and inflammation in Pb-exposed rats. Treatment with LP33 also promoted the phosphorylation of adenosine monophosphate-activated protein kinase and protein kinase B, activated nuclear factor erythroid 2-related factor 2 signaling and inhibited the activation of nuclear factor-κB signaling in liver tissues of rats exposed to Pb. Additionally, LP33 exhibited adequate Pb-binding capacity and satisfactory survival under simulated gastrointestinal conditions in vitro, and promoted Pb excretion via enterohepatic circulation of bile acids. This study demonstrated that LP33 reduced Pb-induced oxidative stress and inflammation and promoted Pb excretion, thereby attenuating the Pb-induced hepatic injury. Our findings suggest that LP33 supplementation may be a potential strategy for the treatment of Pb-induced hepatic toxicity.
Collapse
|
12
|
AL-Megrin WA, Alkhuriji AF, Yousef AOS, Metwally DM, Habotta OA, Kassab RB, Abdel Moneim AE, El-Khadragy MF. Antagonistic Efficacy of Luteolin against Lead Acetate Exposure-Associated with Hepatotoxicity is Mediated via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activities. Antioxidants (Basel) 2019; 9:antiox9010010. [PMID: 31877779 PMCID: PMC7022878 DOI: 10.3390/antiox9010010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The abundant use of lead (Pb; toxic heavy metal) worldwide has increased occupational and ecosystem exposure, with subsequent negative health effects. The flavonoid luteolin (LUT) found in many natural foodstuffs possesses antioxidant and anti-inflammatory properties. Herein, we hypothesized that LUT could mitigate liver damage induced by exposure to lead acetate (PbAc). Male Wistar rats were allocated to four groups: control group received normal saline, LUT-treated group (50 mg/kg, oral, daily), PbAc-treated group (20 mg/kg, i.p., daily), and LUT+PbAc-treated group (received the aforementioned doses via the respective routes of administration); the rats were treated for 7 days. The results revealed that PbAc exposure significantly increased hepatic Pb residue and serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin value. Oxidative reactions were observed in the liver tissue following PbAc intoxication, characterized by the depletion and downregulation of antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1), and an increase in oxidants (malondialdehyde and nitric oxide). Additionally, PbAc increased the release and expression of the pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1 beta), inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, PbAc enhanced hepatocyte loss by increasing the expression of pro-apoptotic proteins (Bax and caspase-3) and downregulating the anti-apoptotic protein (Bcl-2). The changes in the aforementioned parameters were further confirmed by noticeable histopathological lesions. LUT supplementation significantly reversed all of the tested parameters in comparison with the PbAc-exposed group. In conclusion, our findings describe the potential mechanisms involved in the alleviation of PbAc-induced liver injury by luteolin via its potent anti-inflammatory, antioxidant, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Wafa A. AL-Megrin
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Afrah F. Alkhuriji
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
| | - Al Omar S. Yousef
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
| | - Dina M. Metwally
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
| | - Manal F. El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
- Correspondence:
| |
Collapse
|
13
|
Bozdağ M, Eraslan G. The effect of diosmin against lead exposure in rats ‡. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:639-649. [PMID: 31792554 DOI: 10.1007/s00210-019-01758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In this study, the effect of diosmin against the adverse effects of lead exposure in rats was investigated. Wistar Albino race 40 male rats weighing 150-200 g 2-3 months were used. A total of 4 groups were assigned, one of which was control and the other 3 were trial groups. The rats in the control group were treated with dimethyl sulfoxide, which was used only as a vehicle in diosmin administration. Groups 2, 3, and 4 from the experimental group were given diosmin at a dose of 50 mg/kg.bw, lead acetate at the dose of 1000 ppm, lead acetate at the dose of 1000 ppm, and diosmin at a dose of 50 mg/kg.bw for 6 weeks, respectively. Application of lead acetate with drinking water and also diosmin was performed by oral catheter. At the end of the experimental period, blood was taken to dry and with heparin by puncture to the heart under light ether anesthesia. Following the blood samples, some organs of the rats (the liver, kidney, brain, heart, and testis) were removed. Some biochemical parameters (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, LDH, AST, ALT, ALP, total protein, albumin) were measured in serum. Some oxidative stress parameters in tissue samples and blood (MDA, NO, SOD, CAT, GSH-Px, GSH) were evaluated. Body and organ (the liver, kidney, brain, heart, and testis) weights were also evaluated at the end of the study. No significant change was observed in the parameters examined in the diosmin alone-treated group by comparison to control group. On the other hand, significant changes were found in the values of lead acetate-treated group comparing control group. It was observed that the values approached the values of the control group in the combination of lead and diosmin. Exposure to lead acetate at a dose of 1000 ppm for 6 weeks causes organ damage; however the diosmin application at a dose of 50 mg/kg.bw had a positive effect on the regression of tissue damage.
