1
|
Douglas C, Jain S, Lomeli N, Lepe J, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Kenney MC, Das B, Bota DA. Dual targeting of the mitochondrial Lon peptidase 1 and the chymotrypsin-like proteasome activity as a potential therapeutic strategy in malignant astrocytoma models. Pharmacol Res 2025; 215:107697. [PMID: 40088962 DOI: 10.1016/j.phrs.2025.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Malignant astrocytomas are aggressive primary brain tumors characterized by extensive hypoxia-induced, mitochondria-dependent changes such as altered respiration, increased chymotrypsin-like (CT-L) proteasome activity, decreased apoptosis, drug resistance, stemness, and increased invasiveness. Mitochondrial Lon Peptidase 1 (LonP1) overexpression and increased CT-L proteasome activity are biomarkers of an aggressive high-grade phenotype and found to be associated with recurrence and poor patient survival. In preclinical models, small molecule agents targeting either LonP1 or the proteasome CT-L activity have anti-astrocytoma activity. Here, we present evidence that the dual inhibition of LonP1 and CT-L proteasome activity effectively induces ROS production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We also evaluated a novel small molecule, BT317, derived from the coumarinic compound 4 (CC4) using structure-activity modeling, which we found to inhibit both LonP1 and CT-L proteasome activity. Using gain- and loss-of-function genetic models, we discovered that LonP1 is both necessary and sufficient to drive BT317 drug sensitivity in established and patient-derived glioma stem-like cells by generating ROS and inducing apoptosis. In vitro, BT317 had activity as a single agent but, more importantly, enhanced synergy with the standard of care commonly used chemotherapeutic temozolomide (TMZ). In an orthotopic xenograft astrocytoma model, BT317 crossed the blood-brain barrier, showed selective activity at the tumor site, and demonstrated therapeutic efficacy as a single agent and combined with TMZ. BT317 defines an emerging class of LonP1 and CT-L inhibitors that exhibited promising anti-tumor activity and could be a potential candidate for malignant astrocytoma therapeutics. SIMPLE SUMMARY: Malignant astrocytoma patients have poor clinical outcomes, and novel treatments are needed to limit tumor recurrence and improve their overall survival. These tumors have a malignant phenotype mediated by altered mitochondrial metabolism, abnormal protein processing, and adaptation to hypoxia. We have previously published that astrocytomas are especially vulnerable to proteasome inhibitors as well as to inhibitors of the mitochondrial Lon Peptidase 1 (LonP1), but the effect of combining the two strategies has not been reported. Here, we present evidence that the dual inhibition of LonP1 and Chymotrypsin-like (CT-L) proteasome activity effectively induces cellular reactive oxygen species (ROS) production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We developed BT317, a small molecule dual inhibitor, which crosses the blood-brain barrier and shows strong synergy with the standard of care, temozolomide (TMZ), in the astrocytoma cell lines independent of their isocitrate dehydrogenase (IDH) profile and in an orthotopic glioma murine model. This preclinical study demonstrated the potential of dual LonP1 and CT-L proteasome inhibition as a novel therapeutic strategy for malignant astrocytoma and provides insight for future clinical translational studies alone or in combination with other chemotherapies.
Collapse
Affiliation(s)
- Christopher Douglas
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Shashi Jain
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Javier Lepe
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | | | - Thao Vu
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - James Pham
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Maria Cristina Kenney
- Department of Ophthalmology Research, University of California Irvine, Irvine, CA, USA
| | - Bhaskar Das
- University at Buffalo, The State University of New York (SUNY), USA; School of Pharmacy and Pharmaceutical Sciences, SUNY, NY, USA.
| | - Daniela A Bota
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
3
|
Douglas C, Jain S, Lomeli N, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Lepe J, Kenney MC, Das B, Bota DA. WITHDRAWN: Dual targeting of mitochondrial Lon peptidase 1 and chymotrypsin-like protease by small molecule BT317, as potential therapeutics in malignant astrocytomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536816. [PMID: 37131786 PMCID: PMC10153114 DOI: 10.1101/2023.04.13.536816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
4
|
Adolph JE, Fleischhack G, Tschirner S, Rink L, Dittes C, Mikasch R, Dammann P, Mynarek M, Obrecht-Sturm D, Rutkowski S, Bison B, Warmuth-Metz M, Pietsch T, Pfister SM, Pajtler KW, Milde T, Kortmann RD, Dietzsch S, Timmermann B, Tippelt S. Radiotherapy for Recurrent Medulloblastoma in Children and Adolescents: Survival after Re-Irradiation and First-Time Irradiation. Cancers (Basel) 2024; 16:1955. [PMID: 38893076 PMCID: PMC11171022 DOI: 10.3390/cancers16111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) involving craniospinal irradiation (CSI) is important in the initial treatment of medulloblastoma. At recurrence, the re-irradiation options are limited and associated with severe side-effects. METHODS For pre-irradiated patients, patients with re-irradiation (RT2) were matched by sex, histology, time to recurrence, disease status and treatment at recurrence to patients without RT2. RESULTS A total of 42 pre-irradiated patients with RT2 were matched to 42 pre-irradiated controls without RT2. RT2 improved the median PFS [21.0 (CI: 15.7-28.7) vs. 12.0 (CI: 8.1-21.0) months] and OS [31.5 (CI: 27.6-64.8) vs. 20.0 (CI: 14.0-36.7) months]. Concerning long-term survival after ten years, RT2 only lead to small improvements in OS [8% (CI: 1.4-45.3) vs. 0%]. RT2 improved survival most without (re)-resection [PFS: 17.5 (CI: 9.7-41.5) vs. 8.0 (CI: 6.6-12.2)/OS: 31.5 (CI: 27.6-NA) vs. 13.3 (CI: 8.1-20.1) months]. In the RT-naïve patients, CSI at recurrence improved their median PFS [25.0 (CI: 16.8-60.6) vs. 6.6 (CI: 1.5-NA) months] and OS [40.2 (CI: 18.7-NA) vs. 12.4 (CI: 4.4-NA) months]. CONCLUSIONS RT2 could improve the median survival in a matched cohort but offered little benefit regarding long-term survival. In RT-naïve patients, CSI greatly improved their median and long-term survival.
Collapse
Affiliation(s)
- Jonas E. Adolph
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Sebastian Tschirner
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Lydia Rink
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Christine Dittes
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Ruth Mikasch
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45122 Essen, Germany;
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Denise Obrecht-Sturm
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany;
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital of Bonn, 53105 Bonn, Germany;
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Till Milde
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Pediatric Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
| | - Stefan Dietzsch
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| |
Collapse
|
5
|
Salceda-Rivera V, Tejocote-Romero I, Osorio DS, Bellido-Magaña R, López-Facundo A, Anaya-Aguirre SE, Ortiz-Morales D, Rivera-Luna R, Reyes-Gutiérrez E, Rivera-Gómez R, Velasco-Hidalgo L, Cortés-Alva D, Lagarda-Arrechea S, Arreguín-González FE, Benito-Reséndiz AE, Chávez-Gallegos S, Pérez-Rivera E, Gaytán-Fernández GJ, León-Espitia JA, Domínguez-Sánchez J, Leal-Cavazos C, Simón-González C, Larios-Farak TC, Macías-García NA, García-Espinosa AC, Guerrero-Maymes F, Casillas-Toral P, González-Ramella O. Impact of treatment and clinical characteristics on the survival of children with medulloblastoma in Mexico. Front Oncol 2024; 14:1376574. [PMID: 38756654 PMCID: PMC11096484 DOI: 10.3389/fonc.2024.1376574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Data on medulloblastoma outcomes and experiences in low- and middle-income countries, especially in Latin America, is limited. This study examines challenges in Mexico's healthcare system, focusing on assessing outcomes for children with medulloblastoma in a tertiary care setting. Methods A retrospective analysis was conducted, involving 284 patients treated at 21 pediatric oncology centers in Mexico. Results High-risk patients exhibited markedly lower event-free survival than standard-risk patients (43.5% vs. 78.3%, p<0.001). Influential factors on survival included anaplastic subtype (HR 2.4, p=0.003), metastatic disease (HR 1.9, p=0.001); residual tumor >1.5cm², and lower radiotherapy doses significantly impacted event-free survival (EFS) and overall survival (OS). Platinum-based chemotherapy showed better results compared to the ICE protocol in terms of OS and EFS, which was associated with higher toxicity. Patients under 3 years old displayed notably lower OS and EFS compared to older children (36.1% vs. 55.9%, p=0.01).
Collapse
Affiliation(s)
- Violeta Salceda-Rivera
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Department of Pediatrics, Divisions of Pediatric Hematology-Oncology, Guadalajara, Jalisco, Mexico
| | - Isidoro Tejocote-Romero
- IMIEM, Instituto Materno Infantil del Estado de Mexico, Secretaria de Salud, Toluca, Estado de Mexico, Mexico
- Department of Pediatric Oncology, ISSEMYM, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Estado de Mexico, Mexico
| | | | | | - Araceli López-Facundo
- Department of Pediatric Oncology, ISSEMYM, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Estado de Mexico, Mexico
| | | | - Daniel Ortiz-Morales
- Department of Pediatric Oncology, Hospital General de México “Dr. Eduardo Liceaga”, Mexico City, Mexico
- Department of Pediatric Oncology, Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City, Mexico
| | - Roberto Rivera-Luna
- Department of Pediatric Oncology, Instituto Nacional de Pediatria, Mexico City, Mexico
| | | | - Rebeca Rivera-Gómez
- Hospital General de Tijuana, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico
| | | | - Deyanira Cortés-Alva
- Hospital del Niño DIF Hidalgo, Sistema Nacional para el Desarrollo Integral de la Familia, Hidalgo, Mexico
| | | | - Farina E. Arreguín-González
- Centro Médico Nacional “20 de Noviembre” del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma E. Benito-Reséndiz
- Centro Médico Nacional “20 de Noviembre” del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Silvia Chávez-Gallegos
- Department of Pediatric Oncology, Hospital Infantil “Eva Samano de López Mateos”, Morelia, Michoacan, Mexico
| | - Eloy Pérez-Rivera
- Department of Pediatric Oncology, Hospital Infantil “Eva Samano de López Mateos”, Morelia, Michoacan, Mexico
| | - Guillermo J. Gaytán-Fernández
- Hospital General Regional de Leon, Leon, Guanajuato, Mexico
- Department of Pediatric Oncology, Hospital Regional de Alta Especialidad del Bajío, Leon, Guanajuato, Mexico
| | | | | | - Carlos Leal-Cavazos
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo Leon, Nuevo Leon, Mexico
| | - Citlalli Simón-González
- Department of Pediatric Oncology, Hospital Regional de Alta Especialidad del Niño “ Dr. Rodolfo Nieto Padrón”, Tabasco, Mexico
| | - Tania C. Larios-Farak
- Department of Pediatric Oncology, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Nubia A. Macías-García
- Department of Pediatric Oncology, Hospital del Niño “Dr. Federico Gómez Santos”, Saltillo, Coahuila, Mexico
| | - Ana C. García-Espinosa
- Department of Pediatric Oncology, Hospital Infantil de Especialidades de Chihuahua, Chihuahua, Chihuahua, Mexico
| | | | - Paola Casillas-Toral
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Department of Pediatrics, Divisions of Pediatric Hematology-Oncology, Guadalajara, Jalisco, Mexico
| | - Oscar González-Ramella
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Department of Pediatrics, Divisions of Pediatric Hematology-Oncology, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Kresbach C, Holst L, Schoof M, Leven T, Göbel C, Neyazi S, Tischendorf J, Loose C, Wrzeszcz A, Yorgan T, Rutkowski S, Schüller U. Intraventricular SHH inhibition proves efficient in SHH medulloblastoma mouse model and prevents systemic side effects. Neuro Oncol 2024; 26:609-622. [PMID: 37767814 PMCID: PMC10995518 DOI: 10.1093/neuonc/noad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Lea Holst
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Tara Leven
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Jacqueline Tischendorf
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Loose
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Antonina Wrzeszcz
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Dinikina YV, Zheludkova OG, Belogurova MB, Spelnikov DM, Osipov NN, Nikitina IL. Personalized treatment options of refractory and relapsed medulloblastoma in children: literature review. JOURNAL OF MODERN ONCOLOGY 2024; 25:454-465. [DOI: 10.26442/18151434.2023.4.202521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in pediatric patients. Despite the complex anticancer therapy approach, refractory and relapsing forms of the disease remain fatal in most cases and account for approximately 30%. To date, repeated surgery, radiation, and chemotherapy can be used as life-prolonging treatment options; nevertheless, it should be emphasized that there are no standardized approaches based on existing data of molecular variants of MB. It is obvious that only a deep understanding of the biological mechanisms in association with clinical aspects in refractory and relapsing forms of MB would make it possible to personalize second- and subsequent-line therapy in order to achieve maximum efficiency and minimize early and long-term toxicity. The article presents the current understanding of prognostic factors in relapsed/refractory forms of MB, methods of modern diagnostics, as well as existing and perspective treatment options based on the biological and clinical aspects of the disease.
