1
|
Konstantaraki M, Berdiaki A, Neagu M, Zurac S, Krasagakis K, Nikitovic D. Understanding Merkel Cell Carcinoma: Pathogenic Signaling, Extracellular Matrix Dynamics, and Novel Treatment Approaches. Cancers (Basel) 2025; 17:1212. [PMID: 40227764 PMCID: PMC11987840 DOI: 10.3390/cancers17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer, driven by either Merkel cell polyomavirus (MCPyV) integration or ultraviolet (UV)-induced mutations. In MCPyV-positive tumors, viral T antigens inactivate tumor suppressors pRb and p53, while virus-negative MCCs harbor UV-induced mutations that activate similar oncogenic pathways. Key signaling cascades, including PI3K/AKT/mTOR and MAPK, support tumor proliferation, survival, and resistance to apoptosis. Histologically, MCC consists of small round blue cells with neuroendocrine features, high mitotic rate, and necrosis. The tumor microenvironment (TME) plays a central role in disease progression and immune escape. It comprises a mix of tumor-associated macrophages, regulatory and cytotoxic T cells, and elevated expression of immune checkpoint molecules such as PD-L1, contributing to an immunosuppressive niche. The extracellular matrix (ECM) within the TME is rich in proteoglycans, collagens, and matrix metalloproteinases (MMPs), facilitating tumor cell adhesion, invasion, and interaction with stromal and immune cells. ECM remodeling and integrin-mediated signaling further promote immune evasion and therapy resistance. Although immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in treating MCC, resistance remains a major hurdle. Therapeutic strategies that concurrently target the TME-through inhibition of ECM components, MMPs, or integrin signaling-may enhance immune responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Konstantaraki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| | - Monica Neagu
- Immunology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
| | - Sabina Zurac
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
- Faculty of Dentistry, University of Medicine and Pharmacy, 8 Eroilor Sanitari Boulevard, 050474 Bucharest, Romania
| | | | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| |
Collapse
|
2
|
Almazan J, Turapov T, Kircher DA, Stanley KA, Culver K, Medellin AP, Field MN, Parkman GL, Colman H, Coma S, Pachter JA, Holmen SL. Combined inhibition of focal adhesion kinase and RAF/MEK elicits synergistic inhibition of melanoma growth and reduces metastases. Cell Rep Med 2025; 6:101943. [PMID: 39922199 PMCID: PMC11866499 DOI: 10.1016/j.xcrm.2025.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
This study addresses the urgent need for effective therapies for patients with brain metastases from cutaneous melanoma, a major cause of treatment failure despite recent therapeutic advances. Utilizing mouse models that mimic human melanoma brain metastases, this study investigates the necessity of focal adhesion kinase (FAK) in the development of distant metastases and its potential as a therapeutic target. Pharmacological inhibition of FAK demonstrates significant efficacy in reducing the development of brain metastases in preclinical mouse models. Importantly, the study provides insight into the crosstalk between FAK and mitogen-activated protein kinase (MAPK) pathway signaling and highlights the synergistic effects of combined inhibition of FAK, rapidly accelerated fibrosarcoma (RAF), and mitogen-activated protein kinase kinase (MEK) in cutaneous melanoma. These findings provide the rationale for clinical evaluation of the efficacy of the FAK inhibitor defactinib and the RAF/MEK inhibitor avutometinib in patients with brain metastases from cutaneous melanoma.
Collapse
Affiliation(s)
- Jared Almazan
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Karly A Stanley
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Katie Culver
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - A Paulina Medellin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - MiKaela N Field
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Zoology, Weber State University, Ogden, UT 84408, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Neurosurgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Wang F, Shen H, Li K, Ding Y, Wang J, Sun J. MYH6 suppresses tumor progression by downregulating KIT expression in human prostate cancer. Sci Rep 2024; 14:19685. [PMID: 39181964 PMCID: PMC11344859 DOI: 10.1038/s41598-024-70665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Prostate cancer (PRAD) is one of the leading malignancies in men all around the world. Here, we identified Myosin Heavy Chain 6 (MYH6) as a potential tumor suppressor gene in the development of prostate cancer. We found lower expression of MYH6 in prostate cancer tissues, and its lower gene expression was also associated with worse clinical outcomes. In vitro and in vivo assays indicated that overexpressed MYH6 could suppress the proliferation and migration progression of prostate cancer cells. RNA-seq was employed to investigate the mechanism, and KIT Proto-Oncogen (KIT) was determined as the downstream gene of MYH6, which was further confirmed using rescue assays. In all, we provide the evidence that MYH6 could serve as a tumor suppressor in prostate cancer. Our results highlight the potential role of MYH6 in the development of prostate cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Hua Shen
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Kai Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Yanhong Ding
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China.
| | - Jian Sun
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Yu Y, Wang S, Wang Y, Zhang Q, Zhao L, Wang Y, Wu J, Han L, Wang J, Guo J, Xue J, Dong F, Zhang JH, Zhang L, Liu Y, Shi G, Zhang X, Li Y, Li J. AKT1 Promotes Tumorigenesis and Metastasis by Directly Phosphorylating Hexokinases. J Cell Biochem 2024; 125:e30613. [PMID: 38860522 DOI: 10.1002/jcb.30613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
The importance of protein kinase B (AKT) in tumorigenesis and development is well established, but its potential regulation of metabolic reprogramming via phosphorylation of the hexokinase (HK) isozymes remains unclear. There are two HK family members (HK1/2) and three AKT family members (AKT1/2/3), with varied distribution of AKTs exhibiting distinct functions in different tissues and cell types. Although AKT is known to phosphorylate HK2 at threonine 473, AKT-mediated phosphorylation of HK1 has not been reported. We examined direct binding and phosphorylation of HK1/2 by AKT1 and identified the phosphorylation modification sites using coimmunoprecipitation, glutathione pull-down, western blotting, and in vitro kinase assays. Regulation of HK activity through phosphorylation by AKT1 was also examined. Uptake of 2-[1,2-3H]-deoxyglucose and production of lactate were investigated to determine whether AKT1 regulates glucose metabolism by phosphorylating HK1/2. Functional assays, immunohistochemistry, and tumor experiments in mice were performed to investigate whether AKT1-mediated regulation of tumor development is dependent on its kinase activity and/or the involvement of HK1/2. AKT interacted with and phosphorylated HK1 and HK2. Serine phosphorylation significantly increased AKT kinase activity, thereby enhancing glycolysis. Mechanistically, the phosphorylation of HK1 at serine 178 (S178) by AKT significantly decreased the Km and enhanced the Vmax by interfering with the formation of HK1 dimers. Mutations in the AKT phosphorylation sites of HK1 or HK2 significantly abrogated the stimulatory characteristics of AKT on glycolysis, tumorigenesis, and cell migration, invasion, proliferation, and metastasis. HK1-S178 phosphorylation levels were significantly correlated with the occurrence and metastasis of different types of clinical tumors. We conclude that AKT not only regulates tumor glucose metabolism by directly phosphorylating HK1 and HK2, but also plays important roles in tumor progression, proliferation, and migration.