Collapse
Affiliation(s)
- Mehmet Bozdağ
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
14
|
Gozeneli O, Tatli F, Gunes AE, Guldur ME, Taskin A, Bardakci O, Yilmaz M. Effects of thymoquinone and curcumin on the regeneration of rat livers subject to 70% hepatectomy. Acta Cir Bras 2018. [PMID: 29513809 DOI: 10.1590/s0102-865020180020000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To investigate thymoquinone, curcumin and a combination of these two drugs were effective or not at the growth of liver. METHODS Forty female Wistar-Albino rats distributed into five groups of eight rats each, control, thymoquinone, curcumin, and thymoquinone/curcumin groups. Pathological specimens were studied using the Ki-67 Proliferation Index(PI); and arginase(Arg), tissue plasminogen activator(tPA), ceruloplasmin(Cer) and nitric oxide(NO) were studied in biochemical analysis. RESULTS Our results showed that Ki-67 proliferation index was low in Groups 1. The proliferation coefficient was significantly higher in the Group 2 and Group 4 than in the Group 1 and Group 3.(P < 0.001 between Groups 1 and 2, 1 and 4, and 3 and 4). There was no difference between Groups 2 and 4 (P = 1). The results of the biochemical Arg, tPA and Cer test showed statistically between the Group 1 and Group 2. NO showed significant differences Group 1 and 3. CONCLUSIONS Thymoquinone and curcumin both have known positive effects on the organism. Histological and biochemical tests showed that thymoquinone is more effective than curcumin.
Collapse
Affiliation(s)
- Orhan Gozeneli
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Conception, design, scientific and intellectual content of the study; acquisition of data; statistical analysis; manuscript writing; final approval
| | - Faik Tatli
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Analysis of data, technical procedures, manuscript writing
| | - Ali Erdal Gunes
- Assistant Professor, Department of Hyperbaric and Underwater Medicine, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Analysis of data, statistical analysis, technical procedures, critical revision
| | - Muhammed Emin Guldur
- Professor, Department of Medical Pathology, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Interpretation of data, pathological examinations
| | - Abdullah Taskin
- PhD, Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Interpretation of data, biochemical parameters
| | - Osman Bardakci
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Harran University, Sanliurfa, Turkey. Analysis of data, manuscript writing
| | - Mehmet Yilmaz
- Professor, Department of Liver Transplantation, Faculty of Medicine, Inonu University, Malatya, Turkey. Manuscript writing, critical revision
| |
Collapse
|
15
|
Erdemli ME, Yigitcan B, Gul M, Bag HG, Gul S, Aksungur Z. Thymoquinone is protective against 2,3,7,8-tetrachlorodibenzo-p-dioxin induced hepatotoxicity. Biotech Histochem 2018; 93:453-462. [PMID: 29701106 DOI: 10.1080/10520295.2018.1453549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We investigated changes in rat liver tissues following administration of thymoquinone (TQ) against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hepatotoxicity. Fifty rats were assigned randomly to five groups of 10 as follows: control, corn oil, TCDD, TQ and TCDD + TQ. Biochemical and histopathological analyses were conducted on liver tissue. We found that 30 day TCDD administration caused histopathological changes in liver including thickening of Glisson's capsule, intracytoplasmic vacuolization in hepatocytes, sinusoidal dilation, vascular and sinusoidal congestion and inflammatory cell infiltration. TCDD administration increased malondialdehyde (MDA), total oxidant status (TOS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels in rat liver tissue and reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) levels compared to all other groups. In the TQ treated group, GSH, SOD, CAT and TAS levels increased compared to all other groups. MDA, TOS, ALT, AST, ALP levels decreased compared to all other groups. Our histological findings were consistent with the biochemical findings. The oxidative and histologic effects of TCDD were eliminated by TQ treatment. TCDD administration caused oxidative stress in rat liver and TQ administered with TCDD prevented TCDD induced hepatotoxicity. TQ could be considered an alternative anti-TCDD toxicity agent.
