1
|
Robison B, Diong SJ, Kumar A, Moon TM, Chang O, Chau B, Bee C, Barman I, Rajpal A, Korman AJ, West S, Strop P, Lee PS. Engineered ipilimumab variants that bind human and mouse CTLA-4. MAbs 2025; 17:2451296. [PMID: 39849917 PMCID: PMC11776466 DOI: 10.1080/19420862.2025.2451296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used. The antibody 9D9, which binds mouse CTLA-4, is a commonly used surrogate for CTLA-4 checkpoint blockade studies in mouse cancer models. In this work, we reveal that 9D9 has significant biophysical dissimilarities to therapeutic CTLA-4 antibodies. The 9D9-mCTLA4 complex crystal structure was determined and shows that the surrogate antibody binds an epitope distinct from ipilimumab and tremelimumab. In addition, while ipilimumab has pH-independent binding to hCTLA-4, 9D9 loses binding to mCTLA-4 at physiologically relevant acidic pH ranges. We used phage and yeast display to engineer ipilimumab to bind mouse CTLA-4 with single-digit nM affinity from an initial state with no apparent binding. The engineered variants showed pH-independent and cross-reactive binding to both mouse and human CTLA-4. Crystal structures of a variant in complex with both mouse and human CTLA-4 confirmed that it targets an equivalent epitope as ipilimumab. These cross-reactive ipilimumab variants may facilitate improved translatability and future mechanism-of-action studies for anti-CTLA-4 targeting in murine models.
Collapse
Affiliation(s)
- Brett Robison
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - SJ Diong
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Anusha Kumar
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Thomas M. Moon
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Olin Chang
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Bryant Chau
- Large Molecule Drug Discovery, Genentech, Research and Early Development, South San Francisco, CA, USA
| | - Christine Bee
- Biochemistry and Biophysics, Merck, South San Francisco, CA, USA
| | - Ishita Barman
- Protein and Antibody Portfolio, Genscript, South San Francisco, CA, USA
| | | | | | - Sean West
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Pavel Strop
- Research, Tallac Therapeutics, Burlingame, CA, USA
| | - Peter S. Lee
- Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA
| |
Collapse
|
2
|
Paul S, Kaya M, Johnsson O, Grauers Wiktorin H, Törnell A, Arabpour M, Hellstrand K, Martner A. Targeting murine metastatic cancers with cholera toxin A1-adjuvanted peptide vaccines. Hum Vaccin Immunother 2025; 21:2455240. [PMID: 39848921 PMCID: PMC11760229 DOI: 10.1080/21645515.2025.2455240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells. Cholera toxin-based adjuvants have shown efficacy in vaccines for infectious diseases, but their role in cancer vaccine therapies remains to be elucidated. Here, we explored the potential of cholera toxin A1 (CTA1)-based adjuvants to boost anti-tumor T cell responses and protect against metastasis. We report that an adjuvant where CTA1 was fused to a dimer from Staphylococcus aureus protein A (DD) enhanced immune responses against the tumor-associated antigens TRP2 and Twist1 in mice, providing protection against B16F1 melanoma and 4T1 breast cancer metastasis, respectively. Both mucosal (intranasal) and systemic (intraperitoneal) vaccine administration provided effective protection against intravenously injected tumor cells, with intranasal administration leading to superior induction of CD4+ T cells at metastatic sites. When comparing antigens admixed with CTA1-DD to those fused with a CTA1-based adjuvant, the fusion construct elicited the strongest immunogenicity. Nevertheless, by administrating a 20-fold higher antigen dose also the admix formulation provided efficient protection against metastasis.
