1
|
Long Z, Yi Z, Yan W, Wang H. Trends in the immunotherapy for glioblastoma: A two-decade bibliometric analysis. Hum Vaccin Immunother 2025; 21:2466299. [PMID: 39950580 PMCID: PMC11834472 DOI: 10.1080/21645515.2025.2466299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma is a life-threatening primary malignant brain tumor with an unfavorable prognosis. Contributing factors to its poor outcome include tumor heterogeneity, low mutational burden, and immunosuppression within the tumor microenvironment. Recognizing these challenges, immunotherapeutic strategies have emerged as a promising avenue for glioblastoma treatment. Although several dynamic research and scientific trend have increasingly taken pace in the immunotherapeutic approaches to glioblastoma, systematic bibliometric studies on such trends are few. On this note, this study explores a bibliometric analysis of the research hotspots and trends in glioblastoma immunotherapy. We conducted a search in the Web of Science Core Collection database for articles on glioblastoma immunotherapy published between 2004 and 2024. Using VOSviewer and CiteSpace software, we analyzed collected articles to explore aspects such as country of origin, journal of publication, affiliated institute, authorship, keywords, and citation patterns. As of May 1, 2024, we retrieved 3,729 papers on Glioblastoma Immunotherapy. In the field of glioblastoma immunotherapy, the United States stands out as the leading contributor, with 1,708 publications and a substantial 90,590 citations. Following closely, China has made significant contributions through 926 publications, earning 17,533 citations, while Germany adds to the body of knowledge with 349 publications and 16,355 citations. Furthermore, Authoritative journals in this field include Clinical Cancer Research and Neuro-Oncology. The top five keywords during this period were temozolomide, radiotherapy, dendritic cell, cytotoxic T lymphocyte, and vaccination. Moreover, Hotspots in the field include immune checkpoint inhibitors and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Zhi Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Yan
- The First Department of General Surgery, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Hongxin Wang
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, Hengyang Medical School,University of South China, Changsha, China
| |
Collapse
|
2
|
Goloudina A, Le Chevalier F, Authié P, Charneau P, Majlessi L. Shared neoantigens for cancer immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200978. [PMID: 40256120 PMCID: PMC12008704 DOI: 10.1016/j.omton.2025.200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Exploration of neoantigens holds the potential to be productive in immuno-oncotherapy. Among tumor-specific antigens, neoantigens result from genetic instability that gives rise to non-synonymous somatic mutations, highly specific to tumor cells. In addition to point mutations, gene rearrangements, indels leading to frameshifts, chromosomal translocations or inversions that may lead to fusion proteins, alternative mRNA splicing, and integration of genetic material of oncogenic viruses into the host genome provide consistent sources of neoantigens that are absent in healthy tissues. Out of these alterations, 2%-3% may generate T cell neoepitopes, possibly detectable by TCRs. Neoantigens are absent in healthy tissues and are thus at low risk of triggering autoimmunity. In addition, the host lymphocytes have not been rendered tolerant toward them and it is possible to induce immune responses against them. Here, we overview the two categories of neoantigens, i.e., private and shared, and their use in immuno-oncotherapy in selected pre-clinical and clinical studies. The vast majority of commonly occurring tumor-specific mutations are cancer causing and are permanently expressed by all malignant tumor cells, preventing the latter from escaping vaccine-induced anti-neoantigen immunity. The use of public neoantigens combined with efficient vaccine platforms can provide non-personalized "off-the-shelf" therapeutic vaccine candidates for broad-spectrum immunotherapy purposes.
Collapse
Affiliation(s)
- Anastasia Goloudina
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
3
|
Stucchi S, Borea R, Garcia-Recio S, Zingarelli M, Rädler PD, Camerini E, Marnata Pellegry C, O'Connor S, Earp HS, Carey LA, Perou CM, Savoldo B, Dotti G. B7-H3 and CSPG4 co-targeting as Pan-CAR-T cell treatment of triple-negative breast cancer. J Immunother Cancer 2025; 13:e011533. [PMID: 40425233 PMCID: PMC12107568 DOI: 10.1136/jitc-2025-011533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
PURPOSE Chimeric antigen receptor T (CAR-T) cell therapy is under clinical investigation in patients with metastatic triple-negative breast cancer (TNBC). However, the identification of targetable antigens remains a high priority to avoid toxicity and prevent tumor escape. EXPERIMENTAL DESIGN Here we analyzed the gene expression of B7-H3 (CD276) and chondroitin sulfate proteoglycan 4 (CSPG4) in 98 TNBC samples identified in the AURORA US Network and Rapid Autopsy RNA sequencing data set at University of North Carolina (UNC). We then performed immunohistochemistry analysis for B7-H3 and CSPG4 protein expression in 151 TNBC samples collected at UNC. Finally, the validity of the proposed B7-H3 and CSGP4 co-targeting was tested in clinically relevant TNBC patient derived xenograft (PDX) models. RESULTS We observed that CD276 and CSPG4 genes are broadly and comparably expressed in TNBC samples, and gene expression is generally conserved in tumor metastases. None of the TNBC analyzed met the criteria for simultaneous low expression of CSPG4 and CD276 genes. Immunohistochemistry analysis showed a median H-score of 138 (105-168, lower and upper quartile, respectively) for B7-H3 expression and a median H-score of 33 (14-78 lower and upper quartile, respectively) for CSPG4 expression. Notably, 49% of the TNBC cores with B7-H3 H-score ≤105 exhibited a CSPG4 H-score exceeding its median value, and 37% and 18% of the TNBC cores with low B7-H3 expression scored CSPG4 expression above its median H-score or exceeded its upper quartile, respectively, confirming that at least one of these two proteins is expressed in 94% of the analyzed tumors. Finally, optimized dual-specific B7-H3 and CSPG4 CAR-T cells eradicated tumors with mixed antigen expression in TNBC PDX models. CONCLUSIONS These data highlight the clinical potential of the proposed approach that could be applicable to the great majority of patients with TNBC as well as most of patients with breast cancer in general.
Collapse
Affiliation(s)
- Simone Stucchi
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Roberto Borea
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manuela Zingarelli
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick D Rädler
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena Camerini
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Siobhan O'Connor
- Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - H Shelton Earp
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lisa A Carey
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Savoldo
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Gamboa L, Zamat AH, Thiveaud CA, Lee HJ, Kulaksizoglu E, Zha Z, Campbell NS, Chan CS, Fábrega S, Oliver SA, Su FY, Phuengkham H, Vanover D, Peck HE, Sivakumar A, Dahotre SN, Harris AM, Santangelo PJ, Kwong GA. Sensitizing solid tumors to CAR-mediated cytotoxicity by lipid nanoparticle delivery of synthetic antigens. NATURE CANCER 2025:10.1038/s43018-025-00968-5. [PMID: 40379831 DOI: 10.1038/s43018-025-00968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy relies on CAR targeting of tumor-associated antigens; however, heterogenous antigen expression, interpatient variation and off-tumor expression by healthy cells remain barriers. Here we develop synthetic antigens to sensitize solid tumors for recognition and elimination by CAR T cells. Unlike tumor-associated antigens, we design synthetic antigens that are orthogonal to endogenous proteins to eliminate off-tumor targeting and that have a small genetic footprint to facilitate efficient tumor delivery to tumors by lipid nanoparticles. Using a camelid single-domain antibody (VHH) as a synthetic antigen, we show that adoptive transfer of anti-VHH CAR T cells to female mice bearing VHH-expressing tumors reduced tumor burden in multiple syngeneic and xenograft models of cancer, improved survival, induced epitope spread, protected against tumor rechallenge and mitigated antigen escape in heterogenous tumors. Our work supports the in situ delivery of synthetic antigens to treat antigen-low or antigen-negative tumors with CAR T cells.