Collapse
Affiliation(s)
- M E Erdemli
- a Department of Medical Biochemistry, Medical Faculty , Nigde Omer Halisdemir University , Nigde
| | - B Yigitcan
- b Departments of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - M Gul
- b Departments of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - H G Bag
- c Department of Biostatistics, Medical Faculty , Inonu University , Malatya
| | - S Gul
- b Departments of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - Z Aksungur
- d Department of Medical Biochemistry, Medical Faculty , Inonu University , Malatya , Turkey
| |
Collapse
|
16
|
Hassan SS, Razzaque A, Ahmad Z, Pazdernik V, Amin SN. Does posttreatment thymoquinone reverse high-dose atorvastatin-induced hepatic oxidative injury in rats? Can J Physiol Pharmacol 2017; 96:51-59. [PMID: 28968507 DOI: 10.1139/cjpp-2017-0599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atorvastatin (ATO) was commonly used to lower blood cholesterol, but it caused harmful effects to organs, including the liver. Thymoquinone (TQ), a prominent constituent of Nigella sativa, has antioxidant, antiinflammatory, antiapoptotic, antimicrobial, and anticancer activity. The current study investigated the mechanism of ATO-induced hepatotoxicity, whether posttreatment TQ could reverse ATO-induced hepatic injury, and the mechanism of action of TQ as a hepatoprotective agent. Forty adult male Sprague Dawley rats were divided into four equal groups: control, TQ-treated, ATO-treated, and combined ATO/TQ-treated. Rats were treated for 8 weeks and 10 days and euthanized by cervical dislocation 3 days after the last treatment. Blood samples and livers were tested for liver enzymes, oxidative stress, and apoptosis markers and used for histopathological and ultrastructural examination. The ATO-treated group showed an increase in liver enzymes, decreases in reduced glutathione and catalase, and increases in the malondialdehyde lipid peroxidation marker, protein carbonylation, and caspase 3 activity. Posttreatment TQ in the ATO/TQ-treated group seemed to reverse these changes. Histopathological and ultrastructural examination supported these data. Results from the current study suggested that posttreatment TQ may reverse oxidative stress injury in rat liver produced by ATO, suggesting a potential clinical application of using TQ to prevent ATO-induced hepatic injury.
Collapse
Affiliation(s)
- Sherif Sabry Hassan
- a Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA 92408, USA.,b Department of Anatomy, Faculty of Medicine, Cairo University, El-Manial, Cairo, Egypt
| | - Ahmer Razzaque
- c Department of Anatomy, A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- d Department of Biochemistry, A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Vanessa Pazdernik
- e Department of Research Support, A.T. Still University, Kirksville, MO 63501, USA
| | - Shaimaa Nasr Amin
- f Department of Medical Physiology, Faculty of Medicine, Cairo University, El-Manial, Cairo, Egypt
| |
Collapse
|