Collapse
MESH Headings
- Animals
- Cholera Toxin/administration & dosage
- Cholera Toxin/immunology
- Cholera Toxin/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Female
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Metastasis/prevention & control
- Adjuvants, Vaccine/administration & dosage
- Melanoma, Experimental
- CD4-Positive T-Lymphocytes/immunology
- Administration, Intranasal
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Protein Subunit Vaccines
Collapse
Affiliation(s)
- Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivia Johnsson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Immunology, Genetics and Pathology, Science of Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Törnell
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad Arabpour
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Craig-Meyer D, Hollenbaugh JA, Morgado S, McGee K, Perkins E, Yarzabek B, Lapinski P, Rowse A, Cooper C, Fortunato M, Cocco M, Cadwallader K, Munday J. Immunophenotypical characterization of immune checkpoint receptor expression in cynomolgus monkeys and human healthy volunteers in resting and in T-cell stimulatory conditions in vitro. J Immunotoxicol 2025; 22:2462106. [PMID: 39945090 DOI: 10.1080/1547691x.2025.2462106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
Immunotherapeutics targeting immune checkpoint receptors or their ligands (i.e., immune checkpoint inhibitors), have been groundbreaking in the field of oncology, radically changing the approach to treatment and improving the clinical outcomes of an ever-expanding list of solid tumors and hematological malignancies. However, immune checkpoint inhibitors (ICI) are not devoid of side effects, collectively regarded as immune-related adverse events (irAE); they are not easily uncovered in preclinical immunotoxicological investigations and are often due to the very low expression of their targets in immunologically-unchallenged non-clinical species. We have characterized expression of a broad range of immune checkpoint receptors in peripheral blood mononuclear cell (PBMC) subpopulations from cynomolgus monkeys and healthy human volunteers, under resting and T-cell stimulatory conditions by multicolor flow cytometry to inform appropriate species selection for modeling potential irAE in immunotherapeutic preclinical research. Focusing on the response of the main lymphocyte populations to interleukin (IL)-2 alone, or in combination with anti-CD3 and anti-CD28 antibodies, checkpoints with shared similarities and key differences between the two species were identified. The results of this first study provide a database for the expression and response to stimulation for immune checkpoint receptors and can help guide future model selection in the design of preclinical studies involving immunotherapeutics directed against these targets.
Collapse
Affiliation(s)
| | | | - Sara Morgado
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Karen McGee
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Ethan Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | | | | | - Amber Rowse
- Labcorp Early Development Laboratories Inc, Ann Arbor, MI
| | - Chris Cooper
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Mara Fortunato
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Mario Cocco
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | | | - James Munday
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| |
Collapse
|
4
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Santosa EK, Zhang JM, Sauter JC, Lee ME, Ng BD, Stulz SV, Takizawa M, Grassmann S, Weizman OE, Adams NM, Chaligné R, Oxenius A, Gasteiger G, Lau CM, Sun JC. Defining molecular circuits of CD8+ T cell responses in tissues during latent viral infection. J Exp Med 2025; 222:e20242078. [PMID: 40387857 DOI: 10.1084/jem.20242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
Latent viral infections rely on a precise coordination of the immune response to control sporadic viral reactivation. CD8+ T cells play a crucial role in controlling viral latency by generating diverse memory responses in an epitope-specific manner. Among these distinct responses, conventional and inflationary memory responses have been described during herpesvirus infections. Using a newly generated TCR transgenic mouse strain, we investigated the transcriptomic and epigenetic remodeling of distinct epitope-specific CD8+ T cells during CMV infection across tissues at both population and single-cell levels. Our findings reveal that whereas the transcriptomic and epigenetic landscapes of conventional and inflationary memory responses diverge in the spleen and liver, these molecular programs converge in the salivary gland, a site of CMV persistence. Thus, we provide evidence that the dynamics of memory CD8+ T cell responses are distinct between tissues.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| | - Jennifer M Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Mariah E Lee
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Brandon D Ng
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| | - Sigrun V Stulz
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Meril Takizawa
- Single Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ronan Chaligné
- Single Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | | | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Colleen M Lau
- Department of Microbiology and Immunology, College of Veterinary Medicine of Cornell University, Ithaca, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| |
Collapse
|
6
|
Kado S, Komine M. Recent Advances in Molecular Research and Treatment for Melanoma in Asian Populations. Int J Mol Sci 2025; 26:5370. [PMID: 40508177 PMCID: PMC12154924 DOI: 10.3390/ijms26115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/29/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Melanoma treatment comprised a few treatment choices with insufficient efficacy before the emergence of molecularly targeted medication and immune checkpoint inhibitors, which dramatically improved patient outcomes. B-Rapidly Accelerated Fibrosarcoma (BRAF) and Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitors significantly improved survival in BRAF-mutant melanoma and immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) agents, established new standards of care. Challenges remain, however, including the existence of resistance mechanisms and the reduced efficacy of immune-based therapies in Asian populations, particularly for acral and mucosal subtypes. This review highlights historical and current therapeutic advancements, discusses regional considerations, and explores emerging strategies aiming at globally optimizing melanoma management.