Collapse
|
8
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
9
|
Trkova K, Sumerauer D, Krskova L, Vicha A, Koblizek M, Votava T, Priban V, Zapotocky M. DIPG-like MYB-altered diffuse astrocytoma with durable response to intensive chemotherapy. Childs Nerv Syst 2023; 39:2509-2513. [PMID: 37165121 PMCID: PMC10432314 DOI: 10.1007/s00381-023-05976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Pontine gliomas represent difficult to treat entity due to the location and heterogeneous biology varying from indolent low-grade gliomas to aggressive diffuse intrinsic pontine glioma (DIPG). Making the correct tumor diagnosis in the pontine location is thus critical. Here, we report a case study of a 14-month-old patient initially diagnosed as histone H3 wild-type DIPG. Due to the low age of the patient, the MRI appearance of DIPG, and anaplastic astrocytoma histology, intensive chemotherapy based on the HIT-SKK protocol with vinblastine maintenance chemotherapy was administered. Rapid clinical improvement and radiological regression of the tumor were observed with nearly complete remission with durable effect and excellent clinical condition more than 6.5 years after diagnosis. Based on this unexpected therapeutic outcome, genome-wide DNA methylation array was employed and the sample was classified into the methylation class "Low-grade glioma, MYB(L1) altered." Additionally, RT-PCR revealed the presence of MYB::QKI fusion. Taken together, the histopathological classification, molecular-genetic and epigenetic features, clinical behavior, and pontine location have led us to reclassify the tumor as a pontine MYB-altered glioma. Our case demonstrates that more intensive chemotherapy can achieve long-term clinical effect in the treatment of MYB-altered pontine gliomas compared to previously used LGG-based regimens or radiotherapy. It also emphasizes the importance of a biopsy and a thorough molecular investigation of pontine lesions.
Collapse
Affiliation(s)
- Katerina Trkova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - David Sumerauer
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Lenka Krskova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Ales Vicha
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Miroslav Koblizek
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Tomas Votava
- Department of Pediatrics, University Hospital in Pilsen, Alej Svobody 80, Pilsen-Lochotin, 323 00, Czech Republic
| | - Vladimir Priban
- Department of Neurosurgery, University Hospital in Pilsen, Alej Svobody 80, Pilsen-Lochotin, 323 00, Czech Republic
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
| |
Collapse
|
10
|
Bagchi A, Dhanda SK, Dunphy P, Sioson E, Robinson GW. Molecular Classification Improves Therapeutic Options for Infants and Young Children With Medulloblastoma. J Natl Compr Canc Netw 2023; 21:1097-1105. [PMID: 37643637 PMCID: PMC10765405 DOI: 10.6004/jnccn.2023.7024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 08/31/2023]
Abstract
Medulloblastoma in infants and young children is a major challenge to treat because craniospinal irradiation (CSI), a cornerstone of therapy for older children, is disproportionately damaging to very young children. As a result, trials have attempted to delay, omit, and replace this therapy. Although success has been limited, the approach has not been a complete failure. In fact, this approach has cured a significant number of children with medulloblastoma. However, many children have endured intensive regimens of chemotherapy only to experience relapse and undergo salvage treatment with CSI, often at higher doses and with worse morbidity than they would have initially experienced. Recent advancements in molecular diagnostics have proven that response to therapy is biologically driven. Medulloblastoma in infants and young children is divided into 2 molecular groups: Sonic Hedgehog (SHH) and group 3 (G3). Both are chemotherapy-sensitive, but only the SHH medulloblastomas are reliably cured with chemotherapy alone. Moreover, SHH can be molecularly parsed into 2 groups: SHH-1 and SHH-2, with SHH-2 showing higher cure rates with less intensive chemotherapy and SHH-1 requiring more intensive regimens. G3 medulloblastoma, on the other hand, has a near universal relapse rate after chemotherapy-only regimens. This predictability represents a significant breakthrough and affords oncologists the ability to properly risk-stratify therapy in such a way that the most curative and least toxic therapy is selected. This review examines the treatment of medulloblastoma in infants and young children, discusses the molecular advancements, and proposes how to use this information to structure the future management of this disease.
Collapse
Affiliation(s)
- Aditi Bagchi
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sandeep K. Dhanda
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paige Dunphy
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Giles W. Robinson
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
11
|
Perek-Polnik M, Cochrane A, Wang J, Chojnacka M, Drogosiewicz M, Filipek I, Swieszkowska E, Tarasinska M, Grajkowska W, Trubicka J, Kowalczyk P, Dembowska-Bagińskai B, Abdelbaki MS. Risk-Adapted Treatment Strategies with Pre-Irradiation Chemotherapy in Pediatric Medulloblastoma: Outcomes from the Polish Pediatric Neuro-Oncology Group. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1387. [PMID: 37628386 PMCID: PMC10453075 DOI: 10.3390/children10081387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Craniospinal irradiation (CSI) has been a major component of the standard of care treatment backbone for childhood medulloblastoma. However, chemotherapy regimens have varied based on protocol, patient age, and molecular subtyping. In one of the largest studies to date, we analyzed treatment outcomes in children with newly-diagnosed medulloblastoma treated with pre-irradiation chemotherapy followed by risk-adapted radiotherapy and maintenance chemotherapy. A total of 153 patients from the Polish Pediatric Neuro-Oncology Group were included in the analysis. The median age at diagnosis was 8.0 years, and median follow-up time was 6.4 years. Sixty-seven patients were classified as standard-risk and eighty-six as high-risk. Overall survival (OS) and event-free survival (EFS) for standard-risk patients at 5 years (±standard error) were 87 ± 4.3% and 84 ± 4.6%, respectively, while 5-year OS and EFS for high-risk patients were 81 ± 4.3% and 79 ± 4.5%, respectively. Only one patient had disease progression prior to radiotherapy. This study demonstrates promising survival outcomes in patients treated with pre-irradiation chemotherapy followed by risk-adapted CSI and adjuvant chemotherapy. Such an approach may be useful in cases where the initiation of radiotherapy may need to be delayed, a common occurrence in many institutions globally.
Collapse
Affiliation(s)
- Marta Perek-Polnik
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Anne Cochrane
- Division of Hematology and Oncology, Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jinli Wang
- Center for Biostatistics and Data Science, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marzanna Chojnacka
- Maria Sklodowska-Curie National Research Institute of Oncology, Pediatric Radiotherapy Centre, 00-001 Warsaw, Poland
| | - Monika Drogosiewicz
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Iwona Filipek
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Ewa Swieszkowska
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Magdalena Tarasinska
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Wiesława Grajkowska
- Department of Pathology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (W.G.); (J.T.)
| | - Joanna Trubicka
- Department of Pathology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (W.G.); (J.T.)
| | - Paweł Kowalczyk
- Department of Neurosurgery, Children’s Memorial Health Institute, 01-211 Warsaw, Poland;
| | - Bożenna Dembowska-Bagińskai
- Department of Oncology, Children’s Memorial Health Institute, 01-211 Warsaw, Poland; (M.D.); (I.F.); (E.S.); (M.T.); (B.D.-B.)
| | - Mohamed S. Abdelbaki
- Division of Hematology and Oncology, Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Stepien N, Senfter D, Furtner J, Haberler C, Dorfer C, Czech T, Lötsch-Gojo D, Mayr L, Hedrich C, Baumgartner A, Aliotti-Lippolis M, Schned H, Holler J, Bruckner K, Slavc I, Azizi AA, Peyrl A, Müllauer L, Madlener S, Gojo J. Proof-of-Concept for Liquid Biopsy Disease Monitoring of MYC-Amplified Group 3 Medulloblastoma by Droplet Digital PCR. Cancers (Basel) 2023; 15:2525. [PMID: 37173990 PMCID: PMC10177279 DOI: 10.3390/cancers15092525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Liquid biopsy diagnostic methods are an emerging complementary tool to imaging and pathology techniques across various cancer types. However, there is still no established method for the detection of molecular alterations and disease monitoring in MB, the most common malignant CNS tumor in the pediatric population. In the presented study, we investigated droplet digital polymerase chain reaction (ddPCR) as a highly sensitive method for the detection of MYC amplification in bodily fluids of group 3 MB patients. METHODS We identified a cohort of five MYC-amplified MBs by methylation array and FISH. Predesigned and wet-lab validated probes for ddPCR were used to establish the detection method and were validated in two MYC-amplified MB cell lines as well as tumor tissue of the MYC-amplified cohort. Finally, a total of 49 longitudinal CSF samples were analyzed at multiple timepoints during the course of the disease. RESULTS Detection of MYC amplification by ddPCR in CSF showed a sensitivity and specificity of 90% and 100%, respectively. We observed a steep increase in amplification rate (AR) at disease progression in 3/5 cases. ddPCR was proven to be more sensitive than cytology for the detection of residual disease. In contrast to CSF, MYC amplification was not detectable by ddPCR in blood samples. CONCLUSIONS ddPCR proves to be a sensitive and specific method for the detection of MYC amplification in the CSF of MB patients. These results warrant implementation of liquid biopsy in future prospective clinical trials to validate the potential for improved diagnosis, disease staging and monitoring.
