1
|
Mizutani H, Fukui S, Oosuka K, Ikeda K, Kobayashi M, Shimada Y, Nakazawa Y, Nishiura Y, Suga D, Moritani I, Yamanaka Y, Inoue H, Nakagawa H, Dohi K, Kaiju H, Takaba K, Wada H, Shiraki K. Biliary microbiome profiling via 16 S rRNA amplicon sequencing in patients with cholangiocarcinoma, pancreatic carcinoma and choledocholithiasis. Sci Rep 2025; 15:16966. [PMID: 40374795 PMCID: PMC12081727 DOI: 10.1038/s41598-025-00976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
Recent studies have revealed that oral, gut, and intratumoral microbial dysbiosis significantly affects tumor progression, therapy resistance, and prognosis in cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC) patients. However, the biliary microbiome, which directly interacts with malignant tissues, remains poorly understood. In this study, we analyzed the bile microbiota from 17 CCA, 15 PDAC, and 40 choledocholithiasis (CDL) patients using bacterial 16 S rRNA and fungal ITS sequencing. Principal coordinate analysis revealed significant differences in microbial communities between the cancer and CDL groups. The microbial community structure in each group demonstrated a specific pattern. Linear discriminant analysis revealed Streptococcus, Sphingomonas, and Bacillus enrichment in CCA patients, Neisseria, Sphingomonas, and Caulobacter in PDAC patients were more prevalent compared with CDL patients. Caulobacter was more prevalent, wheares Campylobacter was less in PDAC patients than in CCA patients. Fungal DNA was detected in ~ 50% of the samples, with CCA and PDAC patients. KEGG pathway analysis revealed altered metabolic pathways, including peptidoglycan, sphingolipid, and fatty acid metabolism and bile acid metabolism, in CCA and PDAC patients. These findings highlight the potential role of the biliary microbiome in CCA and PDAC pathogenesis, offering new insights into disease mechanisms and biomarkers.
Collapse
Affiliation(s)
- Hiroki Mizutani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Shunsuke Fukui
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Kazuki Oosuka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Kohei Ikeda
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Yuuichi Nakazawa
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Yuuki Nishiura
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Daisuke Suga
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroyuki Kaiju
- Department of Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Kei Takaba
- Department of Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hideo Wada
- Department of Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, 5450-132, 510-8561, Mie, Japan.
- Department of Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan.
| |
Collapse
|
2
|
Shen TH, Yu X, Zhou C, Liu Y, Li QY, Li W, Jiang TH, Zhu YQ, Liu Y. Review of the mechanisms of the biliary-enteric axis in the development of cholangiocarcinoma. World J Clin Oncol 2025; 16:102374. [PMID: 40290694 PMCID: PMC12019280 DOI: 10.5306/wjco.v16.i4.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a particularly aggressive and challenging type of cancer, known for its poor prognosis, which is worsened by the complex interplay of various biological and environmental factors that contribute to its development. Recently, researchers have increasingly focused on the significant role of the biliary-enteric communication of liver-gut axis in the pathogenesis of CCA, highlighting a complex relationship that has not been thoroughly explored before. This review aims to summarize the key concepts related to the biliary-enteric communication of liver-gut axis and investigate its potential mechanisms that may lead to the onset and progression of CCA, a disease that presents substantial treatment challenges. Important areas of focus will include the microbiome's profound influence, which interacts with host physiology in ways that may worsen cancer development; changes in bile acid metabolism that can create toxic environments favorable for tumor growth; the regulation of inflammatory processes that may either promote or inhibit tumor progression; the immune system's involvement, which is crucial in the body's response to cancer; and the complex interactions within metabolic pathways that can affect cellular behavior and tumor dynamics. By integrating recent research findings from various studies, we aim to explore the multifaceted roles of the biliary-enteric communication of liver-gut axis in CCA, providing new insights and perspectives for future research while identifying promising therapeutic targets that could lead to innovative treatment strategies aimed at improving patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Tian-Hao Shen
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xue Yu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cheng Zhou
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qiu-Ying Li
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Li
- Department of Hepatological Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ting-Hui Jiang
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yong-Qiang Zhu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yan Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
3
|
Selvaggi F, Lopetuso LR, delli Pizzi A, Melchiorre E, Murgiano M, Taraschi AL, Cotellese R, Diana M, Vivarelli M, Mocchegiani F, Catalano T, Aceto GM. Diagnosis of Cholangiocarcinoma: The New Biological and Technological Horizons. Diagnostics (Basel) 2025; 15:1011. [PMID: 40310432 PMCID: PMC12025943 DOI: 10.3390/diagnostics15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The diagnosis of cholangiocarcinoma (CCA) remains challenging. Although new technologies have been developed and validated, their routine use in clinical practice is needed. Conventional cytology obtained during endoscopic retrograde cholangiopancreatography-guided brushings is the first-line technique for the diagnosis of CCA, but it has shown limited sensitivity when combined with endoscopic ultrasound-guided biopsy. Other diagnostic tools have been proposed for the diagnosis of CCA, with their respective advantages and limitations. Cholangioscopy with biopsy or cytology combined with FISH analysis, intraductal biliary ultrasound and confocal laser microscopy have made significant advances in the last decade. More recently, developments in the analytical "omics" sciences have allowed the mapping of the microbiota of patients with CCA, and liquid biopsy with proteomic and extracellular vesicle analysis has allowed the identification of new biomarkers that can be incorporated into the predictive diagnostics. Furthermore, in the preoperative setting, radiomics, radiogenomics and the integrated use of artificial intelligence may provide new useful foundations for integrated diagnosis and personalized therapy for hepatobiliary diseases. This review aims to evaluate the current diagnostic approaches and innovative translational research that can be integrated for the diagnosis of CCA.
Collapse
Affiliation(s)
- Federico Selvaggi
- ASL2 Lanciano-Vasto-Chieti, Unit of General Surgery, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
| | - Loris Riccardo Lopetuso
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Gemelli IRCCS, 00136 Roma, Italy; (L.R.L.); (M.M.)
- Dipartimento di Scienze della Vita della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Roma, Italy
| | - Andrea delli Pizzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy;
- ITAB—Institute for Advanced Biomedical Technologies, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Eugenia Melchiorre
- University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Marco Murgiano
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Gemelli IRCCS, 00136 Roma, Italy; (L.R.L.); (M.M.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland;
| | - Marco Vivarelli
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60126 Ancona, Italy; (M.V.); (F.M.)
| | - Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60126 Ancona, Italy; (M.V.); (F.M.)
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
- Department of Science, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Zhang W, Wu Y, Cheng M, Wei H, Sun R, Peng H, Tian Z, Chen Y. Chronic hepatitis B virus infection imbalances short-chain fatty acids and amino acids in the liver and gut via microbiota modulation. Gut Pathog 2025; 17:18. [PMID: 40188120 PMCID: PMC11971750 DOI: 10.1186/s13099-025-00695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
The commensal microbiota is closely related to HBV infection and HBV-related liver diseases; however, how HBV and viral components dynamically affect the targeted organ liver microbiota is not well-known. In this study, an HBV-carrier mouse model established by HBsAg+ hepatocyte replacement in Fah-/- recipient mice, named HBs-HepR mice, was used to analyze the microbiota and metabolomics at the time of triggering the specific anti-HBV CD8+ T cell response in the liver. The composition and relative abundance of microbiota were both altered in the gut and liver of HBs-HepR mice. Particularly, increased Muribaculaceae and Alloprevotella, and decreased Lachnospiraceae-NK4A136 and Rikenella were observed in the gut; while increased Ralstonia and Geobacillus were observed in the liver of HBs-HepR mice. Furthermore, changes in microbial functions were revealed. There were no significant differences in the levels of SCFAs in fecal and serum; however, decreased propionic acid and acetic acid were detected in the livers of HBs-HepR mice, which was negatively related to the abundance of Geobacillus in the liver. Significantly decreased levels of 9 kinds of amino acids were detected in the feces of HBs-HepR mice, which was positively related to decreased Rikenella in the gut. A significant increase in L-glycine was observed in the liver and serum, positively related to the abundance of Geobaillus in the livers of HBs-HepR mice. In conclusion, chronic HBV infection imbalanced SCFA and amino acid metabolism by modulating microbiota in the liver, unlike in the gut, which was involved in the immune activation phase.
