1
|
Zang JCS, May C, Marcus K, Kumsta R. Molecular correlates of childhood adversity - a multi-omics perspective on stress regulation. Stress 2025; 28:2495918. [PMID: 40305005 DOI: 10.1080/10253890.2025.2495918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The experience of adversity in childhood can have life-long consequences on health outcomes. In search of mediators of this relationship, alterations of bio-behavioral and cellular regulatory systems came into focus, including those dealing with basic gene regulatory processes. System biology oriented approaches have been proposed to gain a more comprehensive understanding of the complex multiple interrelations between and within layers of analysis. Here, we used co-expression based, supervised and unsupervised single and multi-omics systems approaches to investigate the association between childhood adversity and gene expression, protein expression and DNA methylation in CD14+ monocytes in the context of psychosocial stress exposure, in a sample of healthy adults with (n = 29) or without (n = 27) a history of childhood adversity. Childhood adversity explained some variance at the single analyte level and within gene and protein co-expression structures. A single-omics, post-stress gene expression model differentiated best between participants with a history of childhood adversity and control participants in supervised analyses. In unsupervised analyses, a multi-omics based model showed best performance but separated participants based on sex only. Multi-omics analyses are a promising concept but might yield different results based on the specific approach taken and the omics-datasets supplied. We found that stress associated gene-expression pattern were most strongly associated with childhood adversity, and integrating multiple cellular layers did not results in better discriminatory performance in our rather small sample. The capacity and yield of different omics-profiling methods might currently limit the full potential of integrative approaches.
Collapse
Affiliation(s)
- Johannes C S Zang
- Faculty of Psychology, Institute for Health and Development, Ruhr University Bochum, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Medical Proteome Analysis Centre for Protein Diagnostics (PRODI), Ruhr University, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Proteome Analysis Centre for Protein Diagnostics (PRODI), Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Faculty of Psychology, Institute for Health and Development, Ruhr University Bochum, Bochum, Germany
- Department of Behavioral and Cognitive Sciences, Laboratory for Stress and Gene-Environment Interplay, University of Luxemburg, Esch-sur-Alzette, Luxemburg
- DZPG (German Center for Mental Health), partner site Bochum/Marburg, Germany
| |
Collapse
|
2
|
Chen Y, Li Y, Xu Y, Lv Q, Ye Y, Gu J. Revealing the role of natural killer cells in ankylosing spondylitis: identifying diagnostic biomarkers and therapeutic targets. Ann Med 2025; 57:2457523. [PMID: 39853176 PMCID: PMC11770870 DOI: 10.1080/07853890.2025.2457523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic autoimmune disease that primarily affects the axial joints. Immune cells play a key role in the pathogenesis of AS. This study integrated bioinformatics methods with experimental validation to explore the role of natural killer (NK) cells in AS. METHODS Two microarray datasets, GSE25101 and GSE73754, were selected, and the scRNA-seq data were obtained from GSE194315 and Liu's research. Differentially expressed genes (DEGs) and functional enrichment analysis were performed respectively. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules of co-expressed genes and genes involved in NK cell function. The diagnostic value of the identified key genes was evaluated using ROC curves, logistic regression analysis, and a nomogram. Real-time PCR (RT-PCR) was used to quantified the expression of genes. Statistical analysis was conducted using the R software package, and a p-value of less than 0.05 was considered statistically significant. RESULTS Pathways enrichment analysis revealed the involvement of NK cell-mediated immune pathways and regulation of the innate immune response, indicating the crucial role of innate immunity, especially NK cells, in AS pathogenesis. The construction of a co-expression network revealed that the MElightyellow module was most relevant to the NK cell-mediated immune pathway. IL2RB, CD247, PLEKHF1, EOMES, S1PR5, FGFBP2 from the MElightyellow module were identified as key genes involved in NK cell-mediated immune response and served as potential diagnostic biomarkers for AS, with moderate to high diagnostic values based on AUC values. Further analysis using scRNA-seq profiling revealed the higher expression level of IL2RB, CD247, PLEKHF1, S1PR5, FGFBP2 in NK cells compared to that in other cell types. CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 were reduced expressed in AS patients as compare to control group verified by scRNA-seq data, CD247, EOMES, FGFBP2, IL2RB and S1PR5 were reduced expressed verified by RT-PCR, and PLEKHF1, S1PR5, and FGFBP2 was upregulated after TNF-α blocker therapy. CONCLUSION The study revealed the potential role of NK cells and identified IL2RB, CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 as key genes associated with NK cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yan Li
- Department of Scientific Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuan Xu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qing Lv
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong ProvincePeople’s Republic of China
| |
Collapse
|
3
|
Chen Y, Zhou C, Zhang X, Chen M, Wang M, Zhang L, Chen Y, Huang L, Sun J, Wang D, Chen Y. Construction of a novel radioresistance-related signature for prediction of prognosis, immune microenvironment and anti-tumour drug sensitivity in non-small cell lung cancer. Ann Med 2025; 57:2447930. [PMID: 39797413 PMCID: PMC11727174 DOI: 10.1080/07853890.2024.2447930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC. METHODS The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases. The least absolute shrinkage and selection operator (LASSO) regression and random survival forest (RSF) were used to screen for prognostically relevant RRRGs. Multivariate Cox regression was used to construct a risk score model. Then, Immune landscape and drug sensitivity were evaluated. The biological functions exerted by the key gene LBH were verified by in vitro experiments. RESULTS Ninety-nine RRRGs were screened by intersecting the results of DEGs and WGCNA, then 11 hub RRRGs associated with survival were identified using machine learning algorithms (LASSO and RSF). Subsequently, an eight-gene (APOBEC3B, DOCK4, IER5L, LBH, LY6K, RERG, RMDN2 and TSPAN2) risk score model was established and demonstrated to be an independent prognostic factor in NSCLC on the basis of Cox regression analysis. The immune landscape and sensitivity to anti-tumour drugs showed significant disparities between patients categorized into different risk score subgroups. In vitro experiments indicated that overexpression of LBH enhanced the radiosensitivity of A549 cells, and knockdown LBH reversed the cytotoxicity induced by X-rays. CONCLUSION Our study developed an eight-gene risk score model with potential clinical value that can be adopted for choice of drug treatment and prognostic prediction. Its clinical routine use may assist clinicians in selecting more rational practices for individuals, which is important for improving the prognosis of NSCLC patients. These findings also provide references for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhou
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meifang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lisha Zhang
- Department of Obstetrics, Tangshan Caofeidian District Hospital, Tangshan, Hebei, China
| | - Yanhui Chen
- Department of Neuroscience and Endocrinology, Tangshan Caofeidian District Hospital, Tangshan, Hebei, China
| | - Litao Huang
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junjun Sun
- Department of Emergency Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, , China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Chen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Yang X, Yue R, Zhao L, Wang Q. Integration of transcriptome and Mendelian randomization analyses in exploring the extracellular vesicle-related biomarkers of diabetic kidney disease. Ren Fail 2025; 47:2458767. [PMID: 39957315 PMCID: PMC11834810 DOI: 10.1080/0886022x.2025.2458767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a common complication in patients with diabetes, and its pathogenesis remains incompletely understood. Recent studies have suggested that extracellular vesicles (EVs) may play a significant role in the initiation and progression of DKD. This study aimed to identify biomarkers associated with EVs in DKD through bioinformatics and Mendelian randomization (MR) analysis. METHODS This study utilized two DKD-related datasets, GSE96804 and GSE30528, alongside 121 exosome-related genes (ERGs) and 200 inflammation-related genes (IRGs). Differential analysis, co-expression network construction, and MR analysis were conducted to identify candidate genes. Machine learning techniques and expression validation were then employed to determine biomarkers. Finally, the potential mechanisms of action of these biomarkers were explored through Immunohistochemistry (IHC) staining, enrichment analysis, immune infiltration analysis, and regulatory network construction. RESULTS A total of 22 candidate genes were identified as causally linked to DKD. CMAS and RGS10 were identified as biomarkers, with both showing reduced expression in DKD. IHC confirmed low RGS10 expression, providing new insights into DKD management. CMAS was involved primarily in mitochondria-related pathways, while RGS10 was enriched in the extracellular matrix and associated pathways. Significant differences were observed in neutrophils and M2 macrophages between DKD and normal groups, correlating strongly with the biomarkers. CONCLUSION This study identified two EV-associated biomarkers, CMAS and RGS10, linked to DKD and elucidated their potential roles in disease progression. These results offer valuable insights for further exploration of DKD pathogenesis and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Xu Yang
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyue Wang
- Department of Pediatrics, Chengdu Jinniu Hospital of TCM, Chengdu, China
| |
Collapse
|
5
|
Li B, Chen H, Duan H. Visualized hysteroscopic artificial intelligence fertility assessment system for endometrial injury: an image-deep-learning study. Ann Med 2025; 57:2478473. [PMID: 40098308 PMCID: PMC11921166 DOI: 10.1080/07853890.2025.2478473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/17/2024] [Accepted: 01/04/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE Asherman's syndrome (AS) is a significant cause of subfertility in women from developing countries. Over 80% of AS cases in these regions are linked to dilation and curettage (D&C) procedures following pregnancy. The incidence of AS in patients with infertility and recurrent miscarriage can be as high as 10%, while the pregnancy rate in cases of moderate to severe adhesions can be as low as 34%. We aimed to establish a hysteroscopic artificial intelligence system using image-deep-learning algorithms for fertility assessment. METHODS This diagnostic study included 555 cases with 4922 hysteroscopic images from a Chinese intrauterine adhesions cohort clinical database (NCT05381376). The study evaluated two image-deep-learning algorithms' effectiveness in predicting pregnancy within one year, using AUCs and decision curve analysis. The models' performance was evaluated for two-year prediction via concordance index and cumulative time-dependent ROC. A quantifiable visualization panel of the system was established. RESULTS The proportional hazard CNN system accurately predicted conception, with AUCs of 0.982, 0.992, and 0.990 in three randomly assigned datasets, superior to the InceptionV3 framework, and achieved a net benefit of 69.4% for subfertility assessment. The system fitted well with c-indexes of 0.920-0.940 and was time-stable. The quantifiable visualization panel displayed four intrauterine pathologies intuitively. The performance was comparable to senior hysteroscopists, with a kappa value of 0.84-0.89. CONCLUSIONS The CNN based on the proportional hazard approach accurately assesses fertility postoperatively. The quantifiable visualization panel could assist in intrauterine pathologies assessment, optimize treatment strategies, and achieve individualized and cost-efficient practices.
Collapse
Affiliation(s)
- Bohan Li
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
6
|
Akagbosu CO, McCauley KE, Namasivayam S, Romero-Soto HN, O’Brien W, Bacorn M, Bohrnsen E, Schwarz B, Mistry S, Burns AS, Perez-Chaparro PJ, Chen Q, LaPoint P, Patel A, Krausfeldt LE, Subramanian P, Sellers BA, Cheung F, Apps R, Douagi I, Levy S, Nadler EP, Hourigan SK. Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential. Gut Microbes 2025; 17:2467833. [PMID: 39971742 PMCID: PMC11845021 DOI: 10.1080/19490976.2025.2467833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Here, we show that adolescents exhibit significant gut microbiome and metabolome shifts several months after laparoscopic vertical sleeve gastrectomy (VSG), with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited a potentially inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.