Collapse
Affiliation(s)
- Yuan Yu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Shuqing Wang
- Hospital of North China University of Science and Technology, Tangshan, China
| | - Yaqi Wang
- Department of the First Breast Surgery, Tangshan People's Hospital, Tangshan, China
| | - Qianyi Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Lina Zhao
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yang Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jinghua Wu
- Department of Inspection, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Liyuan Han
- Department of Inspection, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Junli Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jimin Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jiarui Xue
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Fenglin Dong
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jing Hua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Liu Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yan Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, Hebei, China
| | - Guogang Shi
- Department of Oncology, People's Hospital of Zunhua, Tangshan, China
| | - Xiaojun Zhang
- Department of Oncology, People's Hospital of Zunhua, Tangshan, China
| | - Yufeng Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan, Hebei, China
- The Cancer Institute, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Jingwu Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan, Hebei, China
- The Cancer Institute, Tangshan People's Hospital, Tangshan, Hebei, China
- Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan, Hebei, China
| |
Collapse
|
6
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Parkman GL, Turapov T, Kircher DA, Burnett WJ, Stehn CM, O’Toole K, Culver KM, Chadwick AT, Elmer RC, Flaherty R, Stanley KA, Foth M, Lum DH, Judson-Torres RL, Friend JE, VanBrocklin MW, McMahon M, Holmen SL. Genetic Silencing of AKT Induces Melanoma Cell Death via mTOR Suppression. Mol Cancer Ther 2024; 23:301-315. [PMID: 37931033 PMCID: PMC10932877 DOI: 10.1158/1535-7163.mct-23-0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Tursun Turapov
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - William J. Burnett
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Christopher M. Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Kayla O’Toole
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Katie M. Culver
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ashley T. Chadwick
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Riley C. Elmer
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ryan Flaherty
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Karly A. Stanley
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David H. Lum
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | - Matthew W. VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Sheri L. Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| |
Collapse
|
9
|
Nojima K, Hayashi M, Tanemura A, Al-Busani H, Saito T, Suzuki T, Ishikawa M, Mori T, Wada S, Yamazaki N, Katayama I, Mori H, Yokozeki H, Okiyama N, Sasaki Y, Namiki T. Activated Akt expression is associated with the recurrence of primary melanomas and further refines the prognostic and predictive values for relapse in acral melanomas. Pigment Cell Melanoma Res 2024; 37:36-44. [PMID: 37596787 DOI: 10.1111/pcmr.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
A PTEN deficiency leads to the activation of phospho-Akt at serine 473 (p-Akt) and promotes the tumorigenesis of melanomas by coupling with NUAK2 amplification. We tested the prognostic impact of p-Akt and/or NUAK2 expression on the relapse-free survival (RFS) and overall survival (OS) of melanoma patients. Primary tumors from patients with acral melanomas (112), Low-cumulative sun damage (CSD) melanomas (38), and High-CSD melanomas (18) were examined using immunohistochemistry and their prognostic significance was analyzed statistically. The expression of p-Akt was found in 32.1%, 68.4%, and 55.6% of acral, Low-CSD, and High-CSD melanomas, while NUAK2 expression was found in 46.4%, 76.3%, and 50.0%, respectively. Either p-Akt or NUAK2 expression was inversely correlated with the RFS of primary melanoma patients and acral melanoma patients (p-Akt: p < .0001, p < .0001; NUAK2; p = .0005, p < .0001, respectively). Strikingly, multivariate analyses revealed that p-Akt had a significant impact on RFS (Hazard ratio = 4.454; p < .0001), while NUAK2 did not. Further subset analyses revealed that p-Akt expression had an inferior RFS of patients with acral melanomas (Hazard ratio = 4.036; p = .0005). We conclude that the expression of p-Akt has a significant impact on RFS of patients with primary melanomas and can predict the relapse of patients with acral melanomas.
Collapse
Affiliation(s)
- Kohei Nojima
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hind Al-Busani
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toru Saito
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masashi Ishikawa
- Department of Dermatology, Saitama Cancer Center, Saitama, Japan
| | - Taisuke Mori
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shogo Wada
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Skin Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Department of Skin Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Mori
- Department of Plastic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiyuki Sasaki
- Clinical Dental Research Promotion Unit, Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
McRee SK, Bayer AL, Pietruska J, Tsichlis PN, Hinds PW. AKT2 Loss Impairs BRAF-Mutant Melanoma Metastasis. Cancers (Basel) 2023; 15:4958. [PMID: 37894325 PMCID: PMC10605002 DOI: 10.3390/cancers15204958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Despite recent advances in treatment, melanoma remains the deadliest form of skin cancer due to its highly metastatic nature. Melanomas harboring oncogenic BRAFV600E mutations combined with PTEN loss exhibit unrestrained PI3K/AKT signaling and increased invasiveness. However, the contribution of different AKT isoforms to melanoma initiation, progression, and metastasis has not been comprehensively explored, and questions remain about whether individual isoforms play distinct or redundant roles in each step. We investigate the contribution of individual AKT isoforms to melanoma initiation using a novel mouse model of AKT isoform-specific loss in a murine melanoma model, and we investigate tumor progression, maintenance, and metastasis among a panel of human metastatic melanoma cell lines using AKT isoform-specific knockdown studies. We elucidate that AKT2 is dispensable for primary tumor formation but promotes migration and invasion in vitro and metastatic seeding in vivo, whereas AKT1 is uniquely important for melanoma initiation and cell proliferation. We propose a mechanism whereby the inhibition of AKT2 impairs glycolysis and reduces an EMT-related gene expression signature in PTEN-null BRAF-mutant human melanoma cells to limit metastatic spread. Our data suggest that the elucidation of AKT2-specific functions in metastasis might inform therapeutic strategies to improve treatment options for melanoma patients.
Collapse
Affiliation(s)
- Siobhan K. McRee
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA;
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Abraham L. Bayer
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA;
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jodie Pietruska
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Philip W. Hinds
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA;
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
11
|
Łuczaj W, Dobrzyńska I, Skrzydlewska E. Differences in the phospholipid profile of melanocytes and melanoma cells irradiated with UVA and treated with cannabigerol and cannabidiol. Sci Rep 2023; 13:16121. [PMID: 37752196 PMCID: PMC10522606 DOI: 10.1038/s41598-023-43363-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
UV radiation inducing mutations in melanocytes might cause melanoma. As changes in lipid composition and metabolism are associated with many types of cancer including skin cancer, we aimed to evaluate the effects of two phytocannabinoids cannabidiol (CBD) and cannabigerol (CBG), on changes in phospholipid and ceramide (CER) profiles induced by UVA irradiation in human melanocytes and melanoma. UVA radiation caused a significant up-regulation PC, PI and SM species and decrease of CERs content in both types of cells, while up-regulation of PEo was only observed in melanocytes. Exposure of UVA-irradiated melanocytes or melanoma cells to CBD and/or CBG led to significant decrease in relative content of PC, PI and SM specie; however, this effect was more pronounced in cancer cells. Interestingly, only in UVA-irradiated melanocytes and not in melanoma, PEo content was lowered after CBD treatment, while CBG led to additional up-regulation of PEo species. CBD and CBG used together caused decrease of zeta potential, inhibiting PS externalization, and different changes in relative contents of CER and SM species of irradiated and non-irradiated melanoma cells. Obtained results are quite promising due to CBD and CBG abilities to partial reverse pro-cancerogenic changes in phospholipid and CER profiles induced by UVA.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| | - Izabela Dobrzyńska
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| |
Collapse
|
12
|
McRee SK, Bayer AL, Pietruska J, Tsichlis PN, Hinds PW. AKT2 Loss Impairs BRAF-Mutant Melanoma Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554685. [PMID: 37662310 PMCID: PMC10473698 DOI: 10.1101/2023.08.24.554685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Despite recent advances in treatment, melanoma remains the deadliest form of skin cancer, due to its highly metastatic nature. Melanomas harboring oncogenic BRAF V600E mutations combined with PTEN loss exhibit unrestrained PI3K/AKT signaling and increased invasiveness. However, the contribution of different AKT isoforms to melanoma initiation, progression, and metastasis has not been comprehensively explored, and questions remain whether individual isoforms play distinct or redundant roles in each step. We investigate the contribution of individual AKT isoforms to melanoma initiation using a novel mouse model of AKT isoform-specific loss in a murine melanoma model, and investigate tumor progression, maintenance, and metastasis among a panel of human metastatic melanoma cell lines using AKT-isoform specific knockdown studies. We elucidate that AKT2 is dispensable for primary tumor formation but promotes migration and invasion in vitro and metastatic seeding in vivo , while AKT1 is uniquely important for melanoma initiation and cell proliferation. We propose a mechanism whereby inhibition of AKT2 impairs glycolysis and reduces an EMT-related gene expression signature in PTEN-null BRAF-mutant human melanoma cells to limit metastatic spread. Our data suggest that elucidation of AKT2-specific functions in metastasis could inform therapeutic strategies to improve treatment options for melanoma patients.