Collapse
Affiliation(s)
- Wendi Zhang
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Yuwei Wu
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Min Cheng
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China
| | - Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, #443 Huangshan Road, Hefei, 230027, Anhui, China.
| |
Collapse
|
5
|
Wang L, Zhao H, Wu F, Chen J, Xu H, Gong W, Wen S, Yang M, Xia J, Chen Y, Chen D. Bile-Liver phenotype: Exploring the microbiota landscape in bile and intratumor of cholangiocarcinoma. Comput Struct Biotechnol J 2025; 27:1173-1186. [PMID: 40206347 PMCID: PMC11981758 DOI: 10.1016/j.csbj.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) arises within the peritumoral bile microenvironment, yet microbial translocation from bile to intracholangiocarcinoma (IntraCCA) tissues remains poorly understood. Previous studies on bile microbiota alterations from biliary benign disease (BBD) to CCA have yielded inconsistent results, highlighting the need for cross-study analysis. We presented a comprehensive analysis of five cohorts (N = 266), including our newly established 16S rRNA gene profiling (n = 42), to elucidate these microbiota transitions. The concordance of bacteria between CCA bile and intraCCA tissue, represented by Enterococcus and Staphylococcus, suggested microbiota migration from bile to intratumoral tissues. A computational random forest machine learning model effectively distinguished intraCCA tissue from CCA bile, identifying Rhodococcus and Ralstonia as diagnostically significant. The model also excelled in differentiating CCA bile from BBD bile, achieving an AUC value of 0.931 in external validation. Using unsupervised hierarchical clustering, we established Biletypes based on microbial signatures in our cohort. A combination of 17 genera effectively stratified patients into Biletype A and Biletype B. Biletype B robustly discerned CCA from BBD, with Sub-Biletype B1 correlating with advanced TNM stage and poorer prognosis. Among the 17 genera, bacterial Cluster 1, composed of Sphingomonas, Staphylococcus, Massilia, Paenibacillus, Porphyrobacter, Lawsonella, and Aerococcus, was enriched in Biletype B1 and predicted CCA with an AUC of 0.96. Staphylococcus emerged as a promising single-genus predictor for CCA diagnosis and staging. In conclusion, this study delineates a potential microbiota transition pathway from the gut through CCA bile to intra-CCA tissue, proposing Biletypes and Staphylococcus as biomarkers for CCA prognosis.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Hui Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiale Chen
- Department of Hospital Infection Management,Wujin Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Changzhou 213161, China
| | - Hanjie Xu
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Wanwan Gong
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Sijia Wen
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Mengmeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Yu Chen
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Daozhen Chen
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| |
Collapse
|
6
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
7
|
Park W, Lee SK, Gwack J, Lee SY, Cho YG, Kang SB, Park J. Dysbiosis of Bile Microbiota in Cholangiocarcinoma Patients: A Comparison with Benign Biliary Diseases. Int J Mol Sci 2025; 26:1577. [PMID: 40004041 PMCID: PMC11855699 DOI: 10.3390/ijms26041577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Dysbiosis in the bile microbiota of cholangiocarcinoma (CCA) patients suggests a potential role for microbial alterations in the pathogenesis of CCA. This study aimed to investigate bile microbial communities in patients with CCA and compare them to those in individuals with benign biliary diseases as a control (CTR) group. Microbial profiling was conducted using next-generation sequencing (NGS), targeting the V3-V4 regions of the 16S rRNA gene, followed by bioinformatics analysis using the VSEARCH and EzBioCloud platforms. Alpha and beta diversity analyses were performed to assess microbial richness and structural differences. The linear discriminant analysis effect size (LEfSe) was utilized to identify potential microbial biomarkers. Results: This study identified distinct microbial profiles in the two groups at both the phylum and genus levels. In the CTR group, Pseudomonadota (65%) was the dominant phyla, while Bacillota (49%) was more abundant in the CCA group. At the genus level, Escherichia (29%), Enterobacteriaceae (12%), Enterococcus (8%), Ralstonia (8%), and Clostridium (5%) were more prevalent in the CTR group, whereas Streptococcus (34%), Ralstonia (8%), and Veillonella (5%) were dominant in the CCA group. Although an alpha diversity analysis showed no statistically significant differences in species richness or diversity between groups, a beta diversity analysis revealed significant structural differences associated with disease severity. Our comparative microbiome study using LEfSe analysis suggested a statistically significant inhibition of normal intestinal bacterial flora in patients with CCA who had not received any treatment. These findings suggest that microbial dysbiosis may play a role in the pathogenesis of CCA. Specific microbial taxa were identified as potential biomarkers for distinguishing benign from malignant diseases. These results underscore the potential role of microbial dysbiosis in CCA pathogenesis and highlight the bile microbiota's utility as a diagnostic marker for biliary diseases.
Collapse
Affiliation(s)
- Wonsuk Park
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Sang Kuon Lee
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jin Gwack
- Department of Prevention Medicine, College of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.Y.L.); (Y.G.C.)
| | - Seung Yeob Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.Y.L.); (Y.G.C.)
- Department of Laboratory Medicine, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea
| | - Yong Gon Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.Y.L.); (Y.G.C.)
- Department of Laboratory Medicine, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea
| | - Sang-Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.Y.L.); (Y.G.C.)
- Department of Laboratory Medicine, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
8
|
Oh S, Kim J, Shin CM, Lee HJ, Lee HS, Park KU. Metagenomic characterization of oral microbiome signatures to predict upper gastrointestinal and pancreaticobiliary cancers: a case-control study. J Transl Med 2025; 23:20. [PMID: 39762979 PMCID: PMC11702046 DOI: 10.1186/s12967-024-05989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) and pancreaticobiliary cancers. METHODS Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis. RESULTS Significant dissimilarities in microbial composition were observed between cancer patients and controls across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups (R2 = 0.067, = 0.075, = 0.068, and = 0.044; p = 0.001, = 0.001, = 0.002, and = 0.004, respectively). Additionally, the oral microbiome composition significantly differed by the four cancer sites (p = 0.001 for EC vs. GC, EC vs. BC, EC vs. PC, GC vs. BC, and GC vs. PC; p = 0.013 for BC vs. PC). We built oral metagenomic classifiers to predict cancer and selected specific microbial taxa with diagnostic properties. For EC, the classifier differentiated cancer patients and controls with good accuracy (area under the curve [AUC] = 0.791) and included three genera: Akkermansia, Escherichia-Shigella, and Subdoligranulum. For GC, the classifier exhibited high discriminative power (AUC = 0.961); it included five genera (Escherichia-Shigella, Gemella, Holdemanella, Actinomyces, and Stomatobaculum) and three species (Eubacterium sp. oral clone EI074, Ruminococcus sp. Marseille-P328, and Leptotrichia wadei F0279). However, microbial taxa with diagnostic features for BC and PC were not identified. CONCLUSIONS These findings suggested that the oral microbiome composition may serve as an indicator of tumorigenesis in upper GI and pancreaticobiliary cancers. The development of oral metagenomic classifiers for EC and GC demonstrates the potential value of microbial biomarkers in cancer screening.
