1
|
Ruan H, Zhang C, Chen S. Carbon Ion Radiotherapy Reirradiation for Recurrent Malignancy: A Systematic Assessment. Clin Oncol (R Coll Radiol) 2025; 42:103800. [PMID: 40246613 DOI: 10.1016/j.clon.2025.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
Reirradiation presents a significant challenge despite recent advances in modern radiation therapy. Carbon ion radiotherapy has garnered increasing attention among radiation oncologists due to its potentially superior physical dosimetric distribution and radiobiological advantages. This systematic review comprehensively evaluated clinical outcomes from 27 original studies on the use of carbon ion reirradiation for locoregional recurrent malignancies, including those affecting the central nervous system, lung, head and neck, pancreas, liver, rectum, and gynecological sites. The findings suggest that carbon ion reirradiation for locoregional recurrent malignancies yields favorable clinical outcomes with a relatively low incidence of high-grade toxicities. For recurrent nasopharyngeal carcinoma, the reported 2-year overall survival, local control, regional control, and metastasis-free survival rates were 83.7%, 58.0%, 87.3%, and 94.7%, respectively. Grade ≥3 late nasopharyngeal necrosis occurred in 16% (33/206) of cases. In the case of recurrent glioblastoma, median overall survival and local control survival were reported at 13 and 7 months, respectively, with minimal high-grade complications; observed low-grade toxicities included acute involuntary movements, incomplete hemiparesis, and late-onset dysphasia. For recurrent lung cancer, 2-year local control and overall survival rates were reported as 54.0% and 61.9%, respectively. Grade ≥3 toxicities included two cases of radiation pneumonitis and one case of bronchopleural fistula. In recurrent pancreatic cancer, 1-year local control, progression-free survival, and overall survival rates were 53.5%, 24.5%, and 48.7%, respectively. A high-grade complication of Grade 3 acute duodenal stenosis was observed in one patient. Additionally, concurrent chemotherapy with carbon ion reirradiation was associated with minimal high-grade additive toxicities. Overall, carbon ion reirradiation appears to be a potentially safe and effective reirradiation modality for treating locoregional recurrent malignancies, though data remains limited.
Collapse
Affiliation(s)
- H Ruan
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, 330029, Nanchang, Jiangxi Province, China; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan.
| | - C Zhang
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan; Department of Medical Physics for Heavy Ion Therapy, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Gunma, Japan.
| | - S Chen
- Department of Medical Oncology, Nanchang People's Hospital, 330002, Nanchang, Jiangxi Province, China.
| |
Collapse
|
2
|
Pazdro-Zastawny K, Krajewska J, Zastawny M, Dorobisz K. Carbon Ion Radiotherapy in the Head and Neck Cancers Treatment and its Potential Role in Personalized Treatment Approach- A Review of the Current Knowledge. Curr Oncol Rep 2025:10.1007/s11912-025-01673-3. [PMID: 40220260 DOI: 10.1007/s11912-025-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE OF REVIEW Head and neck cancer (HNC) is a complex, heterogeneous group of malignancies. In treatment a combined modality therapy with surgery, radiotherapy and chemotherapy is usually advised. The use of charged particles was a breakthrough in radiation oncology and allowed the initiation of cancer treatment with high-precision. The purpose of the work is to discuss the role of carbon ion radiotherapy in the treatment of head and neck cancers. RECENT FINDINGS Heavy ions such as carbon have more favorable physical and radiobiological properties than photons. The unique properties of carbon ions enable radiotherapy with dose escalation to tumors, while reducing both, radiation dose to adjacent normal tissues and radiation area. Considering its exceptional features, carbon ion radiotherapy offers promising results with acceptable toxicity regarding treatment of uncommon and rare malignancies, especially treated for a recurrent disease. HNC patients with adenoid cystic carcinoma and mucosal melanoma of the head and neck, which are considered to be radiation resistant, should benefit more from carbon ion radiotherapy than proton beam therapy or conventional photon radiotherapy. Also selected patients with other head and neck malignancies can benefit form carbon ion radiotherapy including advanced salivary gland cancer and nasopharyngeal cancer patients. Carbon ion radiotherapy offers better dose distributions, higher tumor doses, and an increased odds of local control and prolonged survival. Carbon ion radiotherapy represents a promising alternative to conventional photon RT or even proton beam therapy especially in treatment of radioresistant tumors situated close to critical organs.