Collapse
|
13
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
14
|
Sun J, Wang F, Zhou H, Zhao C, Li K, Fan C, Wang J. Downregulation of PGM5 expression correlates with tumor progression and poor prognosis in human prostate cancer. Discov Oncol 2022; 13:63. [PMID: 35819729 PMCID: PMC9276915 DOI: 10.1007/s12672-022-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men in developed countries. Prostate-specific antigen (PSA) remains the most widely used serum marker for prostate cancer. Here, we reported that the expression of phosphoglucomutase-like protein 5 (PGM5) is significantly lower in prostate cancer tissue. The low expression of PGM5 and its related gene signature were found to be linked to poor clinical outcome and high Gleason score. In vitro assays showed that overexpression of PGM5 significantly repressed proliferation and migration of prostate cancer cells. GO and pathway analyses showed the enrichment of genes in regulation of cell growth and migration, and pathways related in cancer. Our additional results showed that the downregulation of PGM5 is closely related to DNA methylation. Taken together, our findings provide the first evidence that PGM5 expression is associated with prostate cancer progression. These results also highlight a preclinical rationale that PGM5 represents a prognostic marker and a promising target for new therapeutic strategies in prostate cancer.
Collapse
Affiliation(s)
- Jian Sun
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China
| | - Fei Wang
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunchun Zhao
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China
| | - Kai Li
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China
| | - Caibin Fan
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China.
| | - Jianqing Wang
- Department of Urology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 26 Daoqian Rd, Suzhou, Jiangsu, 215000, PR China.
| |
Collapse
|
15
|
|
16
|
CSNK2 in cancer: pathophysiology and translational applications. Br J Cancer 2022; 126:994-1003. [PMID: 34773100 PMCID: PMC8980014 DOI: 10.1038/s41416-021-01616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.
Collapse
|
17
|
miRNA-Dependent Regulation of AKT1 Phosphorylation. Cells 2022; 11:cells11050821. [PMID: 35269443 PMCID: PMC8909289 DOI: 10.3390/cells11050821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3β phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.
Collapse
|
18
|
Bayer AL, Pietruska J, Farrell J, McRee S, Alcaide P, Hinds PW. AKT1 Is Required for a Complete Palbociclib-Induced Senescence Phenotype in BRAF-V600E-Driven Human Melanoma. Cancers (Basel) 2022; 14:572. [PMID: 35158840 PMCID: PMC8833398 DOI: 10.3390/cancers14030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a carefully regulated process of proliferative arrest accompanied by functional and morphologic changes. Senescence allows damaged cells to avoid neoplastic proliferation; however, the induction of the senescence-associated secretory phenotype (SASP) can promote tumor growth. The complexity of senescence may limit the efficacy of anti-neoplastic agents, such as CDK4/6 inhibitors (Cdk4/6i), that induce a senescence-like state in tumor cells. The AKT kinase family, which contains three isoforms that play both unique and redundant roles in cancer progression, is commonly hyperactive in many cancers including melanoma and has been implicated in the regulation of senescence. To interrogate the role of AKT isoforms in Cdk4/6i-induced cellular senescence, we generated isoform-specific AKT knockout human melanoma cell lines. We found that the CDK4/6i Palbociclib induced a form of senescence in these cells that was dependent on AKT1. We then evaluated the activity of the cGAS-STING pathway, recently implicated in cellular senescence, finding that cGAS-STING function was dependent on AKT1, and pharmacologic inhibition of cGAS had little effect on senescence. However, we found SASP factors to require NF-κB function, in part dependent on a stimulatory phosphorylation of IKKα by AKT1. In summary, we provide the first evidence of a novel, isoform-specific role for AKT1 in therapy-induced senescence in human melanoma cells acting through NF-κB but independent of cGAS.
Collapse
Affiliation(s)
- Abraham L. Bayer
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jodie Pietruska
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
| | - Jaymes Farrell
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Siobhan McRee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pilar Alcaide
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip W. Hinds
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
19
|
Chimplee S, Roytrakul S, Sukrong S, Srisawat T, Graidist P, Kanokwiroon K. Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules 2022; 27:407. [PMID: 35056723 PMCID: PMC8779136 DOI: 10.3390/molecules27020407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theera Srisawat
- Faculty of Science and Industrial Technology, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand;
- Faculty of Innovative Agriculture and Fisheries, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| |
Collapse
|
20
|
Chang CH, Sung WW. Nevi, dysplastic nevi, and melanoma: Molecular and immune mechanisms involving the progression. Tzu Chi Med J 2022; 34:1-7. [PMID: 35233349 PMCID: PMC8830542 DOI: 10.4103/tcmj.tcmj_158_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Melanocytic nevi, dysplastic nevi, and melanoma are all derived from the pigment-producing cells, namely melanocytes. Concerning the clinical spectrum, cutaneous melanoma is the most aggressive skin cancer with a low survival rate, while nevi are the most common benign lesions in the general population, and dysplastic nevi place in between nevi and melanoma. Ultraviolet (UV) radiation is a well-recognized extrinsic risk factor for all three. BRAFV600E is a well-recognized driver mutation that activates the RAS-BRAF-mitogen-activated protein kinase (MAPK) signaling pathway among 40%–60% of melanoma cases. Interestingly, BRAFV600E mutation is detected even more in acquired nevi, approximately 80%. However, in nevi, several tumor suppressors such as p53 and phosphatase and tensin homolog (PTEN) are intact, and senescence factors, including p15INK4b, p16INK4a, p19, and senescence-associated acidic β-galactosidase, are expressed, leading to cell senescence and cell cycle arrest. Although loss of p53 function is rarely found in melanoma, decreased or loss of PTEN with an activated PI3k/Akt signaling pathway is common in nevi, which may abolish senescence status and allow further progression into dysplastic nevi or melanoma. At present, mouse models closely resembling human nevi are used for investigating these phenomena. Melanocortin 1 receptor deficiency, an intrinsic risk factor for melanomagenesis, is related to the production of procarcinogenic pheomelanin and the inhibition of PTEN function. Immune response escape via programmed cell death-1/programmed cell death ligand-1 interaction plays further roles in monitoring the spectrum. Here, we review the current literature on the molecular and immune mechanisms involving the transition from benign nevi to malignant melanoma.
Collapse
|
21
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Cabozantinib Is Effective in Melanoma Brain Metastasis Cell Lines and Affects Key Signaling Pathways. Int J Mol Sci 2021; 22:ijms222212296. [PMID: 34830178 PMCID: PMC8621572 DOI: 10.3390/ijms222212296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Melanomas have a high potential to metastasize to the brain. Recent advances in targeted therapies and immunotherapies have changed the therapeutical landscape of extracranial melanomas. However, few patients with melanoma brain metastasis (MBM) respond effectively to these treatments and new therapeutic strategies are needed. Cabozantinib is a receptor tyrosine kinase (RTK) inhibitor, already approved for the treatment of non-skin-related cancers. The drug targets several of the proteins that are known to be dysregulated in melanomas. The anti-tumor activity of cabozantinib was investigated using three human MBM cell lines. Cabozantinib treatment decreased the viability of all cell lines both when grown in monolayer cultures and as tumor spheroids. The in vitro cell migration was also inhibited and apoptosis was induced by cabozantinib. The phosphorylated RTKs p-PDGF-Rα, p-IGF-1R, p-MERTK and p-DDR1 were found to be downregulated in the p-RTK array of the MBM cells after cabozantinib treatment. Western blot validated these results and showed that cabozantinib treatment inhibited p-Akt and p-MEK 1/2. Further investigations are warranted to elucidate the therapeutic potential of cabozantinib for patients with MBM.