Collapse
Affiliation(s)
- Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
9
|
Di Stasi V, Contaldo A, Birtolo LI, Shahini E. Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers (Basel) 2024; 16:3432. [PMID: 39410050 PMCID: PMC11476000 DOI: 10.3390/cancers16193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024] Open
Abstract
BTC overall incidence is globally increasing. CCA, including its subtypes, is a form of BTC. MetS, obesity, MASLD, and diabetes are all linked to CCA in interconnected ways. The link between obesity and CCA is less well-defined in Eastern countries as compared to Western. Although more research is needed to determine the relationship between MASLD and extrahepatic CCA (eCCA), MASLD may be a concurrent risk factor for intrahepatic CCA, particularly in populations with established or unidentified underlying liver disease. Interestingly, the risk of biliary tract cancer (BTC) seemed to be higher in patients with shorter diabetes durations who were not treated with insulin. Therefore, early detection and prevention of chronic liver disease, as well as additional intervention studies, will undoubtedly be required to determine whether improvements to MetS, weight loss, and diabetes therapy can reduce the risk and progression of BTC. However, further studies are needed to understand how reproductive hormones are involved in causing BTC and to develop consistent treatment for patients. Finally, it is critical to carefully assess the cardiological risk in BTC patients due to their increased intrinsic cardiovascular risk, putting them at risk for thrombotic complications, cardiovascular death, cardiac metastasis, and nonbacterial thrombotic endocarditis. This review aimed to provide an updated summary of the relation between the abovementioned cardio-metabolic conditions and BTC.
Collapse
Affiliation(s)
- Vincenza Di Stasi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Antonella Contaldo
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Umberto I Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
10
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
11
|
Li F, Zhang Y, Li C, Li F, Gan B, Yu H, Li J, Feng X, Hu W. Clonorchis sinensis infection induces pathological changes in feline bile duct epithelium and alters biliary microbiota composition. Parasite 2024; 31:53. [PMID: 39240136 PMCID: PMC11378715 DOI: 10.1051/parasite/2024053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Clonorchis sinensis is a zoonotic liver fluke that inhabits the bile ducts of the human liver for prolonged periods, leading to cholangiocarcinoma. Recent research indicates associations between altered biliary microbiota and bile duct disorders. However, the impacts of C. sinensis infection on bile duct epithelium and subsequent effects on biliary microbiota remain unknown. METHODS Feline bile duct samples were collected from both uninfected and C. sinensis-infected cats. Histopathological examination was performed to assess epithelial changes, fibrosis, mucin and cell proliferation using hematoxylin-eosin staining and immunohistochemistry. Additionally, biliary microbiota composition was analyzed through 16S rRNA gene sequencing. Statistical analyses were conducted to compare the microbial diversity and relative abundance between infected and uninfected samples. RESULTS Histopathological analysis of infected feline bile ducts revealed prominent epithelial hyperplasia characterized by increased cell proliferation. Moreover, periductal fibrosis and collagen fibrosis were observed in infected samples compared to uninfected controls. Biliary microbial richness decreased with disease progression compared to uninfected controls. Streptococcus abundance positively correlated with disease severity, dominating communities in cancer samples. Predictive functional analysis suggested that C. sinensis may promote bile duct lesions by increasing microbial genes for carbohydrate metabolism, replication, and repair. CONCLUSIONS This study provides comprehensive insights into the pathological effects of C. sinensis infection on feline bile duct epithelium and its influence on biliary microbiota composition. These novel findings provide insight into C. sinensis pathogenesis and could inform therapeutic development against human clonorchiasis. Further research is warranted to elucidate the underlying mechanisms driving these changes and their implications for host-parasite interactions.
Collapse
Affiliation(s)
- Feng Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China - Department of Pathology, Inner Mongolia People's Hospital, Hohhot 010011, PR China
| | - Yanli Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China
| | - Chunfu Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China
| | - Fenqi Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China
| | - Baojiang Gan
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China
| | - Hong Yu
- Department of Pathology, Inner Mongolia People's Hospital, Hohhot 010011, PR China
| | - Jian Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China - Basic Medicine College, Guangxi Traditional Chinese Medical University, Nanning 530005, Guangxi, PR China
| | - Xinyu Feng
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, PR China - School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, PR China
| | - Wei Hu
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China - Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
12
|
Lou Y, Chen Y, Guo K, Li B, Zheng S. Emerging biomarkers for immunotherapy response in biliary tract cancers: a comprehensive review of immune checkpoint inhibitor strategies. Biomark Med 2024; 18:703-715. [PMID: 39143949 PMCID: PMC11441040 DOI: 10.1080/17520363.2024.2385297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
Biliary tract cancers (BTCs) have rising incidence and mortality rates. Chemotherapy's limited efficacy has led to exploring new treatments like immunotherapy. which offers modest benefits. Moreover, the identification of reliable predictive biomarkers for immune checkpoint therapy in BTCs remains elusive, hindering personalized treatment strategies. This review provides an overview of the current landscape of emerging biomarkers for immunotherapy response in BTCs. We discuss the incremental benefits of combination therapy and the evolving role of immunotherapy in managing advanced BTC. Additionally, we highlight the need for robust predictive biomarkers to optimize treatment outcomes and foster a more individualized approach to patient care. We aim to identify promising research avenues and strategies to enhance therapeutic efficacy and patient survival in BTCs.
Collapse
Affiliation(s)
- Yidan Lou
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yijing Chen
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
| | - Binbin Li
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Song Zheng
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
13
|
Zhang G, Li J, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Strategies for treating the cold tumors of cholangiocarcinoma: core concepts and future directions. Clin Exp Med 2024; 24:193. [PMID: 39141161 PMCID: PMC11324771 DOI: 10.1007/s10238-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare type of digestive tract cancer originating from the epithelial cells of the liver and biliary tract. Current treatment modalities for CCA, such as chemotherapy and radiation therapy, have demonstrated limited efficacy in enhancing survival rates. Despite the revolutionary potential of immunotherapy in cancer management, its application in CCA remains restricted due to the minimal infiltration of immune cells in these tumors, rendering them cold and unresponsive to immune checkpoint inhibitors (ICIs). Cancer cells within cold tumors deploy various mechanisms for evading immune attack, thus impeding clinical management. Recently, combination immunotherapy has become increasingly essential to comprehend the mechanisms underlying cold tumors to enhance a deficient antitumor immune response. Therefore, a thorough understanding of the knowledge on the combination immunotherapy of cold CCA is imperative to leverage the benefits of immunotherapy in treating patients. Moreover, gut microbiota plays an essential role in the immunotherapeutic responses in CCA. In this review, we summarize the current concepts of immunotherapy in CCA and clarify the intricate dynamics within the tumor immune microenvironment (TIME) of CCA. We also delve into the evasion mechanisms employed by CCA tumors against the anti-tumor immune responses. The context of combination immunotherapies in igniting cold tumors of CCA and the critical function of gut microbiota in prompting immune responses have also been annotated. Furthermore, we have proposed future directions in the realm of CCA immunotherapy, aiming to improve the clinical prognosis of CCA patients.