Collapse
Affiliation(s)
- Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Ali H Zamat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Chloé A Thiveaud
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hee Jun Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Elif Kulaksizoglu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Zizhen Zha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Noah S Campbell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Ching Shen Chan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Sydney Fábrega
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - S Abbey Oliver
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Fang-Yi Su
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Shreyas N Dahotre
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Adrian M Harris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
6
|
Song KW, Lim M, Monje M. Complex neural-immune interactions shape glioma immunotherapy. Immunity 2025; 58:1140-1160. [PMID: 40324379 DOI: 10.1016/j.immuni.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Rich neural-immune interactions in the central nervous system (CNS) shape its function and create a unique immunological microenvironment for immunotherapy in CNS malignancies. Far from the now-debunked concept of CNS "immune privilege," it is now understood that unique immunological niches and constant immune surveillance of the brain contribute in multifaceted ways to brain health and robustly influence immunotherapy approaches for CNS cancers. Challenges include immune-suppressive and neurotoxicity-promoting crosstalk between brain, immune, and tumor cells. Developing effective immunotherapies for cancers of the nervous system will require a deeper understanding of these neural-immune-malignant cell interactions. Here, we review progress and challenges in immunotherapy for gliomas of the brain and spinal cord in light of these unique neural-immune interactions and highlight future work needed to optimize promising immunotherapies for gliomas.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Politis A, Stavrinou L, Kalyvas A, Boviatsis E, Piperi C. Glioblastoma: molecular features, emerging molecular targets and novel therapeutic strategies. Crit Rev Oncol Hematol 2025; 212:104764. [PMID: 40368035 DOI: 10.1016/j.critrevonc.2025.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
Glioblastomas (GBMs) constitute the most common malignant tumors of the Central Nervous System (CNS) with a complex molecular, genetic and histological profile and extensive heterogenicity. GBMs are notoriously difficult to treat, with morbidity and mortality rate that remain high and practically unchanged, despite the aggressive and multimodal treatment strategies. Keeping up with current research and emerging scientific data is of primary importance for the detection of new molecular targets, enabling the design of novel therapeutic strategies. Herein, we discuss current data on the cellular and molecular features that contribute to GBM pathophysiological mechanisms in an effort to reveal emerging molecular targets with therapeutic potential as well as effective immunotherapeutic approaches, including chimeric antigen receptor (CAR) T-cell therapy and adaptive immune modulation with immune checkpoint inhibitors. Enhanced drug delivery strategies such as ultrasound-assisted technologies to overcome drug resistance are also discussed, aiming to provide an overall translational perspective that bridges molecular insights with practical therapeutic implications.
Collapse
Affiliation(s)
- Anastasios Politis
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lampis Stavrinou
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aristotelis Kalyvas
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; Division of Neurosurgery, Department of Surgery, Temetry Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
8
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Iturri L, Gilbert C, Espenon J, Bertho A, Potiron S, Juchaux M, Prezado Y. Optimal fractionation scheme for lymphocyte infiltration in glioblastoma multiforme radiotherapy. Front Oncol 2025; 15:1493436. [PMID: 40406256 PMCID: PMC12095198 DOI: 10.3389/fonc.2025.1493436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/10/2025] [Indexed: 05/26/2025] Open
Abstract
Purpose Radioresistant and immunosuppressive tumors, such as glioblastoma multiforme (GBM), remain a challenge, as current clinical approaches-surgical resection and chemoradiation-do not yet provide effective treatment. Immunotherapy (IT) has emerged as a powerful tool in cancer; however, phase III clinical trials in GBM have yielded unsuccessful results, likely due to its critical dependence on preexisting antitumor immunity. Given its immunomodulatory potential, radiotherapy (RT) could serve as a tool to induce tumor inflammation and enhance responsiveness to IT. However, the optimal radiation configuration required to achieve the critical level of tumor inflammation for IT success remains elusive. This study assessed the most effective dose fractionation scheme for maximizing immune cell infiltration into tumors. Materials and methods Two orthotopic rat glioma models with differing vascularization and immunogenicity were irradiated with three dose fractionation schemes. Tumor immune cell populations were analyzed by flow cytometry. Results A single high dose (25 Gy) or extreme hypofractionation is required to elicit a significant immune infiltration in tumors. Conclusions Using RT as an immune primer in GBM would require very high and toxic doses with conventional RT methods. While 25 Gy is used in conventional stereotactic radiosurgery, such a high dose is typically limited to small brain volumes. Novel approaches, such as FLASH-RT or minibeam RT, offer alternatives to mitigate toxicity while achieving the required doses.
Collapse
Affiliation(s)
- Lorea Iturri
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristéle Gilbert
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Annaïg Bertho
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Sarah Potiron
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Marjorie Juchaux
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université Paris Sciences et Lettres (PSL), Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, Centre National pour la recherche scientifique (CNRS) Unité mixte de recherche (UMR3347), Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, A Coruña, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, A Coruña, Spain
| |
Collapse
|
10
|
Timpanaro A, Song EZ, Amwas N, Chiu CH, Ronsley R, Taylor MR, Foster JB, Wang LD, Vitanza NA. Evolving CAR T-Cell Therapy to Overcome the Barriers in Treating Pediatric Central Nervous System Tumors. Cancer Discov 2025; 15:890-902. [PMID: 40300089 PMCID: PMC12048232 DOI: 10.1158/2159-8290.cd-24-1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 05/01/2025]
Abstract
SIGNIFICANCE CNS tumors are the leading cause of cancer-related death in children, highlighting the dire need for new treatment strategies. CAR T cells represent a unique approach, distinct from the cytotoxic chemotherapies and small-molecule inhibitors that have dominated the clinical trial space for decades. Phase I CAR T-cell trials have shown feasibility and possible efficacy against pediatric CNS tumors; however, many challenges must be overcome if these therapeutics are going to be beneficial to most affected children. Although rapid translational development and early-phase trials have quickly evolved our understanding, the pediatric CNS CAR T-cell community now yearns for critical assessments and open dialogue about overcoming the remaining obstacles ahead.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Edward Z. Song
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nour Amwas
- Department of Immuno-oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chu-Hsuan Chiu
- Department of Immuno-oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca Ronsley
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Mallory R. Taylor
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Jessica B. Foster
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leo D. Wang
- Department of Immuno-oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Pediatrics, City of Hope Children’s Cancer Center, Duarte, CA, USA
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Admasu TD, Yu JS. Harnessing Immune Rejuvenation: Advances in Overcoming T Cell Senescence and Exhaustion in Cancer Immunotherapy. Aging Cell 2025; 24:e70055. [PMID: 40178455 PMCID: PMC12073907 DOI: 10.1111/acel.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with T cell-based strategies at the forefront of this revolution. However, the durability of these responses is frequently undermined by two intertwined phenomena: T cell exhaustion and senescence. While exhaustion is driven by chronic antigen exposure in the immunosuppressive tumor microenvironment, leading to a reversible state of diminished functionality, senescence reflects a more permanent, age- or stress-induced arrest in cellular proliferation and effector capacity. Together, these processes represent formidable barriers to sustained anti-tumor immunity. In this review, we dissect the molecular underpinnings of T cell exhaustion and senescence, revealing how these dysfunctions synergistically contribute to immune evasion and resistance across a range of solid tumors. We explore cutting-edge therapeutic approaches aimed at rewiring the exhausted and senescent T cell phenotypes. These include advances in immune checkpoint blockade, the engineering of "armored" CAR-T cells, senolytic therapies that selectively eliminate senescent cells, and novel interventions that reinvigorate the immune system's capacity for tumor eradication. By spotlighting emerging strategies that target both exhaustion and senescence, we provide a forward-looking perspective on the potential to harness immune rejuvenation. This comprehensive review outlines the next frontier in cancer immunotherapy: unlocking durable responses by overcoming the immune system's intrinsic aging and exhaustion, ultimately paving the way for transformative therapeutic breakthroughs.