Collapse
Affiliation(s)
- Soichiro Kado
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan;
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan;
- Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
7
|
Joshi UM, Hundal J, Mata JR, Schollenberger MD, Warrier G, Luke JJ, Lipson EJ, Funchain P. Beyond Checkpoint Inhibition: Keeping Therapeutic Options Open. Am Soc Clin Oncol Educ Book 2025; 45:e473856. [PMID: 40233298 DOI: 10.1200/edbk-25-473856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Combination immune checkpoint inhibitor therapy (ICI) with ipilimumab (anti-cytotoxic T-lymphocyte-associated protein 4) + nivolumab (anti-PD-1) in untreated, metastatic melanoma has achieved a ten-year melanoma-specific survival of 52%. However, approximately 40%-55% of patients with metastatic melanoma have primary resistance and do not initially respond to anti-PD-1, and an additional 25% of patients develop secondary resistance, exhibiting an initial response followed by disease progression. In PD-1-refractory melanoma, treatment options are limited. Addition of ipilimumab, relatlimab (anti-LAG3), or lenvatinib (VEGFR TKI) has minimal to modest efficacy. Switching to targeted BRAF/MEK inhibition improves survival for BRAF-mutant disease. MEK and KIT inhibitors have limited activity in NRAS- and KIT-mutant metastatic melanoma, respectively. Recently, personalized, autologous tumor-infiltrating lymphocyte therapy has become a US Food and Drug Administration-approved second-line option; lifileucel demonstrates durable response (approximately 30%) in heavily pretreated, metastatic melanoma. Emerging therapeutics that show promising clinical benefit in ongoing clinical trials include novel engineered oncolytic viral and human leukocyte antigen (HLA)-restricted immune-mediated T-cell therapies. As a therapy which is limited to patients who are HLA-A*02:01, T-cell receptor (TCR) engineered T cells (TCR-T) iterates on personalized adoptive cell transfer, and immune mobilizing monoclonal TCRs against cancer are CD3 bispecifics that bind glycoprotein 100 (tebentafusp, approved for metastatic uveal melanoma) or PRAME to activate T cells. Finally, in patients at high risk for immune-related adverse events (irAEs), ICI should still be considered. ICI may be given with modified immunosuppression in patients with autoimmune disease or previous organ transplantation. Cumulative data support safe administration in older patients and in ICI rechallenge for patients with previous irAE.
Collapse
Affiliation(s)
- Urvashi Mitbander Joshi
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jasmin Hundal
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Megan D Schollenberger
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Govind Warrier
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason J Luke
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pauline Funchain
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
8
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
9
|
Yamaguchi T, Kitahara S, Matsui A, Okamoto J, Muragaki Y, Masamune K. HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model. Med Mol Morphol 2025; 58:137-148. [PMID: 39870899 DOI: 10.1007/s00795-025-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed. Both the irradiation methods suppressed tumor growth, with the trigger pulse wave showing stronger effects and the difference being significant. Tumor suppression was also observed on the non-irradiated side, suggesting an abscopal effect. These effects vary depending on the irradiation method used. We conclude that HIFU induces both local tumor suppression and a systemic immune response, suggesting its potential for combination with immunotherapy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Toshihiro Yamaguchi
- Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Shuji Kitahara
- Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.
| | - Aya Matsui
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Jun Okamoto
- SONIRE Therapeutics Inc., Nihonbashi Life Science, Building 2 803, 3-11-5 Nihonbashi Honcho, Chuo-Ku 103-0023, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development, Kobe University, 1-5-1 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Ken Masamune
- Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.