Collapse
Affiliation(s)
- GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Xu T, Lyu L, Zheng J, Li L. Advances in omics-based biomarker discovery for biliary tract malignancy Diagnosis:A narrative review. Mol Cell Probes 2024; 76:101970. [PMID: 38964426 DOI: 10.1016/j.mcp.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biliary tract neoplasms, which originate from the intrahepatic or extrahepatic biliary epithelium, are relatively rare but diagnostically challenging types of tumours, and their morbidity and mortality have increased in recent years. Due to ineffective early diagnostic methods, once detected, patients are in an advanced stage with a poor prognosis and few treatment options. With the development of omics technologies, the associations between microorganisms, bile acid and salts, noncoding RNAs and biliary tract malignancies have been gradually revealed, providing new methods for the discovery of diagnostic biomarkers. Here, we review the research advances in microbiomics, transcriptomics, metabolomics, and proteomics in the discovery of diagnostic biomarkers for biliary tract malignancies.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lingna Lyu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Junfu Zheng
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| |
Collapse
|
15
|
Uema T, Tsukita M, Okamoto S, Uehara M, Honma KI, Nakayama Y, Tamaki A, Miyazato M, Ashikari A, Maeda S, Imamura M, Matsushita M, Nakamura K, Masuzaki H. Gut microbiota-based prediction for the transition from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) in a remote island cohort study. Diabetes Res Clin Pract 2024; 213:111747. [PMID: 38878868 DOI: 10.1016/j.diabres.2024.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
AIM The present cohort study explored whether specific gut microbiota (GM) profile would predict the development of impaired glucose tolerance (IGT) in individuals with normal glucose tolerance (NGT). METHODS A total of 114 study subjects with NGT in Kumejima island, Japan participated in the present study and underwent 75 g oral glucose tolerance tests at baseline and one year later. We compared the profile of GM at baseline between individuals who consistently maintained NGT (NRN, n = 108) and those who transitioned from NGT to IGT (NTI, n = 6). RESULTS Within-individual bacterial richness and evenness as well as inter-individual bacterial composition showed no significant differences between NRN and NTI. Of note, however, partial least squares discriminant analyses revealed distinct compositions of GM between groups, with no overlap in their 95 % confidence interval ellipses. Multi-factor analyses at the genus level demonstrated that the proportions of CF231, Corynebacterium, Succinivibrio, and Geobacillus were significantly elevated in NTI compared to NRN (p < 0.005, FDR < 0.1, respectively) after adjusting for age, sex, HbA1c level, and BMI. CONCLUSIONS Our data suggest that increased proportion of specific GM is linked to the future deterioration of glucose tolerance, thereby serving as a promising predictive marker for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tsugumi Uema
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mari Tsukita
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Moriyuki Uehara
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken-Ichiro Honma
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiro Nakayama
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Atsuko Tamaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minoru Miyazato
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Asuka Ashikari
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koshi Nakamura
- Department of Public Health and Epidemiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
16
|
Jiang H, Tian Y, Xu L, Chen X, Huang Y, Wu J, Wang T, Liu T, Wu X, Ye C, Wu H, Ye W, Fang L, Zhang Y. Alterations of the bile microbiome is associated with progression-free survival in pancreatic ductal adenocarcinoma patients. BMC Microbiol 2024; 24:235. [PMID: 38956452 PMCID: PMC11218221 DOI: 10.1186/s12866-024-03371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16 S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.
Collapse
Affiliation(s)
- Hang Jiang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yitong Tian
- Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Linwei Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xing Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yurun Huang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jia Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Tingting Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Xitian Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hao Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenkai Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Yao Z, Huang H, Zhang S, Wang S, Xia Q, Liu Z. Exploring the bladder tissue microbiome in patients with muscle-invasive bladder cancer using 2bRAD-M sequencing. ONCOLOGIE 2024; 26:395-406. [DOI: 10.1515/oncologie-2024-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Objectives
The 2bRAD sequencing for Microbiome (2bRAD-M) represents an innovative and streamlined approach for the reconstruction of microbial profiles at the species level. In our investigation, we conducted 2bRAD-M analysis to characterize the microbiome of bladder tissue in patients with muscle-invasive bladder cancer (MIBC).
Methods
15 tumor tissues and 15 paired para-carcinoma tissues were obtained from the bladder excised during surgery. 2bRAD-M sequencing was used to assess the abundance of microorganisms in samples.
Results
The microbial community structure and biodiversity, as assessed at varying taxonomic ranks, exhibited a high degree of similarity between the tumor and paired non-tumor tissues. At the genus level, we observed a notably elevated abundance of Brachybacterium and Haloparvum, coupled with a diminished abundance of Anoxybacillus, Anoxybacillu_A, Deinococcus, NCEH01, and Pseudoxanthomonas_A in the tumor tissues. Meanwhile, at the species level, the non-tumor tissues exhibited an enrichment of Anoxybacillus_A rupiensis, Anoxybacillus flavithermus_G, Klebsiella quasipneumoniae, NCEH01 sp002304505, and Pseudoxanthomonas_A sp004284195. Linear discriminant analysis effect size (LEfSe) identified 29 discriminative features, characterized by significant variations (p<0.5, LDA≥2.0) in relative abundance between the two groups. Furthermore, an analysis of functional predictions utilizing Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) also uncovered disparities in the microbial functional composition.
Conclusions
This study identified several microorganisms that exhibit differences between MIBC tumor tissue and adjacent non-tumor tissue using 2bRAD-M sequencing, providing some insights into the potential association between the bladder microbiome and cancer.
Collapse
Affiliation(s)
- Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - He Huang
- Department of Urology , The Third People’s Hospital of Hubei Province , Wuhan , China
| | - Sihan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
18
|
Xiao M, Zhou Y, Wang Z, Dai W, Wang D, Wan Z, Chen Z, Li Q, Zheng S. The dysregulation of biliary tract microflora is closely related to primary choledocholithiasis: a multicenter study. Sci Rep 2024; 14:9004. [PMID: 38637624 PMCID: PMC11026428 DOI: 10.1038/s41598-024-59737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Bile microecology changes play an important role in the occurrence and development of choledocholithiasis. At present, there is no clear report on the difference of bile microecology between asymptomatic patients with gallbladder polyps and choledocholithiasis. This study compared bile microecology between gallbladder polyp patients and patients with choledocholithiasis to identify risk factors for primary choledocholithiasis. This study was conducted in 3 hospitals in different regions of China. Bile samples from 26 patients with gallbladder polyps and 31 patients with choledocholithiasis were collected by laparoscopic cholecystectomy and endoscopic retrograde choledocholithiasis cholangiography (ERCP), respectively. The collected samples were used for 16S ribosomal RNA sequencing and liquid chromatography mass spectrometry analysis. The α-diversity of bile microecological colonies was similar between gallbladder polyp and choledocholithiasis, but the β-diversity was different. Firmicutes, Proteobacteri, Bacteroidota and Actinobacteriota are the most common phyla in the gallbladder polyp group and choledocholithiasis group. However, compared with the gallbladder polyp patients, the abundance of Actinobacteriota has significantly lower in the choledocholithiasis group. At the genera level, the abundance of a variety of bacteria varies between the two groups, and Enterococcus was significantly elevated in choledocholithiasis group. In addition, bile biofilm formation-Pseudomonas aeruginosa was more metabolically active in the choledocholithiasis group, which was closely related to stone formation. The analysis of metabolites showed that a variety of metabolites decreased in the choledocholithiasis group, and the concentration of beta-muricholic acid decreased most significantly. For the first time, our study compared the bile of gallbladder polyp patients with patients with choledocholithiasis, and suggested that the change in the abundance of Actinobacteriota and Enterococcus were closely related to choledocholithiasis. The role of Pseudomonas aeruginosa biofilm in the formation of choledocholithiasis was discovered for the first time, and some prevention schemes for choledocholithiasis were discussed, which has important biological and medical significance.