Collapse
Affiliation(s)
- Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems-Stein, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Cora Hedrich
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Maria Aliotti-Lippolis
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Hannah Schned
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Johannes Holler
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Amedeo A. Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| |
Collapse
|
13
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Rossi M, Talbot J, Piris P, Grand ML, Montero MP, Matteudi M, Agavnian-Couquiaud E, Appay R, Keime C, Williamson D, Buric D, Bourgarel V, Padovani L, Clifford SC, Ayrault O, Pasquier E, André N, Carré M. Beta-blockers disrupt mitochondrial bioenergetics and increase radiotherapy efficacy independently of beta-adrenergic receptors in medulloblastoma. EBioMedicine 2022; 82:104149. [PMID: 35816899 PMCID: PMC9283511 DOI: 10.1016/j.ebiom.2022.104149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Background Medulloblastoma is the most frequent brain malignancy of childhood. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Drug repurposing is a strategy to fast-track anti-cancer therapy with low toxicity. Here, we showed the ability of β-blockers to potentiate radiotherapy in medulloblastoma with bad prognosis. Methods Medulloblastoma cell lines, patient-derived xenograft cells, 3D spheroids and an innovative cerebellar organotypic model were used to identify synergistic interactions between β-blockers and ionising radiations. Gene expression profiles of β-adrenergic receptors were analysed in medulloblastoma samples from 240 patients. Signaling pathways were explored by RT-qPCR, RNA interference, western blotting and RNA sequencing. Medulloblastoma cell bioenergetics were evaluated by measuring the oxygen consumption rate, the extracellular acidification rate and superoxide production. Findings Low concentrations of β-blockers significantly potentiated clinically relevant radiation protocols. Although patient biopsies showed detectable expression of β-adrenergic receptors, the ability of the repurposed drugs to potentiate ionising radiations did not result from the inhibition of the canonical signaling pathway. We highlighted that the efficacy of the combinatorial treatment relied on a metabolic catastrophe that deprives medulloblastoma cells of their adaptive bioenergetics capacities. This led to an overproduction of superoxide radicals and ultimately to an increase in ionising radiations-mediated DNA damages. Interpretation These data provide the evidence of the efficacy of β-blockers as potentiators of radiotherapy in medulloblastoma, which may help improve the treatment and quality of life of children with high-risk brain tumours. Funding This study was funded by institutional grants and charities.
Collapse
|
15
|
Gupta T, Kalra B, Goswami S, Deodhar J, Rane P, Epari S, Moiyadi A, Dasgupta A, Chatterjee A, Chinnaswamy G. Neurocognitive function and survival in children with average-risk medulloblastoma treated with hyperfractionated radiation therapy alone: Long-term mature outcomes of a prospective study. Neurooncol Pract 2022; 9:236-245. [PMID: 35601967 PMCID: PMC9113282 DOI: 10.1093/nop/npac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The purpose of this study was to report long-term neurocognitive and clinical outcomes in children treated for average-risk medulloblastoma with hyperfractionated radiation therapy (HFRT) alone. Methods Between 2006 and 2010, 20 children with rigorously staged average-risk medulloblastoma were treated on a prospective study with HFRT without upfront adjuvant systemic chemotherapy after written informed consent. HFRT was delivered as twice-daily fractions (1 Gy/fraction, 6-8 hours apart, 5 days/week) to craniospinal axis (36 Gy/36 fractions) plus conformal tumor-bed boost (32 Gy/32 fractions). Neurocognitive function was assessed at baseline and periodically on follow-up using age-appropriate intelligence quotient (IQ) scales. Results Median age was 8 years (range 5-14 years) with 70% being males. Mean and standard deviation (SD) scores at baseline were 90.5 (SD = 17.08), 88 (SD = 16.82) and 88 (SD = 17.24) for Verbal Quotient (VQ), Performance Quotient (PQ), and Full-Scale IQ (FSIQ) respectively. Mean scores remained stable in the short-to-medium term but declined gradually beyond 5 years with borderline statistical significance for VQ (P = .042), but nonsignificant decline in PQ (P = .259) and FSIQ (P = .108). Average rate of neurocognitive decline was <1 IQ point per year over a 10-year period. Regression analysis stratified by age, gender, and baseline FSIQ failed to demonstrate any significant impact of the tested covariates on longitudinal neurocognitive function. At a median follow-up of 145 months, 10-year Kaplan-Meier estimates of progression-free survival and overall survival were 63.2% and 74.1% respectively. Conclusion HFRT alone without upfront adjuvant chemotherapy in children with average-risk medulloblastoma is associated with modest decline in neurocognitive functioning with acceptable long-term survival outcomes and may be most appropriate for resource-constrained settings.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Babusha Kalra
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Savita Goswami
- Clinical Psychology & Psychiatry Unit, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Jayita Deodhar
- Clinical Psychology & Psychiatry Unit, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Pallavi Rane
- Clinical Research Secretariat, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neuro-Surgery, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| |
Collapse
|
16
|
Leary SES, Kilburn L, Geyer JR, Kocak M, Huang J, Smith KS, Hadley J, Ermoian R, MacDonald TJ, Goldman S, Phillips P, Young Poussaint T, Olson JM, Ellison DW, Dunkel IJ, Fouladi M, Onar-Thomas A, Northcott PA. Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: A report from the Pediatric Brain Tumor Consortium (PBTC-026). Neuro Oncol 2021; 24:1178-1190. [PMID: 34935967 PMCID: PMC9248403 DOI: 10.1093/neuonc/noab293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Embryonal tumors of the CNS are the most common malignant tumors occurring in the first years of life. This study evaluated the feasibility and safety of incorporating novel non-cytotoxic therapy with vorinostat and isotretinoin to an intensive cytotoxic chemotherapy backbone. METHODS PBTC-026 was a prospective multi-institutional clinical trial for children <48 months of age with newly diagnosed embryonal tumors of the CNS. Treatment included three 21-day cycles of induction therapy with vorinostat and isotretinoin, cisplatin, vincristine, cyclophosphamide, and etoposide; three 28-day cycles of consolidation therapy with carboplatin and thiotepa followed by stem cell rescue; and twelve 28-day cycles of maintenance therapy with vorinostat and isotretinoin. Patients with M0 medulloblastoma (MB) received focal radiation following consolidation therapy. Molecular classification was by DNA methylation array. RESULTS Thirty-one patients with median age of 26 months (range 6-46) received treatment on study; 19 (61%) were male. Diagnosis was MB in 20 and supratentorial CNS embryonal tumor in 11. 24/31 patients completed induction therapy within a pre-specified feasibility window of 98 days. Five-year progression-free survival (PFS) and overall survival (OS) for all 31 patients were 55 ± 15 and 61 ± 13, respectively. Five-year PFS was 42 ± 13 for group 3 MB (n = 12); 80 ± 25 for SHH MB (n = 5); 33 ± 19 for embryonal tumor with multilayered rosettes (ETMR, n = 6). CONCLUSION It was safe and feasible to incorporate vorinostat and isotretinoin into an intensive chemotherapy regimen. Further study to define efficacy in this high-risk group of patients is warranted.
Collapse
Affiliation(s)
- Sarah E S Leary
- Corresponding Author: Sarah E. S. Leary, MD, MS, Seattle Children’s Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA 98105, USA ()
| | - Lindsay Kilburn
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - J Russell Geyer
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mehmet Kocak
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Peter Phillips
- Department of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Olson
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maryam Fouladi
- Department of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Kloth K, Obrecht D, Sturm D, Pietsch T, Warmuth-Metz M, Bison B, Mynarek M, Rutkowski S. Defining the Spectrum, Treatment and Outcome of Patients With Genetically Confirmed Gorlin Syndrome From the HIT-MED Cohort. Front Oncol 2021; 11:756025. [PMID: 34888241 PMCID: PMC8649840 DOI: 10.3389/fonc.2021.756025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
Gorlin syndrome is a genetic condition associated with the occurrence of SHH activated medulloblastoma, basal cell carcinoma, macrocephaly and other congenital anomalies. It is caused by heterozygous pathogenic variants in PTCH1 or SUFU. In this study we included 16 patients from the HIT2000, HIT2000interim, I-HIT-MED, observation registry and older registries such as HIT-SKK87, HIT-SKK92 (1987 – 2020) with genetically confirmed Gorlin syndrome, harboring 10 PTCH1 and 6 SUFU mutations. Nine patients presented with desmoplastic medulloblastomas (DMB), 6 with medulloblastomas with extensive nodularity (MBEN) and one patient with classic medulloblastoma (CMB); all tumors affected the cerebellum, vermis or the fourth ventricle. SHH activation was present in all investigated tumors (14/16); DNA methylation analysis (when available) classified 3 tumors as iSHH-I and 4 tumors as iSHH-II. Age at diagnosis ranged from 0.65 to 3.41 years. All but one patient received chemotherapy according to the HIT-SKK protocol. Ten patients were in complete remission after completion of primary therapy; four subsequently presented with PD. No patient received radiotherapy during initial treatment. Five patients acquired additional neoplasms, namely basal cell carcinomas, odontogenic tumors, ovarian fibromas and meningioma. Developmental delay was documented in 5/16 patients. Overall survival (OS) and progression-free survival (PFS) between patients with PTCH1 or SUFU mutations did not differ statistically (10y-OS 90% vs. 100%, p=0.414; 5y-PFS 88.9% ± 10.5% vs. 41.7% ± 22.2%, p=0.139). Comparing the Gorlin patients to all young, SHH activated MBs in the registries (10y-OS 93.3% ± 6.4% vs. 92.5% ± 3.3%, p=0.738; 10y-PFS 64.9%+-16.7% vs. 83.8%+-4.5%, p=0.228) as well as comparing Gorlin M0 SKK-treated patients to all young, SHH activated, M0, SKK-treated MBs in the HIT-MED database did not reveal significantly different clinical outcomes (10y-OS 88.9% ± 10.5% vs. 88% ± 4%, p=0.812; 5y-PFS 87.5% ± 11.7% vs. 77.7% ± 5.1%, p=0.746). Gorlin syndrome should be considered in young children with SHH activated medulloblastoma, especially DMB and MBEN but cannot be ruled out for CMB. Survival did not differ to patients with SHH-activated medulloblastoma with unknown germline status or between PTCH1 and SUFU mutated patients. Additional neoplasms, especially basal cell carcinomas, need to be expected and screened for. Genetic counselling should be provided for families with young medulloblastoma patients with SHH activation.