Collapse
|
23
|
Thomas A, Reetz S, Stenzel P, Tagscherer K, Roth W, Schindeldecker M, Michaelis M, Rothweiler F, Cinatl J, Cinatl J, Dotzauer R, Vakhrusheva O, Albersen M, Macher-Goeppinger S, Haferkamp A, Juengel E, Neisius A, Tsaur I. Assessment of PI3K/mTOR/AKT Pathway Elements to Serve as Biomarkers and Therapeutic Targets in Penile Cancer. Cancers (Basel) 2021; 13:2323. [PMID: 34066040 PMCID: PMC8151654 DOI: 10.3390/cancers13102323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The PI3K/mTOR/AKT pathway might represent an intriguing option for treatment of penile cancer (PeCa). We aimed to assess whether members of this pathway might serve as biomarkers and targets for systemic therapy. Tissue of primary cancer from treatment-naïve PeCa patients was used for tissue microarray analysis. Immunohistochemical staining was performed with antibodies against AKT, pAKT, mTOR, pmTOR, pS6, pPRAS, p4EBP1, S6K1 and pp70S6K. Protein expression was correlated with clinicopathological characteristics as well as overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS) and metastasis-free survival (MFS). AKT inhibition was tested in two primarily established, treatment-naïve PeCa cell lines by treatment with capivasertib and analysis of cell viability and chemotaxis. A total of 76 patients surgically treated for invasive PeCa were included. Higher expression of AKT was significantly more prevalent in high-grade tumors and predictive of DSS and OS in the Kaplan-Meier analysis, and an independent predictor of worse OS and DSS in the multivariate regression analysis. Treatment with pan-AKT inhibitor capivasertib in PeCa cell lines induced a significant downregulation of both total AKT and pAKT as well as decreased cell viability and chemotaxis. Selected protein candidates of the mTOR/AKT signaling pathway demonstrate association with histological and survival parameters of PeCa patients, whereas AKT appears to be the most promising one.
Collapse
Affiliation(s)
- Anita Thomas
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Sascha Reetz
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Philipp Stenzel
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Katrin Tagscherer
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Wilfried Roth
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Mario Schindeldecker
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Jaroslav Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Robert Dotzauer
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Stephan Macher-Goeppinger
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Andreas Neisius
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
- Department of Urology and Pediatric Urology, Krankenhaus der Barmherzigen Brüder Trier, 54292 Trier, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| |
Collapse
|
24
|
Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-β-Catenin Signaling. Cancers (Basel) 2021; 13:cancers13092105. [PMID: 33925516 PMCID: PMC8123845 DOI: 10.3390/cancers13092105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In our previous study, purinergic P2Y2 receptor (P2Y2R) activation by ATP was found to play an important role in tumor progression and metastasis by regulating various responses in cancer cells and modulating crosstalk between cancer cells and endothelial cells (ECs). Therefore, we expected that P2Y2R would play a critical role in radioresistance and enhanced tumor progression in radioresistant triple-negative breast cancer (RT-R-TNBC). However, interestingly, P2Y2R expression was slightly decreased in RT-R-TNBC cells, while the expression of A2AR was significantly increased both in RT-R-TNBC cells and in tumor tissues, especially triple negative breast cancer (TNBC) tissues of breast cancer (BC) patients. Thus, we aimed to investigate the role of adenosine A2A receptor (A2AR) and its signaling pathway in the progression of RT-R-TNBC. The results reveal for the first time the role of A2AR in the progression and metastasis of RT-R-BC cells and suggest that the adenosine (ADO)-activated intracellular A2AR signaling pathway is linked to the AKT-β-catenin pathway to regulate RT-R-BC cell invasiveness and metastasis. Abstract Recently, we found that the expressions of adenosine (ADO) receptors A2AR and A2BR and the ectonucleotidase CD73 which is needed for the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and the extracellular ADO level are increased in TNBC MDA-MB-231 cells and RT-R-MDA-MB-231 cells compared to normal cells or non-TNBC cells. The expression of A2AR, but not A2BR, is significantly upregulated in breast cancer tissues, especially TNBC tissues, compared to normal epithelial tissues. Therefore, we further investigated the role of ADO-activated A2AR and its signaling pathway in the progression of RT-R-TNBC. ADO treatment induced MDA-MB-231 cell proliferation, colony formation, and invasion, which were enhanced in RT-R-MDA-MB-231 cells in an A2AR-dependent manner. A2AR activation by ADO induced AKT phosphorylation and then β-catenin, Snail, and vimentin expression, and these effects were abolished by A2AR-siRNA transfection. In an in vivo animal study, compared to 4T1-injected mice, RT-R-4T1-injected mice exhibited significantly increased tumor growth and lung metastasis, which were decreased by A2AR-knockdown. The upregulation of phospho-AKT, β-catenin, Snail, and vimentin expression in mice injected with RT-R-4T1 cells was also attenuated in mice injected with RT-R-4T1-A2AR-shRNA cells. These results suggest that A2AR is significantly upregulated in BC tissues, especially TNBC tissues, and ADO-mediated A2AR activation is involved in RT-R-TNBC invasion and metastasis through the AKT-β-catenin pathway.
Collapse
|
25
|
Zhang L, Meng S, Yan B, Chen J, Zhou L, Shan L, Wang Y. Anti-Proliferative, Pro-Apoptotic, Anti-Migrative and Tumor-Inhibitory Effects and Pleiotropic Mechanism of Theaflavin on B16F10 Melanoma Cells. Onco Targets Ther 2021; 14:1291-1304. [PMID: 33658796 PMCID: PMC7920628 DOI: 10.2147/ott.s286350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Theaflavin (TF) is a primary pigment of tea, exhibiting anti-proliferative, pro-apoptotic and anti-metastatic activities on cancer cell lines. However, it is unknown whether TF is effective in treating melanoma cells. Methods To determine the effects of TF on melanoma cells, we conducted in vitro assays of cell viability, DAPI staining, wound healing, transwell, and flow cytometry as well as in vivo experiments on B16F10-bearing mouse model. Real-time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular actions of TF. Results The cell viability assay showed that TF exerted inhibitory effect on B16F10 cells in a dose-dependent manner from 40 to 400 μg/mL, with IC50 values ranging from 223.8±7.1 to 103.7±7.0 μg/mL. Moreover, TF induced early and late apoptosis and inhibited migration/invasion of B16F10 cells in a dose-dependent manner, indicating its pro-apoptotic and anti-migrative effects. In vivo, TF significantly inhibited B16F10 tumor size in mice model from 40 to 120 mg/kg, which exerted higher effect than that of cisplatin. The molecular data showed that TF significantly up-regulated the mRNA expressions of pro-apoptotic genes (Bax, Casp3, Casp8, c-fos, c-Jun, and c-Myc), up-regulated the protein expressions of apoptosis-related p53 and JNK signaling molecules (ASK1, phosphorylated Chk1/2, cleaved caspase 3, phosphorylated JNK, c-JUN, cleaved PARP, and phosphorylated p53), and down-regulated the protein expressions of proliferation-related MEK/ERK and PI3K/AKT signaling molecules (phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated PI3K, and phosphorylated AKT) as well as the expressions of MMP2 and MMP9. Conclusion It can be concluded that TB exhibited anti-proliferative, pro-apoptotic, anti-migrative, and tumor-inhibitory effects on melanoma cells through pleiotropic actions on the above pathways. This study provides new evidence of anti-melanoma efficacy and mechanism of TF, contributing to the development of TF-derived natural products for melanoma therapy.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, People's Republic of China
| | - Shijie Meng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ying Wang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
26
|
McKenna M, Balasuriya N, Zhong S, Li SSC, O'Donoghue P. Phospho-Form Specific Substrates of Protein Kinase B (AKT1). Front Bioeng Biotechnol 2021; 8:619252. [PMID: 33614606 PMCID: PMC7886700 DOI: 10.3389/fbioe.2020.619252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3β (GSK-3β). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at −5, −4, −3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at −5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.
Collapse
Affiliation(s)
- McShane McKenna
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shanshan Zhong
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada.,Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
27
|
Immunohistochemistry analysis reveals lysyl oxidase-like 3 as a novel prognostic marker for primary melanoma. Melanoma Res 2021; 31:173-177. [PMID: 33625099 DOI: 10.1097/cmr.0000000000000720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lysyl oxidase-like 3 (LOXL3) is an extracellular enzyme involved in the synthesis of collagen and elastin, and it has been reported to promote melanoma cell proliferation and invasion in vitro. However, the expression level of LOXL3 at different stages of melanocytic lesions and the role of LOXL3 in melanoma pathogenesis remain unknown. Immunohistochemical staining of LOXL3 in a tissue microarray of 373 biopsies at different melanocytic stages was conducted. The correlation between LOXL3 expression and patient survival was examined using Kaplan-Meier survival analysis. Univariate and multivariate Cox regression analyses were conducted to study the hazard ratios. The tissue microarray study revealed that stronger expression of LOXL3 protein was found at more advanced melanocytic stages (P < 0.0001; χ2 test). Increased LOXL3 expression was associated with enhanced tumor thickness and mitosis. Survival analysis showed significantly worsened prognosis in primary melanoma patients when the LOXL3 expression level was higher (P = 0.043; log-rank test). Multivariate Cox regression analysis further showed that LOXL3 expression is a prognostic factor for primary melanoma patient survival (P = 0.04). LOXL3 expression is positively correlated with tumor progression and invasion, and its overexpression is associated with worse prognosis of primary melanoma patients. LOXL3 can serve as a prognostic marker to help identify primary melanoma patients at higher risks of death.