Collapse
Affiliation(s)
- Min Xiao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Quzhou) Hospital, Quzhou, Zhejiang, China
| | - Yankun Zhou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Zhengfei Wang
- Department of Surgery, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Wenchao Dai
- Department of Surgery, Shulan (Quzhou) Hospital, Quzhou, Zhejiang, China
| | - Di Wang
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Zhenmiao Wan
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Zhitao Chen
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Qiyong Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| | - ShuSen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Ichikawa M, Okada H, Nakamoto N, Taniki N, Chu PS, Kanai T. The gut-liver axis in hepatobiliary diseases. Inflamm Regen 2024; 44:2. [PMID: 38191517 PMCID: PMC10773109 DOI: 10.1186/s41232-023-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Recent advances in the analysis of intestinal bacteria have led to reports of variations in intestinal bacterial levels among hepatobiliary diseases. The mechanisms behind the changes in intestinal bacteria in various hepatobiliary diseases include the abnormal composition of intestinal bacteria, weakening of the intestinal barrier, and bacterial translocation outside the intestinal tract, along with their metabolites, but many aspects remain unresolved. Further research employing clinical studies and animal models is expected to clarify the direct relationship between intestinal bacteria and hepatobiliary diseases and to validate the utility of intestinal bacteria as a diagnostic biomarker and potential therapeutic target. This review summarizes the involvement of the microbiota in the pathogenesis of hepatobiliary diseases via the gut-liver axis.
Collapse
Affiliation(s)
- Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Haruka Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| |
Collapse
|
20
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
21
|
Ye C, Dong C, Lin Y, Shi H, Zhou W. Interplay between the Human Microbiome and Biliary Tract Cancer: Implications for Pathogenesis and Therapy. Microorganisms 2023; 11:2598. [PMID: 37894256 PMCID: PMC10608879 DOI: 10.3390/microorganisms11102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biliary tract cancer, encompassing intrahepatic and extrahepatic cholangiocarcinoma as well as gallbladder carcinoma, stands as a prevalent malignancy characterized by escalating incidence rates and unfavorable prognoses. The onset of cholangiocarcinoma involves a multitude of risk factors and could potentially be influenced by microbial exposure. The human microbiome, encompassing the entirety of human microbial genetic information, assumes a pivotal role in regulating key aspects such as host digestion, absorption, immune responses, and metabolism. The widespread application of next-generation sequencing technology has notably propelled investigations into the intricate relationship between the microbiome and diseases. An accumulating body of evidence strongly suggests a profound interconnection between biliary tract cancer and the human microbiome. This article critically appraises the existing evidence pertaining to the microbiome milieu within patients afflicted by biliary tract cancer. Furthermore, it delves into potential mechanisms through which dysregulation of the human microbiome could contribute to the advancement of biliary tract cancer. Additionally, the article expounds on its role in the context of chemotherapy and immunotherapy for biliary tract cancer.
Collapse
Affiliation(s)
- Cheng Ye
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chunlu Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Huaqing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
23
|
Dai M, Lui RN, Lau LH. The role of gut microbiome and fecal microbiota transplantation in liver cancer and related complications: mechanisms and therapeutic potentials. HEPATOMA RESEARCH 2023. [DOI: 10.20517/2394-5079.2023.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer is the sixth commonest cancer and the third leading cause of cancer mortality worldwide. Accumulating evidence suggests a pivotal role of the gut microbiome in the progression of chronic liver disease and the subsequent development of liver cancer. Additionally, gut microbiome has been shown to contribute to the hosts’ antitumor responses following immunotherapy and chemotherapy for liver cancers, highlighting the therapeutic potential of gut microbiome modulation in enhancing treatment efficacy and reducing drug resistance. Fecal microbiota transplantation (FMT), a novel therapeutic modality to deliver a healthy donor's stool by endoscopy or capsule, has demonstrated potential in managing liver diseases and cancers by restoring and modulating the recipient’s gut microbiome composition. However, existing data on the clinical application of FMT in liver cancers are still limited. This review summarizes the underlying roles and mechanisms of gut microbiome in liver cancer and discusses the therapeutic potential of FMT in liver cancer treatment and the management of its related complications (e.g., hepatic encephalopathy).
Collapse
|
24
|
Cossiga V, Guarino M, Capasso M, Morisco F. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions. Cells 2023; 12:1576. [PMID: 37371045 PMCID: PMC10296882 DOI: 10.3390/cells12121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cholangiocarcinoma (CCA), a highly heterogeneous cancer, is the second most common type of primary liver cancer. It is characterized by resistance to therapy and poor prognosis, with a 5-year survival rate lower than 20%. The pathogenesis of CCA is complex and multifactorial, and in recent years, bile acids (BAs) have been implicated in CCA development and prognosis. BAs belong to a category of amphipathic compounds that hold significant importance as signaling molecules and inflammatory agents. They possess the ability to activate transcriptional factors and cellular signaling pathways, thereby governing the regulation of lipid, glucose, and energy metabolism in diverse human disorders. These disorders encompass chronic liver diseases among other conditions. In this review, we provided an update on the current knowledge on the molecular mechanisms involving BAs in cholangiocarcinogenesis. Additionally, we analyzed the role of gut and biliary microbiota in CCA pathogenesis. Future research is required to better understand how to modulate BA activity and, possibly, identify new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (V.C.); (M.G.); (M.C.)
| |
Collapse
|
25
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Bragazzi MC, Venere R, Vignone A, Alvaro D, Cardinale V. Role of the Gut–Liver Axis in the Pathobiology of Cholangiopathies: Basic and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24076660. [PMID: 37047635 PMCID: PMC10095354 DOI: 10.3390/ijms24076660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The “Gut–Liver Axis” refers to the physiological bidirectional interplay between the gut and its microbiota and the liver which, in health, occurs thanks to a condition of immune tolerance. In recent years, several studies have shown that, in case of a change in gut bacterial homeostasis or impairment of intestinal barrier functions, cholangiocytes, which are the epithelial cells lining the bile ducts, activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Intestinal dysbiosis or impaired intestinal barrier functions cause cholangiocytes to be exposed to an increasing amount of microorganisms that can reactivate inflammatory responses, thus inducing the onset of liver fibrosis. The present review focuses on the role of the gut–liver axis in the pathogenesis of cholangiopathies.
Collapse
Affiliation(s)
- Maria Consiglia Bragazzi
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Rosanna Venere
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Anthony Vignone
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| |
Collapse
|
27
|
Re OL, López-López V, Balaguer-Román A, Martínez-Sánchez MA, Eshmuminov D, Llamoza-Torres CJ, Miura K, Baroja-Mazo A, Ramírez P, Robles-Campos R, Ramos-Molina B. New challenges in cholangiocarcinoma candidates for elective surgery: harnessing the microbiome dysbiosis. Langenbecks Arch Surg 2023; 408:134. [PMID: 37000331 DOI: 10.1007/s00423-023-02867-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The gut microbiota, composed by several species of microorganisms, works to preserve the liver-gut homeostasis and plays an important role during digestion and absorption of nutrients, and in the immune response of the host. In this review, we analyzed the influence of microbiota in patients with cholangiocarcinoma (CCA) who were candidates for elective surgery. METHODS A literature review was conducted to identify papers that provided empiric evidence to support that the altered microbiota composition (dysbiosis) is related also to CCA development. RESULTS Bacteria such as Helicobacter pylori, Helicobacter hepaticus, and Opisthorchis viverrini increase the risk of CCA. The most abundant genera were Enterococcus, Streptococcus, Bacteroides, Klebsiella, and Pyramidobacter in CCA's biliary microbiota. Additionally, levels of Bacteroides, Geobacillus, Meiothermus, and Anoxybacillus genera were significantly higher. An enrichment of Bifidobacteriaceae, Enterobacteriaceae, and Enterococcaceae families has also been observed in CCA tumor tissue. Microbiota is related to postoperative outcomes in abdominal surgery. The combination of caloric restriction diets in liver cancer or CCA increases the effect of the chemotherapy treatment. CONCLUSION The correct use of nutrition for microbiota modulation according to each patient's needs could be a therapeutic tool in combination with elective surgery and chemotherapy to diminish side effects and improve prognosis. Further investigations are needed to fully understand the mechanisms by which they are related.
Collapse
Affiliation(s)
- Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Victor López-López
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, 30120, Murcia, Spain.