| |
Collapse
|
10
|
Braverman EL, Mognol GP, Minn AJ, Vignali DAA, Varner JA. One Step Ahead: Preventing Tumor Adaptation to Immune Therapy. Am Soc Clin Oncol Educ Book 2025; 45:e481556. [PMID: 40334183 DOI: 10.1200/edbk-25-481556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Immune checkpoint inhibitors are cancer therapeutics that have shown remarkable success in extending lives in many cancers, including melanoma, MSI-high cancers, and other cancers. However, these therapeutics have not shown benefit for many patients with cancer, especially those with advanced cancer diagnoses. In addition, many patients develop resistance to these therapeutics and/or life-altering adverse events that can include cardiotoxicity, pneumonitis, thyroiditis, pancreatitis, and hepatitis. Extensive efforts to improve cancer care by uncovering mechanisms of resistance to immune therapy in solid tumors have led to identification of new sources of resistance and to the development of new approaches to activate or sustain antitumor immunity. Chronic stimulation of T cells by tumors and by checkpoint inhibitors can lead to a progressive state of T-cell exhaustion. Chronic T-cell activation by the tumor microenvironment (TME) or immune therapeutics can upregulate the expression and function of alternate checkpoints, including the T-cell protein LAG-3. Persistent interferon signaling in the TME can drive epigenetic changes in cancer cells that enable tumors to counter immune activation and disrupt tumor cell elimination. In addition, immune-suppressive macrophages can flood tumors in response to signals from dying tumor cells, further preventing effective immune responses. New clinical developments and/or approvals for therapies that target alternate immune checkpoints, such as the T-cell checkpoint LAG-3; myeloid cell proteins, such as the kinase phosphoinositide 3-kinase gamma isoform; and chronic interferon signaling, such as Jak 1 inhibitors, have been approved for cancer care or shown promise in recent clinical trials.
Collapse
Affiliation(s)
- Erica L Braverman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Giuliana P Mognol
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Andy J Minn
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Judith A Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Department of Pathology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
11
|
Hegoburu A, Amer M, Frizelle F, Purcell R. B cells and tertiary lymphoid structures in cancer therapy response. BJC REPORTS 2025; 3:40. [PMID: 40437260 PMCID: PMC12119954 DOI: 10.1038/s44276-025-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025]
Abstract
Recent advances in immuno-oncology research have revolutionised our understanding of the interplay between immune cells and the tumour microenvironment (TME), profoundly impacting patient responses to therapy. The TME, comprising tumour cells, immune cells, extracellular matrix, stromal cells, and co-existing microbes, orchestrates the immune phenotype of cancers, shaping disease progression and treatment outcomes. Immune-cell infiltration serves as a significant prognostic marker in various cancers, with higher rates correlating with improved prognosis. Recent discoveries have paved the way for immune checkpoint blockade therapies, which exhibit remarkable efficacy across multiple cancer types. However, understanding the nuanced contributions of different immune-cell populations to therapeutic responses remains a challenge. The majority of research has focussed on the role of T cells in the immune response to cancer therapies, with the potential importance of B cells only recently being recognised. Here, we review the diverse phenotypes of B cells within the TME, their structural organisation within tertiary lymphoid structures (TLS), and the role of both B cells and TLS in cancer prognosis and response to different therapies for cancer treatment.
Collapse
Affiliation(s)
- Adèle Hegoburu
- Department of Surgery and Critical Care, Ōtākou Whakaihu Waka/University of Otago, Christchurch, Aotearoa New Zealand
| | - Mohammad Amer
- Department of Surgery and Critical Care, Ōtākou Whakaihu Waka/University of Otago, Christchurch, Aotearoa New Zealand
| | - Frank Frizelle
- Department of Surgery and Critical Care, Ōtākou Whakaihu Waka/University of Otago, Christchurch, Aotearoa New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, Ōtākou Whakaihu Waka/University of Otago, Christchurch, Aotearoa New Zealand.