Collapse
Affiliation(s)
- Cynthia O. Akagbosu
- Department of Gastroenterology, Weill Cornell Medicine, New York, New York, USA
| | - Kathryn E. McCauley
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sivaranjani Namasivayam
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hector N. Romero-Soto
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wade O’Brien
- Dartmouth Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mickayla Bacorn
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Qing Chen
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Phoebe LaPoint
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anal Patel
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E. Krausfeldt
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian A. Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Iyadh Douagi
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Shira Levy
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Suchitra K. Hourigan
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Liu J, Fan J, Duan H, Chen G, Zhang W, Wang P. Identification and validation of susceptibility modules and hub genes in polyarticular juvenile idiopathic arthritis using WGCNA and machine learning. Autoimmunity 2025; 58:2437239. [PMID: 39699225 DOI: 10.1080/08916934.2024.2437239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA), superseding juvenile rheumatoid arthritis (JRA), is a chronic autoimmune disease affecting children and characterized by various types of childhood arthritis. JIA manifests clinically with joint inflammation, swelling, pain, and limited mobility, potentially leading to long-term joint damage if untreated. This study aimed to identify genes associated with the progression and prognosis of JIA polyarticular to enhance clinical diagnosis and treatment. METHODS We analyzed the gene expression omnibus (GEO) dataset GSE1402 to screen for differentially expressed genes (DEGs) in peripheral blood single nucleated cells (PBMCs) of JIA polyarticular patients. Weighted gene co-expression network analysis (WGCNA) was applied to identify key gene modules, and protein-protein interaction networks (PPIs) were constructed to select hub genes. The random forest model was employed for biomarker gene screening. Functional enrichment analysis was conducted using David's online database, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to annotate and identify potential JIA pathways. Hub genes were validated using the receiver operating characteristic (ROC) curve. RESULTS PHLDA1, EGR3, CXCL2, and PF4V1 were identified as significantly associated with the progression and prognosis of JIA polyarticular phenotype, demonstrating high diagnostic and prognostic assessment value. CONCLUSION These genes can be utilized as potential molecular biomarkers, offering valuable insights for the early diagnosis and personalized treatment of JIA polyarticular patients.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianhui Fan
- North Sichuan Medical College, Nanchong, China
| | - Hongxiang Duan
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Guoming Chen
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, China
| | - Weihua Zhang
- Division of Rheumatology, Dazhou Central Hospital, Dazhou, China
| | - Pingxi Wang
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
8
|
Li Y, Bai R, Zhu Y, Shi P, Wang T, Zhou D, Zhou J, Zhu T, Zhang X, Gu R, Ding X, Chen H, Wang X, Zhu Z. Genetic variation in gut microbe as a key regulator of host social behavior in C. elegans. Gut Microbes 2025; 17:2490828. [PMID: 40223740 PMCID: PMC12005443 DOI: 10.1080/19490976.2025.2490828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Gut microbiota have been shown to influence the social behaviors of their hosts, while variations in host genetics can affect the composition of the microbiome. Nonetheless, the degree to which genetic variations in microbial populations impact host behavior, as well as any potential transgenerational effects, remains inadequately understood. Utilizing C. elegans as a model organism, we identified 77 strains of E. coli from a total of 3,983 mutants that significantly enhanced aggregation behavior through various neurobehavioral pathways. This discovery underscores a collaborative regulatory mechanism between microbial genetics and host behavior. Notably, we observed that some mutant bacteria might affect social behavior via the mitochondrial pathway. Additionally, the modulation of social behavior has been identified as a heritable trait in offspring. Our results provide a novel perspective on the regulatory role of microbial genetic variation in host behavior, which may have significant implications for human studies and the development of genetically engineered probiotics aimed at enhancing well-being across generations.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Ruijie Bai
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Yao Zhu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Peng Shi
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Tao Wang
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Dianshuang Zhou
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Jianteng Zhou
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Tao Zhu
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Xinrong Zhang
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Rongrong Gu
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyue Ding
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Hao Chen
- Department of Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangming Wang
- Department of Cell Biology, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| | - Zuobin Zhu
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Huang J, Wang L, Zhou J, Dai T, Zhu W, Wang T, Wang H, Zhang Y. Unveiling the ageing-related genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:57-68. [PMID: 40022676 DOI: 10.1080/21691401.2025.2471762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Ageing significantly contributes to osteoarthritis (OA) and metabolic syndrome (MetS) pathogenesis, yet the underlying mechanisms remain unknown. This study aimed to identify ageing-related biomarkers in OA patients with MetS. OA and MetS datasets and ageing-related genes (ARGs) were retrieved from public databases. The limma package was used to identify differentially expressed genes (DEGs), and weighted gene coexpression network analysis (WGCNA) screened gene modules, and machine learning algorithms, such as random forest (RF), support vector machine (SVM), generalised linear model (GLM), and extreme gradient boosting (XGB), were employed. The nomogram and receiver operating characteristic (ROC) curve assess the diagnostic value, and CIBERSORT analysed immune cell infiltration. We identified 20 intersecting genes among DEGs of OA, key module genes of MetS, and ARGs. By comparing the accuracy of the four machine learning models for disease prediction, the SVM model, which includes CEBPB, PTEN, ARPC1B, PIK3R1, and CDC42, was selected. These hub ARGs not only demonstrated strong diagnostic values based on nomogram data but also exhibited a significant correlation with immune cell infiltration. Building on these findings, we have identified five hub ARGs that are associated with immune cell infiltration and have constructed a nomogram aimed at early diagnosing OA patients with MetS.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Wang
- Department of Neurology, The Central Hospital of Xiaogan, Xiaogan, China
| | - Jiangfei Zhou
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongde Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingze Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Yang C, Camargo Tavares L, Lee HC, Steele JR, Ribeiro RV, Beale AL, Yiallourou S, Carrington MJ, Kaye DM, Head GA, Schittenhelm RB, Marques FZ. Faecal metaproteomics analysis reveals a high cardiovascular risk profile across healthy individuals and heart failure patients. Gut Microbes 2025; 17:2441356. [PMID: 39709554 DOI: 10.1080/19490976.2024.2441356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.
Collapse
Affiliation(s)
- Chaoran Yang
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Leticia Camargo Tavares
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Anna L Beale
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - Stephanie Yiallourou
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda J Carrington
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Yu X, Hu Y, Jiang W. Integrative analysis of mitochondrial and immune pathways in diabetic kidney disease: identification of AASS and CASP3 as key predictors and therapeutic targets. Ren Fail 2025; 47:2465811. [PMID: 39988817 PMCID: PMC11852243 DOI: 10.1080/0886022x.2025.2465811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVES Diabetic kidney disease (DKD) is driven by mitochondrial dysfunction and immune dysregulation, yet the mechanistic interplay remains poorly defined. This study aimed to identify key molecular networks linking mitochondrial and immune pathways to DKD progression, with a focus on uncovering biomarkers and therapeutic targets. METHODS We conducted an integrative analysis of human DKD cohorts (GSE30122, GSE96804) using weighted gene co-expression network analysis (WGCNA) to identify gene modules enriched for immune response genes and mitochondrial pathways (from MitoCarta3.0). Machine learning algorithms were employed to prioritize key biomarkers for further investigation. Experimental validation was performed using a DKD rat model. RESULTS WGCNA revealed significant gene modules associated with immune responses and mitochondrial functions. Machine learning analysis highlighted two central biomarkers: aminoadipate-semialdehyde synthase (AASS) and caspase-3 (CASP3). In the DKD rat model, elevated levels of AASS and CASP3 were found to correlate with increased oxidative stress. Mechanistically, AASS was shown to drive mitochondrial damage via lysine metabolism, while CASP3 amplified inflammatory apoptosis pathways. CONCLUSIONS Our findings establish AASS and CASP3 as dual biomarkers and therapeutic targets, bridging mitochondrial-immune crosstalk to DKD pathogenesis. This multi-omics framework provides actionable insights for targeting kidney damage in diabetes.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Nephrology, Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Yang J, Tan Y, Liu X. Identification and validation of programmed cell death related biomarkers for the treatment and prevention COVID-19. Ann Med 2025; 57:2492830. [PMID: 40300201 PMCID: PMC12042234 DOI: 10.1080/07853890.2025.2492830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 05/01/2025] Open
Abstract
PURPOSE Programmed cell death (PCD) plays a key role in the progression of coronavirus disease 2019 (COVID-19). However, PCD-relevant biomarkers have not been fully discovered. The aim of this study was to explore the PCD-relevant biomarkers for the treatment and prevention of COVID-19. METHODS Bioinformatic analyses were performed to explore the clinical relevant PCD genes with differential expression (DE) in COVID-19 compared with matched controls. PPI network was used for hub genes screening and machine learning methods were employed for filtering feature genes. The biomarker genes were screened by Venn diagram. The correlations between biomarkers with clinical features and immune microenvironment were further explored. Biomarker validation was performed in clinical samples by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). RESULTS In total, 118 clinically relevant and PCD associated differential expressed genes (DEGs) were screened, which were mainly related with apoptosis related pathways, among which six biomarkers (Cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1), interferon regulatory factor 4 (IRF4), lipoteichoic acid (LTA), matrix metallopeptidase 9 (MMP9) and Oncostatin M (OSM)) were identified. The excellent or good diagnostic performance of biomarkers was determined by receiver operating characteristic (ROC) curve analysis. The biomarkers showed diverse correlations with clinical indicators, such as age, sex and Intensive Care Unit (ICU) admission. Total 14 types of immune cells exerted differential infiltration between COVID-19 and controls. Biomarkers were correlated with immune cells at varying levels. COVID-19 was classified in three clusters, which showed differential expression of biomarker genes and significant associations with clinical information, such as sex, age and ICU admission. The DEGs of biomarkers were determined in COVID-19 patients relative to controls. CONCLUSION The six biomarkers (CCNB1, CDK1, IRF4, LTA, MMP9 and OSM) can be served as the biomarkers for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Jie Yang
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - YaoXi Tan
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Liu