Collapse
Affiliation(s)
| | - John S. Yu
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Kairos PharmaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
13
|
Strassheimer F, Elleringmann P, Ludmirski G, Roller B, Macas J, Alekseeva T, Cakmak P, Aliraj B, Krenzlin H, Demes MC, Mildenberger IC, Tonn T, Weber KJ, Reiss Y, Plate KH, Weigert A, Wels WS, Steinbach JP, Burger MC. CAR-NK cell therapy combined with checkpoint inhibition induces an NKT cell response in glioblastoma. Br J Cancer 2025; 132:849-860. [PMID: 40102596 PMCID: PMC12041480 DOI: 10.1038/s41416-025-02977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive primary brain tumor with limited efficacy of established therapies, and a pronounced immunosuppressive tumor microenvironment. Targeting HER2 with local immunotherapy allows for high tumor specificity in the brain with physiologically very low expression. Monotherapy with CAR-NK cells targeted against HER2 has previously shown efficacy in medium-sized GL261/HER2 tumors. METHODS Advanced GL261/HER2 tumors were treated by local CAR-NK cell injection combined with systemic anti-PD-1 checkpoint blockade. Tumor growth and survival were monitored. In-depth characterization of the microenvironment was performed by multiplex immune fluorescence, spectral flow cytometry and RNAseq. RESULTS Untreated GL261/HER2 tumors were characterized by local immunosuppression and high PD-L1 expression. Combined treatment with NK-92/5.28.z and systemic anti-PD-1 induced robust anti-tumor response and long-term survival. Multiplex immunofluorescence and spectral flow cytometry showed increased CD4+ T cell infiltration in mice treated with CAR-NK cell and anti-PD-1 combination therapy. A cluster of T cells specifically emerging in the combination therapy group expressed markers of NKT cells, which was further verified by immunofluorescence staining. CONCLUSION The combination therapy reverted the immunosuppressive tumor microenvironment with increased T and NKT cell infiltration. This resulted in successful treatment of advanced orthotopic tumors refractory to CAR-NK cell monotherapy.
Collapse
Affiliation(s)
- F Strassheimer
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Elleringmann
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - G Ludmirski
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - B Roller
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Macas
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
| | - T Alekseeva
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - P Cakmak
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
| | - B Aliraj
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, Institute of Biochemistry I, Faculty of Medicine, Frankfurt, Germany
| | - H Krenzlin
- University Medical Center Mainz, Department of Neurosurgery, Mainz, Germany
| | - M C Demes
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, Dr. Senckenberg Institute of Pathology, Goethe University Hospital, Frankfurt, Germany
| | - I C Mildenberger
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - T Tonn
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donation Service Baden-Württemberg-Hessen and Goethe University Hospital, Frankfurt, Germany
| | - K J Weber
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
| | - Y Reiss
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
| | - K H Plate
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
| | - A Weigert
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, Institute of Biochemistry I, Faculty of Medicine, Frankfurt, Germany
| | - W S Wels
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J P Steinbach
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M C Burger
- Goethe University, Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025; 24:379-397. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Lu Y, Zhao F. Strategies to overcome tumour relapse caused by antigen escape after CAR T therapy. Mol Cancer 2025; 24:126. [PMID: 40289115 PMCID: PMC12036236 DOI: 10.1186/s12943-025-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell and plasma cell malignancies, and numerous promising targets against solid tumours are being explored. Despite their initial therapeutic success in hematological cancers, relapse occurs in a significant fraction of patients, highlighting the need for further innovations in advancing CAR T cell therapy. Tumour antigen heterogeneity and acquired tumour resistance leading to antigen escape (antigen loss/downregulation) have emerged as a crucial factor contributing to immune escape and CAR T cell resistance, particularly in the case of solid tumours with only limited success achieved to date. In this review, we discuss mechanisms of tumour relapse in CAR T cell therapy and the promising strategies that are under development to overcome multiple resistance mechanisms, thereby reducing outgrowth of antigen escape variants. Specifically, we emphasize the importance of designing clinical translational strategies to enhance CAR T cell crosstalk with host immune cells, eliciting endogenous antitumour immune responses through antigen/epitope spreading, which offers a genuine solution to the limitations of targeting tumour antigen heterogeneity in solid tumours with monospecific T cell therapies.
Collapse
Affiliation(s)
- Yufei Lu
- Fuxing Hospital, Capital Medical University, Beijing, China
| | - Fu Zhao
- Department of Pediatric Neurosurgery, Beijing Key Laboratory of Drug Innovation for Neuro-Oncology, Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
16
|
Verdys P, Johansen AZ, Gupta A, Presti M, Dionisio E, Madsen DH, Curioni-Fontecedro A, Donia M. Acquired resistance to immunotherapy in solid tumors. Trends Mol Med 2025:S1471-4914(25)00061-9. [PMID: 40274520 DOI: 10.1016/j.molmed.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Acquired resistance to immunotherapy (ARI) is a major challenge in solid tumors, limiting long-term success in up to 65% of patients who initially respond to immunotherapy. Defining ARI clinically remains complex, but ongoing efforts aim to establish standardized criteria. This review describes recent insights into ARI, revealing complex mechanisms involving both tumor-intrinsic mechanisms - such as antigen loss and presentation defects, interferon γ (IFNγ) insensitivity, tumor-mediated T cell exclusion, and metabolic reprogramming - as well as extrinsic factors such as inhibitory molecule upregulation, immunosuppressive cells, extracellular matrix (ECM) remodeling, and dysbiotic microbiota. Understanding the development of ARI is crucial for prevention and effective interventions. The integration of innovative strategies and translational research on appropriately collected samples is key to overcoming ARI and ensuring durable benefits for patients.
Collapse
Affiliation(s)
- Perrine Verdys
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anurag Gupta
- Department of Medical Oncology, University of Fribourg, Fribourg, Switzerland
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Edoardo Dionisio
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
17
|
Moore AE, Nault H, Cummings D, Bojovic B, Serniuck N, Baker CL, Aarts C, Venugopal C, Singh SK, Hammill JA, Bramson JL. DAP12-associated synthetic antigen receptors enable multi-targeting of T cells with independent chimeric receptors in a small genetic payload. iScience 2025; 28:112142. [PMID: 40201126 PMCID: PMC11978328 DOI: 10.1016/j.isci.2025.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
We describe a series of DAP12-associated receptors that can be used to achieve multi-targeting within a small genetic payload. Empirical evaluation of scaffold/binder combinations is required to define the optimal synthetic receptor configuration. When two DAP12-associated synthetic receptors were expressed in T cells from a single vector, the surface levels of individual receptors was reduced when compared to T cells engineered with vectors that express a single receptor. The reduction in receptor expression had a pronounced effect on early, but not late, signaling events and primarily affected cytokine production. The functional deficiency was overcome by increasing synthetic receptor levels demonstrating that there is no fundamental issue related to co-expression of multiple DAP12-associated synthetic receptors in a single T cell. Our data show that T cells can be engineered with multiple recombinant DAP12-based receptors to yield multi-target specific T cells, however, thoughtful design and optimization are necessary.