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs Research Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Andrés Balaguer-Román
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, 30120, Murcia, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | | | - Dilmurodjon Eshmuminov
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Alberto Baroja-Mazo
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs Research Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Pablo Ramírez
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, 30120, Murcia, Spain
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs Research Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Ricardo Robles-Campos
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, 30120, Murcia, Spain
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs Research Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
28
|
Dong YH, Fu Z, Zhang NN, Shao JY, Shen J, Yang E, Sun SY, Zhao ZM, Xiao A, Liu CJ, Li XR. Urogenital tract and rectal microbiota composition and its influence on reproductive outcomes in infertile patients. Front Microbiol 2023; 14:1051437. [PMID: 36846767 PMCID: PMC9950574 DOI: 10.3389/fmicb.2023.1051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Microbiota in the human body are closely related to human diseases. Female urogenital tract and rectal microbes have been considered as important factors affecting female pregnancy, but the mechanism is unknown. Methods Cervical, vaginal, urethral, and rectal swabs were collected from 22 infertile patients and 10 controls, and follicular fluid was extracted from 22 infertile patients. The microbial composition of different sampling sites of infertile patients was examined. By comparing the microbial composition difference between infertile patients and controls and combining bioinformatics methods to analyze the potential impact of the female urogenital tract (cervical, vaginal and urethral) and rectal microbial diversity on female infertility and pregnancy outcomes. Results Lactobacillus predominated in the female urogenital tract, but its abundance decreased in infertile patients, whereas the abundance of Gardnerella and Atopobium increased. The microbial changes in the urethra had the same trend as that in the vagina. Compared with healthy controls, the cervical and rectal microbial diversity of infertile patients were significantly increased and decreased, respectively. There might be interactions between microbes in different parts of female. Geobacillus thermogeniticans was enriched in the urogenital tract and rectum of infertile patients, and has a good predictive effect on infertility. Compared with infertile patients, L. johnsonii was enriched in the vagina, urethra, and intestine of the control group. L. acidophilus in follicular fluid might be associated with Non-pregnancy. Conclusion This study found that the microbial composition of infertile patients was changed compared with that of healthy people. The translocation of Lactobacillus between the rectum and urogenital tract might play a protective barrier role. The changes of Lactobacillus and Geobacillus might be related to female infertility or pregnancy outcome. The study provided a theoretical basis for the future treatment of female infertility from the perspective of microorganisms by detecting the microbial changes associated with female infertility.
Collapse
Affiliation(s)
- Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shi-Yi Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhi-Min Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - An Xiao
- Department of Infectious Diseases and Hepatic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China,Department of Infectious Diseases and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,*Correspondence: Xiao-Ran Li,
| |
Collapse
|
29
|
Elvevi A, Laffusa A, Gallo C, Invernizzi P, Massironi S. Any Role for Microbiota in Cholangiocarcinoma? A Comprehensive Review. Cells 2023; 12:370. [PMID: 36766711 PMCID: PMC9913249 DOI: 10.3390/cells12030370] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Alterations in the human microbiota have been linked to carcinogenesis in several cancers. To date, few studies have addressed the role of the microbiota in cholangiocarcinoma (CCA). Our work aims to update the knowledge about the role of the microbiota in the CCA microenvironment, and to highlight possible novel insights for the development of new diagnostic, prognostic, or even therapeutic strategies. We thus conducted a review of the literature. In recent years, great progress has been made in understanding the pathogenesis, the clinical and histological behavior, and the molecular profile of CCA. Much evidence suggests that the bile microbiota plays an essential role in biliary diseases, including CCA. Some studies have demonstrated that alterations in the qualitative and quantitative composition of the intestinal commensal bacteria lead to overall cancer susceptibility through various pathways. Other studies suggest that the gut microbiota plays a role in the pathogenesis and/or progression of CCA. The clinical implications are far-reaching, and the role of the microbiota in the CCA microenvironment may lead to considering the exciting implications of implementing therapeutic strategies that target the microbiota-immune system axis.
Collapse
Affiliation(s)
- Alessandra Elvevi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Alice Laffusa
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, 20900 Monza, Italy
| | - Camilla Gallo
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, 20900 Monza, Italy
| | - Pietro Invernizzi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, 20900 Monza, Italy
| | - Sara Massironi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
30
|
Xiao M, Wan Z, Lin X, Wang D, Chen Z, Gu Y, Ding S, Zheng S, Li Q. ABO-Incompatible Liver Transplantation under the Desensitization Protocol with Rituximab: Effect on Biliary Microbiota and Metabolites. J Clin Med 2022; 12:jcm12010141. [PMID: 36614942 PMCID: PMC9821037 DOI: 10.3390/jcm12010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: ABO-incompatible liver transplantation (ABOi LT) under the desensitization protocol with rituximab had excellent survival outcomes comparable to those of ABO-compatible liver transplantation (ABOc LT). In this work, we explored the effect of ABOi LT on recipients from the perspective of biliary microbiota and metabonomics. Methods: Liver transplant (LT) recipients treated at our center were enrolled in the study. In total, 6 ABOi LT recipients and 12 ABOc LT recipients were enrolled, and we collected their bile five times (during LT and at 2 days, 1 week, 2 weeks and 1 month after LT). The collected samples were used for 16S ribosomal RNA sequencing and liquid chromatography mass spectrometry analysis. Results: We obtained 90 bile samples. Whether in group ABOi LT or ABOc LT, the most common phyla in all of the samples were Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The most common genera were Lactobacillus, Weissella, Klebsiella, Pantoea and Lactococcus. There was no significant difference in the diversity between the two groups at 1 week, 2 weeks and 1 month after LT. However, the biggest disparities between the ABOi LT recipients and ABOc LT recipients were observed 2 days after LT, including increased biodiversity with a higher ACE, Chao1, OBS and Shannon index (p < 0.05), and more Staphylococcus in ABOi LT and binary−Jaccard dissimilarity, which indicated varying β-diversity (p = 0.046). These differences were not observed at 1 week, 2 weeks and 1 month after LT. The principal coordinate analysis (PCoA) revealed that the composition of the bile microbiota did not change significantly within 1 month after LT by longitudinal comparison. In an analysis of the bile components, the metabolites were not significantly different every time. However, four enrichment KEGG pathways were observed among the groups. Conclusion: These findings suggest that ABOi LT under the desensitization protocol with rituximab did not significantly affect the biliary microbiota and metabolites of recipients.