- Department of Emergency, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Feng X, Feng Q, Abbas Raza SH, Li F, Ma Y. Identification of key factors causing ketosis in dairy cows with low feed intake. Anim Biotechnol 2025; 36:2487089. [PMID: 40184169 DOI: 10.1080/10495398.2025.2487089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Ketosis is a common metabolic disease in high-yield dairy cows. Key genes affecting ketosis need to be further explored by new methods. The gene expression profiling and clinical data of GSE92398, GSE104079, and GSE4304 were obtained from the gene expression omnibus (GEO) database. Core modules and genes associated with RFI (residual feed intake) and ADF (alternate day fasting) were identified by weighted gene co-expression network analysis (WGCNA). Subsequently, the key genes related to ketosis and RFI were determined by protein-protein interaction (PPI) networks, ROC curves, functional enrichment, and differential expression analysis, respectively. The results showed that the genes of ACACA, ELOVL6 and XPO7 could be used as regulators of ketosis induced by low feed intake in dairy cows. At the same time, three genes (HRFI, STAT3 and IFNAR1) were retained as additional RFI biomarkers that could be considered. We identified three key factors as candidate genes and biomarkers of ketosis and RFI, respectively. These factors may provide a theoretical basis for targeted therapy of ketosis in dairy cows.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Qi Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Lan Y, Liu D, Liang B, Song X, Xie L, Peng H, Guo H, Hong C, Weng X, Wei X, Liao X, Liang R, Huang D, Liu M. ITGA3-MET interaction promotes papillary thyroid cancer progression via ERK and PI3K/AKT pathways. Ann Med 2025; 57:2483379. [PMID: 40138447 PMCID: PMC11948363 DOI: 10.1080/07853890.2025.2483379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studies have examined the role of integrin α3 (ITGA3) in papillary thyroid carcinoma (PTC). However, the functional and molecular mechanism by which ITGA3 is involved in the progression of PTC remains poorly understood. METHODS To investigate the role of ITGA3 in PTC, raw PTC transcriptome data underwent comprehensive bioinformatics analyses, including differential expression, co-expression network, and enrichment analyses. ITGA3 expression was validated via immunohistochemistry and western blotting in PTC tissues. Cell functional assays and xenograft models assessed PTC cell behaviour. The potential mechanisms of ITGA3 were elucidated using bioinformatics analyses, western blotting, co-immunoprecipitation, and immunofluorescence. Finally, integration of ITGA3 expression with clinical parameters enabled nomogram construction for precise prediction of cervical lymph node metastasis (CLNM) in PTC. RESULTS ITGA3 was upregulated in PTC and associated strongly with CLNM (79.5% vs. 53.84%, p = 0.016). ITGA3 expression enhanced PTC proliferation and migration in vitro and in vivo via cooperating with the MET protein tyrosine kinase, followed by phosphorylation of MET at Tyr1234/1235, and activation of ERK and PI3K/AKT signaling pathways. Furthermore, upregulation ITGA3 reduced phosphorylation at FAK-Tyr397 and Src-Tyr416 in PTC cells. Finally, a nomogram combining ITGA3 expression and clinical parameters for predicting CLNM was constructed and validated, achieving a ROC curve AUC of 0.719, suggesting potential application for PTC diagnosis. CONCLUSIONS ITGA3 promotes PTC cell proliferation and migration by cooperating with MET to activate MET-ERK and MET-PI3K-AKT signalling. ITGA3-MET cooperation may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Youmian Lan
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongchen Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Hanwei Peng
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuwu Weng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqi Liao
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Rui Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Xie L, Qiu X, Jia J, Yan T, Xu P. Unveiling the role of oxidative stress in ANCA-associated glomerulonephritis through integrated machine learning and bioinformatics analyses. Ren Fail 2025; 47:2499905. [PMID: 40369957 DOI: 10.1080/0886022x.2025.2499905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease often leading to rapidly progressive glomerulonephritis. Oxidative stress plays a critical role in the development and progression of ANCA-associated glomerulonephritis (AAGN), but the underlying mechanisms remain poorly understood. Targeting genes related to oxidative stress may provide novel insights and supplementary therapeutic benefits for AAGN. In the current study, we obtained differentially expressed genes from AAGN-related microarray datasets in the Gene Expression Omnibus database, and oxidative stress-related genes (OSRGs) from the GeneCards and Gene Ontology databases to identify differentially expressed OSRGs. Then, by integrating weighted gene co-expression network analysis, and machine learning algorithms, we identified four upregulated hub OSRGs (all p < 0.01) with strong diagnostic potential (all AUC > 0.9)-CD44, ITGB2, MICB, and RAC2 - in the AAGN glomerular training dataset GSE104948 and validation dataset GSE108109, along with two hub OSRGs (all p < 0.05) with better diagnostic potential (all AUC > 0.7) - upregulated gene VCAM1 and downregulated gene VEGFA-in the AAGN tubulointerstitial training dataset GSE104954 and validation dataset GSE108112. The GSEA analysis suggested that these hub genes may play a role in inflammatory and immune response processes. Moreover, we constructed regulatory networks and identified drugs that potentially target these hub genes. It's to be noted that RAC2 and ITGB2 were associated with cyclophosphamide in the AAGN glomerular compartment, while VCAM1 and VEGFA were associated with dexamethasone in the tubulointerstitial compartment. This study offers novel insights into immune-associated OSRGs within the glomerular and tubulointerstitial compartments of AAGN which may serve as innovative targets for diagnosing and treating AAGN.
Collapse
Affiliation(s)
- Liyuan Xie
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xianying Qiu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Pengcheng Xu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
16
|
Yang W, Bian ZZ, Li Z, Zhang YT, Liu LB, Chang JT, Li D, Wang PG, An J, Wang W. An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy. Emerg Microbes Infect 2025; 14:2465327. [PMID: 39945741 PMCID: PMC11873970 DOI: 10.1080/22221751.2025.2465327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behaviour and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.
Collapse
Affiliation(s)
- Wei Yang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Zhan-Zhan Bian
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Zhe Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Yi-Teng Zhang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Li-Bo Liu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Dan Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Wang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Lu J, Cai J, Zhou Z, Ma J, Han T, Lu N, Zhu L. Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis. Biomaterials 2025; 321:123283. [PMID: 40222260 DOI: 10.1016/j.biomaterials.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study investigates the role of Gelatin-Catalase (Gel@CAT)-L hydrogel in mediating reactive oxygen species (ROS) production and maintaining mitochondrial homeostasis through SIRT3-mediated unfolded protein response (UPRmt), while exploring its involvement in the molecular mechanism of osteoarthritis (OA). METHODS Self-assembled Gel@CAT-L hydrogels were fabricated and characterized using transmission electron microscopy, mechanical testing, external release property evaluation, and oxygen production measurement. Biocompatibility was assessed via live/dead cell staining and CCK8 assays. An OA mouse model was established using destabilization of the medial meniscus (DMM) surgery. X-ray and micro-CT imaging were employed to evaluate the structural integrity of the mouse knee joints, while histological staining was used to assess cartilage degeneration. Immunohistochemistry was performed to analyze the expression of proteins including Col2a1, Aggrecan, MMP13, ADAMTS5, SIRT3, PINK1, and Parkin. Multi-omics analyses-encompassing high-throughput sequencing, proteomics, and metabolomics-were conducted to identify key genes and metabolic pathways targeted by Gel@CAT-L hydrogel intervention in OA. Immunofluorescence techniques were utilized to measure ROS levels, mitochondrial membrane potential, and the expression of SIRT3, PINK1, Parkin, LYSO, LC3B, Col2a1, and MMP13 in primary mouse chondrocytes and mouse knee joints. Flow cytometry was applied to quantify ROS-positive cells. RT-qPCR analysis was conducted to determine mRNA levels of Aggrecan, Col2a1, ADAMTS5, MMP13, SIRT3, mtDNA, HSP60, LONP1, CLPP, and Atf5 in primary mouse chondrocytes, mouse knee joints, and human knee joints. Western blotting was performed to measure protein expression levels of SIRT3, HSP60, LONP1, CLPP, and Atf5 in both primary mouse chondrocytes and mouse knee joints. Additionally, 20 samples each from the control (CON) and OA groups were collected for analysis. Hematoxylin and eosin staining was used to evaluate cartilage degeneration in human knee joints. The Mankin histological scoring system quantified the degree of cartilage degradation, while immunofluorescence analyzed SIRT3 protein expression in human knee joints. RESULTS In vitro experiments demonstrated that self-assembled Gel@CAT-L hydrogels exhibited excellent biodegradability and oxygen-releasing capabilities, providing a stable three-dimensional environment conducive to cell viability and proliferation while reducing ROS levels. Multi-omics analysis identified SIRT3 as a key regulatory gene in mitigating OA and revealed its central role in the UPRmt pathway. Furthermore, Gel@CAT-L was confirmed to regulate mitochondrial homeostasis. Both in vitro experiments and in vivo mouse model studies confirmed that Gel@CAT-L significantly reduced ROS levels and regulated mitochondrial autophagy by activating the SIRT3-mediated UPRmt pathway, thereby improving the pathological state of OA. Clinical trials indicated downregulation of SIRT3 and UPRmt-related proteins in OA patients. CONCLUSION Gel@CAT-L hydrogel activates SIRT3-mediated UPRmt to regulate ROS and mitochondrial homeostasis, providing potential therapeutic benefits for OA.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Jiao Cai
- Department of Medical Administration, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China
| | - Jun Ma
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China; Department of Orthopaedic Trauma, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200001, China
| | - Tianyu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China.
| |
Collapse
|
18
|
Wu D, Chen Z, Ma M, Li W, Peng Z, Shi Z, Zhang J, Liu H, Xie G, Lu J. Effects of aging years on taste attributes of Huangjiu and their correlation with non-volatile compounds: A study based on E-tongue, UPLC-MS untargeted metabolomics, and WGCNA. Food Chem 2025; 484:144319. [PMID: 40273878 DOI: 10.1016/j.foodchem.2025.144319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Aging plays a crucial role in enhancing the flavor of Huangjiu. This study aims to elucidate the changes in taste attributes of aged Huangjiu and explore the correlation between non-volatile compounds. It showed that aging made the sourness, bitterness, and astringency more pronounced. The content of organic acids and amino acids exhibited specific patterns with aging years. The total taste activity value of organic acids showed an increasing trend, peaking at 54.40 in Huangjiu aged 15 years, which served as a key indicator of sourness intensity. A total of 22 potential contributors to umami and 18 to bitterness were screened based on weighted gene coexpression network analysis. The total content of potential umami contributors was significantly higher in fresh Huangjiu and aging stage I, but declined in later periods, while bitterness contributors increased gradually throughout the aging process. This study provided theoretical support for the taste characteristics of aged Huangjiu.
Collapse
Affiliation(s)
- Dianhui Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Ziqiang Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Mingtao Ma
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Wenzhe Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhengcong Peng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Zhenbao Shi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jinglong Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Hua Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jian Lu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China.
| |
Collapse
|
19
|
Lei X, Wang F, Zhang X, Huang J, Huang Y. The potential mechanisms by which Xiaoyao Powder may exert therapeutic effects on thyroid cancer were examined at various levels. Comput Biol Chem 2025; 117:108412. [PMID: 40056710 DOI: 10.1016/j.compbiolchem.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Thyroid cancer (TC) is the most prevalent endocrine malignancy, with a rising incidence necessitating safer treatment strategies to reduce overtreatment and its side effects. Xiaoyao Powder (XYP), a widely used herbal formula, shows promise in treating TC. This study aims to investigate the mechanisms by which XYP may affect TC. METHODS The components of XYP were identified through database retrieval, and targets related to TC were collected to construct a target network for key screening. GEO dataset samples analyzed immune cells and identified significantly differentially expressed core genes (SDECGs). Based on SDECG expression and clustering, samples were classified for comparison. WGCNA was employed to identify gene modules linked to clinical characteristics. ML models screened characteristic genes and constructed a nomogram validated using another GEO dataset. MR methods explored causal relationships between genes and TC. RESULTS The top ten active components of XYP were identified, along with 27 SDECGs that exhibited significant differences in immune cell infiltration between TC patients and normal controls. The nomogram effectively predicted TC risk, validated through ROC curves. Key characteristic genes included SMIM1, PPP1R16A, KIAA1462, DNAJC22, and EFNA5. CONCLUSION XYP may treat TC by regulating SMIM1, PPP1R16A, KIAA1462, DNAJC22, EFNA5, and associated immune pathways; this provides theoretical support for its potential mechanisms.