| |
Collapse
|
12
|
Cao Y, Zhao Z, Fang J, Lu Y, Huang Z, Wu G, Gao Q, Li R, Xu L, Xu X. Dual-Responsive Immunomodulatory RNAi Nanoplatform for Effective Immune Checkpoint Blockade and Enhanced Cancer Immunotherapy. Adv Healthc Mater 2025:e2500646. [PMID: 40394949 DOI: 10.1002/adhm.202500646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has become the first-line treatment for cancer patients. However, the low response rate remains a clinical pain-point. Anti-hyperglycemic drug metformin has shown remarkable anticancer effect with the unique characteristic of modulating tumor immune microenvironment (TIME). Therefore, combining ICB with metformin could be a promising strategy for enhanced cancer immunotherapy, which however remains challenged due to the low bioavailability and severe adverse effects of metformin. This work herein designs an amphiphilic reduction-responsive metformin prodrug, which could complex small interfering RNA (siRNA) and then co-assemble with an endosomal pH-responsive PEGylated polymer to form a dual-responsive immunomodulatory RNAi nanoplatform. Using the orthotopic and metastatic breast cancer (BCa) tumor models, this work demonstrates that this RNAi nanoplatform could silence PD-L1 expression on BCa cells and suppress their proliferation via activating AMP-activated protein kinase (AMPK). Moreover, this AMPK activation could suppress the secretion of tumor-derived transforming growth factor β (TGF-β) and interleukin 6 (IL-6), which could enhance the maturation of dendritic cells (DCs) and activation of CD8+ T cells and impair the tumor infiltration of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), ultimately achieving the goal of enhanced cancer immunotherapy and significant inhibition of BCa tumor growth.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Zixuan Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yanan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Qiyuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
13
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector-like CD8 + T cells during chronic infection and cancer. Nat Commun 2025; 16:4542. [PMID: 40374625 PMCID: PMC12081725 DOI: 10.1038/s41467-025-59784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
During chronic infection and tumor progression, CD8+ T cells lose their effector functions and become exhausted. These exhausted CD8+ T cells are heterogeneous and comprised of progenitors that give rise to effector-like or terminally-exhausted cells. The precise cues and mechanisms directing subset formation are incompletely understood. Here, we show that growth factor independent-1 (Gfi1) is dynamically regulated in exhausted CD8+ T cells. During chronic LCMV Clone 13 infection, a previously under-described Ly108+CX3CR1+ subset expresses low levels of Gfi1 while other established subsets have high expression. Ly108+CX3CR1+ cells possess distinct chromatin profiles and represent a transitory subset that develops to effector-like and terminally-exhausted cells, a process dependent on Gfi1. Similarly, Gfi1 in tumor-infiltrating CD8+ T cells is required for the formation of terminally differentiated cells and endogenous as well as anti-CTLA-induced anti-tumor responses. Taken together, Gfi1 is a key regulator of the subset formation of exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer T Ingram
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Allan J Zajac
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lewis Z Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Yadav S, Anbalagan M, Khatun S, Prabhakaran D, Matsunaga Y, Manges J, McLachlan JB, Lasky JA, Kolls J, Thannickal VJ. Reactivation of CTLA4-expressing T cells accelerates resolution of lung fibrosis in a humanized mouse model. J Clin Invest 2025; 135:e181775. [PMID: 40100323 PMCID: PMC12077895 DOI: 10.1172/jci181775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Tissue regenerative responses involve complex interactions between resident structural and immune cells. Recent reports indicate that accumulation of senescent cells during injury repair contributes to pathological tissue fibrosis. Using tissue-based spatial transcriptomics and proteomics, we identified upregulation of the immune checkpoint protein, cytotoxic T lymphocyte-associated protein 4 (CTLA4), on CD8+ T cells adjacent to regions of active fibrogenesis in human idiopathic pulmonary fibrosis and in a repetitive bleomycin lung injury murine model of persistent fibrosis. In humanized CTLA4-knockin mice, treatment with ipilimumab, an FDA-approved drug that targets CTLA4, resulted in accelerated lung epithelial regeneration and diminished fibrosis from repetitive bleomycin injury. Ipilimumab treatment resulted in the expansion of Cd3e+ T cells, diminished accumulation of senescent cells, and robust expansion of type 2 alveolar epithelial cells, facultative progenitor cells of the alveolar epithelium. Ex vivo activation of isolated CTLA4-expressing CD8+ cells from mice with established fibrosis resulted in enhanced cytolysis of senescent cells, suggesting that impaired immune-mediated clearance of these cells contributes to persistence of lung fibrosis in this murine model. Our studies support the concept that endogenous immune surveillance of senescent cells may be essential in promoting tissue regenerative responses that facilitate the resolution of fibrosis.