Collapse
Affiliation(s)
- Katja Kloth
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Deutsche Gesellschaft für Neuropathologie und Neuroanatomie (DGNN) Brain Tumor Reference Center, Bonn, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Zhang Y, Wang T, Zhuang Y, He T, Wu X, Su L, Kang J, Chang J, Wang H. Sodium Alginate Hydrogel-Mediated Cancer Immunotherapy for Postoperative In Situ Recurrence and Metastasis. ACS Biomater Sci Eng 2021; 7:5717-5726. [PMID: 34757733 DOI: 10.1021/acsbiomaterials.1c01216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the development of technology, adjuvant immunotherapy has become a promising strategy for prevention of postoperative tumor regression and metastasis by stimulating the host immune response. However, the therapeutic effects are still unsatisfactory due to the lack of synergy between different methods. In this study, an efficient synergistic immunotherapy system based on injectable sodium alginate hydrogels was designed to inhibit in situ recurrence and metastasis at the same time. On the one hand, an injectable sodium alginate (SA) hydrogel microsystem loaded with toll-like receptor (TLR) agonists (CpG ODNs) was synthesized for inhibiting in situ recurrence, and then carcinoembryonic antigen (CEA) probe was also added to detect CEA based on fluorescence resonance energy transfer (FRET) technology to monitor the occurrence and development of tumor recurrence. On the other hand, an anti-programmed cell death 1 ligand 1 antibody (anti-PD-L1)-modified SA nanogel loaded with indocyanine green (ICG@SA-anti-PD-L1 nanogel) was prepared for diagnosing and inhibiting lung metastasis by assisting orthotopic tumor therapy. In vitro and in vivo results demonstrated that this SA micro/nanosystem could monitor and inhibit postoperative recurrence and metastasis. We hope that this micro/nano-synergistic system will become an effective strategy for postoperative adjuvant immunotherapy.
Collapse
Affiliation(s)
- Yingying Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, Jiangsu, China
| | - Tiange Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| | - Yinping Zhuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, Jiangsu, China
| | - Tiandi He
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoli Wu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Jun Kang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| | - Jin Chang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| | - Hanjie Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Bandopadhayay P, Chi SN. The challenges in treating Embryonal Tumors with Multilayered Rosettes (ETMR) and other infant brain tumors. Neuro Oncol 2021; 24:138-140. [PMID: 34477207 DOI: 10.1093/neuonc/noab206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center.,Department of Pediatrics, Harvard Medical School.,Broad Institute of MIT and Harvard
| | - Susan N Chi
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center.,Department of Pediatrics, Harvard Medical School
| |
Collapse
|
20
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
21
|
Nantavithya C, Paulino AC, Liao K, Woodhouse KD, McGovern SL, Grosshans DR, McAleer MF, Khatua S, Chintagumpala MM, Majd N, Zaky W, Yeboa DN. Observed-to-expected incidence ratios of second malignant neoplasms after radiation therapy for medulloblastoma: A Surveillance, Epidemiology, and End Results analysis. Cancer 2021; 127:2368-2375. [PMID: 33721338 DOI: 10.1002/cncr.33507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The authors analyzed the incidence and types of second malignant neoplasms (SMNs) in patients treated for medulloblastoma. METHODS The authors compared the incidence of SMNs after radiotherapy (RT) for medulloblastoma in patients treated in 1973-2014 with the incidence in the general population with the multiple primary-standardized incidence ratio function of Surveillance, Epidemiology, and End Results 9. Observed-to-expected incidence (O/E) ratios and 95% confidence intervals (CIs) were reported for the entire cohort and by disease site according to age at diagnosis, treatment era, and receipt of chemotherapy. P values < .05 were considered statistically significant. RESULTS Of the 1294 patients with medulloblastoma who received RT, 68 developed 75 SMNs. The O/E ratio for SMNs among all patients was 4.49 (95% CI, 3.53-5.62; P < .05). The site at highest risk was the central nervous system (CNS; O/E, 40.62; 95% CI, 25.46-61.51), which was followed by the endocrine system (O/E, 15.95; 95% CI, 9.12-25.91), bone (O/E, 14.45; 95% CI, 1.75-52.21), soft tissues (O/E, 9.01; 95% CI, 1.09-32.56), the digestive system (O/E, 5.03; 95% CI, 2.51-9.00), and the lymphatic/hematopoietic system (O/E, 3.37; 95% CI, 1.35-6.94). The O/E ratio was higher for patients given chemotherapy and RT (O/E, 5.52; 95% CI, 3.75-7.83) than for those given RT only (O/E, 3.96; 95% CI, 2.88-5.32). CONCLUSIONS Patients with medulloblastoma are at elevated risk for SMNs in comparison with the general population. Variations in O/E for SMNs by organ systems were found for treatment modality, age at diagnosis, and time of diagnosis. The most common site, the CNS, was involved more often in younger patients and those given chemotherapy with RT.
Collapse
Affiliation(s)
- Chonnipa Nantavithya
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arnold C Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kaiping Liao
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristina D Woodhouse
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary F McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soumen Khatua
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Murali M Chintagumpala
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nazanin Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Neuroimaging Biomarkers and Neurocognitive Outcomes in Pediatric Medulloblastoma Patients: a Systematic Review. THE CEREBELLUM 2021; 20:462-480. [PMID: 33417160 DOI: 10.1007/s12311-020-01225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Medulloblastoma is a malign posterior fossa brain tumor, mostly occurring in childhood. The CNS-directed chemoradiotherapy treatment can be very harmful to the developing brain and functional outcomes of these patients. However, what the underlying neurotoxic mechanisms are remain inconclusive. Hence, this review summarizes the existing literature on the association between advanced neuroimaging and neurocognitive changes in patients that were treated for pediatric medulloblastoma. The PubMed/Medline database was extensively screened for studies investigating the link between cognitive outcomes and multimodal magnetic resonance (MR) imaging in childhood medulloblastoma survivors. A behavioral meta-analysis was performed on the available IQ scores. A total of 649 studies were screened, of which 22 studies were included. Based on this literature review, we conclude medulloblastoma patients to be at risk for white matter volume loss, more frequent white matter lesions, and changes in white matter microstructure. Such microstructural alterations were associated with lower IQ, which reached the clinical cut-off in survivors across studies. Using functional MR scans, changes in activity were observed in cerebellar areas, associated with working memory and processing speed. Finally, cerebral microbleeds were encountered more often, but these were not associated with cognitive outcomes. Regarding intervention studies, computerized cognitive training was associated with changes in prefrontal and cerebellar activation and physical training might result in microstructural and cortical alterations. Hence, to better define the neural targets for interventions in pediatric medulloblastoma patients, this review suggests working towards neuroimaging-based predictions of cognitive outcomes. To reach this goal, large multimodal prospective imaging studies are highly recommended.
Collapse
|
23
|
Huybrechts S, Le Teuff G, Tauziède-Espariat A, Rossoni C, Chivet A, Indersie É, Varlet P, Puget S, Abbas R, Ayrault O, Guerrini-Rousseau L, Grill J, Valteau-Couanet D, Dufour C. Prognostic Clinical and Biologic Features for Overall Survival after Relapse in Childhood Medulloblastoma. Cancers (Basel) 2020; 13:cancers13010053. [PMID: 33375523 PMCID: PMC7795432 DOI: 10.3390/cancers13010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite progress in the biology and upfront treatment of childhood medulloblastoma, relapse is almost universally fatal. No standardized treatment has so far been established for these patients. By determining which characteristics are prognostic after relapse, treatment strategies may be optimized for each of these children. We demonstrated that molecular subgroup at diagnosis is a relevant prognostic factor of outcome after relapse. Moreover, we showed that time to relapse and the use of salvage radiotherapy at relapse might have a potential impact on post-relapse survival. Our data suggest that ongoing efforts toward a better understanding of the biology, timing and type of relapse would be important to understand the determinants of tumor behavior at relapse. This could help us address more specific questions on the best surveillance strategies after completion of the treatment and the introduction of risk-stratified second-line treatment strategies. Abstract Given the very poor prognosis for children with recurrent medulloblastoma, we aimed to identify prognostic factors for survival post-relapse in children with childhood medulloblastoma. We retrospectively collected clinico-biological data at diagnosis and main clinical characteristics at relapse of children newly diagnosed with a medulloblastoma between 2007 and 2017 at Gustave Roussy and Necker Hospital. At a median follow-up of 6.6 years (range, 0.4–12.3 years), relapse occurred in 48 out 155 patients (31%). The median time from diagnosis to relapse was 14.3 months (range, 1.2–87.2 months). Relapse was local in 9, metastatic in 22 and combined (local and metastatic) in 17 patients. Second-line treatment consisted of chemotherapy in 31 cases, radiotherapy in 9, SHH-inhibitor in four and no treatment in the remaining four. The 1-year overall survival rate post-relapse was 44.8% (CI 95%, 31.5% to 59.0%). While molecular subgrouping at diagnosis was significantly associated with survival post-relapse, the use of radiotherapy at relapse and time to first relapse (>12 months) might also have a potential impact on post-relapse survival.
Collapse
Affiliation(s)
- Sophie Huybrechts
- Service National d’Oncologie et Hématologie Pédiatrique, Centre Hospitalier de Luxembourg, L-1210 Luxembourg City, Luxembourg;
| | - Gwénaël Le Teuff
- Department of Biostatistics, Gustave Roussy Cancer Center, Paris-Saclay University, 94800 Villejuif, France; (G.L.T.); (C.R.); (R.A.)
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, Sainte Anne Hospital, Rene Descartes University, 75014 Paris, France; (A.T.-E.); (P.V.)
| | - Caroline Rossoni
- Department of Biostatistics, Gustave Roussy Cancer Center, Paris-Saclay University, 94800 Villejuif, France; (G.L.T.); (C.R.); (R.A.)
| | - Anaïs Chivet
- Department of Pediatric Neurosurgery, Necker Hospital, Paris Descartes University, 75015 Paris, France; (A.C.); (S.P.)
| | - Émilie Indersie
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91400 Orsay, France; (É.I.); (O.A.)
- Paris Sud University, Paris-Saclay University, CNRS UMR 3347, INSERM U1021, 91400 Orsay, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte Anne Hospital, Rene Descartes University, 75014 Paris, France; (A.T.-E.); (P.V.)
| | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker Hospital, Paris Descartes University, 75015 Paris, France; (A.C.); (S.P.)
| | - Rachid Abbas
- Department of Biostatistics, Gustave Roussy Cancer Center, Paris-Saclay University, 94800 Villejuif, France; (G.L.T.); (C.R.); (R.A.)
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91400 Orsay, France; (É.I.); (O.A.)
- Paris Sud University, Paris-Saclay University, CNRS UMR 3347, INSERM U1021, 91400 Orsay, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France; (L.G.-R.); (J.G.); (D.V.-C.)
- INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, 94800 Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France; (L.G.-R.); (J.G.); (D.V.-C.)
- INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, 94800 Villejuif, France
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France; (L.G.-R.); (J.G.); (D.V.-C.)
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France; (L.G.-R.); (J.G.); (D.V.-C.)
- INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, 94800 Villejuif, France
- Correspondence: ; Tel.: +33-1-42114247
| |
Collapse
|
24
|
Bhatt H, Bhatti MI, Patel C, Leach P. Paediatric posterior fossa tumour resection rates in a small volume centre: the past decade's experience. Br J Neurosurg 2020; 35:451-455. [PMID: 33307861 DOI: 10.1080/02688697.2020.1859085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Paediatric brain tumour resection rates have been shown to correlate with outcome and, it is argued, are linked to operator volume and caseload. The British paediatric neurosurgery community has previously debated centralisation of paediatric neuro-oncology. At the 2018 British Paediatric Neurosurgery Group (BPNG) meeting, a commitment was made to prospectively collect tumour resection data at each Neurosurgical Unit (NSU). Here we review our prospectively-collected 10-year database of the three commonest paediatric posterior fossa tumours - astrocytomas, medulloblastomas and ependymomas. MATERIALS AND METHODS Our primary outcome was extent of resection (EOR) on post-operative MRI scans reviewed by neuro-radiologists. Secondary outcomes comprised neurosurgical morbidity including infection, need for cerebrospinal fluid (CSF) diversion and the occurrence of posterior fossa syndrome (PFS). RESULTS 55 children had 62 operations, where our complete resection rates for pilocytic astrocytomas, medulloblastomas and ependymomas were 77%, 79% and 63%, respectively. Both our primary and secondary outcomes were in keeping with the published literature and we discuss here some of the factors which may contribute towards favourable outcomes in a small volume centre. CONCLUSION Our results suggest that small volume centres can expect equivalent results to larger volume NSUs with regards to paediatric brain tumour surgery. Continuing efforts nationally for data collection on resection rates and operative outcomes is a key step towards optimising management in these children.
Collapse
Affiliation(s)
- Harsh Bhatt
- Department of Paediatric Neurosurgery, University Hospital of Wales, Cardiff, UK
| | | | - Chirag Patel
- Department of Paediatric Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Paul Leach
- Department of Paediatric Neurosurgery, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
25
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
26
|
Menyhárt O, Győrffy B. Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 2020; 39:211-233. [PMID: 31970590 PMCID: PMC7098941 DOI: 10.1007/s10555-020-09854-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medulloblastoma (MB) is the most common malignant childhood tumor of the brain. Multimodal treatment consisting of surgery, radiation therapy, and chemotherapy reduced cumulative incidence of late mortality but increased the incidence of subsequent neoplasms and severe, incapacitating chronic health conditions. Present treatment strategies fail to recognize heterogeneity within patients despite wide divergence in individual responses. The persistent mortality rates and serious side effects of non-targeted cytotoxic therapies indicate a need for more refined therapeutic approaches. Advanced genomic research has led to the accumulation of an enormous amount of genetic information and resulted in a consensus distinguishing four molecular subgroups, WNT-activated, SHH-activated, and Group 3 and 4 medulloblastomas. These have distinct origin, demographics, molecular alterations, and clinical outcomes. Although subgroup affiliation does not predict response to therapy, new subgroup-specific markers of prognosis can enable a more layered risk stratification with additional subtypes within each primary subgroup. Here, we summarize subgroup-specific genetic alterations and their utility in current treatment strategies. The transition toward molecularly targeted interventions for newly diagnosed MBs remains slow, and prospective trials are needed to confirm stratifications based on molecular alterations. At the same time, numerous studies focus at fine-tuning the intensity of invasive radio- and chemotherapies to reduce intervention-related long-term morbidity. There are an increasing number of immunotherapy-based treatment strategies including immune checkpoint-inhibitors, oncolytic viruses, CAR-T therapy, and NK cells in recurrent and refractory MBs. Although most trials are in early phase, there is hope for therapeutic breakthroughs for advanced MBs within the next decade.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics and Department of Bioinformatics, Semmelweis University, Budapest, Hungary. .,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
27
|
Hill RM, Richardson S, Schwalbe EC, Hicks D, Lindsey JC, Crosier S, Rafiee G, Grabovska Y, Wharton SB, Jacques TS, Michalski A, Joshi A, Pizer B, Williamson D, Bailey S, Clifford SC. Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:865-874. [PMID: 33222802 PMCID: PMC7671998 DOI: 10.1016/s2352-4642(20)30246-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023]
Abstract
Background Disease relapse occurs in around 30% of children with medulloblastoma, and is almost universally fatal. We aimed to establish whether the clinical and molecular characteristics of the disease at diagnosis are associated with the nature of relapse and subsequent disease course, and whether these associations could inform clinical management. Methods In this multicentre cohort study we comprehensively surveyed the clinical features of medulloblastoma relapse (time to relapse, pattern of relapse, time from relapse to death, and overall outcome) in centrally reviewed patients who relapsed following standard upfront therapies, from 16 UK Children's Cancer and Leukaemia Group institutions and four collaborating centres. We compared these relapse-associated features with clinical and molecular features at diagnosis, including established and recently described molecular features, prognostic factors, and treatment at diagnosis and relapse. Findings 247 patients (175 [71%] boys and 72 [29%] girls) with medulloblastoma relapse (median year of diagnosis 2000 [IQR 1995–2006]) were included in this study. 17 patients were later excluded from further analyses because they did not meet the age and treatment criteria for inclusion. Patients who received upfront craniospinal irradiation (irradiated group; 178 [72%] patients) had a more prolonged time to relapse compared with patients who did not receive upfront craniospinal irradiation (non-irradiated group; 52 [21%] patients; p<0·0001). In the non-irradiated group, craniospinal irradiation at relapse (hazard ratio [HR] 0·27, 95% CI 0·11–0·68) and desmoplastic/nodular histology (0·23, 0·07–0·77) were associated with prolonged time to death after relapse, MYC amplification was associated with a reduced overall survival (23·52, 4·85–114·05), and re-resection at relapse was associated with longer overall survival (0·17, 0·05–0·57). In the irradiated group, patients with MBGroup3 tumours relapsed significantly more quickly than did patients with MBGroup4 tumours (median 1·34 [0·99–1·89] years vs 2·04 [1·39–3·42 years; p=0·0043). Distant disease was prevalent in patients with MBGroup3 (23 [92%] of 25 patients) and MBGroup4 (56 [90%] of 62 patients) tumour relapses. Patients with distantly-relapsed MBGroup3 and MBGroup4 displayed both nodular and diffuse patterns of disease whereas isolated nodular relapses were rare in distantly-relapsed MBSHH (1 [8%] of 12 distantly-relapsed MBSHH were nodular alone compared with 26 [34%] of 77 distantly-relapsed MBGroup3 and MBGroup4). In MBGroup3 and MBGroup4, nodular disease was associated with a prolonged survival after relapse (HR 0·42, 0·21–0·81). Investigation of second-generation MBGroup3 and MBGroup4 molecular subtypes refined our understanding of heterogeneous relapse characteristics. Subtype VIII had prolonged time to relapse and subtype II had a rapid time from relapse to death. Subtypes II, III, and VIII developed a significantly higher incidence of distant disease at relapse whereas subtypes V and VII did not (equivalent rates to diagnosis). Interpretation This study suggests that the nature and outcome of medulloblastoma relapse are biology and therapy-dependent, providing translational opportunities for improved disease management through biology-directed disease surveillance, post-relapse prognostication, and risk-stratified selection of second-line treatment strategies. Funding Cancer Research UK, Action Medical Research, The Tom Grahame Trust, The JGW Patterson Foundation, Star for Harris, The Institute of Child Health - Newcastle University - Institute of Child Health High-Risk Childhood Brain Tumour Network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).
Collapse
Affiliation(s)
- Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Gholamreza Rafiee
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK; School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Centre for Cancer Research & Cell Biology, UK
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thomas S Jacques
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Antony Michalski
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Abhijit Joshi
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle University Teaching Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Barry Pizer
- Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
28
|
Gendreau JL, Gupta S, Giles TX, Stone CE, Abraham ME, Lindley JG. A Retrospective Analysis of the Demographics, Treatment, and Survival Outcomes of Patients with Desmoplastic Nodular Medulloblastoma Using the Surveillance, Epidemiology, and End Results (SEER) Database. Cureus 2020; 12:e9042. [PMID: 32782862 PMCID: PMC7410514 DOI: 10.7759/cureus.9042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective Medulloblastoma is the most common malignant brain tumor in children younger than four years of age. Children diagnosed with desmoplastic nodular medulloblastoma (DNMB) have more favorable survival outcomes when compared to other subtypes of this disease and, to date, the demographics of DNMB have only been characterized by a few small clinical case series. Additionally, the current effort is being made at reducing radiotherapeutic modalities in this patient population to avoid the adverse effects associated with radiotherapy in children. Therefore, the goal of this study was to characterize the demographics, treatments, and survival outcomes of patients with DNMB using a large federal database. Methods The Surveillance, Epidemiology, and End Results database was queried to retrieve demographical, treatment, and survival data for patients diagnosed with DNMB. Statistical testing was performed with the R software stats package (R Foundation for Statistical Computing, Vienna, Austria). Student’s t tests and analysis of variance tests were used to measure differences among survival rates. Results Data from 360 patients with DNMB were retrieved from 1975-2016. There was a higher prevalence of DNMB in children younger than four years of age (33% of all cases). Males had a higher prevalence than females (57%). There was a preponderance of diagnoses in white individuals (82% of all cases) and more diagnoses in the Pacific Coast region (49% of all cases). Distant metastases were present at initial diagnosis in 8.7%. Surgery was performed in almost all patients, and gross total resection was achieved in 77%. The overall rate of survival was 77.8% at five years; age, sex, race, and geographical region of diagnosis were not associated with differences in survival outcomes. Patients with no radiotherapy had a lower rate of survival compared to patients with postoperative radiotherapy (mean difference = 19.7%; [95% CI 1.4%-38.0%], p = 0.0314). However, radiotherapy did not improve survival outcomes in patients undergoing chemotherapeutic treatment to a degree with any statistical significance. There was no statistically significant improvement in survival for patients undergoing radiotherapy prior to procedure when compared to patients with no radiotherapy. Conclusions In patients undergoing chemotherapeutic treatment for the DNMB subtype of medulloblastoma specifically, additional radiotherapy may offer only minimal benefit to the survival outcome. It is essential continued clinical trials be performed for the purpose of devising alternate treatments to radiotherapy.
Collapse
Affiliation(s)
| | - Shishir Gupta
- Medicine, Rollins School of Public Health, Emory University School of Medicine, Atlanta, USA
| | - Tyler X Giles
- Medicine, Mercer University School of Medicine, Macon, USA
| | | | | | | |
Collapse
|
29
|
Mahajan A. How I Treat Medulloblastoma in Children. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_136_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractMedulloblastoma (MB) is the most common malignant tumor of the central nervous system in children with up to a third of these tumors presenting in children under 3 years of age. Its exquisite radio and chemosensitivity renders high cure rates in children in whom optimal resection has been achieved. Optimal surgery followed by radiation alone can cure about half of these children. The addition of chemotherapy has improved the outcomes dramatically and over 70% of children over 3 years of age with optimal resection and no metastasis can expect to be cured. Increasingly, the focus is on limiting the long-term sequelae of treatment. Precise molecular characterization can enable us to identify patients who can achieve optimal outcomes even in the absence of radiation. Insights into disease biology and molecular characterization have led to dramatic changes in our understanding, risk stratification, prognostication, and treatment approach in these children. In India, there is limited access to molecular profiling, making it challenging to apply biology driven approach to treatment in each child with MB. The Indian Society of Neuro-Oncology guidelines and the SIOP PODC adapted treatment recommendations for standard-risk MB based on the current evidence and logistic realities of low-middle income countries are a useful adjunct to guide clinical practice on a day-to-day basis in our setting.