Collapse
Affiliation(s)
- Min Xiao
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Zhenmiao Wan
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Lin
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Di Wang
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhitao Chen
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yangjun Gu
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Songming Ding
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Shusen Zheng
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| | - Qiyong Li
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| |
Collapse
|
31
|
Abril AG, Villa TG, Sánchez-Pérez Á, Notario V, Carrera M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int J Mol Sci 2022; 23:14333. [PMID: 36430811 PMCID: PMC9696009 DOI: 10.3390/ijms232214333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| |
Collapse
|
32
|
Rao BC, Zhang GZ, Zou YW, Ren T, Ren HY, Liu C, Yu ZJ, Ren ZG. Alterations in the human oral microbiome in cholangiocarcinoma. Mil Med Res 2022; 9:62. [PMID: 36345047 PMCID: PMC9641929 DOI: 10.1186/s40779-022-00423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ben-Chen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gui-Zhen Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya-Wen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tong Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai, 201111, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai, 201111, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
33
|
Di Carlo P, Serra N, Alduina R, Guarino R, Craxì A, Giammanco A, Fasciana T, Cascio A, Sergi CM. A systematic review on omics data (metagenomics, metatranscriptomics, and metabolomics) in the role of microbiome in gallbladder disease. Front Physiol 2022; 13:888233. [PMID: 36111147 PMCID: PMC9468903 DOI: 10.3389/fphys.2022.888233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Microbiotas are the range of microorganisms (mainly bacteria and fungi) colonizing multicellular, macroscopic organisms. They are crucial for several metabolic functions affecting the health of the host. However, difficulties hamper the investigation of microbiota composition in cultivating microorganisms in standard growth media. For this reason, our knowledge of microbiota can benefit from the analysis of microbial macromolecules (DNA, transcripts, proteins, or by-products) present in various samples collected from the host. Various omics technologies are used to obtain different data. Metagenomics provides a taxonomical profile of the sample. It can also be used to obtain potential functional information. At the same time, metatranscriptomics can characterize members of a microbiome responsible for specific functions and elucidate genes that drive the microbiotas relationship with its host. Thus, while microbiota refers to microorganisms living in a determined environment (taxonomy of microorganisms identified), microbiome refers to the microorganisms and their genes living in a determined environment and, of course, metagenomics focuses on the genes and collective functions of identified microorganisms. Metabolomics completes this framework by determining the metabolite fluxes and the products released into the environment. The gallbladder is a sac localized under the liver in the human body and is difficult to access for bile and tissue sampling. It concentrates the bile produced in the hepatocytes, which drains into bile canaliculi. Bile promotes fat digestion and is released from the gallbladder into the upper small intestine in response to food. Considered sterile originally, recent data indicate that bile microbiota is associated with the biliary tract's inflammation and carcinogenesis. The sample size is relevant for omic studies of rare diseases, such as gallbladder carcinoma. Although in its infancy, the study of the biliary microbiota has begun taking advantage of several omics strategies, mainly based on metagenomics, metabolomics, and mouse models. Here, we show that omics analyses from the literature may provide a more comprehensive image of the biliary microbiota. We review studies performed in this environmental niche and focus on network-based approaches for integrative studies.
Collapse
Affiliation(s)
- Paola Di Carlo
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Infectious Disease, University of Palermo, Palermo, Italy
| | - Nicola Serra
- Department of Public Health, University “Federico II”, Naples, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Riccardo Guarino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Gastroenterology, University of Palermo, Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Microbiology, University of Palermo, Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Microbiology, University of Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Infectious Disease, University of Palermo, Palermo, Italy
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Sitthirak S, Suksawat M, Phetcharaburanin J, Wangwiwatsin A, Klanrit P, Namwat N, Khuntikeo N, Titapun A, Jarearnrat A, Sangkhamanon S, Loilome W. Chemotherapeutic resistant cholangiocarcinoma displayed distinct intratumoral microbial composition and metabolic profiles. PeerJ 2022; 10:e13876. [PMID: 35990899 PMCID: PMC9390323 DOI: 10.7717/peerj.13876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. One of the major issues regarding treatment for CCA patients is the development of chemotherapeutic resistance. Recently, the association of intratumoral bacteria with chemotherapeutic response has been reported in many cancer types. Method In the present study, we aimed to investigate the association between the intratumoral microbiome and its function on gemcitabine and cisplatin response in CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis. Result The results of 16S rRNA sequencing demonstrated that Gammaproteobacteria were significantly higher in both gemcitabine- and cisplatin-resistance groups compared to sensitive groups. In addition, intratumoral microbial diversity and abundance were significantly different compared between gemcitabine-resistant and sensitive groups. Furthermore, the metabolic phenotype of the low dose gemcitabine-resistant group significantly differed from that of low dose gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine and inosine were observed in the low dose gemcitabine-resistant group, while the levels of acetylcholine, alpha-D-glucose and carnitine increased in the low dose cisplatin-resistant group. We further performed the intergrative microbiome-metabolome analysis and revealed a correlation between the intratumoral bacterial and metabolic profiles which reflect the chemotherapeutics resistance pattern in CCA patients. Conclusion Our results demonstrated insights into the disruption of the microbiome and metabolome in the progression of chemotherapeutic resistance. The altered microbiome-metabolome fingerprints could be used as predictive markers for drug responses potentially resulting in the development of an appropriate chemotherapeutic drug treatment plan for individual CCA patients.
Collapse
Affiliation(s)
- Sirinya Sitthirak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jarearnrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
35
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
36
|
Hou Z, Song F, Xing J, Zheng Z, Liu S, Liu Z. Comprehensive fecal metabolomics and gut microbiota for the evaluation of the mechanism of Panax Ginseng in the treatment of Qi-deficiency liver cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115222. [PMID: 35341933 DOI: 10.1016/j.jep.2022.115222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency liver cancer (QDLC) is an important part of liver cancer research in traditional Chinese medicine (TCM). In the course of its treatment, Panax ginseng is often selected as the main Chinese herbal medicine, and its function has special significance in the tumor treatment of Qi deficiency constitution. However, its mechanism is not clear. AIM OF THE STUDY The research tried to evaluate the mechanism of Panax ginseng in the treatment of QDLC through fecal metabonomics and gut microbiota on the basis of previous pharmacodynamic evaluation. MATERIALS AND METHODS Firstly, biomarkers and related metabolic pathways were screened and identified by metabonomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, 16S rRNA sequencing technique was used to investigate the composition, β diversity and key differences of gut microbiota. Finally, the relationship among phenotypes, gut microbiota and fecal metabolites was comprehensively analyzed by spearman correlation coefficient. RESULTS 31 pharmacodynamic potential biomarkers and 20 synergistic potential biomarkers of effective parts of Panax ginseng on QDLC were screened and identified by fecal metabonomics. And then, 6 major metabolic pathways were searched, including bile acid biosynthesis, unsaturated fatty acid biosynthesis, tryptophan metabolism, arachidonic acid metabolism, pyrimidine metabolism, vitamin B6 metabolism. In the study of gut microbiota, at the genus level, 25 species of bacteria with significant differences of effective parts on QDLC and 23 species of bacteria with significant differences of synergistic action of ginsenosides and polysaccharides were screened. In addition, Spearman correlation analysis showed that there was a complex potential relationship among phenotype, gut microbiota and fecal metabolites during the development of QDLC and Panax ginseng intervention, which was mainly reflected in the close potential relationship between bacteria and fecal metabolites such as bile acids, unsaturated fatty acids and indole compounds. CONCLUSION Through the changes of fecal endogenous metabolites and intestinal bacteria, the mechanism of Panax ginseng on QDLC were preliminarily clarified.
Collapse
Affiliation(s)
- Zong Hou
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong Zheng
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
37
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
38
|
Potential Role of Inflammation-Promoting Biliary Microbiome in Primary Sclerosing Cholangitis and Cholangiocarcinoma. Cancers (Basel) 2022; 14:cancers14092120. [PMID: 35565248 PMCID: PMC9104786 DOI: 10.3390/cancers14092120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Primary sclerosing cholangitis (PSC) is a major risk factor for cholangiocarcinoma (CCA). We investigated biliary and fecal microbiota to determine whether specific microbes in the bile or stool are associated with PSC or CCA. Methods: Bile was obtained from 32 patients with PSC, 23 with CCA with PSC, 26 with CCA without PSC, and 17 controls. Over 90% of bile samples were from patients with perihilar CCA. Stool was obtained from 31 patients with PSC (11 were matched to bile), 16 with CCA with PSC (10 matched to bile), and 11 with CCA without PSC (6 matched to bile). Microbiota composition was assessed using 16SrRNA-marker-based sequencing and was compared between groups. Results: Bile has a unique microbiota distinguished from negative DNA controls and stool. Increased species richness and abundance of Fusobacteria correlated with duration of PSC and characterized the biliary microbiota in CCA. Stool microbiota composition showed no significant differences between groups. Conclusions: We identified a unique microbial signature in the bile of patients with increased duration of PSC or with CCA, suggesting a role for microbiota-driven inflammation in the pathogenesis and or progression to perihilar CCA. Further studies are needed to test this hypothesis.