Collapse
Affiliation(s)
- Xiaoli Lei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Wang
- Department of Quality Control, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxi Huang
- Department of Pharmacy, Huoqiu County First People's Hospital, Liuan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
20
|
Ma F, Zou Q, Zhao X, Liu H, Du H, Xing K, Ding X, Wang C. Multi-omics integration reveals the regulatory mechanisms of APC and CREB5 genes in lipid biosynthesis and fatty acid composition in pigs. Food Chem 2025; 482:143999. [PMID: 40187300 DOI: 10.1016/j.foodchem.2025.143999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The intramuscular fat (IMF), fatty acid and amino acid compositions of pork are intricately linked to meat quality, flavor profile, and nutritional composition, and have potential implications for human health. Lipid accumulation in pork is initiated by the biosynthesis of fatty acids and regulated by a complex network of genes. In this study, the IMF content and genotyping of large-scale slaughtered Yorkshire pigs were assessed. Transcriptome sequencing of muscles from 17 individuals and fatty and amino acid analyses of muscles from 28 individuals according to IMF content were conducted. Phenotypic analysis showed a high correlation between IMF and most fatty acids, and the composition ratio of different types of fatty acids varied with IMF content. A negative correlation between the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio and increase in IMF content significantly enhanced the levels of essential fatty acids and ameliorated the n-6/n-3 PUFA ratio in pork, thereby elevating its nutritional value to better align with contemporary health standards. A comprehensive analysis that integrated a genome-wide association study, differential gene expression analysis, and weighted gene co-expression network analysis was employed to identify the regulatory mechanisms of lipids. PRLR, SEC11C, ALPK2, CPLX4, APC, and CREB5 were identified as key candidate genes that affect intramuscular lipids and fatty acids. Through molecular and cellular experiments, our results indicated that high APC and CREB5 gene expression significantly promotes lipogenesis in cells, where these genes play an important role in regulatory pathways related to lipid synthesis in animals, which may affect fat deposition and fatty acid composition in pork. Overall, these results lay the foundation for an in-depth analysis of the genetic regulation of pork lipids and nutrition, and also provide molecular regulatory markers for the primary selection of pigs with better meat quality.
Collapse
Affiliation(s)
- Fuping Ma
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Quan Zou
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing 101300, China
| | - Huatao Liu
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hehe Du
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Ding
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Chuduan Wang
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Zhang B, Chen L, Kang M, Ai L, Tao Y. Gegen Qinlian Decoction improves Alzheimer's disease through TLR4/NF-κB/NLRP3 pathway. Tissue Cell 2025; 95:102818. [PMID: 40056656 DOI: 10.1016/j.tice.2025.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease that leads to dementia, but effective treatments are lacking. This study aims to evaluate the therapeutic effects of Gegen Qinlian Decoction (GGQLD) on AD and investigate the underlying mechanisms. METHODS Using network pharmacology and bioinformatics, we identified 376 active ingredients of GGQLD and 427 drug targets. Among these, 7 potential targets (CASP1, MKI67, NFKB1, TLR4, NLRP3, IL1B, and AKT1) were identified as intersecting targets of both GGQLD and AD. Functional enrichment analysis revealed that GGQLD regulates pyroptosis-related pathways. In vivo, GGQLD was administered to AD rat models to assess its effects on spatial learning, memory, and brain tissue injury. RESULTS GGQLD significantly reduced latency time by 40 % and increased platform crossings by 60 % in AD rats, demonstrating improved spatial learning and memory abilities. It also reduced hippocampal tissue damage and abnormal Aβ deposition. Mechanistically, GGQLD downregulated pyroptosis-related targets (TLR4, NF-κB, NLRP3, IL-1β, and Caspase-1), which were significantly upregulated in AD. ROC analysis demonstrated strong diagnostic significance for these genes, with AUC values exceeding 0.70. Functional enrichment and KEGG analysis further indicated that GGQLD exerts its therapeutic effects through multiple pathways, particularly the NOD-like receptor pathway, Necroptosis, and NF-kappa B pathway. CONCLUSIONS This study demonstrates that GGQLD improves spatial learning, reduces brain tissue damage, and alleviates inflammation in AD through the regulation of pyroptosis-related pathways, providing evidence for its potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Liudan Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Mengru Kang
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Liang Ai
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Yangu Tao
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
22
|
Wang Z, Tu S, Shehzad K, Hou J, Xiong S, Cao M. Comparative study of organosilicon and inorganic silicon in reducing cadmium accumulation in wheat: Insights into rhizosphere microbial communities and molecular regulation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138061. [PMID: 40179787 DOI: 10.1016/j.jhazmat.2025.138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Silicon is widely used as a "quality element" and "stress resistance element" in crop production and the remediation of heavy metal-contamination soils. Compared to inorganic silicon, organosilicon has unique properties such as amphiphilicity, low surface energy and high biocompatibility. Our previous research has confirmed the effectiveness of organosilicon-modified fertilizers in inhibiting Cadmium (Cd) absorption in wheat. Therefore, it is of great importance to further explore the potential mechanisms and comprehensive benefits of organosilicon. In this study, the microbiological and molecular mechanisms by which organosilicon reduces Cd concentration in wheat compared to inorganic silicon were investigated in depth. The findings indicated that, in comparison with inorganic silicon, organosilicon exhibited a more remarkable efficacy. Specifically, it was more effective in reducing the Cd concentration in wheat grains, achieving a reduction range of 35-39 % as opposed to the 23-28 % reduction achieved by inorganic silicon. Moreover, it manifested a greater ability to mitigate health risks, with a reduction range of 33-42 % compared to the 25-30 % reduction of inorganic silicon. Furthermore, organosilicon contributed to a significant increase in wheat yield, with a growth range of 11-14 % in contrast to the 8-11 % increase from inorganic silicon. Additionally, it enhanced the quality of the grains, substantially improving the protein content and amino acid content. The comparative advantages of organosilicon over inorganic silicon would be firstly due to the reduction of the bioavailability of soil Cd by increasing the available silicon content in the soil and improving the soil microbial ecology (increasing the abundance of Bacillus, Pseudomonas, Massilia and Talaromyces and reducing the enrichment of Fusarium). Secondly, organosilicon achieved vacuolar compartmentalization of Cd by upregulating the expression of the ABC transporter gene (TaABCB7), thereby alleviating Cd toxicity and restricting Cd transport from leaves to grains. Meanwhile, organosilicon increased the wheat yield by optimizing the availability of soil nutrients and enhancing photosynthesis. These results demonstrate the immense potential of organosilicon in mitigating heavy metal contamination in crops.
Collapse
Affiliation(s)
- Zhiheng Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Tan J, Huang J, Quan W, Su L, Liu Y, Cai Y, Li S, Guo P, Luo M. Divergence of microbial carbon use efficiency and soil organic carbon along a tidal flooding gradient in a subtropical coastal wetland. WATER RESEARCH 2025; 280:123527. [PMID: 40138859 DOI: 10.1016/j.watres.2025.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Microbial carbon use efficiency (CUE) typically promotes soil organic carbon (SOC) storage in terrestrial ecosystems. However, this relationship remains poorly understood in coastal wetlands, where tidal flooding creates unique environmental conditions, facilitates lateral transfer and SOC loss, and mediates organic matter exchange between terrestrial and marine systems. Here we examined the CUE-SOC relationship across a tidal flooding gradient (4-25 % frequency) in a subtropical coastal wetland. Along this gradient, SOC decreased by 65 % while microbial CUE increased from 0.24 to 0.32. This inverse relationship coincided with marked compositional shifts: plant debris declined from 57 % to 18 %, while microbial necromass increased from 21 % to 35 %. The enhanced CUE was accompanied by increased turnover times alongside decreased metabolic quotient (qCO2), C-acquiring enzyme activities, soil basal respiration, and microbial biomass carbon (MBC). This enhanced efficiency stemmed from substrate-microbe interactions rather than environmental stresses, as communities transitioned from oligotrophic taxa (α-proteobacteria, Basidiomycota) specializing in recalcitrant terrestrial substrates to copiotrophic microorganisms (γ-proteobacteria, Bacteroidota, Ascomycota) efficiently metabolizing labile marine compounds. Contrary to terrestrial patterns, enhanced CUE did not promote SOC storage due to three key mechanisms: (i) enhanced CUE from marine substrates could not compensate for declining plant debris accumulation; (ii) reduced microbial biomass limited necromass formation despite higher CUE; and (iii) metabolic benefits from high CUE (reduced enzyme activities and respiration rates) could not offset the substantial decrease in SOC inputs. Our findings reveal distinct CUE-SOC relationships in coastal wetlands compared to terrestrial ecosystems, highlighting the importance of considering both terrestrial and marine processes in understanding carbon cycling in these transitional environments.
Collapse
Affiliation(s)
- Ji Tan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China; Institute of Geography, Fujian Normal University, Fuzhou 350108, PR China
| | - Jiafang Huang
- Institute of Geography, Fujian Normal University, Fuzhou 350108, PR China; Fujian Minjiang Estuary Wetland Ecosystem Observation and Research Station, National Forestry and Grassland Administration, Fuzhou 350215, PR China
| | - Wenhui Quan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Lifei Su
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yi Liu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - YuanBin Cai
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shihua Li
- College of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, PR China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350200, PR China
| | - Min Luo
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
24
|
Yang L, Wang Y, Zhang Y, Cai Y, Fan Z, Liu F. Exploring the relationship and diagnostic targets of seborrheic dermatitis and scalp psoriasis based on multi-omics integration analysis. Gene 2025; 957:149441. [PMID: 40187621 DOI: 10.1016/j.gene.2025.149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Scalp seborrheic dermatitis (SD) and psoriasis (PSO) are prevalent chronic skin conditions with overlapping clinical manifestations, especially when confined to the scalp, which complicates differential diagnosis. This study integrates transcriptomic profiling and genetic association analyses to investigate potential causal links between SD and scalp PSO. Through RNA sequencing on lesional and non-lesional scalp samples from patients with SD and scalp PSO, as well as healthy controls, we found that seborrheic dermatitis may represent a risk factor for the progression to scalp PSO. Furthermore, TGM1 and IL36RN were identified as key potential molecular targets that could differentiate seborrheic dermatitis from scalp PSO.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China; CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yunying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China.