Collapse
Affiliation(s)
- Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland.
| | - Joanna Krajewska
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| | - Marta Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| | - Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| |
Collapse
|
3
|
Liang X, Mohammadi H, Moreno KC, Beltran CJ, Holtzman AL. Heavy Ion Particle Therapy in Modern Day Radiation Oncology. Hematol Oncol Clin North Am 2025; 39:377-397. [PMID: 39694779 DOI: 10.1016/j.hoc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Heavy ion radiotherapy is an emerging technology for treating radioresistant solid tumors. Unlike current low-linear energy transfer techniques, heavy ion radiotherapy, such as carbon ion radiotherapy, enhances the biologic effects related to cancer therapy. Prospective clinical evidence has demonstrated feasibility and efficacy in several disease sites, including head and neck, thoracic, central nervous system, gastrointestinal, pelvic tumors, and sarcomas. Although presently unavailable in the Americas, Mayo Clinic is constructing a heavy ion facility in the United States that is planned for clinical operation in 2028.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Kathryn C Moreno
- Department of Administration, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
4
|
Vischioni B, Barcellini A, Magro G, Rotondi M, Durante M, Facoetti A, Thariat J, Orlandi E. Radioresistant, Rare, Recurrent, and Radioinduced: 4 Rs of Hadrontherapy for Patients Selections. Int J Part Ther 2025; 15:100737. [PMID: 39927286 PMCID: PMC11804719 DOI: 10.1016/j.ijpt.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose To describe the role of hadrontherapy (HT) in treating radioresistant, rare, recurrent, and radio-induced tumors, which can be defined, in assonance with the 4Rs of radiobiology, the "4Rs" of HT indications. Materials and Methods This is a narrative review written by a multidisciplinary team consisting of radiation oncologists, radiobiologists, and physicists on the current literature on HT, particularly carbon ion radiation therapy. To refine HT indications within the context of the "4Rs" framework, we evaluated tumor histologies across different clinical indication settings and emphasized the radiobiological mechanisms contributing to the effectiveness of HT. Results For rare, radioresistant, recurrent, and radio-induced tumors, HT has proven to be effective and safe, achieving high rates of local response with mild toxicity. The current review shows that the biological parameters can assist clinicians in identifying appropriate cases for HT treatment. Conclusion Biological characteristics of the tumor support the administration of HT in radioresistant, rare, recurrent, and radio-induced tumors and should be considered during multidisciplinary discussions.
Collapse
Affiliation(s)
- Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Marco Rotondi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
- Department of Physics, Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Physics "Ettore Pancini," University Federico II, Naples
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Juliette Thariat
- Département de Radiothérapie, Centre François Baclesse, Caen, France
| | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
5
|
Rutenberg MS, Chuong MD, Frakes JM. Reirradiation in the Management of Locally Recurrent Rectal Adenocarcinoma. Pract Radiat Oncol 2025; 15:e166-e171. [PMID: 39672321 DOI: 10.1016/j.prro.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Rectal cancer recurrence after prior radiation therapy presents a difficult treatment challenge. Salvage treatment can be curative; however, it often requires multimodality therapy which can come with significant treatment-related morbidity. Reirradiation is a common part of treatment considerations in this setting and presents challenges in balancing appropriately aggressive therapy to improve disease control and cure rates with the addition of excess toxicity. Surgery remains the mainstay of curative salvage therapy for locally recurrent rectal cancer (LRRC) after prior radiation. Preoperative reirradiation improves R0 resection rates and local control and is associated with improved disease control outcomes. Altered fractionation and intraoperative radiation therapy are often used to improve the therapeutic ratio in the setting of reirradiation for LRRC. Herein, we discuss the evidence supporting multimodality salvage therapy for LRRC, including the importance of surgical salvage, the benefits of reirradiation, various approaches for reirradiation, and treatment-associated toxicities. Finally, we provide our recommendations for how to approach reirradiation for locally recurrent rectal cancer.
Collapse
Affiliation(s)
- Michael S Rutenberg
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida.