Collapse
|
28
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini Rev Med Chem 2021; 21:288-301. [PMID: 33019927 DOI: 10.2174/1389557520666201005143818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.
Collapse
Affiliation(s)
- Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | | | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The research center for preclinical medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
29
|
Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12113147. [PMID: 33121001 PMCID: PMC7692067 DOI: 10.3390/cancers12113147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids. They also highlight the role of adipose tissue in tumor progression as well as the potential antitumor role of drugs targeting critical steps of lipid metabolic pathways in the context of melanoma. Abstract Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.
Collapse
|
30
|
A20 promotes melanoma progression via the activation of Akt pathway. Cell Death Dis 2020; 11:794. [PMID: 32968045 PMCID: PMC7511359 DOI: 10.1038/s41419-020-03001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is the most life-threatening skin cancer with increasing incidence around the world. Although recent advances in targeted therapy and immunotherapy have brought revolutionary progress of the treatment outcome, the survival of patients with advanced melanoma remains unoptimistic, and metastatic melanoma is still an incurable disease. Therefore, to further understand the mechanism underlying melanoma pathogenesis could be helpful for developing novel therapeutic strategy. A20 is a crucial ubiquitin-editing enzyme implicated immunity regulation, inflammatory responses and cancer pathogenesis. Herein, we report that A20 played an oncogenic role in melanoma. We first found that the expression of A20 was significantly up-regulated in melanoma cell lines. Then, we showed that knockdown of A20 suppressed melanoma cell proliferation in vitro and melanoma growth in vivo through the regulation of cell-cycle progression. Moreover, A20 could potentiate the invasive and migratory capacities of melanoma cell in vitro and melanoma metastasis in vivo by promoting epithelial–mesenchymal transition (EMT). Mechanistically, we found that Akt activation mediated the oncogenic effect of A20 on melanoma development, with the involvement of glycolysis. What’s more, the up-regulation of A20 conferred the acquired resistance to Vemurafenib in BRAF-mutant melanoma. Taken together, we demonstrated that up-regulated A20 promoted melanoma progression via the activation of Akt pathway, and that A20 could be exploited as a potential therapeutic target for melanoma treatment.
Collapse
|
31
|
HOXC9 overexpression is associated with gastric cancer progression and a prognostic marker for poor survival in gastric cancer patients. Int J Clin Oncol 2020; 25:2044-2054. [PMID: 32816159 DOI: 10.1007/s10147-020-01772-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND As a member of the homeobox family, HOXC9 is overexpressed in several malignant tumors and may be regarded as a biomarker for prognostic evaluation. However, the expression pattern and prognostic significance of HOXC9 in gastric cancer have not been detailedly studied. METHODS HOXC9 mRNA expression difference in normal tissues and gastric cancer tissues were investigated using RT-PCR, and immunohistochemistry was used to analyze HOXC9 protein expression in precancerous lesions and gastric cancer at different stages, and its clinicopathological characteristics and survival were statistically tested. RESULTS Compared to the normal gastric mucosa tissues, the expression levels of HOXC9 mRNA in the human gastric cancer tissues were significantly higher. HOXC9 protein levels of gastric cancer were obviously higher than that in other noncancerous tissues (P < 0.001). Positive expression of HOXC9 was associated with tumor size (P = 0.036), lymphatic invasion (P = 0.001), depth of invasion (P < 0.001), lymph-node metastasis (P < 0.001), and higher stage disease (P < 0.001). Furthermore, Kaplan-Meier survival curves showed that HOXC9 expression is inversely correlated with both disease-specific and disease-free 5 year survival of patients with gastric cancer (P < 0.001 for both). Strikingly, our multivariate Cox regression analysis revealed that HOXC9 expression was an independent poor prognostic factor in gastric cancer (P < 0.05). CONCLUSIONS HOXC9 expression was observed in a subset of patients with gastric cancer and was associated with an unfavorable prognosis. As well as being a new prognostic indicator, HOXC9 protein could be a useful marker for early diagnosis.
Collapse
|
32
|
Zhang L, Wang Q, Wang L, Xie L, An Y, Zhang G, Zhu W, Li Y, Liu Z, Zhang X, Tang P, Huo X, Guo X. OSskcm: an online survival analysis webserver for skin cutaneous melanoma based on 1085 transcriptomic profiles. Cancer Cell Int 2020; 20:176. [PMID: 32467670 PMCID: PMC7236197 DOI: 10.1186/s12935-020-01262-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cutaneous melanoma is one of the most aggressive and lethal skin cancers. It is greatly important to identify prognostic biomarkers to guide the clinical management. However, it is technically challenging for untrained researchers to process high dimensional profiling data and identify potential prognostic genes in profiling datasets. Methods In this study, we developed a webserver to analyze the prognostic values of genes in cutaneous melanoma using data from TCGA and GEO databases. The webserver is named Online consensus Survival webserver for Skin Cutaneous Melanoma (OSskcm) which includes 1085 clinical melanoma samples. The OSskcm is hosted in a windows tomcat server. Server-side scripts were developed in Java script. The database system is managed by a SQL Server, which integrates gene expression data and clinical data. The Kaplan–Meier (KM) survival curves, Hazard ratio (HR) and 95% confidence interval (95%CI) were calculated in a univariate Cox regression analysis. Results In OSskcm, by inputting official gene symbol and selecting proper options, users could obtain KM survival plot with log-rank P value and HR on the output web page. In addition, clinical characters including race, stage, gender, age and type of therapy could also be included in the prognosis analysis as confounding factors to constrain the analysis in a subgroup of melanoma patients. Conclusion The OSskcm is highly valuable for biologists and clinicians to perform the assessment and validation of new or interested prognostic biomarkers for melanoma. OSskcm can be accessed online at: http://bioinfo.henu.edu.cn/Melanoma/MelanomaList.jsp.
Collapse
Affiliation(s)
- Lu Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Qiang Wang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Lijie Wang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Longxiang Xie
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Yang An
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Guosen Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Wan Zhu
- 3Department of Anesthesia, Stanford University, Stanford, CA 94305 USA
| | - Yongqiang Li
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Zhihui Liu
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiaochen Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Panpan Tang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiaozheng Huo
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiangqian Guo
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.,2Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
33
|
Li J, Jia Y, An L, Niu C, Cong X, Zhao Y. Uncoupling protein 2 is upregulated in melanoma cells and contributes to the activation of Akt/mTOR and ERK signaling. Int J Oncol 2020; 56:1252-1261. [PMID: 32319575 DOI: 10.3892/ijo.2020.5010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to characterize the expression of uncoupling protein 2 (UCP2) in melanoma and to study the potential mechanisms underlying the involvement of UCP2 in melanomagenesis using human melanoma cell lines. The expression of UCP2 was evaluated in specimens from normal control subjects, patients with compound nevus, and patients with cutaneous and mucosal melanoma. Stable knockdown of UCP2 was achieved in human melanoma cell lines, which were used to examine whether UCP2 knockdown affects the mitochondrial membrane potential and intracellular levels of ATP, reactive oxygen species and lactate. Cell proliferation, invasion, spheroid formation and cisplatin sensitivity were also evaluated in the UCP2 knockdown cells. Finally, the effects of UCP2 knockdown on the Akt/mammalian target of rapamycin (mTOR) and extracellular signal‑regulated kinase (ERK) pathways, which are important oncogenic pathways during melanomagenesis, were evaluated. Relatively high expression of UCP2 was detected in human melanoma specimens, which was correlated with Clark level and Breslow thickness. Knockdown of UCP2 suppressed cell proliferation, invasion and spheroid formation, and increased the sensitivity of melanoma cells to cisplatin. Furthermore, the UCP2 knockdown cells exhibited inhibition of Akt/mTOR signaling and ERK activation. Therefore, human melanoma tissues exhibit relatively high UCP2 expression, which may be implicated in the mechanisms underlying tumor progression. The potential role of UCP2 in melanomagenesis may involve enhancing the Akt/mTOR and mitogen‑activated protein kinase/ERK pathways.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yuxi Jia
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lin An
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chunbo Niu
- Department of Pathology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xianling Cong
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neurosciences, LSU Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
34
|
Luís R, Brito C, Pojo M. Melanoma Metabolism: Cell Survival and Resistance to Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:203-223. [PMID: 32130701 DOI: 10.1007/978-3-030-34025-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cutaneous melanoma is one of the most aggressive types of cancer, presenting the highest potential to form metastases, both locally and distally, which are associated with high death rates of melanoma patients. A high somatic mutation burden is characteristic of these tumours, with most common oncogenic mutations occurring in the BRAF, NRAS and NF1 genes. These intrinsic oncogenic pathways contribute to the metabolic switch between glycolysis and oxidative phosphorylation metabolisms of melanoma, facilitating tumour progression and resulting in a high plasticity and adaptability to unfavourable conditions. Moreover, melanoma microenvironment can influence its own metabolism and reprogram several immune cell subset functions, enabling melanoma to evade the immune system. The knowledge of the biology, molecular alterations and microenvironment of melanoma has led to the development of new targeted therapies and the improvement of patient care. In this work, we reviewed the impact of melanoma metabolism in the resistance to BRAF and MEK inhibitors and immunotherapies, emphasizing the requirement to evaluate metabolic alterations upon development of novel therapeutic approaches. Here we summarized the current understanding of the impact of metabolic processes in melanomagenesis, metastasis and microenvironment, as well as the involvement of metabolic pathways in the immune modulation and resistance to targeted and immunocheckpoint therapies.