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China.
| |
Collapse
|
25
|
Huang X, Yu W, Tian J, Zhang Y, Wei A, Li Y, Chen S. Identification and analysis of extracellular matrix and epithelial-mesenchymal transition-related genes in idiopathic pulmonary fibrosis by bioinformatics analysis and experimental validation. Gene 2025; 956:149464. [PMID: 40187620 DOI: 10.1016/j.gene.2025.149464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder that is characterized by the disruption of lung architecture and respiratory failure. Notwithstanding the advent of novel therapeutic agents such as pirfenidone and nintedanib, there remains a pressing need for the development of innovative diagnostic and therapeutic strategies. Next-generation sequencing allows for the analysis of gene expression and the discovery of biomarkers. The objective of our study was to identify IPF-specific gene signatures, construct a diagnostic nomogram, and explore the role of the extracellular matrix (ECM) and epithelial-to-mesenchymal transition (EMT) in IPF pathogenesis. Utilizing data from the Gene Expression Omnibus (GEO) database, we identified differentially expressed genes (DEGs), performed weighted correlation network analysis (WGCNA), and constructed a nomogram. The present study has identified a group of key genes that are associated with IPF. The identified genes include GREM1, ITLN2, MAP3K15, RGS9BP, and SLCO1A2. The results of the immunohistochemical analysis indicated a significant correlation between these central genes and immune cell infiltration. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed that these genes play a critical role in the pathogenesis of IPF. To validate the diagnostic potential of these core genes, we performed confirmatory analyses in independent Gene Expression Omnibus (GEO) datasets. We observed a significant upregulation of GREM1 expression in IPF animal and cellular models. These findings provide new insights into the molecular mechanisms of IPF and suggest potential targets for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiangfei Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wen Yu
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Aiping Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
26
|
Wang L, Jiang Y, Hao Y, Yu L, Zhao S, Wu H, Long X, Zhang Z, Zhao T, Geng S, Guan X. Integrated transcriptomics and metabolomics analyses reveal jasmonic acid metabolic pathways for improving the chilling tolerance in cotton seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109935. [PMID: 40286456 DOI: 10.1016/j.plaphy.2025.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Cotton (Gossypium spp.) originated in tropical and subtropical regions, spreading to higher latitudes through domestication while retaining thermophilic characteristics. Xinjiang, a major cotton-producing area in China, frequently experiences 'late spring cold snaps' due to its location, causing chilling injury during critical sowing periods. Current research on cotton chilling stress primarily focuses on physiological studies such as evaluations of chilling stress and biochemical indices but lacks systematic investigation into the difference among varieties. Phenotypic screening across seed germination, cotyledon, and seedling stages identified upland cotton (Gossypium hirsutum) cultivar, Junmian1 exhibits superior cold tolerance relative to the sensitive genotype C1470. Under chilling stress, Junmian1 protects chloroplasts and other cellular structures in its first true leaf to survive the chilling stress. Weighted gene co-expression network analysis (WGCNA) analysis pinpointed Module Brown as a chilling-tolerance responsive hub, with subsequent validation via virus-induced gene silencing (VIGS) confirming the regulatory roles of GhRBL (Ribulose-bisphosphate carboxylase), GhGI (GIGANTEA), and lncRNA MSTR.1631 in cold tolerance. Additionally, integrated metabolomic and transcriptomic analyses demonstrated that jasmonic acid plays a crucial role in enhancing cotton's chilling tolerance at seedling stage. The primary difference in chilling tolerance between Junmian1 and C1470 is attributed to the signaling efficiency of the jasmonic acid synthesis and metabolism pathways. These findings establish JA metabolic engineering as a viable approach for enhancing cold resilience in early-stage cotton seedlings.
Collapse
Affiliation(s)
- Luyao Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China
| | - Yaping Jiang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yupeng Hao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Li Yu
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shengjun Zhao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongyu Wu
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Long
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China
| | - Ting Zhao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiwei Geng
- Xinjiang Cotton Technology Innovation Center/Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production/National Cotton Engineering Technology Research Center, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Wulumuqi, 830091, Xinjiang, China
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Yang J, Wu J, Xie X, Xia P, Lu J, Liu J, Bai L, Li X, Yu Z, Li H. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen Res 2025; 20:2015-2028. [PMID: 39254564 PMCID: PMC11691472 DOI: 10.4103/nrr.nrr-d-23-01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00024/figure1/v/2024-09-09T124005Z/r/image-tiff Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination. Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage. Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation, and plays an important role in the pathological process of ischemic stroke. However, there are few studies on oligodendrocyte progenitor cell ferroptosis. We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia. Bioinformatics analysis suggested that perilipin-2 (PLIN2) was involved in oligodendrocyte progenitor cell ferroptosis. PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation. For further investigation, we established a mouse model of cerebral ischemia/reperfusion. We found significant myelin damage after cerebral ischemia, as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area. The ferroptosis inhibitor, ferrostatin-1, rescued oligodendrocyte progenitor cell death and subsequent myelin injury. We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells. Plin2 knockdown rescued demyelination and improved neurological deficits. Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Pengfei Xia
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
28
|
Zhao M, Liu Z, Hu Y, Yi S, Zhang Y, Hu B, Shi X, Rennenberg H. Carbon metabolism and partitioning in citrus leaves is determined by hybrid, cultivar and leaf type. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109978. [PMID: 40327900 DOI: 10.1016/j.plaphy.2025.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
The partitioning and metabolism of carbohydrates and lignin in leaves are essential for numerous physiological functions, growth and development of plants. This study was aimed to characterize these processes in four leaf types (i.e., autumn-, summer-, spring- and current-year spring shoots) of two citrus hybrids (loose-skin mandarin cultivars OP (i.e., cultivars 'Orah' (OR) Citrus reticulata Blanco and 'Ponkan' (PO) Citrus reticulata Blanco and the sweet orange cultivars NT 'Newhall navel orange' (NO) Citrus sinensis (L.) Osbeck and 'Tarocco' (TA) Citrus sinensis (L.) Osbeck) differing in fruit maturation under field conditions. For this purpose, we analyzed the levels of foliar structural, non-structural carbohydrates and lignin and the expression of related genes. Our results showed that the contents of structural, non-structural carbohydrates and lignin measured in the two hybrids and its partitioning were mostly determined by differences in gene expression recorded in hybrids, cultivars and leaf type. Particularly, differences between leaf types were largely attributed to up- and down-regulation of the expression of genes of cellulose synthesis, lignin precursor synthesis, the Calvin cycle, glycolysis, the tricarbonic acid and starch synthesis and degradation pathways. These differences between leaf types required more complex transcriptional regulation than differences between hybrids and cultivars. The present results indicated that the two citrus hybrids studied differed in the expression of structural, non-structural carbohydrates and lignin-related genes. Future studies have to show if the differences observed in foliar partitioning and metabolism of carbohydrates and lignin are translated into partitioning and metabolism of carbohydrates and lignin in the roots.
Collapse
Affiliation(s)
- Mingjiong Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yanping Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Shilai Yi
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China.
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| |
Collapse
|
29
|
Wei Y, Shi J, Xie X, Zhang F, Dong H, Li Y, Bi F, Huang X, Dou T. Transcriptome sequence reveal the roles of MaGME777 and MabHLH770 in drought tolerance in Musa acuminata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112495. [PMID: 40258402 DOI: 10.1016/j.plantsci.2025.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Banana, a globally cultivated fruit, faces significant constraints in distribution and sustainable production due to drought stress. This study investigated drought tolerance in Cavendish bananas using RNA-seq time-course analysis and molecular biology experiments. Plants were subjected to dehydration treatments, and physiological indicators such as electrolyte leakage, proline content, malonaldehyde, peroxidase activity, and hydrogen peroxide content were assessed. RNA-Seq and qRT-PCR were used to analyze transcriptional changes under drought. Weighted gene co-expression network (WGCNA) analysis identified thousands of differentially expressed genes (DEGs) at different time points, with a core set of 2660 DEGs consistently identified. KEGG enrichment analysis revealed MaGME777, a glycolysis/gluconeogenesis gene, as a potential drought resistance regulator. Virus-mediated gene silencing (VIGS) of MaGME777 reduced drought tolerance in bananas. Yeast one-hybrid (Y1H) and luciferase reporter assays demonstrated that the transcription factor MabHLH770 directly binds and activates the MaGME777 promoter. VIGS downregulation of MabHLH770 also reduced drought tolerance. In conclusion, this study revealed that MabHLH770 is a positive regulator of drought stress, by targeting MaGME777 promoter and activating their expression to enhance drought tolerance. These findings provide a foundation for developing drought-resistant banana cultivars through molecular breeding approaches.
Collapse
Affiliation(s)
- Yuchen Wei
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China
| | - Jingfang Shi
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, AgroBiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xueyi Xie
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Feng Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Huizhen Dong
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Yaoyao Li
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Fangcheng Bi
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xiaosan Huang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China.
| | - Tongxin Dou
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
30
|
Lu L, Tao R. Prognostic implications of glucose metabolism pathways in colon adenocarcinoma: a comprehensive outlook on the molecular landscape and immunotherapy. Biochem Biophys Res Commun 2025; 768:151961. [PMID: 40345006 DOI: 10.1016/j.bbrc.2025.151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common and aggressive cancer characterized by significant metabolic alterations, particularly in glucose metabolism. Identifying key genes and pathways involved in glucose metabolism could provide valuable prognostic biomarkers and therapeutic targets. METHODS Clinical and transcriptomic data for patients with COAD were obtained from TCGA and validated using external datasets (GSE17536 and GSE39582). Seventeen glucose metabolism-related pathways were selected from the MSigDB and analysed using ssGSEA. WGCNA was used to identify key gene modules. Prognostic genes were selected via univariate Cox regression, Lasso-Cox regression, and multivariate Cox regression. Model validation was conducted using independent datasets. Immunotherapy prediction and immune infiltration analyses were also performed. A-NEK9 knockdown cell line was established using SW1116 and SW480 cell lines. The effect of NEK9 on COAD was evaluated in vivo and in vitro. The effects of NEK9 on glucose uptake and lactate production were also assessed. RESULTS A prognostic model based on five glucose metabolism-related genes (NEK9, HS2ST1, AC016394.3, H2BC21, and MIR23A) was developed. The model demonstrated strong predictive value, with high-risk patients showing poorer survival outcomes in both the TCGA and external validation cohorts. Additionally, lower risk scores were associated with better responses to immunotherapy, as indicated by TIDE and SubMap analyses. These findings were further validated through ROC analysis, which revealed robust predictive performance for immunotherapy response across multiple cohorts. NEK9 promoted the proliferation and tumour angiogenesis of SW1116 and SW480 cells, inhibited apoptosis, and enhanced glucose uptake and lactate production in tumour cells. NEK9 knockdown significantly inhibited the tumorigenic ability of COAD in mice. CONCLUSIONS This study highlights the role of glucose metabolism in COAD and presents a novel prognostic model based on glucose metabolism-related genes. The model has potential clinical applications for predicting survival and guiding immunotherapy decisions in patients with COAD.
Collapse
Affiliation(s)
- Ling Lu
- Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Center for Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ran Tao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
31
|
Peng S, Zhu X, Chen J, Chen J, Hu X, Wu J, Zhang Z, Zhao J, Hu G, Sabir IA, Qin Y. Integrated analyses of the transcriptome and metabolome revealed the coloring mechanism of red-pericarp wampee (Clausena lansium). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109959. [PMID: 40315637 DOI: 10.1016/j.plaphy.2025.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/15/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Wampee (Clausena lansium), a tropical evergreen fruit from the Rutaceae family renowned for its rich nutrient profile and bioactive compounds, presents a fascinating case study in fruit coloration. However, changes in anthocyanins, and expressions of metabolism-associated genes during fruit maturation of red-pericarp wampee ('ZR') are not documented. In this study, metabolic and gene expression profiles of anthocyanin across different fruit developmental stages of red and yellow-pericarp wampees were analyzed. A total of 38 distinct anthocyanins were identified from the comparison of 'ZR3' and 'JX3' wampees and categorized into 17 differential anthocyanin metabolites (DAMs). Among these DAMs, fifteen were up-regulated in 'ZR3', while two were down-regulated compared with 'JX3'. The delphinidin 3-[6-(4-(caffeoylrhamnosyl)glucoside)] was the predominant anthocyanins in 'ZR' wampee. A total of 1135 metabolics mainly including amino acid metabolites and flavonoids were detected in the 'ZR' and 'JX' wampees. Significant differences were mainly concentrated in the biosynthesis of secondary metabolites in terms of flavonoid biosynthesis, ABC transporters, and anthocyanin biosynthesis. According to the combined analyses of qRT-PCR and transcriptome, the transcript levels of PAL1, PAL2, CHS1 and UFGT1 in 'ZR' wampee were two to eight-fold higher than those in 'JX' wampee during fruit pigmentation. Our study offers valuable insights into the mechanisms of anthocyanin accumulation in the red pericarp of wampee which is helpful to regulate fruit coloration of wampee.