| | - Michael D Chuong
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jessica M Frakes
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
6
|
Eo Y, Kwon NH, Bae J, Cheon B, Cho G, Choi S, Do H, Ha S, Huh C, Hwang K, Jang H, Jang S, Jang Y, Jeong J, Kim B, Kim B, Kim D, Kim S, Ko S, Lee H, Lee H, Lee J, Lee J, Lee S, Lee W, Lee Y, Lim S, Park H, Ryu J, Kim JS, Ryu MS, Yoo H, Kim DW, Kim M. Simulation study for the energy and position reconstruction performances of the beam monitoring system of Carbon Ion Radiation Therapy using GEANT4. PLoS One 2025; 20:e0313862. [PMID: 39903709 PMCID: PMC11793812 DOI: 10.1371/journal.pone.0313862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 02/06/2025] Open
Abstract
Carbon Ion Radiation Therapy is operated in several countries because of its advantage to have high dose concentration and/or high linear energy transfer (LET). To estimate the beam performance of Carbon Ion Radiation Therapy, we target the 1% energy and 1 mm2 position resolutions of the beam monitoring system. The beam monitoring system consists of a scintillation crystal and fiber hodoscope. The scintillation crystal is 20 × 20 × 120mm3 and its candidates are LYSO, CsI and BGO. The fiber hodoscope is composed of 1 mm thickness scintillation fibers and the fibers are arranged vertically for 2D reconstruction. With GEANT4 simulation, we verify the performance of our beam monitoring system. The energy response of the LYSO and BGO scintillators is linear within ± 2%. The energy resolution of each crystal candidate achieves the goal; LYSO (0.061%), CsI (0.20%) and BGO (0.10%). The position is reconstructed via fiber hodoscope within 5% uncertainty.
Collapse
Affiliation(s)
- Yun Eo
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Na Hye Kwon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Joonsuk Bae
- Department of Physics, Sungkyunkwan University, Seoul, South Korea
| | - Byunggu Cheon
- Department of Physics, Hanyang University, Seoul, South Korea
| | - Guk Cho
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Suyong Choi
- Department of Physics, Korea University, Seoul, South Korea
| | - Hyunsuk Do
- Department of Physics, Kyungpook National University, Daegu, South Korea
| | - Seungkyu Ha
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Changgi Huh
- Department of Physics, Kyungpook National University, Daegu, South Korea
| | - Kyuyeong Hwang
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Haeun Jang
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Seoyun Jang
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Yoonjun Jang
- Department of Mathematics and Physics, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jinryong Jeong
- Department of Mathematics and Physics, Gangneung-Wonju National University, Gangneung, South Korea
| | - Beomkyu Kim
- Department of Physics, Sungkyunkwan University, Seoul, South Korea
| | - Bobae Kim
- Department of Physics, Kyungpook National University, Daegu, South Korea
| | - Dongwoon Kim
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Sungwon Kim
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Sanghyun Ko
- Department of Physics, Seoul National University, Seoul, South Korea
| | - Hyupwoo Lee
- Department of Physics, University of Seoul, Seoul, South Korea
| | - Hyungjun Lee
- Department of Physics, Sungkyunkwan University, Seoul, South Korea
| | - Jason Lee
- Department of Physics, University of Seoul, Seoul, South Korea
| | - Junghyun Lee
- Department of Physics, Kyungpook National University, Daegu, South Korea
| | - Sehwook Lee
- Department of Physics, Kyungpook National University, Daegu, South Korea
| | - Woochan Lee
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Yunjae Lee
- Department of Physics, University of Seoul, Seoul, South Korea
| | - Sanghoon Lim
- Department of Physics, Pusan National University, Busan, South Korea
| | - Hyesung Park
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Jaehyeok Ryu
- Department of Physics, Pusan National University, Busan, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Sang Ryu
- Center for High Energy Physics, Kyungpook National University, Daegu, South Korea
| | - Hwidong Yoo
- Department of Physics, Yonsei University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Minsuk Kim
- Department of Mathematics and Physics, Gangneung-Wonju National University, Gangneung, South Korea
| |
Collapse
|
7
|
Ono T, Koto M. Radical radiotherapy without surgical tumor resection for rectal cancer. World J Clin Oncol 2024; 15:1390-1393. [PMID: 39582612 PMCID: PMC11514419 DOI: 10.5306/wjco.v15.i11.1390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