Collapse
Affiliation(s)
- Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| |
Collapse
|
35
|
Arnst KE, Banerjee S, Wang Y, Chen H, Li Y, Yang L, Li W, Miller DD, Li W. X-ray Crystal Structure Guided Discovery and Antitumor Efficacy of Dihydroquinoxalinone as Potent Tubulin Polymerization Inhibitors. ACS Chem Biol 2019; 14:2810-2821. [PMID: 31714738 DOI: 10.1021/acschembio.9b00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because of its multifaceted role in cellular functions, tubulin is a validated and productive drug target for cancer therapy. While many tubulin inhibitors demonstrate clinical efficacy, they are often limited by the development of multidrug resistance. Therefore, implementation of tubulin inhibitors that can overcome resistance could provide significant therapeutic benefits. To optimize our previously reported tubulin inhibitor, 4a, we designed and synthesized two new analogues, SB202 and SB204, based on the crystal structure of 4a in complex with tubulin protein. SB202 and SB204 achieved enhanced binding at the colchicine site in tubulin and also showed improved metabolic stability and antiproliferative potency in vitro. Functional studies confirmed that SB202 and SB204 inhibit tubulin polymerization, arrest cells in the G2/M phase of the cell cycle, interfere with cancer cell migration and proliferation, and enhance apoptotic cascades. When evaluated in vivo, SB202 exhibited antitumor and vascular disrupting action against paclitaxel-resistant mouse xenograft models, strongly suggesting the potential of this scaffold to overcome multidrug resistance for cancer therapy.
Collapse
Affiliation(s)
- Kinsie E. Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Analytical Technologies Center, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Analytical Technologies Center, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
36
|
Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, Stehn CM, Strain SC, Grossmann AH, Duffy KL, Boucher KM, McMahon M, Davies MA, Mendoza MC, VanBrocklin MW, Holmen SL. AKT1 E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Mol Cancer Res 2019; 17:1787-1800. [PMID: 31138602 PMCID: PMC6726552 DOI: 10.1158/1541-7786.mcr-18-1372] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear. Using an established melanoma mouse model, we evaluated E17K, E40K, and Q79K mutations in AKT1, AKT2, and AKT3 and show that mice harboring tumors expressing AKT1E17K had the highest incidence of brain metastasis and lowest mean survival. Tumors expressing AKT1E17K displayed elevated levels of focal adhesion factors and enhanced phosphorylation of focal adhesion kinase (FAK). AKT1E17K expression in melanoma cells increased invasion and this was reduced by pharmacologic inhibition of either AKT or FAK. These data suggest that the different AKT paralogs have distinct roles in melanoma brain metastasis and that AKT and FAK may be promising therapeutic targets. IMPLICATIONS: This study suggests that AKT1E17K promotes melanoma brain metastasis through activation of FAK and provides a rationale for the therapeutic targeting of AKT and/or FAK to reduce melanoma metastasis.
Collapse
Affiliation(s)
- David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kirby A Trombetti
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Grant M Fischer
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Christopher M Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sean C Strain
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Keith L Duffy
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle C Mendoza
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
37
|
Vakili Saatloo M, Aghbali AA, Koohsoltani M, Yari Khosroushahi A. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma. Gene 2019; 714:143997. [PMID: 31348981 DOI: 10.1016/j.gene.2019.143997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/14/2023]
Abstract
Based on Akt1 and Jak1 key roles in apoptosis and proliferation of many cancers, the aim of this study was to find a new gene therapy strategy by silencing of these main anti-apoptotic genes for HNSCC treatment. Cancerous HN5 and normal HUVEC cell lines were treated with Akt1 and Jak1 siRNAs alone or with each other combined with/without cisplatin. The MTS, flow cytometry, 4',6-diamidino-2-phenylindole staining, real-time PCR and ELISA methods were utilized in this study. The highest percentage of apoptosis was observed in the treatment of Jak1 siRNA/cisplatin group in cancerous HN5 cells (96.5%) where this treatment showed 12.84% apoptosis in normal HUVEC cell line. Cell viability reduced significantly to 64.57% after treatment with Akt1 siRNA in HN5 treated group. Knocking down Akt1 and Jak1 genes using siRNAs could increase levels of apoptosis and reduce proliferation rate in HNSCC indicating the powerful effects of these genes siRNAs with or without chemotherapeutic agents in HNSCC treatment. In conclusion, the combination of siRNA-mediated gene-silencing strategy can be considered as a valuable and safe approach for sensitizing cancer cells to chemotherapeutic agents thus proposed further studies regarding this issue to approve some siRNA based therapeutics for using in clinic.
Collapse
Affiliation(s)
- Maedeh Vakili Saatloo
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Urmia Medical University, Urmia, West Azerbaijan, Iran
| | - Amir Ala Aghbali
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz Medical University, Tabriz, East Azerbaijan, Iran.
| | - Maryam Koohsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz Medical University, Tabriz, East Azerbaijan, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Yoo JH, Brady SW, Acosta-Alvarez L, Rogers A, Peng J, Sorensen LK, Wolff RK, Mleynek T, Shin D, Rich CP, Kircher DA, Bild A, Odelberg SJ, Li DY, Holmen SL, Grossmann AH. The Small GTPase ARF6 Activates PI3K in Melanoma to Induce a Prometastatic State. Cancer Res 2019; 79:2892-2908. [PMID: 31048499 DOI: 10.1158/0008-5472.can-18-3026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Melanoma has an unusual capacity to spread in early-stage disease, prompting aggressive clinical intervention in very thin primary tumors. Despite these proactive efforts, patients with low-risk, low-stage disease can still develop metastasis, indicating the presence of permissive cues for distant spread. Here, we show that constitutive activation of the small GTPase ARF6 (ARF6Q67L) is sufficient to accelerate metastasis in mice with BRAFV600E/Cdkn2aNULL melanoma at a similar incidence and severity to Pten loss, a major driver of PI3K activation and melanoma metastasis. ARF6Q67L promoted spontaneous metastasis from significantly smaller primary tumors than PTENNULL, implying an enhanced ability of ARF6-GTP to drive distant spread. ARF6 activation increased lung colonization from circulating melanoma cells, suggesting that the prometastatic function of ARF6 extends to late steps in metastasis. Unexpectedly, ARF6Q67L tumors showed upregulation of Pik3r1 expression, which encodes the p85 regulatory subunit of PI3K. Tumor cells expressing ARF6Q67L displayed increased PI3K protein levels and activity, enhanced PI3K distribution to cellular protrusions, and increased AKT activation in invadopodia. ARF6 is necessary and sufficient for activation of both PI3K and AKT, and PI3K and AKT are necessary for ARF6-mediated invasion. We provide evidence for aberrant ARF6 activation in human melanoma samples, which is associated with reduced survival. Our work reveals a previously unknown ARF6-PI3K-AKT proinvasive pathway, it demonstrates a critical role for ARF6 in multiple steps of the metastatic cascade, and it illuminates how melanoma cells can acquire an early metastatic phenotype in patients. SIGNIFICANCE: These findings reveal a prometastatic role for ARF6 independent of tumor growth, which may help explain how melanoma spreads distantly from thin, early-stage primary tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2892/F1.large.jpg.