Collapse
Affiliation(s)
- Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hayley Nault
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Derek Cummings
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bonnie Bojovic
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nick Serniuck
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Christopher L. Baker
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Craig Aarts
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sheila K. Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joanne A. Hammill
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
18
|
Cimons JM, DeGolier KR, Burciaga SD, Yarnell MC, Novak AJ, Rivera-Reyes AM, Kohler ME, Fry TJ. T-bet overexpression enhances CAR T cell effector functions and antigen sensitivity. J Immunother Cancer 2025; 13:e010962. [PMID: 40246581 PMCID: PMC12007057 DOI: 10.1136/jitc-2024-010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND T cells modified to express a chimeric antigen receptor (CAR) are successful against B-lineage malignancies but fail to induce durable remissions in up to half of patients and have shown limited efficacy against other types of cancer. Strategies to improve CAR T cell potency and responses to low antigen densities without inducing CAR T cell dysfunction or limiting persistence are necessary to expand durability of remissions. METHODS We overexpressed T-bet in human and mouse CAR T cells to mimic exposure to signal 3 cytokines during T cell priming to promote T helper cell 1 (Th1) polarization of CD4+CAR T cells with the goal of enhancing antitumor activity. Using human CAR T cells and xenograft models we interrogated the impact of T-bet overexpression on CAR T cell antitumor activity in vitro and in vivo. We also used a syngeneic murine CAR T cell model to study the impact of T-bet overexpression on long-term persistence and secondary responses to tumor rechallenge. RESULTS T-bet overexpression reduced expression of the Th2 cytokine interleukin 4 and promoted polyfunctional production of Th1-associated cytokines in response to CAR stimulation. T-bet overexpression enhanced some effector functions in vitro but did not improve CAR T cell-mediated control of leukemia expressing high levels of antigen in vivo. T-bet overexpression also improved effector function of murine CD19 CAR T cells with no impairment to the persistence or ability of persistent CAR T cells to re-expand and clear a secondary leukemia challenge. Finally, T-bet overexpression promoted enhanced in vitro function against leukemia expressing low levels of CD19, which translated to improved control of CD19lo leukemia in vivo by human C19 CAR T cells containing a 4-1BB costimulatory domain. CONCLUSIONS Together, our data demonstrate that T-bet overexpression induces a reduction in Th2 cytokine production, an increase in polyfunctional Th1 cytokine production and enhances 4-1BB CAR T cell activity against cancers expressing low levels of target antigen without promoting a loss in functional CAR T cell persistence.
Collapse
Affiliation(s)
- Jennifer M Cimons
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Kole R DeGolier
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Samuel D Burciaga
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Michael C Yarnell
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Amanda J Novak
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Amalia M Rivera-Reyes
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - M Eric Kohler
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
- Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Terry J Fry
- University of Colorado Denver Children's Hospital Colorado Research Institute, Aurora, Colorado, USA
| |
Collapse
|
19
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Abken H. CAR T cell therapies in gastrointestinal cancers: current clinical trials and strategies to overcome challenges. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01062-y. [PMID: 40229574 DOI: 10.1038/s41575-025-01062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Despite multimodal treatment options, most gastrointestinal cancers are still associated with high mortality rates and poor responsiveness to immunotherapy. The unprecedented efficacy of chimeric antigen receptor (CAR)-engineered T cells in the treatment of haematological malignancies raised interest in translating CAR T cell therapies to the treatment of gastrointestinal cancers. Treatment of solid cancers with canonical CAR T cells faces substantial challenges, including the dense architecture of the tumour tissue, the tolerogenic environment with low tumour-intrinsic immunogenicity, the rareness of targetable tumour-selective antigens, the antigenic heterogeneity of cancer cells, and the profound metabolic and immune cell disbalances. This Review provides an overview of CAR T cell trials in the treatment of gastrointestinal cancers, discussing considerations relating to safety, efficacy, potential reasons for failure and options for improving CAR T cells for the future. In addition, lessons regarding how to improve efficacy are drawn from CAR T cells armed with adjuvants that sustain their activation within the hostile environment and activate resident immune cells. As the field is rapidly evolving, current treatment modalities and editing CAR T cell functionalities are being refined towards a potentially more successful CAR T cell therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Hinrich Abken
- Leibniz Institute for Immunotherapy, Genetic Immunotherapy Division, Regensburg, Germany.
- Genetic Immunotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Zhu F, Qiu J, Ye H, Su W, Wang R, Fu Y. The Prognostic Significance of Epidermal Growth Factor Receptor Amplification and Epidermal Growth Factor Receptor Variant III Mutation in Glioblastoma: A Systematic Review and Meta-Analysis with Implications for Targeted Therapy. Int J Mol Sci 2025; 26:3539. [PMID: 40331985 PMCID: PMC12027172 DOI: 10.3390/ijms26083539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive and heterogeneous neoplasm among central nervous system tumors, with a dismal prognosis and a high recurrence rate. Among the various genetic alterations found in GBM, the amplification of epidermal growth factor receptor (EGFR) and the EGFR variant III (EGFRvIII) mutation are among the most common, though their prognostic value remains controversial. This systematic review and meta-analysis aimed to provide a comprehensive evaluation of the diagnostic and prognostic significance of EGFR amplification and the EGFRvIII mutation in GBM patients, incorporating recent studies published in the past few years to offer a more complete and up-to-date analysis. An extensive search of the PubMed, Web of Science, and Scopus databases was conducted, including studies that reported on EGFR and/or the EGFRvIII mutation status with detailed survival data. A total of 32 studies with 4208 GBM patients were included. The results indicated that EGFR amplification significantly correlated with worse OS (Overall survival) (HR = 1.27, 95% CI: 1.03-1.57), suggesting that EGFR amplification is an independent prognostic marker. The prognostic value of EGFRvIII was inconclusive, with a pooled hazard ratio for overall survival of 1.13 (95% CI: 0.94-1.36), indicating no significant effect on survival in the general population. However, a subgroup analysis suggested that EGFRvIII may be associated with poorer outcomes, particularly in recurrent GBM patients, where its prognostic significance became more evident. Furthermore, subgroup analyses based on geographic region revealed significant heterogeneity in the prognostic impact of EGFR amplification across different populations. In American cohorts, EGFR amplification was strongly associated with an increased risk of mortality (HR = 1.53, 95% CI: 1.28-1.84, p = 0.001), suggesting that it serves as a more reliable prognostic marker in this region. In contrast, no significant prognostic impact of EGFR amplification was observed in Asian (HR = 0.64, 95% CI: 0.35-1.17) or European (HR = 0.98, 95% CI: 0.80-1.19) populations. Overall, this study underscores the potential of EGFR amplification as a prognostic marker in GBM, while further research is needed to fully elucidate the role of the EGFRvIII mutation, particularly in specific patient subgroups. Clarifying these associations could offer important insights for targeted treatment strategies, improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Renxi Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, Beijing 100069, China; (F.Z.); (J.Q.); (H.Y.); (W.S.)
| | - Yi Fu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, Beijing 100069, China; (F.Z.); (J.Q.); (H.Y.); (W.S.)
| |
Collapse
|
22
|
Somes LK, Lei JT, Yi X, Chamorro DF, Shafer P, Gad AZ, Dobrolecki LE, Madaras E, Ahmed N, Lewis MT, Zhang B, Hoyos V. ZP4: A novel target for CAR-T cell therapy in triple negative breast cancer. Mol Ther 2025; 33:1621-1641. [PMID: 39980195 PMCID: PMC11997509 DOI: 10.1016/j.ymthe.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes of breast cancer to treat due to a lack of effective targeted therapies. Chimeric antigen receptor (CAR)-T cells hold promise, but their efficacy in solid tumors is often limited by on-target/off-tumor toxicities. Through comprehensive bioinformatic analysis of public RNA and proteomic data, we identified zona pellucida glycoprotein 4 (ZP4) as a novel target for TNBC. ZP4 RNA and protein were detected in a subset of TNBC patient samples and patient-derived xenograft (PDX) models, with expression otherwise restricted to oocytes. We generated 89 ZP4-specific novel monoclonal antibodies and used the single-chain variable fragment (scFv) antigen binding domains from the top three candidates to engineer CAR constructs. ZP4 CAR-T cells demonstrated efficacy against ZP4-expressing TNBC cells and PDX models. Additionally, we found that variations in the scFv antigen binding domain significantly influence CAR-T cell function.
Collapse
Affiliation(s)
- Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diego F Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Z Gad
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily Madaras
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Uslu U, June CH. Beyond the blood: expanding CAR T cell therapy to solid tumors. Nat Biotechnol 2025; 43:506-515. [PMID: 39533105 DOI: 10.1038/s41587-024-02446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy stands as a transformative advancement in immunotherapy, triumphing against hematological malignancies and, increasingly, autoimmune disorders. After a decade of relatively modest results for solid tumors, recent clinical trials and patient reports have also started to yield promising outcomes in glioblastoma and other challenging solid tumor entities. This Perspective seeks to explore the reasons behind these latest achievements and discusses how they can be sustained and expanded through different strategies involving CAR engineering and synthetic biology. Furthermore, we critically analyze how these breakthroughs can be leveraged to maintain momentum and broaden the therapeutic impact of CAR T cells across a variety of solid tumor landscapes.