In this editorial, I would like to comment on the article, recently published in the World Journal of Clinical Oncology. The article focuses on non-surgical treatments for locally recurrent rectal cancer, including the watch-and-wait (WW) strategy after total neoadjuvant therapy (TNT) and particle beam therapy. As treatment options for rectal cancer continue to evolve, the high complete response rate achieved with TNT has led to the development of a new non-surgical approach: WW. Chemoradiotherapy followed by consolidation chemotherapy, in particular, has a low rate of tumor growth and is a treatment aimed at achieving a cure without surgery. However, the risk of recurrence within two years is significant, necessitating careful follow-up. Establishing standardized follow-up methods that can be implemented by many physicians is essential. Carbon ion radiotherapy has demonstrated high local control with a low incidence of severe late toxicities, even after previous pelvic radiotherapy. While these new non-surgical curative treatments for rectal cancer require further investigation, future advancements in this field are anticipated.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masashi Koto
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Miyasaka Y, Lee SH, Souda H, Kaneko T, Hagiwara Y, Chai H, Ishizawa M, Sato H, Iwai T. Treatment Planning Comparison of Gantry-based and Fixed Beams for the Treatment of Liver Tumors With Carbon Ion Therapy. In Vivo 2024; 38:3002-3010. [PMID: 39477437 PMCID: PMC11535904 DOI: 10.21873/invivo.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM This study aimed to compare the use of a rotating gantry in liver tumor carbon-ion radiotherapy using of a fixed-port for treatment planning. MATERIALS AND METHODS Thirty patients with liver tumors were analyzed. Three treatment plans were developed for each case: one with a rotating gantry with a 360° angle, one with fixed ports of 0° and 90° with a ±20° couch rolling setting, and one with fixed ports of 45° and 90° with a ±20° couch rolling setting. The dose-volume histogram parameters of the clinical target volume (CTV) and organs at risk (OARs) for each treatment plan were compared. RESULTS Significant differences in the volume of the liver-gross tumor volume (GTV) of normal liver irradiated with 5 Gy to 15 Gy were found between the gantry treatment plans and fixed-port treatment plans. There were no significant differences in the OARs, except for the CTV and liver GTV, between the gantry and fixed-port treatment plans. CONCLUSION The study results support the potential of using a rotating gantry to reduce liver doses, especially in the low-to-medium dose range, while maintaining target and OAR doses except for the liver. A rotating gantry could be especially useful in cases in which the relationship between the tumor and OAR is complicated by location.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan;
| | - Sung Hyun Lee
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hikaru Souda
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Takashi Kaneko
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasuhito Hagiwara
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hongbo Chai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Miyu Ishizawa
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| |
Collapse
|
9
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
10
|
Takiyama H, Yamada S, Isozaki T, Ikawa H, Shinoto M, Imai R, Koto M. Carbon-Ion Radiation Therapy for Unresectable Locally Recurrent Colorectal Cancer: A Promising Curative Treatment for Both Radiation Therapy: Naïve Cases and Reirradiation Cases. Int J Radiat Oncol Biol Phys 2024; 118:734-742. [PMID: 37776980 DOI: 10.1016/j.ijrobp.2023.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE It is difficult to effectively cure patients with unresectable locally recurrent colorectal cancers (LRCRCs) using conventional chemotherapy or chemoradiation therapy. Furthermore, treatment options vary depending on the patient's history of radiation therapy. Carbon-ion radiation therapy (CIRT) is a potentially curative treatment for these patients. Here, we compare the treatment outcomes of radiation therapy-naïve cases (nRT) and re-irradiation cases (reRT). METHODS AND MATERIALS Patients with LRCRC treated with CIRT at QST Hospital between 2003 and 2019 were eligible. CIRT was administered daily 4 d/wk for 16 fractions. The total irradiated dose was set at 73.6 Gy (relative biologic effectiveness-weighted dose [RBE]) for nRT and 70.4 Gy (RBE) for reRT patients. RESULTS We included 390 nRT cases and 83 reRT cases. The median follow-up period from the initiation of CIRT was 48 (5-208) months. The 3-year overall survival (OS) rates for nRT and reRT were 73% (95% CI, 68%-77%) and 76% (65%-84%), respectively. The 5-year OS rates were 50% (45%-55%) and 50% (38%-61%), respectively. These rates did not differ significantly (P = .55). The 3-year local control (LC) rates for nRT (73.6 Gy) and reRT (70.4 Gy) cases were 80% (75%-84%) and 80% (68%-88%), respectively. The 5-year LC rates were 72% (67%-78%) and 69% (55%-81%), respectively, without a significant difference (P = .56). CONCLUSIONS Our results suggest that CIRT for LRCRC is a very effective and promising treatment for both nRT and reRT cases.