Collapse
Affiliation(s)
- Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | | | - Shamima Khatun
- Center for Translational Research in Infection and Inflammation, and
| | - Devadharshini Prabhakaran
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin Manges
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - James B. McLachlan
- Department of Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Joseph A. Lasky
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, and
| | - Victor J. Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
15
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
16
|
Dress RJ, Ho WW, Ho V, Lam JH, Décaillot FM, Sinsinbar G, Soo J, Rengasamy G, Khan AK, Cornell TA, Chia TW, Venkataraman S, Nallani M, Ginhoux F. A Novel Polymersome Nanocarrier Promotes Anti-Tumour Immunity by Improved Priming of CD8 + T Cells. Immunology 2025; 175:21-35. [PMID: 39873184 PMCID: PMC11982605 DOI: 10.1111/imm.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed. Here, we describe the use of self-assembling artificial cell membrane (ACM) polymersomes to deliver tumour-specific peptides to trigger sustainable and efficient anti-tumour immune responses. We found that ACM polymersomes were highly efficient in targeting and activating mononuclear phagocytes (MNP) including dendritic cells (DC), while providing long-term reservoirs of antigens for continued immune cell priming. Subcutaneous injection of ACM-encapsulated tumour-antigen-peptides into tumour-bearing mice resulted in improved priming of CD8+ T cells and increased generation of tumour-antigen-peptide specific CD8+ effector T cells. Prophylactic and therapeutic immunisation with ACM-encapsulated peptides resulted in changes to the MNP composition in the tumour microenvironment, tumour regression and improved survival of immunised mice. Combining anti-PD-1 immune checkpoint inhibitor therapy with ACM polymersome peptide delivery further boosted anti-tumour immunity. Our results show that ACM polymersome nanocarriers efficiently instruct anti-tumour immune responses offering a promising new approach for vaccination and cancer immunotherapy. Trial Registration: NCT05385991.
Collapse
Affiliation(s)
- Regine J. Dress
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - William W. Ho
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | - Victor Ho
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | | | - Fabien M. Décaillot
- ACM Biolabs Pte LtdSingaporeSingapore
- Sapreme Development B.VBilthovenThe Netherlands
| | | | - Jenetta Soo
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | | | | | | | | | | | | | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
- Gustave Roussy Cancer CampusVillejuifFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015Equipe Labellisée—Ligue Nationale Contre le CancerVillejuifFrance
- Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
17
|
Huang M, Zhang Y, Chen Z, Yu X, Luo S, Peng X, Li X. Gut microbiota reshapes the TNBC immune microenvironment: Emerging immunotherapeutic strategies. Pharmacol Res 2025; 215:107726. [PMID: 40184763 DOI: 10.1016/j.phrs.2025.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and poor prognosis. The gut microbiota, a diverse community of microorganisms in the gastrointestinal tract, plays a crucial role in regulating immune responses through the gut-immune axis. Recent studies have highlighted its significant impact on TNBC progression and the efficacy of immunotherapies. This review examines the interactions between gut microbiota and the immune system in TNBC, focusing on key immune cells and pathways involved in tumor immunity. It also explores microbiota modulation strategies, including probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation, as potential methods to enhance immunotherapeutic outcomes. Understanding these mechanisms offers promising avenues for improving treatment efficacy and patient prognosis in TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Yikai Zhang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Zhaoji Chen
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Xin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China
| | - Shiping Luo
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management, China.
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiologyand Pharmacology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
18
|
Yucebas K, Ko S, Zhou J, Hamel EM, Hackworth MG, Diaz Miranda EA, Carpenter HS, Hunter MI, Khan OM, Weissman IL, Jin S. Immunotherapy of endometrial cancer via CD47 blockade-mediated macrophage phagocytosis. PNAS NEXUS 2025; 4:pgaf143. [PMID: 40371397 PMCID: PMC12077145 DOI: 10.1093/pnasnexus/pgaf143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
The interaction between CD47 expressed on cancer cells and signal regulatory protein-α located on macrophages blocks the phagocytosis of tumor cells by macrophages. Our data reveal that human endometrial cancer cells (hECCs) upregulate the CD47 level on their surface and that there is a high density of tumor-associated macrophages within the microenvironment of human endometrial cancer. In vitro functional assay shows that an anti-CD47 monoclonal antibody (mAb) promotes the phagocytosis of hECCs by macrophages. Systemic and in situ treatments with an anti-CD47 mAb effectively reduce tumor burden in vivo in a genetically engineered mouse model of endometrial cancer. Thus, this study provides preclinical evidence that CD47 blockade using an anti-CD47 mAb to augment macrophage phagocytosis is a potential therapeutic strategy for endometrial cancer.