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Reiss KA, Angelos MG, Dees EC, Yuan Y, Ueno NT, Pohlmann PR, Johnson ML, Chao J, Shestova O, Serody JS, Schmierer M, Kremp M, Ball M, Qureshi R, Schott BH, Sonawane P, DeLong SC, Christiano M, Swaby RF, Abramson S, Locke K, Barton D, Kennedy E, Gill S, Cushing D, Klichinsky M, Condamine T, Abdou Y. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: a phase 1 trial. Nat Med 2025; 31:1171-1182. [PMID: 39920391 DOI: 10.1038/s41591-025-03495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Chimeric antigen receptor (CAR) macrophages (CAR-Ms) mediate antitumor immunity via phagocytosis, cytokine release, activation of the tumor microenvironment and antigen presentation. We report results from a non-prespecified interim analysis of a first-in-human, phase 1 clinical trial of CT-0508, an anti-human epidermal growth factor receptor 2 (HER2) CAR-M in patients with advanced HER2-overexpressing tumors. Fourteen patients were treated across two different regimens. Patients with breast cancer and gastroesophageal cancer were primarily enrolled and had to have demonstrated overexpression of HER2 according to the American Society of Clinical Oncology/College of American Pathologists guidelines (HER2 immunohistochemistry 3+ or immunohistochemistry 2+/in situ hybridization-amplified). No lymphodepletion chemotherapy was used before infusion. The primary endpoints were safety and CAR-M manufacturability. Secondary endpoints included cellular kinetics and efficacy using objective response rate, overall survival, progression-free survival and duration of response. No dose-limiting toxicities, severe cytokine release syndrome (≥grade 3) or immune effector cell-associated neurotoxicity syndrome were observed; 44% (n = 4 of 9, 95% confidence interval = 14-79%) of HER2 3+ tumors achieved stable disease as best overall response 8 weeks after treatment. No meaningful activity was observed in the HER2 2+ population (n = 5). Correlative analyses of serial biopsies confirmed that CT-0508 traffics to and remodels the tumor microenvironment, resulting in expansion of CD8+ T cells. These findings demonstrate the preliminary safety, tolerability and manufacturing feasibility of CT-0508 for HER2+ tumors. ClinicalTrials.gov registration: NCT04660929 .
Collapse
Affiliation(s)
- Kim A Reiss
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Mathew G Angelos
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - E Claire Dees
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Yuan Yuan
- City of Hope Cancer Center, Duarte, CA, USA
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naoto T Ueno
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Paula R Pohlmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Olga Shestova
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Jonathan S Serody
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Ken Locke
- Carisma Therapeutics, Philadelphia, PA, USA
| | | | | | - Saar Gill
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Yara Abdou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
25
|
He L, Jiao N, Bao X, Wu Y, Qian X, He W, Zhen H, Tang L, Shao H, Zhuo D, Huang H, Xu Z. Individualized tumor-reactive T cells exhibit a potent anti-tumor response in prostate cancer. Transl Oncol 2025; 54:102322. [PMID: 39986192 PMCID: PMC11904561 DOI: 10.1016/j.tranon.2025.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cellular immunotherapy exhibits promise in treating blood tumors. However, its application for solid tumors is impeded by their heterogeneity and complex microenvironments. The development of individualized multitarget therapy may be the key to overcoming the challenge of tumor heterogeneity. METHODS To generate tumor-reactive T cells, we modified the conditional reprogramming primary cell culture method by to establish a primary prostate cancer cell culture approach, refer to as eCR (enhanced conditional reprogramming). Then, Tumor tissue-derived primary cells were physically lysed and loaded into dendric cells, which, in turn, were co-cultured with peripheral blood T cells to induced individualized tumor-reactive T cells. RESULTS Our improved culture method could use a small amount of fresh or frozen tumor specimens (including biopsy specimens), which can be amplified in vitro while maintaining their original characteristics, without contamination by heterologous antigens. Furthermore, a series of in vitro and in vivo experiments revealed these tumor-reactive T cells exhibited specific and effective killing of tumor cells through their ability to recognize neoantigens in cancer. CONCLUSION In this study, we developed a protocol for the generation of tumor-responsive T cells based on autologous tumor antigens in patients with prostate cancer. This platform is characterized by its multitargeted, individualized, affordability, and minimal adverse effects, holding significant promise in the treatment of prostate cancer as well as other solid tumors.
Collapse
Affiliation(s)
- Lianjun He
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Nanlin Jiao
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Xing Bao
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China; Graduate School, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yao Wu
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Xueyi Qian
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Weijie He
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Han Zhen
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China; Graduate School, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Lei Tang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China; Graduate School, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Huimin Shao
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Dong Zhuo
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China.
| | - Zhenyu Xu
- Precision Medicine Centre, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui , 241002, China.
| |
Collapse
|
26
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
27
|
Fu M, Xue B, Miao X, Gao Z. Overcoming immunotherapy resistance in glioblastoma: challenges and emerging strategies. Front Pharmacol 2025; 16:1584688. [PMID: 40223940 PMCID: PMC11987931 DOI: 10.3389/fphar.2025.1584688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, characterized by rapid proliferation, extensive infiltration, and significant intratumoral heterogeneity. Despite advancements in conventional treatments, including surgery, radiotherapy, and chemotherapy, the prognosis for GBM patients remains poor, with a median survival of approximately 15 months. Immunotherapy has emerged as a promising alternative; however, the unique biological and immunological features, including its immunosuppressive tumor microenvironment (TME) and low mutational burden, render it resistant to many immunotherapeutic strategies. This review explores the key challenges in GBM immunotherapy, focusing on immune evasion mechanisms, the blood-brain barrier (BBB), and the TME. Immune checkpoint inhibitors and CAR-T cells have shown promise in preclinical models but have limited clinical success due to antigen heterogeneity, immune cell exhaustion, and impaired trafficking across the BBB. Emerging strategies, including dual-targeting CAR-T cells, engineered immune cells secreting therapeutic molecules, and advanced delivery systems to overcome the BBB, show potential for enhancing treatment efficacy. Addressing these challenges is crucial for improving GBM immunotherapy outcomes.
Collapse
Affiliation(s)
- Maowu Fu
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bing Xue
- Department of Neurosurgery, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xiuming Miao
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
28
|
Tang J, Karbhari N, Campian JL. Therapeutic Targets in Glioblastoma: Molecular Pathways, Emerging Strategies, and Future Directions. Cells 2025; 14:494. [PMID: 40214448 PMCID: PMC11988183 DOI: 10.3390/cells14070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth, invasive infiltration into surrounding brain tissue, and resistance to conventional therapies. Despite advancements in surgery, radiotherapy, and chemotherapy, median survival remains approximately 15 months, underscoring the urgent need for innovative treatments. Key considerations informing treatment development include oncogenic genetic and epigenetic alterations that may dually serve as therapeutic targets and facilitate treatment resistance. Various immunotherapeutic strategies have been explored and continue to be refined for their anti-tumor potential. Technical aspects of drug delivery and blood-brain barrier (BBB) penetration have been addressed through novel vehicles and techniques including the incorporation of nanotechnology. Molecular profiling has emerged as an important tool to individualize treatment where applicable, and to identify patient populations with the most drug sensitivity. The goal of this review is to describe the spectrum of potential GBM therapeutic targets, and to provide an overview of key trial outcomes. Altogether, the progress of clinical and preclinical work must be critically evaluated in order to develop therapies for GBM with the strongest therapeutic efficacy.