Collapse
Affiliation(s)
- Shujun Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinglong Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiale Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Irfan Ali Sabir
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Mao L, Zhang Q, Wu Q, Zhang Y, Jiang J, Li Z, Chen L, Wang R, Zeng Q, Ren Y, Liu P, Liu M, Luo G. The integration of scRNA-seq with microarray and in-vivo experiments facilitates a comprehensive elucidation of the molecular mechanisms underlying endothelial cell involvement in myocardial infarction. Biochem Biophys Res Commun 2025; 766:151820. [PMID: 40288264 DOI: 10.1016/j.bbrc.2025.151820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Myocardial infarction (MI) remains a major global health challenge, with endothelial cell function playing a crucial role in its progression. Advances in single-cell RNA sequencing (scRNA-seq) have enhanced our understanding of MI pathogenesis. This study aims to identify key genes within endothelial cells using scRNA-seq data and validate them through microarray data and in vivo models elucidate their role in the progression of MI. ScRNA-seq and microarray datasets relevant to MI were obtained from the GEO database. The Seurat package was used for data pre-processing and marker gene identification. Endothelial cell subpopulations were characterised using the hdWGCNA package, while intercellular interactions with fibroblasts were assessed using CellChat. Key genes were identified using comprehensive bioinformatics techniques such as scCODE, FindMarkers and protein-protein interaction (PPI) analysis, with validation from microarray data and in vivo experiments (WB, qPCR, immunofluorescence) in the model of MI. The analysis via scRNA-seq revealed 16 distinct cell clusters encompassing 7 unique cell types. Endothelial cells were categorized into 8 subpopulations by hdWGCNA; notably, Endothelial Cells-2 exhibited significant interactions with fibroblasts mediated by PDGF, PROS, and GAS signaling pathways. Integration of hdWGCNA, scCODE and FindMarkers, 10 key genes were identified, which were subsequently refined to DBP, NR1D1, and TEF following PPI analysis. These genes demonstrated marked downregulation the progression of MI, as confirmed by subsequent in vivo experiments. This study highlights the crucial roles of DBP, NR1D1, and TEF in MI development, providing a basis for future research on endothelial cell function in cardiovascular disease.
Collapse
Affiliation(s)
- Linshen Mao
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Qingyu Zhang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Qin Wu
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Jinhui Jiang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhengzhou Li
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Li Chen
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Raoqiong Wang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Qihu Zeng
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Yanmei Ren
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ping Liu
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China.
| | - Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China.
| | - Gang Luo
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China.
| |
Collapse
|
33
|
Wu W, Song X, Li B. Identification of VDAC1 as a mitochondria-related target of Duchenne muscular dystrophy based on bioinformatics analysis and in vitro experiments. Int Immunopharmacol 2025; 158:114836. [PMID: 40359883 DOI: 10.1016/j.intimp.2025.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Mitochondrial dysfunction is a well-recognized pathological feature of Duchenne Muscular Dystrophy (DMD). The potential regulatory role of mitochondria-related genes (MRGs) in DMD remains to be further explored. METHODS GEO datasets and MRGs were used to analysis mitochondrial scores and evaluate patients' immunological characteristics. Weighted gene co-expression network analysis, differentially expressed genes (DEGs) and MRGs were used to identify hub genes. A specific hub gene was selected, and the effects of this gene overexpression on a horse serum (HS) treated C2C12 cell in vitro model were investigated. RESULTS Mitochondrial score was decreased in DMD group. Significant differences were observed in 12 immune cell types in normal/DMD and high/low mitochondrial score groups. 9 hub genes were identified, with 7 validated. Among them, VDAC1 was selected for further study. Overexpression of VDAC1 in HS C2C12 myoblasts promoted cell proliferation, reduced apoptosis rate and the Bax expression (with concurrent Bcl2 upregulation), diminished LDH release to reduce cytotoxicity, decreased intracellular ROS levels to alleviate oxidative stress, inhibited the expression of autophagy (LC3) and atrophy (Atrogin-1 and MuRF-1) markers, and promoted differentiation. CONCLUSION In conclusion, VDAC1 may participate in the myoblast proliferation and myotube atrophy by influencing mitochondrial function, which may serve as a new target for DMD treatment.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Neurology, Hebei Children's Hospital, The Key Laboratory of Pediatric Epilepsy and Neurology of Hebei Province, Shijiazhuang 050031, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; The Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China.
| | - Baoguang Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Neurology, Hebei Children's Hospital, The Key Laboratory of Pediatric Epilepsy and Neurology of Hebei Province, Shijiazhuang 050031, China
| |
Collapse
|
34
|
Zhou N, Ma L, Shi W, Reiter RJ, Lin J, Zhang Y, Hu D, Ren J, Xu K. Akt mitigates ER stress-instigated cardiac dysfunction via regulation of ferroptosis and mitochondrial integrity in a DHODH-dependent manner. Life Sci 2025; 371:123591. [PMID: 40164331 DOI: 10.1016/j.lfs.2025.123591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
ER stress evokes various types of cell death and myocardial dysfunction. This study aimed to discern the involvement of ferroptosis in chronic Akt activation-offered benefit, if any, against ER stress-triggered cardiac remodeling and contractile anomalies. Cardiac-selective expression of active mutant of Akt (AktOE) and wild-type (WT) mice were challenged with the ER stress instigator tunicamycin (1 mg/kg, 48 h) prior to assessment of cardiac morphology and function. Tunicamycin insult prompted cardiac remodeling (interstitial fibrosis), deranged echocardiographic (higher LVESD, dropped ejection fraction and fractional shortening), cardiomyocyte mechanical and intracellular Ca2+ features alongside mitochondrial injury (collapsed mitochondrial membrane potential and ultrastructural change), oxidative stress, compromised Akt-GSK3β signaling, ER stress (upregulated GRP78 and Gadd153), carbonyl formation, apoptosis and ferroptosis (decreased GPX4, SLC7A11). Intriguingly, tunicamycin-evoked anomalies (except GRP78 and Gadd153) were abrogated by Akt activation. Chronic Akt activation negated tunicamycin-induced downregulation of ferric flavin enzyme dihydroorotate dehydrogenase (DHODH), which catalyzes the fourth step of pyrimidine ab initio biosynthesis, and conversion of dihydroorotic acid to orotate. ER stress-induced myocardial anomalies were reversed by the newly identified PI3K activator triptolide, DHODH activator menaquinone-4 and pyrimidine booster coenzyme Q. In vitro experiment revealed that Akt activation- or triptolide-evoked beneficial responses against tunicamycin-induced cardiomyocyte anomalies were cancelled off by DHODH inhibitor BAY2402234 or ferroptosis inducer erastin. These findings support that chronic Akt activation rescues ER stress-evoked myocardial derangements through DHODH-dependent control of ferroptosis and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanting Shi
- Child Healthcare Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dandan Hu
- Child Healthcare Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
35
|
Yuan HJ, Han QC, Yu H, Yu YD, Liu XJ, Xue YT, Li Y. Calycosin treats acute myocardial infarction via NLRP3 inflammasome: Bioinformatics, network pharmacology and experimental validation. Eur J Pharmacol 2025; 997:177621. [PMID: 40220980 DOI: 10.1016/j.ejphar.2025.177621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Calycosin (CA) is a flavonoid natural product that may effectively treats acute myocardial infarction (AMI), but its mechanism is unclear. METHODS Targets related to AMI and CA were identified using the GEO database, SwissTargetPrediction, PharmMapper and literature searches. Protein-protein interactions analysis and Cytoscape were used to screen the core targets of CA for AMI treatment. Enrichment analysis identified biological pathways linked to AMI and potential mechanisms of CA. Immune infiltration analysis was used to explore the role of immune cells in AMI and the correlation between core targets and immune cells. And further validated in AMI rats with ligated left anterior descending. RESULTS Bioinformatics identified relevant targets and biological mechanisms of AMI, and network pharmacology revealed 31 potential targets affected by CA, with NLRP3, IL-18, IL-1β, MMP9, and TLR4 as core targets. Enrichment analysis demonstrated the biological roles of these potential targets and NLRP3, IL1β and IL18 were selected for further analysis. Immune infiltration analysis showed that both NLRP3 and IL-1β were closely associated with monocytes, mast cells activated and neutrophils, and IL-18 was closely associated with monocytes. CA exerted cardioprotective effects in AMI rats by inhibiting NLRP3 inflammasome activation and reducing IL-18 and IL-1β levels, improving cardiac function and attenuating myocardial injury and fibrosis. CONCLUSION CA effectively protects cardiac function and mitigates myocardial injury in post-AMI rats, probably through NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Hua-Jing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Quan-Cheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hui Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiu-Juan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
36
|
Liu ZK, Zhang L, Ma X, Chen W, Chang Y, Zhao Y, Hao X, Shi S, Shen JP. Response of abundant and rare microbial species to 40-year long-term fertilization practices irrespective of bulk and rhizosphere soils. ENVIRONMENTAL RESEARCH 2025; 275:121448. [PMID: 40120738 DOI: 10.1016/j.envres.2025.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Fertilization practices could exert significant influence on the diversity, interactions, and functions of soil microorganisms. However, little is known about how specific microbial groups and their interactions adapt or evolve in response to agricultural practices, especially long-term mineral fertilization. Here we explored the community assembly process shaping the microbial community and co-occurrence networks of abundant and rare groups based on a high-throughput sequencing approach in a field experiment with 40 years of mineral nitrogen (N) and phosphorus (P) fertilization. The results indicated that fertilization (25-51 %) had a strong impact on microbial community structure, while little difference were found between rhizosphere and bulk soils irrespective of abundant and rare microbial groups. Deterministic processes primarily govern the assembly of both abundant and rare bacterial and fungal taxa. Random forest analysis revealed that soil pH and N-related nutrients (i.e. nitrate nitrogen (NO3--N), dissolved organic nitrogen (DON) and ammonium nitrogen (NH4+-N)) were the key factors influencing microbial community structure. Structural equation modeling and mantel test further indicated that deterministic factors, particularly soil pH, influence co-occurrence network complexity by modulating the microbiome. Overall, these findings provide insights into factors shaping the microbial community assembly and co-occurrence network dynamics in agroecosystems subjected to long-term fertilization.