Collapse
Affiliation(s)
- Kerem Yucebas
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Jinyu Zhou
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth M Hamel
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mia G Hackworth
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- College of Arts and Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Haley S Carpenter
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mark I Hunter
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Omair M Khan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Sim ES, Nguyen HCB, Hanna GJ, Uppaluri R. Current Progress and Future Directions of Immunotherapy in Head and Neck Squamous Cell Carcinoma: A Narrative Review. JAMA Otolaryngol Head Neck Surg 2025; 151:521-528. [PMID: 40048196 DOI: 10.1001/jamaoto.2024.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Importance For decades, the 3 therapeutic pillars for head and neck squamous cell carcinoma (HNSCC) have been radiation therapy, chemotherapy, and surgery. In recent years, a fourth pillar, immunotherapy, has shifted the existing paradigm of oncologic care by improving survival outcomes. This narrative review highlights key completed and ongoing clinical trials that have led to new therapeutic approaches and are aiming to further alter the current standard of care. Observations Immunotherapy in HNSCC first saw success in phase 3 clinical trials with immune checkpoint inhibitors (ICIs) for programmed cell death 1 protein in patients with recurrent or metastatic (R/M) disease. However, only approximately 15% to 20% of patients with R/M HNSCC achieve durable responses. Subsequent trials aimed to broaden ICIs to the definitive or curative setting, in combination with established chemoradiation modalities. These studies have yielded disappointing results, raising concerns that concurrent administration of ICI with chemoradiation- or radiation-induced attenuation of immune responses may contribute to lack of efficacy. Therefore, recent studies have attempted to introduce ICI sequentially, either prior to standard of care surgery in the neoadjuvant setting or following definitive treatment in the adjuvant or maintenance setting. These trials have demonstrated mixed results but with promising initial results from early phase neoadjuvant trials demonstrating early signals of response. Further trials are currently underway with various combinatorial approaches in the neoadjuvant and adjuvant settings to assess response rates and survival. Conclusions and Relevance The introduction of ICIs has brought a dramatic shift in the treatment landscape of HNSCC. Completed trials have provided new hope for patients, but failures in several settings suggest that further studies based on a biologic understanding of immune responses are required to expand immunotherapeutic approaches.
Collapse
Affiliation(s)
- Edward S Sim
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hoang C B Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn J Hanna
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
20
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
21
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
22
|
Hanratty K, Finegan G, Rochfort KD, Kennedy S. Current Treatment of Uveal Melanoma. Cancers (Basel) 2025; 17:1403. [PMID: 40361330 PMCID: PMC12071000 DOI: 10.3390/cancers17091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults worldwide [...].
Collapse
Affiliation(s)
- Katie Hanratty
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
| | - Gráinne Finegan
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Life Sciences Institute, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
- Life Sciences Institute, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland
| |
Collapse
|
23
|
Chakraborty AK, Raut RD, Iqbal K, Choudhury C, Alhousami T, Chogle S, Acosta AS, Fagman L, Deabold K, Takada M, Sahay B, Kumar V, Bais MV. Lysine-specific demethylase 1 controls key OSCC preneoplasia inducer STAT3 through CDK7 phosphorylation during oncogenic progression and immunosuppression. Int J Oral Sci 2025; 17:31. [PMID: 40246812 PMCID: PMC12006301 DOI: 10.1038/s41368-025-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) progresses from preneoplastic precursors via genetic and epigenetic alterations. Previous studies have focused on the treatment of terminally developed OSCC. However, the role of epigenetic regulators as therapeutic targets during the transition from preneoplastic precursors to OSCC has not been well studied. Our study identified lysine-specific demethylase 1 (LSD1) as a crucial promoter of OSCC, demonstrating that its knockout or pharmacological inhibition in mice reversed OSCC preneoplasia. LSD1 inhibition by SP2509 disrupted cell cycle, reduced immunosuppression, and enhanced CD4+ and CD8+ T-cell infiltration. In a feline model of spontaneous OSCC, a clinical LSD1 inhibitor (Seclidemstat or SP2577) was found to be safe and effectively inhibit the STAT3 network. Mechanistic studies revealed that LSD1 drives OSCC progression through STAT3 signaling, which is regulated by phosphorylation of the cell cycle mediator CDK7 and immunosuppressive CTLA4. Notably, LSD1 inhibition reduced the phosphorylation of CDK7 at Tyr170 and eIF4B at Ser422, offering insights into a novel mechanism by which LSD1 regulates the preneoplastic-to-OSCC transition. This study provides a deeper understanding of OSCC progression and highlights LSD1 as a potential therapeutic target for controlling OSCC progression from preneoplastic lesions.