Collapse
Affiliation(s)
- Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuro Isozaki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
11
|
Light E, Bridge P. Clinical indications for carbon-ion radiotherapy in the UK: A critical review. Radiography (Lond) 2024; 30:425-430. [PMID: 38199158 DOI: 10.1016/j.radi.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Carbon-ion radiotherapy (CIRT) has unique radiobiological properties that cause increased radiobiological effect and tumour control, especially with hypoxic tissues. This critical review aimed to evaluate clinical response to CIRT across all published tumour sites to establish if there is a clinical need for a CIRT centre in the UK. METHODS A critical review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Literature searching was undertaken in November 2022 within the PubMed, Science Direct, SCOPUS and Web of Science databases using the term 'carbon ion radiotherapy' in the title, abstract or author keywords. RESULTS After critical appraisal, data was extracted from 78 primary study papers. Strong evidence supported use of CIRT for chondrosarcoma, chordoma, nasopharyngeal, non-small cell lung cancer (NSCLC), oral cavity, prostate, rectal and salivary gland tumours. Further research is needed to strengthen the evidence base for some other tumour types. CONCLUSION The UK's incidence and mortality rates suggest a clinical need for CIRT for chondrosarcoma, chordoma, NSCLC, oral cavity, prostate, and rectal tumours. There is a need to improve survivorship amongst pancreatic, liver, and oesophageal cancer patients. Data published relating to CIRT for these tumours is promising but of lower quality and more research is needed in these areas. IMPLICATIONS FOR PRACTICE The clinical response to CIRT for certain tumours suggests the need for a carbon-ion centre in the UK. Demand for further research [phase III trials] has been identified, giving the UK opportunity to establish a research centre, with opportunity to treat, contributing to world-renowned research whilst improving patient outcomes.
Collapse
Affiliation(s)
- E Light
- School of Health Sciences, University of Liverpool, United Kingdom
| | - P Bridge
- School of Health Sciences, University of Liverpool, United Kingdom.
| |
Collapse
|
12
|
Nagata K, Takiyama H, Tashiro K, Yamadera M, Okamoto K, Kajiwara Y, Shinto E, Kishi Y, Matsukuma S, Yamada S, Ueno H. Multidisciplinary management of locally recurrent rectal cancer with carbon ion radiotherapy followed by prophylactic removal of the irradiated bowel: a case report. Surg Case Rep 2024; 10:13. [PMID: 38196031 PMCID: PMC10776531 DOI: 10.1186/s40792-024-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Locally recurrent rectal cancer (LRRC) involving the upper sacrum is typically incurable, and palliative treatment is the only option for most patients, resulting in a poor prognosis and reduced quality of life. Carbon ion radiotherapy (CIRT) has emerged as a promising modality for treating LRRC. This report presents a case of LRRC with sacral involvement that was managed via multidisciplinary therapy incorporating CIRT. CASE PRESENTATION A 55-year-old male was diagnosed with an anastomotic recurrence of rectal cancer 15 months after undergoing anterior resection. Computed tomography (CT) suggested that the lesion was at an anastomosis site and broadly adherent to the upper sacrum, and colonoscopy confirmed the diagnosis of LRRC. Histopathological examination of the biopsy specimens revealed adenocarcinoma cells and that lesion was genetically RAS-wild. Induction chemotherapy with mFOLFOX6 and panitumumab was used as the first treatment. The recurrent lesion shrank and no signs of distant metastasis were observed after 11 cycles, although the range of the lesions attached to the sacrum remained unchanged. Therefore, we provided CIRT for this inoperable lesion and prophylactically removed the radiation-exposed bowel including the recurrent lesion, because radiation-induced ulcers can cause bleeding and perforation. Despite the presence of considerable fibrosis in the irradiated region, the operation was successful and the postoperative course had no untoward incidents. He is still recurrence-free 24 months following surgery, despite the lack of adjuvant chemotherapy. This is the first report of CIRT followed by CIRT-irradiated bowel removal for an unresectable anastomosis recurrent lesion. CONCLUSIONS The clinical course of this case suggests that CIRT could be a potentially effective therapeutic option for LRRC involving the bowel, as long as the prophylactic removal of the irradiated bowel is performed at the optimal time. Further research involving larger sample sizes is warranted to validate the findings and conclusions of this case report.