Collapse
Affiliation(s)
- Zi-Kai Liu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Lige Zhang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xingzhu Ma
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, Heilongjiang, China
| | - Weidong Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yuhai Chang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yue Zhao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, Heilongjiang, China
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, Heilongjiang, China
| | - Shengjing Shi
- AgResearch Ltd., Lincoln Science Centre, 1365 Springs Road, Lincoln, Christchurch, 7674, New Zealand
| | - Ju-Pei Shen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
37
|
Li N, Zhang Y, Huo X, Guo S, Suo N, Tang Y. Mechanism of fatty acid synthesis metabolism during tuber swelling period of Chinese yam. Food Chem 2025; 477:143556. [PMID: 40023031 DOI: 10.1016/j.foodchem.2025.143556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Chinese yam is well-known for its nutritional value, specifically for its low fat content, which is rich in unsaturated fatty acids, thus providing high-quality and essential fats. This study used GC-MS analysis to identify 28 metabolites, predominantly composed of unsaturated fatty acids such as linoleic, linolenic, and oleic acids, which play a crucial role in maintaining membrane stability. Unsaturated fatty acids improve fluidity under low-temperature conditions, shield cells from oxidative stress, and maintain cell integrity. Through weighted gene co-expression network analysis, this study discovered 12 potential regulatory factors, including Acetyl CoA carboxylase, lipoxygenase, and fatty acid desaturase, that contribute to the synthesis of highly unsaturated fatty acids in Chinese yam. Additionally, variations in fatty acid biosynthesis pathway metabolite accumulation significantly affects the cold tolerance of different Chinese yam varieties. This study enhances our understanding of the regulatory network of fatty acid metabolites and offers new insights into the genetic enhancement of Chinese yam varieties, particularly in terms of low-temperature tolerance.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanfang Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiuwen Huo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| | - Shuchun Guo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, China
| | - Ningning Suo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ye Tang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
38
|
Zhang J, Lei H, Huang J, Wong JWC, Li B. Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137559. [PMID: 39965334 DOI: 10.1016/j.jhazmat.2025.137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
The burgeoning of antibiotic resistance has emerged as a pressing global challenge. To gain a deeper understanding of the interactions between antibiotic resistance genes (ARGs), biocide and metal resistance genes (BRGs&MRGs), and mobile genetic elements (MGEs), this study utilized metagenomics and metatranscriptomics to investigate their co-occurrence and co-expression in two consortia subjected to long-term exposure to chloramphenicol and lincomycin. Long-term exposure to these antibiotics resulted in significant disparities in resistance profiles: ConsortiumCAP harbored 130 ARGs and 150 BRGs&MRGs, while ConsortiumLIN contained 57 ARGs and 32 BRGs&MRGs. Horizontal gene transfer (HGT) events were predicted at 125 and 300 instances in ConsortiumCAP and ConsortiumLIN, respectively, facilitating the emergence of multidrug-resistant bacteria, such as Caballeronia (10 ARGs, 2 BRGs&MRGs), Cupriavidus (2 ARGs, 10 BRGs&MRGs), and Bacillus (14 ARGs, 21 BRGs&MRGs). Chloramphenicol exposure significantly enriched genes linked to phenicol resistance (floR, capO) and co-expressed ARGs and BRGs&MRGs, while lincomycin exerted narrower effects on resistance genes. Additionally, both antibiotics modulated the expression of degradation genes and virulence factors, highlighting their role in altering bacterial substrate utilization and pathogenic traits. This study provides quantitative insights into the impact of antibiotics on microbial resistance profiles and functions at both DNA and RNA levels, highlighting the importance of reducing antibiotic pollution and limiting the spread of resistance genes in the environment.
Collapse
Affiliation(s)
- Jiayu Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Huang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jonathan W C Wong
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
39
|
Okamura T, Hasegawa Y, Ohno Y, Saijo Y, Nakanishi N, Honda A, Hamaguchi M, Takano H, Fukui M. Oral exposure to nanoplastics and food allergy in mice fed a normal or high-fat diet. CHEMOSPHERE 2025; 379:144401. [PMID: 40252413 DOI: 10.1016/j.chemosphere.2025.144401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
The global prevalence of food allergies, particularly IgE-mediated responses, is increasing at an alarming rate. This trend is likely driven by environmental factors such as nanoplastics (NPs) ingestion and the westernization of dietary and lifestyle habits. This study examines the impact of polystyrene nanoplastics (PS-NPs) on ovalbumin (OVA)-induced food allergies in mice subjected to either a normal diet (ND) or a high-fat diet (HFD). BALB/c mice were stratified into eight groups based on dietary regimen, NP exposure, and OVA sensitization. Food allergy was induced via OVA administration, and multiple physiological and immunological parameters were evaluated, including body weight, intestinal permeability, cytokine profiles, gut microbiota composition, and small intestinal gene expression. Mice in the HFD + OVA + NP group exhibited significant increases in intestinal permeability, diarrhea severity, and serum OVA-specific IgE levels compared to other groups. Flow cytometric analysis revealed an expansion of innate lymphoid cells (ILC2 and ILC1) within the lamina propria of the small intestine. Shotgun metagenomic sequencing demonstrated gut microbiota dysbiosis, characterized by a reduction in beneficial bacterial populations in the HFD + OVA + NP cohort. Weighted Gene Co-Expression Network Analysis (WGCNA) identified a negative correlation between NPs exposure or OVA sensitization and the expression of Slc1a1, Slc5a8, and Mep1a, while a positive correlation was observed with Aa467197 expression. These findings indicate that oral exposure to PS-NPs exacerbates OVA-induced food allergies, particularly in the context of an HFD, through mechanisms involving increased intestinal permeability, gut microbial dysbiosis, and gene expression modulation. This study highlights the potential health hazards posed by environmental microplastic contamination and its possible contribution to the escalating incidence of food allergies.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuriko Ohno
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuto Saijo
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Akiko Honda
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan.
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| |
Collapse
|
40
|
Ferland JMN, Chisholm A, Abdalla J, Cinar R, Johnson C, Bradshaw HB, Hurd YL. Cannabidiol abrogates cue-induced anxiety associated with normalization of mitochondria-specific transcripts and linoleic acid in the nucleus accumbens shell. Mol Psychiatry 2025; 30:2718-2728. [PMID: 39815058 DOI: 10.1038/s41380-024-02881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders. Yet, CBD's anxiolytic effects are mixed with some studies reporting little to no impact on trait anxiety but significant reductions in pathological anxiety with suggestions that CBD's effect may relate to triggered or cue-induced behavior. Here, we studied the effects of CBD on cued and non-cued behaviors and related neurobiological underpinnings. To investigate the effect of CBD on cue-induced anxiety, male rats underwent a fear conditioning protocol (odor associated with shock) followed by assessments of avoidance behavior. CBD (10 mg/kg) was administered 1 h prior to anxiety assessments. To understand molecular mechanisms associated with behavior, we investigated the transcriptome and lipid profile of the nucleus accumbens shell (NAcSh), a structure implicated in cue-mediated behaviors and aversion. Administration of CBD significantly reduced avoidance behavior, but only in animals repeatedly exposed to a shock-paired cue. CBD did not affect behavior in animals exposed to neutral cue or encoding of the cue behavioral response. RNA sequencing revealed substantial impact of the shock-paired cue in control animals, recruiting mechanisms ranging from cytoskeletal dynamics to mitochondria dysfunction. The shock-paired cue also resulted in elevated linoleic acid in vehicle animals which correlated with anxiety-like behavior. CBD either reversed or normalized these cue-induced molecular phenotypes. CBD also recruited lipid networks which correlated with transcripts involved in synaptic plasticity, signaling, and epigenetic mechanisms. These results suggest that CBD may specifically alleviate salient, conditioned anxiety and normalize related biological mechanisms in the NAcSh which may guide therapeutic interventions for anxiety disorders.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA
| | - Alexandra Chisholm
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Clare Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Valle F, Caselle M, Osella M. Exploring the latent space of transcriptomic data with topic modeling. NAR Genom Bioinform 2025; 7:lqaf049. [PMID: 40264683 PMCID: PMC12012681 DOI: 10.1093/nargab/lqaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
The availability of high-dimensional transcriptomic datasets is increasing at a tremendous pace, together with the need for suitable computational tools. Clustering and dimensionality reduction methods are popular go-to methods to identify basic structures in these datasets. At the same time, different topic modeling techniques have been developed to organize the deluge of available data of natural language using their latent topical structure. This paper leverages the statistical analogies between text and transcriptomic datasets to compare different topic modeling methods when applied to gene expression data. Specifically, we test their accuracy in the specific task of discovering and reconstructing the tissue structure of the human transcriptome and distinguishing healthy from cancerous tissues. We examine the properties of the latent space recovered by different methods, highlight their differences, and their pros and cons across different tasks. We focus in particular on how different statistical priors can affect the results and their interpretability. Finally, we show that the latent topic space can be a useful low-dimensional embedding space, where a basic neural network classifier can annotate transcriptomic profiles with high accuracy.
Collapse
Affiliation(s)
- Filippo Valle
- Physics Department, University of Turin and INFN, Via Pietro Giuria 1, 12125 Torino, Italy
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via Pietro Giuria 1, 12125 Torino, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via Pietro Giuria 1, 12125 Torino, Italy
| |
Collapse
|
42
|
Xiao L, Li J, Liao J, Wu M, Lu X, Li J, Zeng Y. BCL2A1‑ and G0S2‑driven neutrophil extracellular traps: A protective mechanism linking preeclampsia to reduced breast cancer risk. Oncol Rep 2025; 53:64. [PMID: 40242964 PMCID: PMC12030921 DOI: 10.3892/or.2025.8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia has been associated with a reduced risk of breast cancer (BC), but the mechanisms underlying this relationship remain unclear. It has been suggested that neutrophil extracellular traps (NETs), which are released upon neutrophil activation, play a key role in both preeclampsia and BC. To investigate this link, the single‑cell RNA sequencing dataset GSE173193 was analyzed and upregulated genes BCL2A1 and G0/G1 switch gene 2 (G0S2) were identified in neutrophils from preeclamptic placentas. These findings were validated using reverse transcription‑quantitative PCR and western blotting. Combined analyses of preeclampsia and BC tissues, from Gene Expression Omnibus (GSE24129) and The Cancer Genome Atlas databases respectively, identified 2,040 upregulated differentially expressed genes, including BCL2A1 and G0S2. Furthermore, these genes showed clinical relevance to BC, as demonstrated by Receiver Operating Characteristic curve, survival analyses and weighted gene co‑expression network analysis. Functional experiments revealed that overexpression of BCL2A1 and G0S2 increased NET release and inhibited BC cell proliferation, invasion and migration. The present study provides novel insights into the shared molecular pathways of preeclampsia and BC, emphasizing NETs as a potential protective mechanism as increased NET production in preeclampsia may contribute to a reduced BC risk by influencing tumor progression and offer avenues for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiahao Liao
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
43
|
Hu G, Li L, Li Y, Shao S, Zhang R, Gao Y, Guo Y, Wang Y, Gu Z, Wang Y. Full-length transcriptome-referenced analysis reveals developmental and olfactory regulatory genes in Dermestes frischii. INSECT MOLECULAR BIOLOGY 2025; 34:409-425. [PMID: 39663879 DOI: 10.1111/imb.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.
Collapse
Affiliation(s)
- Gengwang Hu
- Department of Forensic Medicine, Soochow University, Suzhou, China
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yifei Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Shipeng Shao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Ruonan Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yundi Gao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yi Guo
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| |
Collapse
|
44
|
Wang ST, Yang Q, Liu MK, Li L, Wang W, Zhang SD, Zhang GF. Comparative transcriptomic analysis reveals a differential acid response mechanism between estuarine oyster (Crassostrea ariakensis) and Pacific oyster (Crassostrea gigas). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118210. [PMID: 40273612 DOI: 10.1016/j.ecoenv.2025.118210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Ocean and coastal acidification (OCA) poses a significant and rapidly emerging threat to mollusks. The physiological resilience of mollusks to OCA varies considerably; however, the underlying molecular mechanisms remain poorly understood. Seawater in estuaries, being more susceptible to acidification than that in open coastal zones, may enhance the tolerance of resident mollusks to low pH levels. Here, we conducted a comparative analysis between estuarine oysters (Crassostrea ariakensis) and Pacific oysters (Crassostrea gigas) using physiological phenotype and transcriptomic analyses to reveal differential acid-tolerance mechanisms in response to constant pH of 7.8. Our findings indicated that survival and respiration rates of C. ariakensis, which inhabits estuaries with fluctuating pH levels, were higher than those of C. gigas, which inhabits open coastal zones with relative stable pH conditions. Acid-responsive genes identified in C. gigas, including molecular chaperones and immune-related genes, exhibited higher constitutive expression in C. ariakensis under control conditions. Co-expression analyses revealed that C. ariakensis mitigated the effects of low pH by expressing genes involved in ion transporter activity and translation control. C. gigas activated genes associated with glycolipid metabolism while inhibiting cell division during acid stress. These findings suggested that C. ariakensis has evolved into a more energy-efficient regulatory network than C. gigas, incorporating both front-loading and responsive mechanisms to maintain acidbase homeostasis. This study is the first to investigate acid-tolerance differences between mollusks inhabiting estuarine and open coastal environments and provides critical insights into the resilience of mollusks in increasingly acidified oceans.