Collapse
|
39
|
Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer 2022; 8:583-597. [PMID: 35331674 DOI: 10.1016/j.trecan.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
Although their etiologies vary, tumors share a common trait: the control of an oncogenic transcriptional program that is regulated by the interaction of the malignant cells with the stromal and immune cells in the tumor microenvironment (TME). The TME shows high phenotypic and functional heterogeneity that may be modulated by interactions with commensal microbes (the microbiota) both systemically and locally. Unlike host cells, the microbiota adapts after environmental perturbations, impacting host-microbe interactions. In the liver, the bidirectional relationship in the gut and its associated microbiota creates an interdependent environment. Therefore, the gut microbiota and its metabolites modulate liver gene expression directly and indirectly, causing an imbalance in the gut-liver axis, which may result in disease, including carcinogenesis.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Giorgio Trinchieri
- NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
40
|
Valtis YK, Barlowe T, Young JH, Lichtman AH, Zhao L, Hornick JL, Cleary JM, Hashemi N, Cubre A, Baron RM. A woman presenting with an unusual cause of fulminant liver failure and sepsis. Clin Res Hepatol Gastroenterol 2022; 46:101836. [PMID: 34800682 DOI: 10.1016/j.clinre.2021.101836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/04/2023]
Abstract
We present the case of a 61-year-old woman who presented with acutely worsening right upper quadrant pain and was found to be in acute liver failure with Klebsiella pneumoniae bacteremia. Despite aggressive intensive care management, the patient ultimately died of refractory shock attributed to sepsis and fulminant liver failure. On autopsy, she was found unexpectedly to have diffuse intrahepatic cholangiocarcinoma with metastases to regional lymph nodes and intravascular spread to the lungs. The case highlights a rare instance where intrahepatic cholangiocarcinoma presents with acute liver failure and discusses key intensive care management principles of this clinical syndrome.
Collapse
Affiliation(s)
- Yannis K Valtis
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Trevor Barlowe
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jonathan H Young
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - James M Cleary
- Center of Gastrointestinal Oncology, Dana Farber Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nikroo Hashemi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alan Cubre
- Department or Radiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Rebecca M Baron
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Wheatley RC, Kilgour E, Jacobs T, Lamarca A, Hubner RA, Valle JW, McNamara MG. Potential influence of the microbiome environment in patients with biliary tract cancer and implications for therapy. Br J Cancer 2022; 126:693-705. [PMID: 34663949 PMCID: PMC8888758 DOI: 10.1038/s41416-021-01583-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Biliary tract cancers, including intra- and extra-hepatic cholangiocarcinoma as well as gallbladder cancer, are associated with poor prognosis and the majority of patients present with advanced-stage, non-resectable disease at diagnosis. Biliary tract cancer may develop through an accumulation of genetic and epigenetic alterations and can be influenced by microbial exposure. Furthermore, the liver and biliary tract are exposed to the gastrointestinal microbiome through the gut-liver axis. The availability of next-generation sequencing technology has led to an increase in studies investigating the relationship between microbiota and human disease. In particular, the interplay between the microbiome, the tumour micro-environment and response to systemic therapy is a prospering area of interest. Given the poor outcomes for patients with biliary tract cancer, this emerging field of research, through which new biomarkers may be identified, offers potential as a tool for early diagnosis, prognostication or even as a future therapeutic target. This review summarises the available evidence on the microbiome environment in patients with biliary tract cancer, including a discussion around confounding factors, implications for therapy and proposed future directions.
Collapse
Affiliation(s)
- Roseanna C Wheatley
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, UK
| | - Timothy Jacobs
- The Library, The Christie NHS Foundation Trust, Manchester, UK
| | - Angela Lamarca
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Richard A Hubner
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Juan W Valle
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Mairéad G McNamara
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
42
|
Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, Fabbri C. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Elton Dajti
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
| | - Emanuele Sinagra
- Endoscopy Unit, Fondazione Istituto San Raffaele-G. Giglio, 90015 Cefalù, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy
| | - Gabriele Capurso
- Division of Pancreato-Biliary Endoscopy and EUS, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milano, Italy;
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy;
- Unit of Microbiology, Department of Pathological Anatomy, Trasfusion Medicine and Laboratory Medicine, University of Bologna, 40125 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| |
Collapse
|
43
|
Rao B, Ren T, Wang X, Wang H, Zou Y, Sun Y, Liu S, Ren Z, Yu Z. Dysbiosis in the Human Microbiome of Cholangiocarcinoma. Front Physiol 2021; 12:715536. [PMID: 34867436 PMCID: PMC8633309 DOI: 10.3389/fphys.2021.715536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignant tumor of the biliary system with a very poor prognosis. The human microbiome, which is the sum of the genetic information of human microorganisms, plays an important role in regulating the digestion, absorption, immune response, and metabolism of the host. Increasing evidence indicates a close relationship between CCA and the human microbiome. Specific alterations occur in the human microbiome of patients with CCA. Therefore, in this review, we aimed to summarize the recent evidence on dysbiosis in the human microbiome of CCA. Then, we generalized the effect of Helicobacter pylori on CCA. Additionally, the potential mechanism of human microbial dysbiosis promoted the progress of CCA, and its precancerous disease was also explored. Furthermore, the possibility of the human microbiome as a diagnostic and therapeutic target of CCA was discussed.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Ren
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshuo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Chau J, Zhang J. Tying Small Changes to Large Outcomes: The Cautious Promise in Incorporating the Microbiome into Immunotherapy. Int J Mol Sci 2021; 22:ijms22157900. [PMID: 34360663 PMCID: PMC8347117 DOI: 10.3390/ijms22157900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the microbiome in immunology is a rapidly burgeoning topic of study. Given the increasing use of immune checkpoint inhibitor (ICI) therapy in cancers, along with the recognition that carcinogenesis has been linked to dysregulations of the immune system, much attention is now directed at potentiation of ICI efficacy, as well as minimizing the incidence of treatment-associated immune-related adverse events (irAEs). We provide an overview of the major research establishing links between the microbiome to tumorigenesis, chemotherapy and radiation potentiation, and ICI efficacy and irAE development.
Collapse
Affiliation(s)
- Justin Chau
- Division of Hematology, Oncology and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52246, USA;
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-(913)-588-8150; Fax: +1-(913)-588-4085
| |
Collapse
|
45
|
The Role of Microbiota in Primary Sclerosing Cholangitis and Related Biliary Malignancies. Int J Mol Sci 2021; 22:ijms22136975. [PMID: 34203536 PMCID: PMC8268159 DOI: 10.3390/ijms22136975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy characterized by biliary inflammation, cholestasis, and multifocal bile duct strictures. It is associated with high rates of progression to end-stage liver disease as well as a significant risk of cholangiocarcinoma (CCA), gallbladder cancer, and colorectal carcinoma. Currently, no effective medical treatment with an impact on the overall survival is available, and liver transplantation is the only curative treatment option. Emerging evidence indicates that gut microbiota is associated with disease pathogenesis. Several studies analyzing fecal and mucosal samples demonstrate a distinct gut microbiome in individuals with PSC compared to healthy controls and individuals with inflammatory bowel disease (IBD) without PSC. Experimental mouse and observational human data suggest that a diverse set of microbial functions may be relevant, including microbial metabolites and bacterial processing of pharmacological agents, bile acids, or dietary compounds, altogether driving the intrahepatic inflammation. Despite critical progress in this field over the past years, further functional characterization of the role of the microbiota in PSC and related malignancies is needed. In this review, we discuss the available data on the role of the gut microbiome and elucidate important insights into underlying pathogenic mechanisms and possible microbe-altering interventions.
Collapse
|