Collapse
Affiliation(s)
- K Nagata
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - H Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - K Tashiro
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - M Yamadera
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - K Okamoto
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Y Kajiwara
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - E Shinto
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Y Kishi
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - S Matsukuma
- Department of Pathology and Laboratory Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - S Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - H Ueno
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
13
|
Cai X, Li P, Zhao J, Wang W, Cheng J, Zhang G, Cai S, Zhang Z, Jiang G, Zhang Q, Wang Z. Definitive carbon ion re-irradiation with pencil beam scanning in the treatment of unresectable locally recurrent rectal cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:933-939. [PMID: 37738440 PMCID: PMC10665299 DOI: 10.1093/jrr/rrad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Indexed: 09/24/2023]
Abstract
This study aimed to evaluate the oncological outcomes and safety of carbon ion re-irradiation with pencil beam scanning (PBS) delivery technique for previously irradiated and unresectable locally recurrent rectal cancer (LRRC). Between June 2017 and September 2021, 24 patients of unresectable LRRC with prior pelvic photon radiotherapy who underwent carbon ion re-irradiation at our institute were retrospectively analyzed. Carbon ion radiotherapy was delivered by raster scanning with a median relative biological effectiveness-weighted dose of 72 Gy in 20 fractions. Weekly CT reviews were carried out, and offline adaptive replanning was performed whenever required. The median follow-up duration was 23.8 months (range, 6.2-47.1 months). At the last follow-up, two patients had a local disease progression, and 11 patients developed distant metastases. The 1- and 2-year local control, progression-free survival and overall survival rates were 100 and 93.3%, 70.8 and 45.0% and 86.7 and 81.3%, respectively. There were no Grade 3 or higher acute toxicities observed. Three patients developed Grade 3 late toxicities, one each with gastrointestinal toxicity, skin reaction and pelvic infection. In conclusion, definitive carbon ion re-irradiation with PBS provided superior oncologic results with tolerable toxicities and may be served as a curative treatment strategy in unresectable LRRC.
Collapse
Affiliation(s)
- Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jingfang Zhao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingyi Cheng
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Guangyuan Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| |
Collapse
|
14
|
Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, Bonora M, Chalaszczyk A, Ingargiola R, Riva G, Ronchi S, Valvo F, Fossati P, Ciocca M, Mirandola A, Molinelli S, Pella A, Baroni G, Pullia MG, Facoetti A, Orecchia R, Licitra L, Vago G, Rossi S. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel) 2023; 15:5068. [PMID: 37894434 PMCID: PMC10605728 DOI: 10.3390/cancers15205068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Mario Ciocca
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Giuseppe Pullia
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO-European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology & Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gianluca Vago
- Presidency, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Sandro Rossi
- General Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
15
|
Mantello G, Galofaro E, Bisello S, Chiloiro G, Romano A, Caravatta L, Gambacorta MA. Modern Techniques in Re-Irradiation for Locally Recurrent Rectal Cancer: A Systematic Review. Cancers (Basel) 2023; 15:4838. [PMID: 37835532 PMCID: PMC10571716 DOI: 10.3390/cancers15194838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) plays an important role in the treatment of patients with previously irradiated locally recurrent rectal cancer (LRRC). Over the years, numerous technologies and different types of RT have emerged. The aim of our systematic literature review was to determine whether the new techniques have led to improvements in both outcomes and toxicities. METHODS A computerized search was performed by MEDLINE and the Cochrane database. The studies reported data from patients treated with carbon ion radiotherapy (CIRT), intensity-modulated photon radiotherapy (IMRT), and stereotactic radiotherapy (SBRT). RESULTS Seven publications of the 126 titles/abstracts that emerged from our search met the inclusion criteria and presented outcomes of 230 patients. OS was reported with rates of 90.0% and 73.0% at 1 and 2 years, respectively; LC was 89.0% and 71.6% at 1 and 2 years after re-RT, respectively. Toxicity data vary widely, with emphasis on acute and chronic gastrointestinal and urogenital toxicity, even with modern techniques. CONCLUSION data on toxicity and outcomes of re-RT for LRRC with new technologies are promising compared with 3D techniques. Comparative studies are needed to define the best technique, also in relation to the site of recurrence.
Collapse
Affiliation(s)
- Giovanna Mantello
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy; (G.M.); (S.B.)
| | - Elena Galofaro
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy; (G.M.); (S.B.)
| | - Silvia Bisello
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy; (G.M.); (S.B.)
| | - Giuditta Chiloiro
- Departments of Radiation Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, 00168 Roma, Italy; (G.C.); (A.R.); (M.A.G.)
| | - Angela Romano
- Departments of Radiation Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, 00168 Roma, Italy; (G.C.); (A.R.); (M.A.G.)
| | - Luciana Caravatta
- Department of Radiation Oncology, SS Annunziata Hospital, 66100 Chieti, Italy;
| | - Maria Antonietta Gambacorta
- Departments of Radiation Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, 00168 Roma, Italy; (G.C.); (A.R.); (M.A.G.)