Collapse
Affiliation(s)
- Shen-Tong Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Qi Yang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ming-Kun Liu
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China.
| | - Wei Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Shou-Du Zhang
- Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Guo-Fan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| |
Collapse
|
45
|
Hou J, Hess JL, Zhang C, van Rooij JGJ, Hearn GC, Fan CC, Faraone SV, Fennema-Notestine C, Lin SJ, Escott-Price V, Seshadri S, Holmans P, Tsuang MT, Kremen WS, Gaiteri C, Glatt SJ. Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33019. [PMID: 39679839 PMCID: PMC12048288 DOI: 10.1002/ajmg.b.33019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The comprehensive genome-wide nature of transcriptome studies in Alzheimer's disease (AD) should provide a reliable description of disease molecular states. However, the genes and molecular systems nominated by transcriptomic studies do not always overlap. Even when results do align, it is not clear if those observations represent true consensus across many studies. A couple of sources of variation have been proposed to explain this variability, including tissue-of-origin and cohort type, but its basis remains uncertain. To address this variability and extract reliable results, we utilized all publicly available blood or brain transcriptomic datasets of AD, comprised of 24 brain studies with 4007 samples from six different brain regions, and eight blood studies with 1566 samples. We identified a consensus of AD-associated genes across brain regions and AD-associated gene-sets across blood and brain, generalizable machine learning and linear scoring classifiers, and significant contributors to biological diversity in AD datasets. While AD-associated genes did not significantly overlap between blood and brain, our findings highlighted 15 dysregulated processes shared across blood and brain in AD. The top five most significantly dysregulated processes were DNA replication, metabolism of proteins, protein localization, cell cycle, and programmed cell death. Conversely, addressing the discord across studies, we found that large-scale gene co-regulation patterns can account for a significant fraction of variability in AD datasets. Overall, this study ranked and characterized a compilation of genes and molecular systems consistently identified across a large assembly of AD transcriptome studies in blood and brain, providing potential candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiahui Hou
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gentry C Hearn
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Shu-Ju Lin
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Valentina Escott-Price
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Chris Gaiteri
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
46
|
Lu J, Yang Y, Yin T. Expression of poplar sex-determining gene affects plant drought tolerance and the underlying molecular mechanism. HORTICULTURE RESEARCH 2025; 12:uhaf066. [PMID: 40303440 PMCID: PMC12038252 DOI: 10.1093/hr/uhaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
It is frequently observed that plant sexes differ in their response to environmental stress. Poplars are dioecious plants, and sex separation of poplars is triggered by the sex-limited expression of the poplar sex-determining gene FERR. In this study, we over-expressed FERR in a male poplar and knocked it out in a female poplar. The over-expression lines exhibited distinct morphological and physiological changes rendering the transformed plants more tolerant to drought stress. By contrast, no obvious change in drought tolerance was observed in the knockout lines. Transcriptome sequencing and molecular interaction analysis demonstrated that the effect of FERR on drought tolerance was conferred by competitive interaction with protein phosphatase 2C and SNF1-related protein kinase 2 (SnRK2). Under drought stress, an FERR-SnRK2s-ARR5 complex forms and activates the ABA signaling pathway. Our results provide direct evidence that the expression of the poplar sex-determining gene pleiotropically affects plant drought tolerance.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory for Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Breeding of Jiangsu Province, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tongming Yin
- State Key Laboratory for Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Breeding of Jiangsu Province, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| |
Collapse
|
47
|
Xu J, Zhong X, Wang H, Shi H, Zuo G, Yin L, Wang S, Deng X. Integrative meta-QTL and RNA-Seq analysis reveals valine-glutamine (VQ) motif-containing ZmVQ56 as a key regulator of water‑nitrogen interaction in maize (Zea mays L.). Int J Biol Macromol 2025; 311:143353. [PMID: 40274169 DOI: 10.1016/j.ijbiomac.2025.143353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Nitrogen and water interact synergistically to affect plant growth and crop productivity. Despite intensive research, the genetic and regulatory mechanisms of water‑nitrogen interactions remain unclear. In this study, we combined meta-QTL and RNA sequencing (RNA-Seq) to identify 18 candidate genes, with ZmVQ56 selected for functional analysis. The low nitrogen and drought-tolerant genotype 'TY6' and the sensitive genotype 'GEMS9' were used under four water‑nitrogen treatments: well-watered and normal nitrogen, water stress and normal nitrogen, well-watered and low nitrogen, and water stress and low nitrogen. We identified 3430 differentially expressed genes (DEGs) in roots and 7703 DEGs in leaves. Integrating meta-QTL, gene expression, and functional annotation identified ZmVQ56 as a candidate gene involved in water‑nitrogen interactions. Since the maize transgenic material has not yet been obtained, Arabidopsis thaliana was used for functional analysis. Functional analysis in Arabidopsis showed that overexpression of ZmVQ56 reduced primary root length, fresh weight, and shoot nitrate content under low nitrogen and drought conditions, while the atsib1 mutant (homologous of ZmVQ56) exhibited opposite results. These findings provide insights into the genetic basis of water‑nitrogen interactions and suggest a role for ZmVQ56 in regulating low nitrogen and drought tolerance, offering potential for molecular breeding in maize.
Collapse
Affiliation(s)
- Jili Xu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Xiong Zhong
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Wang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Hao Shi
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Guanqiang Zuo
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Lina Yin
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Shiwen Wang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| | - Xiping Deng
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China
| |
Collapse
|
48
|
Molla Hoseyni BH, Lanjanian H, Beigi YZ, Salimi M, Zare-Mirakabad F, Masoudi-Nejad A. Molecular landscape of endometrioid Cancer: Integrating multiomics and deep learning for personalized survival prediction. Comput Biol Med 2025; 192:110284. [PMID: 40319755 DOI: 10.1016/j.compbiomed.2025.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The endometrioid subtype of endometrial cancer is a significant health concern for women, making it crucial to study the factors influencing patient outcomes. METHOD This study presents a novel survival analysis pipeline applied to multiomics data, including transcriptome, methylation, and proteome data, extracted from endometrioid samples in the TCGA-UCEC project to identify potential survival biomarkers. A major innovation in our work was the development of a deep learning autoencoder designed to capture the complex non-linear relationships between biological variables and survival outcomes. To achieve this, we defined a new loss function specifically for the autoencoder. RESULT The newly defined loss function can lead to extracting more survival information. The output of our pipeline includes 346 features ranked by their survival importance based on SHAP analysis, with a focus on the top 30 features. We analyzed the biological pathways enriched by these omics data and their contributions. As a result, we identified a relationship between Vitamin D, its receptor, and the Galanin receptor pathways with survival in endometrioid cancer. CONCLUSION This study introduces an innovative approach to survival analysis using multi-omics data and deep learning, with a greater focus on censored data to extract more survival information. It offers potential biomarkers for improved prognostic evaluation in endometrial cancer and presents pathway associations related to survival. These findings contribute to a better understanding of the progression of endometrial cancer.
Collapse
Affiliation(s)
- Behnaz Haji Molla Hoseyni
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1417614335, Iran
| | - Yasaman Zohrab Beigi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1417614335, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, 1417614335, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), School of Engineering Science, College of Engineering, University of Tehran, Tehran, 1417614335, Iran.
| |
Collapse
|
49
|
Li S, Liu J, Wang J, Jia D, Sun Y, Ding L, Jiang J, Chen S, Chen F. CmCYC2d is a Regulator of Leaf Abaxial Curling in Chrysanthemum morifolium. PLANT, CELL & ENVIRONMENT 2025; 48:4245-4265. [PMID: 39934960 DOI: 10.1111/pce.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Leaf morphology is crucial for plant photosynthesis and stress adaptation. While CIN-like TCP transcription factors are well-known for their roles in leaf curling and morphogenesis, the function of CYC-like TCPs in leaf development remains largely unexplored. This study identifies CmCYC2d as a key regulator of abaxial leaf curling in Chrysanthemum morifolium. Phenotypic analysis revealed that the downward curling observed in OX-CmCYC2d transgenic lines was primarily due to the enlargement of adaxial epidermal cells. Furthermore, a reduction in epidermal cell number was identified as a significant contributor to the smaller leaf area in these plants. Transcriptome and WGCNA analyses highlighted CmSAUR55 as a potential downstream target of CmCYC2d. ChIP-qPCR, EMSA, and LUC assays confirmed that CmCYC2d directly bound to the CmSAUR55 promoter. Additionally, transcriptome data revealed that the reduced cell number in OX-CmCYC2d transgenic lines may be mediated by auxin-related pathways and key genes such as CNR7. The CmCYC2d-CmSAUR55 module was also closely linked to the development of enlarged adaxial epidermal cells in the leaf sinus, emphasising its role in this developmental process. This study highlights the regulatory role of CmCYC2d in leaf development and sheds light on the molecular mechanisms underlying leaf curling in chrysanthemum.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junqing Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - YanYan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Chen R, Ren J, Wang Y, Zhang X, Jia Y, Liu C, Qu K. A Comprehensive Analysis Exploring the Impact of an Immunogenic Cell Death-Related Panel for Ovarian Cancer. Mol Biotechnol 2025; 67:2520-2535. [PMID: 39112745 PMCID: PMC12055628 DOI: 10.1007/s12033-024-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/02/2024] [Indexed: 05/07/2025]
Abstract
Ovarian cancer (OV) is a malignant tumor that ranks first among gynecological cancers, thus posing a significant threat to women's health. Immunogenic cell death (ICD) can regulate cell death by activating the adaptive immune system. Here, we aimed to comprehensively characterize the features of ICD-associated genes in ovarian cancer, and to investigate their prognostic value and role in the response to immunotherapy. After analyzing datasets from The Cancer Genome Atlas, we utilized weighted gene coexpression network analysis to screen for hub genes strongly correlated with ICD genes in OV, which was subsequently validated with OV samples from the Gene Expression Omnibus (GEO) database. A prognostic risk model was then constructed after combining univariate, multivariate Cox regression and LASSO regression analysis to recognize nine ICD-associated molecules. Next, we stratified all OV patients into two subgroups according to the median value. The multivariate Cox regression analysis showed that the risk model could predict OV patient survival with good accuracy. The same results were also found in the validation set from GEO. We then compared the degree of immune cell infiltration in the tumor microenvironment between the two subgroups of OV patients, and revealed that the high-risk subtype had a higher degree of immune infiltration than the low-risk subtype. Additionally, in contrast to patients in the high-risk subgroup, those in the low-risk subgroup were more susceptible to chemotherapy. In conclusion, our research offers an independent and validated model concerning ICD-related molecules to estimate the prognosis, degree of immune infiltration, and chemotherapy susceptibility in patients with OV.
Collapse
Affiliation(s)
- Rui Chen
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Jie Ren
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yifei Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310028, China
| | - Yifan Jia
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chang Liu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| | - Kai Qu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|