Collapse
Affiliation(s)
- Amita Mahajan
- Department of Pediatric Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| |
Collapse
|
30
|
Cacciotti C, Fleming A, Ramaswamy V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol 2020; 251:249-261. [PMID: 32391583 DOI: 10.1002/path.5457] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) tumors are the most common solid tumor in pediatrics, accounting for approximately 25% of all childhood cancers, and the second most common pediatric malignancy after leukemia. CNS tumors can be associated with significant morbidity, even those classified as low grade. Mortality from CNS tumors is disproportionately high compared to other childhood malignancies, although surgery, radiation, and chemotherapy have improved outcomes in these patients over the last few decades. Current therapeutic strategies lead to a high risk of side effects, especially in young children. Pediatric brain tumor survivors have unique sequelae compared to age-matched patients who survived other malignancies. They are at greater risk of significant impairment in cognitive, neurological, endocrine, social, and emotional domains, depending on the location and type of the CNS tumor. Next-generation genomics have shed light on the broad molecular heterogeneity of pediatric brain tumors and have identified important genes and signaling pathways that serve to drive tumor proliferation. This insight has impacted the research field by providing potential therapeutic targets for these diseases. In this review, we highlight recent progress in understanding the molecular basis of common pediatric brain tumors, specifically low-grade glioma, high-grade glioma, ependymoma, embryonal tumors, and atypical teratoid/rhabdoid tumor (ATRT). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chantel Cacciotti
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON, Canada.,Dana Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Adam Fleming
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada.,Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Wang Z, Sun X, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Comprehensive identification of a two-genesignature as a novel potential prognostic model for patients with medulloblastoma. Am J Transl Res 2020; 12:1600-1613. [PMID: 32509164 PMCID: PMC7270006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors and has a poor prognosis and high mortality. We investigated the prognostic significance of specific gene signatures and established a novel prognostic model for medulloblastoma patients. Ninety-seven differentially expressed genes between 69 medulloblastoma samples and 4 normal cerebellum samples were identified using the GSE68956 dataset. Univariate and multivariate Cox regression analyses revealed optimal prognosis-related genes, of which PFKP and STXBP1 exhibited significant prognostic values. A risk score model was then established to assess the prognostic value of the gene signature. Kaplan-Meier survival analysis demonstrated that patients with a high risk score had significantly poorer overall survival (OS, log-rank P = 0.003308). The concordance index (C-index) of the two-gene prognostic model for OS prediction was 0.752 (95% CI, 0.740-0.764). The area under the receiver operating characteristic curve (AUC) values for predicting 3-year and 5-year survival were 0.726 and 0.730, respectively. The risk score model was further validated in the ICGC cohort and PUMCH cohort using quantitative real-time polymerase chain reaction (qRT-PCR). Cox regression analyses were performed to assess the two-gene risk score model, metastasis stage, and chemotherapy as independent prognostic factors for medulloblastoma. The C-index of the comprehensive prognostic model composed of the two-gene signature integrated with clinicopathological features for predicting OS was 0.823 (95% CI, 0.739-0.907). The AUCs of the comprehensive prognostic model for predicting 3-year and 5-year survival were 0.774 and 0.759, respectively. Thus, the two-gene risk score model is a promising prognostic biomarker for medulloblastoma.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Xuesong Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer CenterGuangzhou, P. R. China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Chenzhe Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeDongcheng District, Beijing, P. R. China
| |
Collapse
|
32
|
Ottensmeier H, Schlegel PG, Eyrich M, Wolff JE, Juhnke BO, von Hoff K, Frahsek S, Schmidt R, Faldum A, Fleischhack G, von Bueren A, Friedrich C, Resch A, Warmuth-Metz M, Krauss J, Kortmann RD, Bode U, Kühl J, Rutkowski S. Treatment of children under 4 years of age with medulloblastoma and ependymoma in the HIT2000/HIT-REZ 2005 trials: Neuropsychological outcome 5 years after treatment. PLoS One 2020; 15:e0227693. [PMID: 31971950 PMCID: PMC6977734 DOI: 10.1371/journal.pone.0227693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022] Open
Abstract
Young children with brain tumours are at high risk of developing treatment-related sequelae. We aimed to assess neuropsychological outcomes 5 years after treatment. This cross-sectional study included children under 4 years of age with medulloblastoma (MB) or ependymoma (EP) enrolled in the German brain tumour trials HIT2000 and HIT-REZ2005. Testing was performed using the validated Wuerzburg Intelligence Diagnostics (WUEP-D), which includes Kaufman-Assessment-Battery, Coloured Progressive Matrices, Visual-Motor Integration, finger tapping “Speed”, and the Continuous Performance Test. Of 104 patients in 47 centres, 72 were eligible for analyses. We assessed whether IQ was impacted by disease extent, disease location, patient age, gender, age at surgery, and treatment (chemotherapy with our without craniospinal irradiation [CSI] or local radiotherapy [LRT]). Median age at surgery was 2.3 years. Testing was performed at a median of 4.9 years after surgery. Patients with infratentorial EPs (treated with LRT) scored highest in fluid intelligence (CPM 100.9±16.9, mean±SD); second best scores were achieved by patients with MB without metastasis treated with chemotherapy alone (CPM 93.9±13.2), followed by patients with supratentorial EPs treated with LRT. In contrast, lowest scores were achieved by patients that received chemotherapy and CSI, which included children with metastasised MB and those with relapsed MB M0 (CPM 71.7±8.0 and 73.2±21.8, respectively). Fine motor skills were reduced in all groups. Multivariable analysis revealed that type of treatment had an impact on IQ, but essentially not age at surgery, time since surgery or gender. Our results confirm previous reports on the detrimental effects of CSI in a larger cohort of children. Comparable IQ scores in children with MB treated only with chemotherapy and in children with EP suggest that this treatment strategy represents an attractive option for children who have a high chance to avoid application of CSI. Longitudinal follow-up examinations are warranted to assess long-term neuropsychological outcomes.
Collapse
Affiliation(s)
- Holger Ottensmeier
- Department of Paediatric Haematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
- * E-mail:
| | - Paul G. Schlegel
- Department of Paediatric Haematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Medical Center, Wuerzburg, Germany
| | - Matthias Eyrich
- Department of Paediatric Haematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
| | - Johannes E. Wolff
- AbbvVie, Oncology Development, Chicago, Illinois, United States of America
| | - Björn-Ole Juhnke
- Department of Paediatric Haematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Paediatric Haematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Frahsek
- Department of Paediatric Haematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
| | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | | | - Andre von Bueren
- Department of Paediatrics and Adolescent Medicine Division of Paediatric Haematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Carsten Friedrich
- Department of Haematology Oncology, University Children´s Hospital Rostock, Rostock, Germany
| | - Anika Resch
- Department of Haematology Oncology, University Children´s Hospital Rostock, Rostock, Germany
| | - Monika Warmuth-Metz
- Department of Neuroradiology, HIT 2000 National Reference Center, University Medical Center Wuerzburg, Wuerzburg, Germany
| | - Jürgen Krauss
- Department of Paediatric Neurosurgery, University of Wuerzburg, University Medical Center Wuerzburg, Wuerzburg, Germany
| | - Rolf D. Kortmann
- Department of Radiotherapy, University of Leipzig, Leipzig, Germany
| | - Udo Bode
- Department of Paediatric Oncology, University of Bonn, Bonn, Germany
| | - Joachim Kühl
- Department of Paediatric Haematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Walker DA, Meijer L, Coyle B, Halsey C. Leptomeningeal malignancy of childhood: sharing learning between childhood leukaemia and brain tumour trials. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:242-250. [PMID: 31958415 DOI: 10.1016/s2352-4642(19)30333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Leptomeningeal malignancy complicates childhood cancers, including leukaemias, brain tumours, and solid tumours. In leukaemia, such malignancy is thought to invade leptomeninges via the vascular route. In brain tumours, dissemination from the primary tumour, before or after surgery, via CSF pathways is assumed; however, evidence exists to support the vascular route of dissemination. Success in treating leptomeningeal malignancy represents a rate-limiting step to cure, which has been successfully overcome in leukaemia with intensified systemic therapy combined with intra-CSF therapy, which replaced cranial radiotherapy for many patients. This de-escalated CNS-directed therapy is still associated with some neurotoxicity. The balanced benefit justifies exploration of ways to further de-escalate CNS-directed therapy. For primary brain tumours, standard therapy is craniospinal radiotherapy, but attendant risk of acute and delayed brain injury and endocrine deficiencies compounds post-radiation impairment of spinal growth. Alternative ways of treating leptomeninges by intensifying drug therapy delivered to CSF are being investigated-preliminary evidence suggests improved outcomes. This Review seeks to describe methods of intra-CSF drug delivery and drugs in use, and consider how the technique could be modified and additional drugs might be selected for this route of administration.
Collapse
Affiliation(s)
- David A Walker
- Children's Brain Tumour Research Centre, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK.
| | - Lisethe Meijer
- Department of Paediatric Neuro-Oncology, Prinses Maxima Center for Paediatric Oncology, Bilthoven, Netherlands
| | - Beth Coyle
- Children's Brain Tumour Research Centre, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Guidi M, Giunti L, Buccoliero AM, Santi M, Spacca B, De Masi S, Genitori L, Sardi I. Use of High-Dose Chemotherapy in Front-Line Therapy of Infants Aged Less Than 12 Months Treated for Aggressive Brain Tumors. Front Pediatr 2020; 8:135. [PMID: 32328470 PMCID: PMC7160729 DOI: 10.3389/fped.2020.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction: Malignant brain tumors in infants less than 12 months of age are extremely rare, and they have poor prognosis. We evaluated genetic characteristics and response rates of infants with congenital brain tumors subjected to high-dose chemotherapy and autologous stem cell transplant after gross total tumor resection. Materials and Methods: In total, 10 infants, aged less than 12 months, were enrolled in this study. The median age was 56 days (range: 1-279 days). Pathological examination demonstrated the following: four anaplastic astrocytomas, two glioblastomas, two central nervous system (CNS) embryonal tumors, not otherwise specified (NOS), and two atypical teratoid/rhabdoid tumors. Results: All patients were exposed to induction chemotherapy regimen, two high-dose chemotherapy courses, and autologous stem cell transplant after maximal surgery. At 1-3-5 years, the global overall survival (OS) was 90, 70, and 70% and the progression-free survival (PFS) was 80-60 and 60%. In all the patients, the copy number variants (CNVs) profile was analyzed using the SNP/CGH array approach. To investigate the clinical relevance of germline SMARCB1 mutation in AT/RT patients, we performed sequence analysis of the coding regions. The two patients with AT/RT were found to have germline SMARCB1 mutations. No BRAF mutations were found, and only NTRK gene fusion was present in one patient. We also have examined the association with OS and PFS and different histological subtypes of infant CNS proving that high-grade astrocytoma has better overall survival than other tumor types (p: 0.007 and p: 0.0590). Conclusion: High-dose chemotherapy regimen represents a valid therapeutic approach for congenital brain tumors with a high rate of response. The molecular analysis has to be analyzed in all infants' brain tumor types. High-grade gliomas are characterized by a better prognosis than other histologies of infant CNS.