| |
Collapse
|
16
|
Mantello G, Galofaro E, Caravatta L, Di Carlo C, Montrone S, Arpa D, Chiloiro G, De Paoli A, Donato V, Gambacorta MA, Genovesi D, Lupattelli M, Macchia G, Montesi G, Niespolo RM, Palazzari E, Pontoriero A, Scricciolo M, Valvo F, Franco P. Pattern of care for re-irradiation in locally recurrent rectal cancer: a national survey on behalf of the AIRO gastrointestinal tumors study group. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01652-3. [PMID: 37365381 DOI: 10.1007/s11547-023-01652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Radical resection (R0) represents the best curative treatment for local recurrence (LR) rectal cancer. Re-irradiation (re-RT) can increase the rate of R0 resection. Currently, there is a lack of guidelines on Re-RT for LR rectal cancer. The Italian Association of Radiation and clinical oncology for gastrointestinal tumors (AIRO-GI) study group released a national survey to investigate the current clinical practice of external beam radiation therapy in these patients. MATERIAL AND METHODS In February 2021, the survey was designed and distributed to members of the GI working group. The questionnaire consisted of 40 questions regarding center characteristics, clinical indications, doses, and treatment techniques of re-RT for LR rectal cancer. RESULTS A total of 37 questionnaires were collected. Re-RT was reported as an option for neoadjuvant treatment in resectable and unresectable disease by 55% and 75% of respondents, respectively. Long-course treatment with 30-40 Gy (1.8-2 Gy/die, 1.2 Gy bid) and hypofractionated regimen of 30-35 Gy in 5 fractions were used in most centers. A total dose of 90-100 Gy as EqD2 dose (α/β = 5 Gy) was delivered by 46% of the respondents considering the previous treatment. Modern conformal techniques and daily image-guided radiation therapy protocols were used in 94% of centers. CONCLUSION Our survey showed that re-RT treatment is performed with advanced technology that allow a good management of LR rectal cancer. Significant variations were observed in terms of dose and fractionation, highlighting the need for a consensus on a common treatment strategy that could be validated in prospective studies.
Collapse
Affiliation(s)
- Giovanna Mantello
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Elena Galofaro
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy.
| | - Luciana Caravatta
- Department of Radiation Oncology, SS Annunziata Hospital, Chieti, Italy
| | - Clelia Di Carlo
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy
| | | | - Donatella Arpa
- IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Radiotherapy Unit, Meldola, Italy
| | - Giuditta Chiloiro
- Departments of Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonino De Paoli
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vittorio Donato
- Radiation Oncology Division, Oncology and Speciality Medicine Department, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Domenico Genovesi
- Department of Radiation Oncology, SS Annunziata Hospital, Chieti, Italy
| | - Marco Lupattelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Gabriella Macchia
- Radiotherapy Unit, Gemelli Molise Hospital, Catholic University of Sacred Heart, Campobasso, Italy
| | | | | | - Elisa Palazzari
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Melissa Scricciolo
- UOC di Radioterapia Oncologica Mestre, Ospedale dell'Angelo, Venice, Mestre, Italy
| | - Francesca Valvo
- Fondazione CNAO, National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Pierfrancesco Franco
- Department of Translational Medicine, Department of Radiation Oncology, Maggiore Della Carità University Hospital, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
17
|
Sun Y, Zhang X, Jin C, Yue K, Sheng D, Zhang T, Dou X, Liu J, Jing H, Zhang L, Yue J. Prospective, longitudinal analysis of the gut microbiome in patients with locally advanced rectal cancer predicts response to neoadjuvant concurrent chemoradiotherapy. J Transl Med 2023; 21:221. [PMID: 36967379 PMCID: PMC10041716 DOI: 10.1186/s12967-023-04054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Neoadjuvant concurrent chemoradiotherapy (nCCRT) is a standard treatment for locally advanced rectal cancer (LARC). The gut microbiome may be reshaped by radiotherapy through its effects on microbial composition, mucosal immunity, and the systemic immune system. We sought to clarify dynamic, longitudinal changes in the gut microbiome and blood immunomodulators throughout nCCRT and to explore the relationship of such changes with outcomes after nCCRT. METHODS A total of 39 patients with LARC were recruited for this study. Fecal samples and peripheral blood samples were collected from all 39 patients before nCCRT, during nCCRT (at week 3), and after nCCRT (at week 5). The gut microbiota and the microbial community structure were analyzed by 16S rRNA sequencing of the V3-V4 region. Levels of blood immunomodulatory proteins were measured with a Millipore HCKPMAG-11 K kit and Luminex 200 platform (Luminex, USA). RESULTS Cross-sectional and longitudinal analyses revealed that the gut microbiome profile and enterotype exhibited characteristic variations that could distinguish patients with good response (AJCC TRG classification 0-1) vs poor response (TRG 2-3) to nCCRT. Sparse partial least squares regression and canonical correspondence analyses showed multivariate associations between specific microbial taxa, host immunomodulatory proteins, immune cells, and outcomes after nCCRT. An integrated model consisting of baseline Clostridium sensu stricto 1 levels, fold changes in Intestinimonas, blood levels of the herpesvirus entry mediator (HVEM/CD270), and lymphocyte counts could predict good vs poor outcome after nCCRT [area under the receiver-operating characteristics curve (AUC)= 0.821; area under the precision-recall curve [AUPR] = 0.911]. CONCLUSIONS Our results showed that longitudinal variations in specific gut taxa, associated host immune cells, and immunomodulatory proteins before and during nCCRT could be useful for early predictions of the efficacy of nCCRT, which could guide the choice of individualized treatment for patients with LARC.