Collapse
Affiliation(s)
- Justin Tang
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Nishika Karbhari
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Jian L. Campian
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| |
Collapse
|
29
|
Chan LL, Chan SL. Future perspectives on immunotherapy for hepatocellular carcinoma. Ther Adv Med Oncol 2025; 17:17588359251323199. [PMID: 40144682 PMCID: PMC11938898 DOI: 10.1177/17588359251323199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, several global phase III trials have shown that combinations of immune checkpoint inhibitors (ICIs) offer superior efficacy and survival compared to multi-kinase inhibitors, establishing them as the gold standard for treating patients with advanced hepatocellular carcinoma (HCC). This success has led to investigations into expanding the use of immunotherapy into various other settings and populations, including neoadjuvant and adjuvant therapies, patients with decompensated liver function and those awaiting liver transplantation. Despite its proven efficacy, a significant number of patients still develop resistance to immunotherapy, highlighting the need for innovative strategies to address this challenge. Approaches aimed at enhancing tumour immunogenicity, such as combining immunotherapy with transarterial chemoembolization or radiation therapies, show significant promise. Additionally, novel immunotherapeutics - such as triplet therapy, bispecific antibodies, adoptive T-cell therapy and cancer vaccines - are in early development for HCC. These agents have demonstrated potential for synergistic effects with existing ICIs, with initial studies yielding positive outcomes. In this review, we offer our future perspective on immunotherapy, emphasizing emerging indications, novel combination strategies and the development of new immunotherapeutic agents. Overall, the future of immunotherapy in HCC is brimming with extraordinary potential, set to transform the treatment landscape and redefine the possibilities for managing this challenging disease.
Collapse
Affiliation(s)
- Landon L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, Hong Kong, China
| |
Collapse
|
30
|
Lin Q, Wei Y, Xu G, Wang L, Ling F, Chen X, Cheng Y, Zhou Y. Integrative multi-omic profiling of the neoantigen landscape of glioblastoma for the development of therapeutic vaccines reveals vast heterogeneity in immunogenic signatures. Front Oncol 2025; 15:1507632. [PMID: 40190555 PMCID: PMC11968714 DOI: 10.3389/fonc.2025.1507632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/13/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Glioblastoma (GBM) is the most common primary brain malignancy. Few neoantigens have been tested in trials as the cancer vaccine against GBM. Methods To better understand the neoantigen landscape and its associated tumor microenvironment (TME) for the optimized vaccine design of our initiated GBM trial, we apply the integrative multi-omics approach to comprehensively profile the mutation, HLA typing, TCR/BCR repertoire, immune cell components on the tumor tissue and peripheral blood mononuclear cell (PMBC) specimen of 24 GBM patients. Results On average, 148 mutated genes and 200 mutated sites per patient were identified, with no predominant mutated sites and genes in this cohort. Diversified HLA genotypes and expression rate across A, B, and C alleles, with A30:01&A11:01, B13:02, and C06:02, as the most frequent genotypes at respective alleles. Clustered CDR3 of TCR/BCR existed in tumor tissue with decreased richness compared with PMBC. NK and Th1 cells were revealed as the predominant immune cells within the tumor microenvironment (TME). Neoantigens were feasible predicted and designed for each patient, with an average number of 107. Very few neoantigens were shared by more than two patients and no dominant neoantigen could be identified. A minimum of 11-peptide bulk was required to cover this 24-patient cohort, guaranteeing each patient could have at least one neoantigen. Discussion In summary, our data reveals a heterogeneous landscape of the neoantigen and its associated immune TME of GBM, based on which a peptide bulk is feasibly developed to cover these patients as a cohort.
Collapse
Affiliation(s)
- Qingtang Lin
- Department of Neurosurgery, Brain Tumor and Skull-Base Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yukui Wei
- Department of Neurosurgery, Brain Tumor and Skull-Base Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Geng Xu
- Department of Neurosurgery, Brain Tumor and Skull-Base Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Feng Ling
- Department of Neurosurgery, Brain Tumor and Skull-Base Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Chen
- Base&Byte Biotechnology Co., Ltd, Beijing, China
| | - Ye Cheng
- Department of Neurosurgery, Brain Tumor and Skull-Base Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yiming Zhou
- Base&Byte Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
31
|
Beylerli O, Gareev I, Musaev E, Roumiantsev S, Chekhonin V, Ahmad A, Chao Y, Yang G. New approaches to targeted drug therapy of intracranial tumors. Cell Death Discov 2025; 11:111. [PMID: 40113789 PMCID: PMC11926108 DOI: 10.1038/s41420-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Intracranial tumors encompass a heterogeneous group of neoplasms, including gliomas, meningiomas, pituitary adenomas, schwannomas, craniopharyngiomas, ependymomas, medulloblastomas, and primary central nervous system lymphomas. These tumors present significant challenges due to their diverse molecular characteristics, critical locations, and the unique obstacles posed by the blood-brain barrier (BBB) and blood-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology and genomics have enabled the identification of specific molecular pathways and targets, paving the way for innovative precision therapies. This review examines the current state of targeted therapies for intracranial tumors, including receptor tyrosine kinase (RTK) inhibitors, PI3K/AKT/mTOR inhibitors, RAF/MEK/ERK pathway inhibitors, IDH mutation inhibitors, immune checkpoint inhibitors, and CAR-T cell therapies. Emphasis is placed on the role of the BBB and BTB in modulating drug delivery and therapeutic outcomes. Strategies to overcome these barriers, such as focused ultrasound, nanoparticle-based delivery systems, and convection-enhanced delivery, are also explored. Furthermore, the manuscript reviews clinical trial data, highlighting successes and limitations across different tumor types. It delves into emerging therapeutic approaches, including combination of regimens and personalized treatments based on molecular profiling. By synthesizing the latest research, this article aims to provide a comprehensive understanding of the advancements and ongoing challenges in the targeted treatment of intracranial tumors. The findings underscore the necessity for innovative delivery systems and more extensive clinical trials to optimize therapeutic strategies. This review aspires to inform future research and clinical practices, aiming to improve patient outcomes and quality of life in the management of these complex and life-threatening conditions.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation.
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation
| | - Elmar Musaev
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sergey Roumiantsev
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Endocrinology Research Center, Moscow, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Yuan Chao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Province Neuroscience Institute, Harbin, China.
| |
Collapse
|
32
|
Chen W, Hong L, Lin S, Xian N, Yan C, Zhao N, Xiao Y, Liao W, Huang Y, Chen M. Enhanced anti-tumor efficacy of "IL-15 and CCL19" -secreting CAR-T cells in human glioblastoma orthotopic xenograft model. Front Oncol 2025; 15:1539055. [PMID: 40177238 PMCID: PMC11962218 DOI: 10.3389/fonc.2025.1539055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Despite the remarkable success of CAR-T cell therapy in hematologic malignancies, its progress in solid tumors has been slow. Overcoming challenges such as the recruitment and infiltration of CAR-T cells into the tumor site and the survival issues in the harsh tumor microenvironment are crucial for successful application in solid tumors. In this study, CAR-T cells were engineered to secrete both IL-15 and CCL19, and their efficacy was evaluated in a human glioblastoma orthotopic xenograft model. The results reveal that 15 × 19 CAR-T cells exhibit superior proliferation, chemotaxis, and phenotypic characteristics compared to conventional CAR-T cells in vitro. In vivo, 15 × 19 CAR-T cells exhibit superior control over tumors compared to conventional counterparts. Mechanistically, the improved efficacy can be attributed, in part, to IL-15 and CCL19 enhancing T-cell infiltration at the tumor site and fortifying resistance to exhaustion within the tumor microenvironment. In conclusion, the incorporation of IL-15 and CCL19 into CAR-T cells emerges as a promising strategy to elevate the anti-tumor efficacy of CAR-T cell therapy, positioning 15 × 19 CAR-T cells as a potential breakthrough for enhancing the application of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Limian Hong
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Shaomei Lin
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Na Xian
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
- Tcelltech Biological Science and Technology Inc., Fuzhou, Fujian, China
| | - Cailing Yan
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Ningning Zhao
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Yonglei Xiao
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Wanting Liao
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yuxiang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Mingzhu Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| |
Collapse
|
33
|
Singh G, Rohit, Kumar P, Aran KR. Targeting EGFR and PI3K/mTOR pathways in glioblastoma: innovative therapeutic approaches. Med Oncol 2025; 42:97. [PMID: 40064710 DOI: 10.1007/s12032-025-02652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma (GBM) stands as the most aggressive form of primary brain cancer in adults, characterized by its rapid growth, invasive nature, and a robust propensity to induce angiogenesis, forming new blood vessels to sustain its expansion. GBM arises from astrocytes, star-shaped glial cells, and despite significant progress in understanding its molecular mechanisms, its prognosis remains grim. It is frequently associated with mutations or overexpression of the epidermal growth factor receptor (EGFR), which initiates several downstream signaling pathways. Dysregulation of key signaling pathways, such as EGFR/PTEN/AKT/mTOR, drives tumorigenesis, promotes metastasis and leads to treatment resistance. The modest survival benefits of the conventional treatment of surgical resection followed by radiation and chemotherapy underscore the pressing need for innovative therapeutic approaches. In most the tumor, overexpression of EGFR is found associated with GBM and mutations in its several variants are important for promoting ongoing mitogenic signaling and tumor growth. This receptor inhibits apoptosis and promotes cell survival and proliferation by activating downstream PI3K/AKT/mTOR pathways. This route is typically blocked by PTEN, a crucial tumor suppressor, however, GBM frequently results in abnormalities in this protein. The aim of this review is to explore the molecular foundations of GBM, with a focus on the EGFR and PI3K/mTOR pathways and their impact on tumor behavior. Additionally, this review highlights EGFR and PI3K/AKT/mTOR inhibitors currently in clinical and preclinical trials, addressing treatment resistance, challenges, and future directions.