Collapse
Affiliation(s)
- Milena Guidi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | | | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Barbara Spacca
- Neurosurgery Unit, Meyer Children's Hospital, Florence, Italy
| | | | | | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
35
|
AbdelBaki MS, Boué DR, Finlay JL, Kieran MW. Desmoplastic nodular medulloblastoma in young children: a management dilemma. Neuro Oncol 2019; 20:1026-1033. [PMID: 29156007 DOI: 10.1093/neuonc/nox222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Children with desmoplastic nodular medulloblastoma (DNMB) have excellent survival, leading multiple groups globally to attempt reduction of treatment-related morbidity. In 2013, the Children's Oncology Group began a clinical trial (ACNS1221) eliminating both radiation therapy (RT) and intraventricular methotrexate for children under 3 years of age with localized DNMB, aiming to build upon the excellent outcomes of the German HIT trials. ACNS1221 has recently closed due to increased incidence of recurrences noted at the 2-year interim analysis, raising important questions regarding optimal therapy for DNMB. Methods A review of major clinical trials that included children with DNMB was performed through July 2017. Results One hundred and eighty-eight DNMB patients enrolled on 11 prospective clinical trials were identified. The use of marrow-ablative chemotherapy and autologous hematopoietic cell rescue (AuHCR) or treatment with intraventricular methotrexate has been associated with excellent outcomes. RT was usually required for patients with evidence of disease at the end of therapy. Conclusions The minimal intensity and duration of chemotherapy required to maximally cure children with DNMB without need of RT remains unknown. Further trials are required to better identify a subset of DNMB patients who can be cured without marrow-ablative chemotherapy or intraventricular methotrexate.
Collapse
Affiliation(s)
- Mohamed S AbdelBaki
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Daniel R Boué
- Department of Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Jonathan L Finlay
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Mark W Kieran
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
AlRayahi J, Zapotocky M, Ramaswamy V, Hanagandi P, Branson H, Mubarak W, Raybaud C, Laughlin S. Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics 2019; 38:2102-2122. [PMID: 30422762 DOI: 10.1148/rg.2018180109] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors are the most common solid tumors in the pediatric population. Pediatric neuro-oncology has changed tremendously during the past decade owing to ongoing genomic advances. The diagnosis, prognosis, and treatment of pediatric brain tumors are now highly reliant on the genetic profile and histopathologic features of the tumor rather than the histopathologic features alone, which previously were the reference standard. The clinical information expected to be gleaned from radiologic interpretations also has evolved. Imaging is now expected to not only lead to a relevant short differential diagnosis but in certain instances also aid in predicting the specific tumor and subtype and possibly the prognosis. These processes fall under the umbrella of radiogenomics. Therefore, to continue to actively participate in patient care and/or radiogenomic research, it is important that radiologists have a basic understanding of the molecular mechanisms of common pediatric central nervous system tumors. The genetic features of pediatric low-grade gliomas, high-grade gliomas, medulloblastomas, and ependymomas are reviewed; differences between pediatric and adult gliomas are highlighted; and the critical oncogenic pathways of each tumor group are described. The role of the mitogen-activated protein kinase pathway in pediatric low-grade gliomas and of histone mutations as epigenetic regulators in pediatric high-grade gliomas is emphasized. In addition, the oncogenic drivers responsible for medulloblastoma, the classification of ependymomas, and the associated imaging correlations and clinical implications are discussed. ©RSNA, 2018.
Collapse
Affiliation(s)
- Jehan AlRayahi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Michal Zapotocky
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Vijay Ramaswamy
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Prasad Hanagandi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Helen Branson
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Walid Mubarak
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Charles Raybaud
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Suzanne Laughlin
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| |
Collapse
|
37
|
Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study. Sci Rep 2019; 9:12529. [PMID: 31467303 PMCID: PMC6715812 DOI: 10.1038/s41598-019-48738-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Medical images such as magnetic resonance (MR) imaging provide valuable information for cancer detection, diagnosis, and prognosis. In addition to the anatomical information these images provide, machine learning can identify texture features from these images to further personalize treatment. This study aims to evaluate the use of texture features derived from T1-weighted post contrast scans to classify different types of brain tumors and predict tumor growth rate in a preclinical mouse model. To optimize prediction models this study uses varying gray-level co-occurrence matrix (GLCM) sizes, tumor region selection and different machine learning models. Using a random forest classification model with a GLCM of size 512 resulted in 92%, 91%, and 92% specificity, and 89%, 85%, and 73% sensitivity for GL261 (mouse glioma), U87 (human glioma) and Daoy (human medulloblastoma), respectively. A tenfold cross-validation of the classifier resulted in 84% accuracy when using the entire tumor volume for feature extraction and 74% accuracy for the central tumor region. A two-layer feedforward neural network using the same features is able to predict tumor growth with 16% mean squared error. Broadly applicable, these predictive models can use standard medical images to classify tumor type and predict tumor growth, with model performance, varying as a function of GLCM size, tumor region, and tumor type.
Collapse
|
38
|
Menyhárt O, Győrffy B. Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. Ann Clin Transl Neurol 2019; 6:990-1005. [PMID: 31139698 PMCID: PMC6529984 DOI: 10.1002/acn3.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
SHH-activated medulloblastomas (SHH-MB) account for 25-30% of all medulloblastomas (MB) and occur with a bimodal age distribution, encompassing many infant and adult, but fewer childhood cases. Different age groups are characterized by distinct survival outcomes and age-specific alterations of regulatory pathways. Here, we review SHH-specific genetic aberrations and signaling pathways. Over 95% of SHH-MBs contain at least one driver event - the activating mutations frequently affect sonic hedgehog signaling (PTCH1, SMO, SUFU), genome maintenance (TP53), and chromatin modulation (KMT2D, KMT2C, HAT complexes), while genes responsible for transcriptional regulation (MYCN) are recurrently amplified. SHH-MBs have the highest prevalence of damaging germline mutations among all MBs. TP53-mutant MBs are enriched among older children and have the worst prognosis among all SHH-MBs. Numerous genetic aberrations, including mutations of TERT, DDX3X, and the PI3K/AKT/mTOR pathway are almost exclusive to adult patients. We elaborate on the newest development within the evolution of molecular subclassification, and compare proposed risk categories across emerging classification systems. We discuss discoveries based on preclinical models and elaborate on the applicability of potential new therapies, including BET bromodomain inhibitors, statins, inhibitors of SMO, AURK, PLK, cMET, targeting stem-like cells, and emerging immunotherapeutic strategies. An enormous amount of data on the genetic background of SHH-MB have accumulated, nevertheless, subgroup affiliation does not provide reliable prediction about response to therapy. Emerging subtypes within SHH-MB offer more layered risk stratifications. Rational clinical trial designs with the incorporation of available molecular knowledge are inevitable. Improved collaboration across the scientific community will be imperative for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| |
Collapse
|
39
|
Menyhárt O, Giangaspero F, Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol 2019; 12:29. [PMID: 30876441 PMCID: PMC6420757 DOI: 10.1186/s13045-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations. The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials. To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected. Molecularly stratified treatment options are limited, and targeted therapies are still in preclinical development. Attacking these aggressive tumors at multiple frontiers will be needed to improve stagnant survival rates.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Felice Giangaspero
- Department of Radiological, Oncological, and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (Is), Italy
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary. .,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
40
|
Radiotherapy Advances in Paediatric Medulloblastoma Treatment. Clin Oncol (R Coll Radiol) 2019; 31:171-181. [DOI: 10.1016/j.clon.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
41
|
[Neuropathology of medulloblastomas and other CNS embryonal tumors : Precision diagnostics through the integration of genetic markers]. DER PATHOLOGE 2019; 40:140-147. [PMID: 30790012 DOI: 10.1007/s00292-019-0580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The revised WHO classification of tumors of the central nervous system (CNS) in 2016 introduced the concept of the "integrated diagnosis." The definition of medulloblastoma entities now requires a combination of traditional histological information with additional molecular/genetic features. To define the histopathological component of the medulloblastoma diagnosis, tumors have to be assigned to one of the four histological entities: classic, desmoplastic/nodular (DNMB), extensive nodular (MBEN), or large cell/anaplastic (LC/A) medulloblastoma. The genetically defined component is one of the four entities: "WNT activated", "SHH activated and TP53 wildtype", "SHH activated and TP53 mutant", or "non-WNT/non-SHH medulloblastoma." Robust and validated methods are available that allow a precise diagnosis of these medulloblastoma entities according to the updated WHO classification and for differential diagnostic purposes. An immunohistochemical analysis of protein markers including ß‑Catenin, Yap1, p75-NGFR, Otx2 and p53, in combination with targeted sequencing and chromosomal copy number assessment (such as FISH analysis for MYC genes), allows a precise stratification of patients for risk-adapted treatment. The group of other embryonic tumors of the central nervous system includes embryonic tumors with multilayered rosettes (ETMR), which frequently carry an amplification of the micro-RNA cluster C19MC and the (ganglio-)neuroblastomas of the CNS. These rare tumors can also be identified by characteristic genetic and immunophenotypic features.