Collapse
Affiliation(s)
- Jae Hyuk Yoo
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Samuel W Brady
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah.,Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah
| | | | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Jingfu Peng
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Roger K Wolff
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Tara Mleynek
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Coulson P Rich
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - David A Kircher
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Andrea Bild
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah.,Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, Monrovia, California
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.,Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, Utah. .,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.,ARUP Laboratories, University of Utah, Salt Lake City, Utah
| |
Collapse
|
39
|
Akt inhibitor SC66 promotes cell sensitivity to cisplatin in chemoresistant ovarian cancer cells through inhibition of COL11A1 expression. Cell Death Dis 2019; 10:322. [PMID: 30975980 PMCID: PMC6459878 DOI: 10.1038/s41419-019-1555-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/28/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
We studied Akt inhibition using SC66 in a NOD-SCID xenograft mouse model and a panel of eight ovarian cancer cell lines. Elevated phospho-Akt levels in cancerous tissue were associated with short progression-free survival and overall survival. Cell sensitivity to SC66 was inversely correlated with phospho-Akt and COL11A1 expression levels, as well as resistance to cisplatin or paclitaxel. SC66 inhibited phosphorylation of Akt and its downstream effectors 4EBP1 and p70S6 kinase. SC66 also attenuated expression of TWIST1 and Mcl-1, factors important in cell invasiveness and anti-apoptosis, respectively. SC66-sensitized chemoresistant cells to cisplatin and paclitaxel treatment, and promoted apoptosis. In addition, SC66 inhibited COL11A1 expression via decreased binding of CCAAT/enhancer-binding protein beta (c/EBPβ), reducing chemoresistance and decreasing binding of nuclear transcription factor Y (NF-YA) to COL11A1. A mouse xenograft experiment demonstrated that SC66 treatment caused a reduction in tumor formation and enhanced the therapeutic efficacy of cisplatin. This study demonstrates the role of Akt in ovarian tumor progression and chemoresistance, and supports the application of SC66 as a therapy for ovarian cancer.
Collapse
|
40
|
Regan-Fendt KE, Xu J, DiVincenzo M, Duggan MC, Shakya R, Na R, Carson WE, Payne PRO, Li F. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst Biol Appl 2019; 5:6. [PMID: 30820351 PMCID: PMC6391384 DOI: 10.1038/s41540-019-0085-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Systems biology perspectives are crucial for understanding the pathophysiology of complex diseases, and therefore hold great promise for the discovery of novel treatment strategies. Drug combinations have been shown to improve durability and reduce resistance to available first-line therapies in a variety of cancers; however, traditional drug discovery approaches are prohibitively cost and labor-intensive to evaluate large-scale matrices of potential drug combinations. Computational methods are needed to efficiently model complex interactions of drug target pathways and identify mechanisms underlying drug combination synergy. In this study, we employ a computational approach, SynGeNet (Synergy from Gene expression and Network mining), which integrates transcriptomics-based connectivity mapping and network centrality analysis to analyze disease networks and predict drug combinations. As an exemplar of a disease in which combination therapies demonstrate efficacy in genomic-specific contexts, we investigate malignant melanoma. We employed SynGeNet to generate drug combination predictions for each of the four major genomic subtypes of melanoma (BRAF, NRAS, NF1, and triple wild type) using publicly available gene expression and mutation data. We validated synergistic drug combinations predicted by our method across all genomic subtypes using results from a high-throughput drug screening study across. Finally, we prospectively validated the drug combination for BRAF-mutant melanoma that was top ranked by our approach, vemurafenib (BRAF inhibitor) + tretinoin (retinoic acid receptor agonist), using both in vitro and in vivo models of BRAF-mutant melanoma and RNA-sequencing analysis of drug-treated melanoma cells to validate the predicted mechanisms. Our approach is applicable to a wide range of disease domains, and, importantly, can model disease-relevant protein subnetworks in precision medicine contexts.
Collapse
Affiliation(s)
- Kelly E Regan-Fendt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Jielin Xu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Mallory DiVincenzo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan C Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Reena Shakya
- Target Validation Shared Resource, The Ohio State University, Columbus, OH, USA
| | - Ryejung Na
- Target Validation Shared Resource, The Ohio State University, Columbus, OH, USA
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip R O Payne
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
41
|
Segaoula Z, Primot A, Lepretre F, Hedan B, Bouchaert E, Minier K, Marescaux L, Serres F, Galiègue-Zouitina S, André C, Quesnel B, Thuru X, Tierny D. Isolation and characterization of two canine melanoma cell lines: new models for comparative oncology. BMC Cancer 2018; 18:1219. [PMID: 30514258 PMCID: PMC6280433 DOI: 10.1186/s12885-018-5114-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metastatic melanoma is one of the most aggressive forms of cancer in humans. Among its types, mucosal melanomas represent one of the most highly metastatic and aggressive forms, with a very poor prognosis. Because they are rare in Caucasian individuals, unlike cutaneous melanomas, there has been fewer epidemiological, clinical and genetic evaluation of mucosal melanomas. Moreover, the lack of predictive models fully reproducing the pathogenesis and molecular alterations of mucosal melanoma makes its treatment challenging. Interestingly, dogs are frequently affected by melanomas of the oral cavity that are characterized, as their human counterparts, by focal infiltration, recurrence, and metastasis to regional lymph nodes, lungs and other organs. In dogs, some particular breeds are at high risk, suggesting a specific genetic background and strong genetic drivers. Altogether, the striking homologies in clinical presentation, histopathological features, and overall biology between human and canine mucosal melanomas make dogs invaluable natural models with which to investigate tumor development, including tumor ætiology, and develop tailored treatments. METHODS We developed and characterized two canine oral melanoma cell lines from tumors isolated from dog patients with distinct clinical profiles; with and without lung metastases. The cells were characterized using immunohistochemistry, pharmacology and genetic studies. RESULTS We have developed and immunohistochemically, genetically, and pharmacologically characterized. Two cell lines (Ocr_OCMM1X & Ocr_OCMM2X) were produced through mouse xenografts originating from two clinically contrasting melanomas of the oral cavity. Their exhaustive characterization showed two distinct biological and genetic profiles that are potentially linked to the stage of malignancy at the time of diagnosis and sample collection of each melanoma case. These cell lines thus constitute relevant tools with which to perform genetic and drug screening analyses for a better understanding of mucosal melanomas in dogs and humans. CONCLUSIONS The aim of this study was to establish and characterize xenograft-derived canine melanoma cell lines with different morphologies, genetic features and pharmacological sensitivities that constitute good predictive models for comparative oncology. These cell lines are relevant tools to advance the use of canine mucosal melanomas as natural models for the benefit of both veterinary and human medicine.
Collapse
Affiliation(s)
- Zacharie Segaoula
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
| | - Aline Primot
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | | | - Benoit Hedan
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Emmanuel Bouchaert
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
| | - Kevin Minier
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - Laurent Marescaux
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - François Serres
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - Sylvie Galiègue-Zouitina
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
| | - Catherine André
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Bruno Quesnel
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Xavier Thuru
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
| | - Dominique Tierny
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| |
Collapse
|
42
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
43
|
Balasuriya N, Kunkel MT, Liu X, Biggar KK, Li SSC, Newton AC, O'Donoghue P. Genetic code expansion and live cell imaging reveal that Thr-308 phosphorylation is irreplaceable and sufficient for Akt1 activity. J Biol Chem 2018; 293:10744-10756. [PMID: 29773654 DOI: 10.1074/jbc.ra118.002357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.