Collapse
Affiliation(s)
- Gursimran Singh
- Department of Pharmacy Practice, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India
| | - Rohit
- Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India
| | - Pankaj Kumar
- Department of Pharmacology, Himachal Institute of Pharmaceutical Education and Research (HIPER), Tehsil-Nadaun, Hamirpur, Himachal Pradesh, 177033, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India.
| |
Collapse
|
34
|
Begley SL, O'Rourke DM, Binder ZA. CAR T cell therapy for glioblastoma: A review of the first decade of clinical trials. Mol Ther 2025:S1525-0016(25)00178-9. [PMID: 40057825 DOI: 10.1016/j.ymthe.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis and few effective treatment options. Focus has shifted toward using immunotherapies, such as chimeric antigen receptor (CAR) T cells, to selectively target tumor antigens and mediate cytotoxic activity within an otherwise immunosuppressive tumor microenvironment. Between 2015 and 2024, the results of eight completed and two ongoing phase I clinical trials have been published. The majority of studies have treated recurrent GBM patients, although the inter- and intra-patient tumor heterogeneity has been historically challenging to overcome. Molecular targets have included EGFR, HER2, and IL13Rα2 and there has been continued development in improving receptor constructs, identifying novel targets, and adding adjuvant enhancers to increase efficacy. CAR T cells have been safely administered through both peripheral and locoregional routes but with variable clinical and radiographic efficacy. Most trials utilized autologous T cell products to avoid immune rejection yet were unable to consistently show robust engraftment and persistence within patients. Nonetheless, targeted immunotherapies such as CAR T cell therapy remain the next frontier for GBM treatment, and the popularity and complexity of this undertaking is evident in the past, present, and future landscape of clinical trials.
Collapse
Affiliation(s)
- Sabrina L Begley
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A Binder
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Kuroda H, Kijima N, Tachi T, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Hosen N, Kishima H. Prostaglandin F2 receptor negative regulator as a potential target for chimeric antigen receptor-T cell therapy for glioblastoma. Cancer Immunol Immunother 2025; 74:136. [PMID: 40047938 PMCID: PMC11885767 DOI: 10.1007/s00262-025-03979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy targeting novel glioblastoma (GBM)-specific cell surface antigens is a promising approach. However, transcriptome analyses have revealed few GBM-specific target antigens. METHODS A library of monoclonal antibodies (mAbs) against tumor cell lines derived from patients with GBM was generated. mAbs reacting with tumor cells in resected tissues from patients with GBM but not with nonmalignant human brain cells were detected. The antigens that were recognized were identified through expression cloning. CAR-T cells derived from a candidate mAb were generated, and their functionality was tested in vitro and in vivo. RESULTS Approximately 3,200 clones were established. Among them, 5E17 reacted with tumor cells in six of seven patients with GBM, but not with nonmalignant human brain cells. Prostaglandin F2 receptor negative regulator (PTGFRN) was identified as an antigen recognized by 5E17. CAR-T cells derived from 5E17 produced cytokines and exerted cytotoxicity upon co-culture with tumor cells from patients with GBM. Furthermore, intracranial injection of 5E17-CAR-T cells demonstrated antitumor effects in an orthotopic xenograft murine model with patient-derived GBM cells. CONCLUSIONS Cell surface PTGFRN is a candidate target for intracranial CAR-T cell therapy for GBM. On-target off-tumor toxicity in alternative normal tissues needs to be carefully tested.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Shunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| |
Collapse
|
36
|
Pfeffer LK, Fischbach F, Heesen C, Friese MA. Current state and perspectives of CAR T cell therapy in central nervous system diseases. Brain 2025; 148:723-736. [PMID: 39530593 DOI: 10.1093/brain/awae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
B cell-directed CAR T cell therapy has fundamentally changed the treatment of haematological malignancies, and its scope of application is rapidly expanding to include other diseases such as solid tumours or autoimmune disorders. Therapy-refractoriness remains an important challenge in various inflammatory and non-inflammatory disorders of the CNS. The reasons for therapy failure are diverse and include the limited access current therapies have to the CNS, as well as enormous inter- and intra-individual disease heterogeneity. The tissue-penetrating properties of CAR T cells make them a promising option for overcoming this problem and tackling pathologies directly within the CNS. First application of B cell-directed CAR T cells in neuromyelitis optica spectrum disorder and multiple sclerosis patients has recently revealed promising outcomes, expanding the potential of CAR T cell therapy to encompass CNS diseases. Additionally, the optimization of CAR T cells for the therapy of gliomas is a growing field. As a further prospect, preclinical data reveal the potential benefits of CAR T cell therapy in the treatment of primary neurodegenerative diseases such as Alzheimer's disease. Considering the biotechnological optimizations in the field of T cell engineering, such as extension to target different antigens or variation of the modified T cell subtype, new and promising fields of CAR T cell application are rapidly opening up. These innovations offer the potential to address the complex pathophysiological properties of CNS diseases. To use CAR T cell therapy optimally to treat CNS diseases in the future while minimizing therapy risks, further mechanistic research and prospective controlled trials are needed to assess seriously the disease and patient-specific risk-benefit ratio.
Collapse
Affiliation(s)
- Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
37
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
38
|
Xiong Y, Sun M, Yang Q, Zhang W, Song A, Tan Y, Mao J, Liu G, Xue P. Nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Acta Biomater 2025; 194:38-57. [PMID: 39884522 DOI: 10.1016/j.actbio.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention. The advent of nanoparticle-based therapies has revolutionized cancer treatment and provided highly effective options. Consequently, various strategically designed nano-delivery platforms have been established to promote the efficacy of immune therapy against GBM. This review delves into the recent advancements in nano-based delivery systems that are designed to modulate immune cells in GBM microenvironment, and explores their multifaceted mechanisms, including the blockade of immune checkpoints, the restraint of immunosuppressive cells, the coordination of tumor-associated macrophages, the activation of innate immune cells, and the stimulation of adaptive immunity. Collectively, this summary not only advances the comprehension involved in modulating antitumor immune responses in GBM, but also paves the way for the development of innovative therapeutic strategies to conquer GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma (GBM) is the most lethal brain tumor, with a median survival rate of merely 12-16 months after diagnosis. Despite surgical, radiation and chemotherapy treatments, the two-year survival rate for GBM patients is less than 10 %. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. Most recently, novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In particular, taking account of the highly immunosuppressive tumor microenvironment in GBM, recent advancements in nano-based delivery systems are put forward to stimulate immune cells in GBM and unravel their multifaceted mechanisms. This review summarizes the latest nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Moreover, the development trends and challenges of nanoparticle-based drug delivery systems in modulating the immunity of GBM are predicted, which may facilitate widespread regimens springing up for successfully treating GBM.