Collapse
Affiliation(s)
- Yi Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Dou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
18
|
Mori S, Bhattacharyya T, Furuichi W, Tohyama N, Nomoto A, Shinoto M, Takiyama H, Yamada S. Comparison of dosimetries of carbon-ion pencil beam scanning, proton pencil beam scanning and volumetric modulated arc therapy for locally recurrent rectal cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:162-170. [PMID: 36403118 PMCID: PMC9855328 DOI: 10.1093/jrr/rrac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/18/2022] [Indexed: 06/16/2023]
Abstract
We compared the dose distributions of carbon-ion pencil beam scanning (C-PBS), proton pencil beam scanning (P-PBS) and Volumetric Modulated Arc Therapy (VMAT) for locally recurrent rectal cancer. The C-PBS treatment planning computed tomography (CT) data sets of 10 locally recurrent rectal cancer cases were randomly selected. Three treatment plans were created using identical prescribed doses. The beam angles for C-PBS and P-PBS were identical. Dosimetry, including the dose received by 95% of the planning target volume (PTV) (D95%), dose to the 2 cc receiving the maximum dose (D2cc), organ at risk (OAR) volume receiving > 15Gy (V15) and > 30Gy (V30), was evaluated. Statistical significance was assessed using the Wilcoxon signed-rank test. Mean PTV-D95% values were > 95% of the volume for P-PBS and C-PBS, whereas that for VMAT was 94.3%. However, PTV-D95% values in P-PBS and VMAT were < 95% in five and two cases, respectively, due to the OAR dose reduction. V30 and V15 to the rectum/intestine for C-PBS (V30 = 4.2 ± 3.2 cc, V15 = 13.8 ± 10.6 cc) and P-PBS (V30 = 7.3 ± 5.6 cc, V15 = 21.3 ± 13.5 cc) were significantly lower than those for VMAT (V30 = 17.1 ± 10.6 cc, V15 = 55.2 ± 28.6 cc). Bladder-V30 values with P-PBS/C-PBS (3.9 ± 4.8 Gy(RBE)/3.0 ± 4.0 Gy(RBE)) were significantly lower than those with VMAT (7.9 ± 8.1 Gy). C-PBS provided superior dose conformation and lower OAR doses compared with P-PBS and VMAT. C-PBS may be the best choice for cases in which VMAT and P-PBS cannot satisfy dose constraints. C-PBS could be another choice for cases in which VMAT and P-PBS cannot satisfy dose constraints, thereby avoiding surgical resection.
Collapse
Affiliation(s)
- Shinichiro Mori
- Corresponding author. National Institutes for Quantum and Radiological Science and Technology, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, Inageku, Chiba 263-8555, Japan. Office: 81-43-251-2111; Fax: 81-43-284-0198; e-mail:
| | - Tapesh Bhattacharyya
- Department of Radiation Oncology, Tata Medical Center, 14, MAR(E-W), DH Block (Newtown), Action Area I, Newtown, Kolkata, West Bengal 700160, India
| | - Wataru Furuichi
- Accelerator Engineering Corporation, Inage-Ku, Chiba, 263-0043, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Mihama-ku, Chiba, 261-0024m Japan
| | - Akihiro Nomoto
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Hirotoshi Takiyama
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Noticewala SS, Das P. Carbon Ion Radiotherapy for Locally Recurrent Rectal Cancer. Ann Surg Oncol 2021; 29:11-12. [PMID: 34617163 DOI: 10.1245/s10434-021-10900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Sonal S Noticewala
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prajnan Das
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|