Collapse
Affiliation(s)
| | - Maya T Kunkel
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | | | | | | | - Alexandra C Newton
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and
| |
Collapse
|
44
|
High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ipilimumab-treated melanoma patients. Melanoma Res 2018; 27:24-31. [PMID: 27768639 DOI: 10.1097/cmr.0000000000000305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ipilimumab, a fully human monoclonal antibody against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), is the first immune checkpoint inhibitor approved for the treatment of unresectable melanoma on the basis of its overall survival (OS) benefit. However, ipilimumab is associated with significant immune-related adverse events. We hypothesized that biomarker exploration of pretreatment tumor samples and correlation with clinical outcome would enable patient selection with an increased benefit/risk ratio for ipilimumab therapy. At the University of Texas MD Anderson Cancer Center, a total of 81 advanced melanoma patients were treated on the Ipilimumab Expanded Access Program from 2007 to 2008. Using immunohistochemistry, we analyzed the expression of immune checkpoint (CTLA-4, PD-1, PD-L1) and Akt-pathway proteins in formalin-fixed tumor tissue. Associations between these biomarkers and progression-free survival (PFS) and OS were analyzed with univariate and multivariate Cox proportional-hazards models. There was a significant correlation between high CTLA-4 protein expression levels in tumor cells and risk of death (P=0.02) and decreased PFS (P=0.023). In addition, high expression of CTLA-4 in peritumoral lymphocytes correlated with poor OS (P=0.023). In multivariate analysis, patients with high CTLA-4 and phospho-Akt (p-Akt) expression correlated with poor OS (log-rank test, P=0.039) and PFS (log-rank test, P=0.014). High levels of CTLA-4 and p-Akt expression in pretreatment tumor cells in melanoma patients were associated with poor clinical outcomes. Immunohistochemistry analysis of CTLA-4 and p-Akt in pretreatment tumor samples provides useful biomarkers that may enable improved patient selection for ipilimumab therapy. Prospective clinical studies are warranted to investigate the predictive value of these biomarkers.
Collapse
|
45
|
Wang J, Xiao Q, Chen X, Tong S, Sun J, Lv R, Wang S, Gou Y, Tan L, Xu J, Fan C, Ding G. LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death Dis 2018; 9:197. [PMID: 29416001 PMCID: PMC5833716 DOI: 10.1038/s41419-017-0207-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in male. Numerous studies have focused on the molecular mechanisms of carcinogenesis and progression, aiming at developing new therapeutic strategies. Here we describe Lanthionine synthase C-like protein 1 (LanCL1), a member of the LanCL family, is a potential prostate cancer susceptibility gene. LanCL1 promotes prostate cancer cell proliferation and helps protect cells from damage caused by oxidative stress. Suppression of LanCL1 by siRNA results in increased cancer cell apoptosis. Clinical data also indicate that LanCL1 upregulation in human prostate cancers correlates with tumor progression. Finally, we demonstrate that LanCL1 plays such important role through inhibiting JNK pathway. Altogether, our results suggest that LanCL1 protects cells from oxidative stress, and promotes cell proliferation. LanCL1 reduces cell death via suppression of JNK signaling pathway.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China
| | - Qianyi Xiao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijun Tong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianliang Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lv
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siqing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuancheng Gou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China.
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Yu Y, Dai M, Lu A, Yu E, Merlino G. PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 2018; 37:2225-2236. [PMID: 29391600 DOI: 10.1038/s41388-017-0061-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Meng Dai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Andrew Lu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ellen Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
47
|
Ma M, Dai J, Xu T, Yu S, Yu H, Tang H, Yan J, Wu X, Yu J, Chi Z, Si L, Cui C, Sheng X, Kong Y, Guo J. Analysis of TSC1 mutation spectrum in mucosal melanoma. J Cancer Res Clin Oncol 2018; 144:257-267. [PMID: 29185092 DOI: 10.1007/s00432-017-2550-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/23/2017] [Indexed: 02/01/2023]
Abstract
PURPOSE Mucosal melanoma is a relatively rare subtype of melanoma for which no clearly established therapeutic strategy exists. The genes of the mTOR signalling pathway have drawn great attention as key targets for cancer treatment, including melanoma. In this study, we aimed to investigate the mutation status of the upstream mTOR regulator TSC1 and evaluated its correlation with the clinicopathological features of mucosal melanoma. METHODS We collected 91 mucosal melanoma samples for detecting TSC1 mutations. All the coding exons of TSC1 were amplified by PCR and subjected to Sanger sequencing. Expression level of TSC1 encoding protein (hamartin) was detected by immunohistochemistry. The activation of mTOR pathway was determined by evaluating the phosphorylation status of S6RP and 4E-BP1. RESULTS The overall mutation frequency of TSC1 was found to be 17.6% (16/91 patients). TSC1 mutations were more inclined to occur in advanced mucosal melanoma (stages III and IV). In the 16 patients with TSC1 mutations, 14 different mutations were detected, affecting 11 different exons. TSC1 mutations were correlated with upregulation of S6RP phosphorylation but were unrelated to 4E-BP1 phosphorylation or hamartin expression. Mucosal melanoma patients with TSC1 mutations had a worse outcome than patients without TSC1 mutations (24.0 versus 34.0 months, P = 0.007). CONCLUSIONS Our findings suggest that TSC1 mutations are frequent in mucosal melanoma. TSC1 mutations can activate the mTOR pathway through phospho-S6RP and might be a poor prognostic predictor of mucosal melanoma. Our data implicate the potential significance of TSC1 mutations for effective and specific drug therapy for mucosal melanoma.
Collapse
Affiliation(s)
- Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
48
|
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta Gen Subj 2017; 1862:600-614. [PMID: 29196192 DOI: 10.1016/j.bbagen.2017.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
Collapse
|
49
|
Testa U, Castelli G, Pelosi E. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Med Sci (Basel) 2017; 5:E28. [PMID: 29156643 PMCID: PMC5753657 DOI: 10.3390/medsci5040028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
50
|
Kim DJ, Lee MH, Liu K, Lim DY, Roh E, Chen H, Kim SH, Shim JH, Kim MO, Li W, Ma F, Fredimoses M, Bode AM, Dong Z. Herbacetin suppresses cutaneous squamous cell carcinoma and melanoma cell growth by targeting AKT and ODC. Carcinogenesis 2017; 38:1136-1146. [PMID: 29029040 PMCID: PMC5862242 DOI: 10.1093/carcin/bgx082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Herbacetin is a flavonol compound that is found in plants such as flaxseed and ramose scouring rush herb, it possesses a strong antioxidant capacity, and exerts anticancer effects on colon and breast cancer. However, the effect of herbacetin on skin cancer has not been investigated. Herein, we identified herbacetin as a dual V-akt murine thymoma viral oncogene homolog (AKT) and ornithine decarboxylase (ODC) inhibitor, and illustrated its anticancer effects in vitro and in vivo against cutaneous squamous cell carcinoma (SCC) and melanoma cell growth. To identify the direct target(s) of herbacetin, we screened several skin cancer-related protein kinases, and results indicated that herbacetin strongly suppresses both AKT and ODC activity. Results of cell-based assays showed that herbacetin binds to both AKT and ODC, inhibits TPA-induced neoplastic transformation of JB6 mouse epidermal cells, and suppresses anchorage-independent growth of cutaneous SCC and melanoma cells. The inhibitory activity of herbacetin was associated with markedly reduced NF-κB and AP1 reporter activity. Interestingly, herbacetin effectively attenuated TPA-induced skin cancer development and also exhibited therapeutic effects against solar-UV-induced skin cancer and melanoma growth in vivo. Our findings indicate that herbacetin is a potent AKT and ODC inhibitor that should be useful for preventing skin cancers.
Collapse
Affiliation(s)
- Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - KangDong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450008, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sung-Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Jung-Hyun Shim
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Myoung Ok Kim
- Center for Laboratory Animal Resources, School of Animal Biotechnology, Kyungpook National University, Dae-gu 700-842, Republic of Korea
| | - Wenwen Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Fayang Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|