Collapse
|
42
|
Abstract
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Collapse
|
43
|
Central Nervous System Tumors. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-97145-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Khatua S, Song A, Citla Sridhar D, Mack SC. Childhood Medulloblastoma: Current Therapies, Emerging Molecular Landscape and Newer Therapeutic Insights. Curr Neuropharmacol 2018; 16:1045-1058. [PMID: 29189165 PMCID: PMC6120114 DOI: 10.2174/1570159x15666171129111324] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Medulloblastoma is the most common malignant brain tumor in children, currently treated uniformly based on histopathology and clinico-radiological risk stratification leading to unpredictable relapses and therapeutic failures. Identification of molecular subgroups have thrown light on the reasons for these and now reveals clues to profile molecularly based personalized therapy against these tumors. Methods: Research and online contents were evaluated for pediatric medulloblastoma which included latest information on the molecular subgroups and their clinical relevance and update on efforts to translate them into clinics. Results: Scientific endeavors over the last decade have clearly identified four molecular variants (WNT, SHH, Group 3, and Group 4) and their demographic, genomic, and epigenetic profile. Latest revelations include significant heterogeneity within these subgroups and 12 different subtypes of MB are now identified with disparate outcomes and biology. These findings have important implications for stratification and profiling future clinical trials against these formidable tumors. Conclusion: With the continued outpouring of genomic/epigenomic data of these molecular subgroups and evolution of further subtypes in each subgroup, the challenge lies in comprehensive evaluation of these informations. Current and future endeavors are now needed to profile personalized therapy for each child based on the molecular risk stratification of medulloblastoma, with a hope to improve survival outcome and reduce relapses.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Anne Song
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Divyaswathi Citla Sridhar
- Department of Pediatrics, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| |
Collapse
|
45
|
Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel) 2018; 5:bioengineering5040078. [PMID: 30249036 PMCID: PMC6315657 DOI: 10.3390/bioengineering5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors (ET) of the central nervous system (CNS) in children encompass a wide clinical spectrum of aggressive malignancies. Until recently, the overlapping morphological features of these lesions posed a diagnostic challenge and undermined discovery of optimal treatment strategies. However, with the advances in genomic technology and the outpouring of biological data over the last decade, clear insights into the molecular heterogeneity of these tumors are now well delineated. The major subtypes of ETs of the CNS in children include medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and embryonal tumors with multilayered rosettes (ETMR), which are now biologically and clinically characterized as different entities. These important developments have paved the way for treatments guided by risk stratification as well as novel targeted therapies in efforts to improve survival and reduce treatment burden.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This article describes the most common pediatric brain tumors and highlights recent developments in their diagnosis and treatment strategies. RECENT FINDINGS We are in the midst of a molecular era for pediatric brain tumors. Genetic and epigenetic profiling of tumors has impacted their diagnosis, allowing for the subgrouping of heterogeneous tumor groups and leading to the complete renaming of some tumor types. These advances are reflected in the new 2016 World Health Organization classification. For example, primitive neuroectodermal tumors have been completely eliminated and replaced by subgroups defined by the absence or presence of specific chromosomal amplification. Medulloblastomas, diffuse astrocytomas, and ependymomas now have specific subtypes that are based on defining molecular features. More recent epigenetic-based subgrouping of atypical teratoid/rhabdoid tumors have not yet made it into the official classification system, but will surely have an impact on how these tumors are regarded in future preclinical and clinical trials. SUMMARY Genetic and epigenetic data are changing how pediatric brain tumors are diagnosed, are leading to new guidelines for how treatment outcome analyses can be organized, and are offering molecular targets that can be used for the development of novel therapies.
Collapse
|
47
|
Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ. Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. Annu Rev Neurosci 2018; 41:207-232. [PMID: 29641939 DOI: 10.1146/annurev-neuro-070815-013838] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain tumors are the leading cause of cancer-related death in children, and medulloblastoma (MB) is the most common malignant pediatric brain tumor. Advances in surgery, radiation, and chemotherapy have improved the survival of MB patients. But despite these advances, 25-30% of patients still die from the disease, and survivors suffer severe long-term side effects from the aggressive therapies they receive. Although MB is often considered a single disease, molecular profiling has revealed a significant degree of heterogeneity, and there is a growing consensus that MB consists of multiple subgroups with distinct driver mutations, cells of origin, and prognosis. Here, we review recent progress in MB research, with a focus on the genes and pathways that drive tumorigenesis, the animal models that have been developed to study tumor biology, and the advances in conventional and targeted therapy.
Collapse
Affiliation(s)
- Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Vijay Ramaswamy
- Division of Haematology/Oncology and Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| |
Collapse
|
48
|
Mehrvar A, Tashvighi M, Hedayati Asl AA, Niktoreh-Mofrad N, Mehrvar N, Afsar N, Naderi A, Allebouyeh M, Qaddoumi I, Faranoush M. Management and outcomes of treating pediatric medulloblastoma: an eight years' experience in an Iranian pediatric center. Childs Nerv Syst 2018; 34:639-647. [PMID: 29214340 DOI: 10.1007/s00381-017-3672-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE The clinical management of pediatric medulloblastoma requires a multidisciplinary approach, which can be challenging, especially in low- and middle-income countries. The aim of this study was to identify current challenges and describe the treatment and outcomes of Iranian pediatric patients with medulloblastoma who were referred to our center in Tehran, Iran. METHODS Our retrospective review included 126 patient records from April 2007 to May 2015. The records were analyzed for epidemiologic features, treatment modalities, overall survival, and progression-free survival. Data were analyzed using SPSS 22.0 software. RESULTS Median age at diagnosis was 6 years (male:female ratio, 2.3:1). At the time of diagnosis, 7 patients were 2 years or younger, and 76 (60.3%) were categorized as having high-risk disease. Overall, 100 patients had gross or near-total surgical resection. Cerebral spinal fluid involvement was detected in 22.2% of the patients tested, and spinal involvement was detected in 25% of the patients who underwent spinal MRI. Metastasis stages at the time of diagnosis were as follows: M0: 48.4% patients, M1: 16.7%, M2: 5.5%, and M3: 21.4%. Median times of follow-up and progression-free survival were 16 and 12 months, respectively. Probability of 7-year overall survival and progression-free survival were 59 and 53.8%, respectively. CONCLUSIONS Results of the current retrospective study emphasize the need for implementing measures to improve outcome for our patients with medulloblastoma. Such measures include a multidisciplinary approach, unified national treatment guidelines, better disease and metastasis staging, twinning initiatives, and seeking a second opinion when needed.
Collapse
Affiliation(s)
- Azim Mehrvar
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
- AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Tashvighi
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
- Islamic Azad University of Medical Sciences, Qom, Iran
| | | | - Naghmeh Niktoreh-Mofrad
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran.
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Narjes Mehrvar
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Afsar
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | - Ali Naderi
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | | | - Ibrahim Qaddoumi
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Faranoush
- MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Mynarek M, Pizer B, Dufour C, van Vuurden D, Garami M, Massimino M, Fangusaro J, Davidson T, Gil-da-Costa MJ, Sterba J, Benesch M, Gerber N, Juhnke BO, Kwiecien R, Pietsch T, Kool M, Clifford S, Ellison DW, Giangaspero F, Wesseling P, Gilles F, Gottardo N, Finlay JL, Rutkowski S, von Hoff K. Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data. Neuro Oncol 2017; 19:576-585. [PMID: 28011926 DOI: 10.1093/neuonc/now234] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Pineoblastoma is a rare pineal region brain tumor. Treatment strategies have reflected those for other malignant embryonal brain tumors. Patients and Methods Original prospective treatment and outcome data from international trial groups were pooled. Cox regression models were developed considering treatment elements as time-dependent covariates. Results Data on 135 patients with pineoblastoma aged 0.01-20.7 (median 4.9) years were analyzed. Median observation time was 7.3 years. Favorable prognostic factors were age ≥4 years (hazard ratio [HR] for progression-free survival [PFS] 0.270, P < .001) and administration of radiotherapy (HR for PFS 0.282, P < .001). Metastatic disease (HR for PFS 2.015, P = .006), but not postoperative residual tumor, was associated with unfavorable prognosis. In 57 patients <4 years old, 5-year PFS/overall survival (OS) were 11 ± 4%/12 ± 4%. Two patients survived after chemotherapy only, while 3 of 16 treated with craniospinal irradiation (CSI) with boost, and 3 of 5 treated with high-dose chemotherapy (HDCT) and local radiotherapy survived. In 78 patients aged ≥4 years, PFS/OS were 72 ± 7%/73 ± 7% for patients without metastases, and 50 ± 10%/55 ± 10% with metastases. Seventy-three patients received radiotherapy (48 conventionally fractionated CSI, median dose 35.0 [18.0-45.0] Gy, 19 hyperfractionated CSI, 6 local radiotherapy), with (n = 68) or without (n = 6) chemotherapy. The treatment sequence had no impact; application of HDCT had weak impact on survival in older patients. Conclusion Survival is poor in young children treated without radiotherapy. In these patients, combination of HDCT and local radiotherapy may warrant further evaluation in the absence of more specific or targeted treatments. CSI combined with chemotherapy is effective for older non-metastatic patients.
Collapse
Affiliation(s)
- Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Pizer
- Oncology Unit, Alder Hey Children's Hospital, Liverpool, UK
| | - Christelle Dufour
- Brain Tumor Programme, Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, Villejuif, France
| | - Dannis van Vuurden
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Miklos Garami
- Second Department of Pediatrics, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Maura Massimino
- Department of Pediatrics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Jason Fangusaro
- Department of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Tom Davidson
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | | | - Jaroslav Sterba
- Pediatric Oncology Department, University Hospital Brno, Brno, Czech Republic
| | - Martin Benesch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical University of Graz, Graz, Austria
| | - Nicolas Gerber
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - B Ole Juhnke
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | - Steve Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Floyd Gilles
- Department of Pathology (Neuropathology), Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California, USA
| | | | - Jonathan L Finlay
- Department of Pediatrics, Division of Hematology, Oncology and BMT, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Kline CN, Packer RJ, Hwang EI, Raleigh DR, Braunstein S, Raffel C, Bandopadhayay P, Solomon DA, Aboian M, Cha S, Mueller S. Case-based review: pediatric medulloblastoma. Neurooncol Pract 2017; 4:138-150. [PMID: 29692919 DOI: 10.1093/nop/npx011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor affecting children. These tumors are high grade with propensity to metastasize within the central nervous system and, less frequently, outside the neuraxis. Recent advancements in molecular subgrouping of medulloblastoma refine diagnosis and improve counseling in regards to overall prognosis. Both are predicated on the molecular drivers of each subgroup-WNT-activated, SHH-activated, group 3, and group 4. The traditional therapeutic mainstay for medulloblastoma includes a multimodal approach with surgery, radiation, and multiagent chemotherapy. As we discover more about the molecular basis of medulloblastoma, efforts to adjust treatment approaches based on molecular risk stratification are under active investigation. Certainly, the known neurological, developmental, endocrine, and psychosocial injury related to medulloblastoma and its associated therapies motivate ongoing research towards improving treatment for this life-threatening tumor while at the same time minimizing long-term side effects.
Collapse
Affiliation(s)
- Cassie N Kline
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Roger J Packer
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Eugene I Hwang
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - David R Raleigh
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Steve Braunstein
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Corey Raffel
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Pratiti Bandopadhayay
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - David A Solomon
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Mariam Aboian
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Soonmee Cha
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| | - Sabine Mueller
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, 550 16th Street, 4th Floor, San Francisco, CA 94158 (C.K., S.M.); Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P.); Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Division of Hematology/Oncology, Center for Cancer and Blood Disorders, Children's National Health Systems, 111 Michigan Avenue NW, Washington, DC 20010 (R.P., E.H.); Department of Radiation Oncology, University of California, 1825 4th Street, San Francisco, San Francisco, CA 94158 (D.R., S.B.); Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, San Francisco, CA 94143 (C.R., S.M.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215 (P.B.); Department of Pediatrics, Harvard Medical School, Boston, MA 02215 (P.B.); Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 (P.B.); Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, M551, Box 0102 San Francisco, CA 94143 (D.S.); Department of Radiology, University of California, San Francisco, 550 Parnassus Avenue, M327, San Francisco, CA 94143 (M.A., S.C.); Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, 550 Sandler Neurosciences, 625 Nelson Rising Lane, 402B, Box 0434, San Francisco, CA 94158 (S.M.)
| |
Collapse
|