Collapse
Affiliation(s)
- Yongqi Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinhao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China.
| |
Collapse
|
39
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, Yang L. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat Biotechnol 2025; 43:329-344. [PMID: 38744947 PMCID: PMC11919731 DOI: 10.1038/s41587-024-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wenbin Guo
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aarushi Bajpai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Seet
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M Larson
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
42
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
43
|
Zhang B, Wu J, Jiang H, Zhou M. Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy. Cells 2025; 14:320. [PMID: 40072049 PMCID: PMC11899321 DOI: 10.3390/cells14050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T-cell therapy has achieved significant success in the treatment of hematological malignancies. However, this therapy has not yet made breakthroughs in the treatment of solid tumors and still faces issues of resistance and relapse in hematological cancers. A major reason for these problems is the antigenic heterogeneity of tumor tissues. This review outlines the antigenic heterogeneity encountered in CAR-T cell therapy and the corresponding strategies to address it. These strategies include using combination therapy to increase the abundance of target antigens, optimizing the structure of CARs to enhance sensitivity to low-density antigens, developing multi-targeted CAR-T cells, and reprogramming the TME to activate endogenous immunity. These approaches offer new directions for overcoming tumor antigenic heterogeneity in CAR-T cell therapy.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Jiawen Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
- CARsgen Therapeutics, Shanghai 200231, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| |
Collapse
|
44
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
45
|
Courot H, Rigal E, Adib N, Criton M, Cookson A, Fauvel B, Presumey J. In Vitro Evaluation of Genetically Unmodified Ligand-Armed Allogeneic Natural Killer Cells to Treat EGFR-Positive Glioblastoma. Cells 2025; 14:254. [PMID: 39996727 PMCID: PMC11854314 DOI: 10.3390/cells14040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Glioblastomas (GBMs) are lethal brain tumors in which EGFR gene amplification or mutation is frequently detected and is associated with poor prognosis. The standard of care is maximal resection followed by chemotherapy and radiation. Over the last twenty years, marginal improvements in patient survival have been achieved mainly through surgical techniques and the more accurate use of radiation. In this study, umbilical cord blood-derived and expanded human allogeneic natural killer (eNK) cells were pre-complexed to an Fc-engineered anti-EGFR monoclonal antibody (Pin-EGFR) to create Pin-EGFR-armed eNK cells. Pin-EGFR-armed eNK cells showed in vitro persistence of mAb anchoring. This arming process mediated specific, rapid and potent NK cell-redirected cytotoxicity against GBM cell lines and patient-derived cells in models consistent with the pathophysiological conditions of GBM. These results demonstrate the potential of Pin-EGFR-armed eNK cells to be an effective therapy against GBM cell lines in vitro. This product represents a promising strategy to directly target residual tumor tissue remaining at and beyond the resection margins immediately following GBM surgery to improve patient care.
Collapse
|
46
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2025; 27:352-368. [PMID: 39450490 PMCID: PMC11812040 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
47
|
Yu S, Wu J, Jing Y, Lin P, Lang L, Xiong Y, Chen W, Liu W, Sun C, Lu Y. Research trends in glioma chemoradiotherapy resistance: a bibliometric analysis (2003-2023). Front Oncol 2025; 15:1539937. [PMID: 39990688 PMCID: PMC11842341 DOI: 10.3389/fonc.2025.1539937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Background Glioma is the most aggressive primary malignant tumor of the central nervous system, characterized by high recurrence rates and resistance to chemoradiotherapy, making therapeutic resistance a major challenge in neuro-oncology. Recent research emphasizes the role of the tumor microenvironment (TME) and immune modulation in glioma progression and resistance. Despite these advances, a comprehensive bibliometric analysis of research trends in glioma chemoradiotherapy resistance over the past two decades is lacking. This study aims to systematically evaluate the research landscape, identify emerging hotspots, and provide guidance for future investigations. Methods Articles on glioma chemoradiotherapy resistance published between 2003 and 2023 were retrieved from the Web of Science Core Collection, resulting in 4,528 publications. Bibliometric tools, including VOSviewer, CiteSpace, and R packages such as bibliometrix and ggplot2, were used to analyze co-authorship networks, keyword evolution, and citation bursts to identify collaboration patterns, thematic developments, and influential contributions. Results Publication output increased significantly between 2013 and 2022, peaking at 650 articles in 2022. Over 1,000 institutions from 88 countries contributed to this research. The United States, Switzerland, and Germany showed the highest citation impact, while China led in publication volume but demonstrated relatively lower citation influence. The research focus has shifted from traditional topics such as the "MGMT gene" to emerging areas including the "tumor microenvironment," "immune infiltration," and "nanoparticles." The androgen receptor was identified as a promising but underexplored therapeutic target. Conclusions Research on glioma chemoradiotherapy resistance has seen substantial growth, with increasing emphasis on immune modulation, the tumor microenvironment, and novel therapeutic targets such as the androgen receptor. This study represents the first comprehensive bibliometric analysis of this field, providing a detailed overview of research trends and potential directions for future studies. The findings highlight the need for strengthened international collaboration and multidisciplinary approaches to address the challenges of therapeutic resistance in glioma.
Collapse
Affiliation(s)
- Shishi Yu
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinya Wu
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Jing
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Lin
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Lang Lang
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Xiong
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangzhong Chen
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhua Liu
- Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changpeng Sun
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuntao Lu
- Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Logun M, Wang X, Sun Y, Bagley SJ, Li N, Desai A, Zhang DY, Nasrallah MP, Pai ELL, Oner BS, Plesa G, Siegel D, Binder ZA, Ming GL, Song H, O'Rourke DM. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell 2025; 32:181-190.e4. [PMID: 39657679 PMCID: PMC11808387 DOI: 10.1016/j.stem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Patient-derived tumor organoids have been leveraged for disease modeling and preclinical studies but rarely applied in real time to aid with interpretation of patient treatment responses in clinics. We recently demonstrated early efficacy signals in a first-in-human, phase 1 study of dual-targeting chimeric antigen receptor (CAR)-T cells (EGFR-IL13Rα2 CAR-T cells) in patients with recurrent glioblastoma. Here, we analyzed six sets of patient-derived glioblastoma organoids (GBOs) treated concurrently with the same autologous CAR-T cell products as patients in our phase 1 study. We found that CAR-T cell treatment led to target antigen reduction and cytolysis of tumor cells in GBOs, the degree of which correlated with CAR-T cell engraftment detected in patients' cerebrospinal fluid (CSF). Furthermore, cytokine release patterns in GBOs mirrored those in patient CSF samples over time. Our findings highlight a unique trial design and GBOs as a valuable platform for real-time assessment of CAR-T cell bioactivity and insights into immunotherapy efficacy.
Collapse
Affiliation(s)
- Meghan Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusha Sun
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nannan Li
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arati Desai
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Ling-Lin Pai
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bike Su Oner
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald Siegel
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Hongjun Song
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Ying PT, Tang YM. Challenges and overcoming strategies in CAR-T cell therapy for pediatric neuroblastoma. World J Pediatr 2025:10.1007/s12519-025-00876-9. [PMID: 39900866 DOI: 10.1007/s12519-025-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/29/2024] [Indexed: 02/05/2025]
Affiliation(s)
- Pei-Ting Ying
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Gongshu District, Hangzhou, 310003, China
| | - Yong-Min Tang
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Gongshu District, Hangzhou, 310003, China.
| |
Collapse
|
50
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2025; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|