Collapse
Affiliation(s)
- Amit Kumar Chakraborty
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
| | - Rajnikant Dilip Raut
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
| | - Kisa Iqbal
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Chumki Choudhury
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
| | - Thabet Alhousami
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami Chogle
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Alexa S Acosta
- College of Veterinary Medicine, University of Florida, Gainesville, USA
| | - Lana Fagman
- College of Veterinary Medicine, University of Florida, Gainesville, USA
| | - Kelly Deabold
- College of Veterinary Medicine, University of Florida, Gainesville, USA
| | - Marilia Takada
- College of Veterinary Medicine, University of Florida, Gainesville, USA
| | - Bikash Sahay
- College of Veterinary Medicine, University of Florida, Gainesville, USA
| | - Vikas Kumar
- Dept. of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Shrewsbury, USA
| | - Manish V Bais
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA.
| |
Collapse
|
24
|
Philips S, Lu P, Fausel C, Wagner T, Jiang G, Shen F, Cantor E, Tran M, Roland LM, Schneider BP. Association of heightened host and tumor immunity with prolonged duration of response to checkpoint inhibition across solid tumors. Sci Rep 2025; 15:13195. [PMID: 40240402 PMCID: PMC12003766 DOI: 10.1038/s41598-025-96925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer immunotherapy is a beneficial therapy for many cancer types, but predictive pan-tumor biomarkers for clinical benefit are suboptimal. Our study, employing DNA and RNA based analysis, investigated the role of predicted neoantigens in the benefits of immunotherapy within a cohort of 88 patients of European descent with advanced solid tumors. Patients who had a prolonged (> 12 months) duration of immunotherapy exhibited heightened immune responses, characterized by increased levels of predicted neoantigens with strong HLA binding potential, elevated cytotoxic marker levels, and enhanced T cell activity. Furthermore, our analysis revealed associations between prolonged duration of therapy and rare variants, notably within the EPHA8 gene. These variants, exclusive to patients with a prolonged (> 12 months) duration of immunotherapy, suggest potential implications for immunotherapy response. In addition, the evolutionary conservation of these variants across vertebrate species underscores their functional importance in tumor biology and ultimately, treatment outcomes. Despite limitations in sample size and patient homogeneity, our findings emphasize the potential utility of understanding the molecular and immunological mechanisms underlying immunotherapy responses to further refine personalized treatment strategies.
Collapse
Affiliation(s)
- Santosh Philips
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Pei Lu
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Chris Fausel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Thomas Wagner
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Guanglong Jiang
- Division of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica Cantor
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mya Tran
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Lauren M Roland
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Bryan P Schneider
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Division of Hematology/Oncology, Department of Medicine, Indiana University, 535 Barnhill Drive, RT 473, Indianapolis, IN, 46202, USA.
| |
Collapse
|
25
|
Pauken KE, Alhalabi O, Goswami S, Sharma P. Neoadjuvant immune checkpoint therapy: Enabling insights into fundamental human immunology and clinical benefit. Cancer Cell 2025; 43:623-640. [PMID: 40118048 DOI: 10.1016/j.ccell.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
While immune checkpoint therapy (ICT) has revolutionized cancer treatment, most patients with advanced disease fail to achieve durable benefit. To address this challenge, it is essential to integrate mechanistic research with clinical studies to: (1) understand response mechanisms, (2) identify patient-specific resistance pathways, (3) develop biomarkers for patient selection, and (4) design novel therapies to overcome resistance. We propose that incorporating "direct-in-patient" studies into clinical trials is crucial for bridging the gap between fundamental science and clinical oncology. In this review, we first highlight recent clinical success of ICT in the neoadjuvant setting, where treatment is given in earlier disease stages to improve outcomes. We then explore how neoadjuvant clinical trials could be utilized to drive mechanistic laboratory-based investigations. Finally, we discuss novel scientific concepts that will potentially aid in overcoming resistance to ICT, which will require future clinical trials to understand their impact on human immune responses.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Osaki M, Sakaguchi S. Soluble CTLA-4 regulates immune homeostasis and promotes resolution of inflammation by suppressing type 1 but allowing type 2 immunity. Immunity 2025; 58:889-908.e13. [PMID: 40168991 DOI: 10.1016/j.immuni.2025.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Cytotoxic T-lymphocyte-associated antigen -4 (CTLA-4) is a co-inhibitory receptor that restricts T cell activation. CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms, but the key producers, kinetics, and functions of sCTLA-4 are unclear. Here, we investigated the roles of sCTLA-4 in immune regulation under non-inflammatory and inflammatory conditions. Effector regulatory T (Treg) cells were the most active sCTLA-4 producers in basal and inflammatory states, with distinct kinetics upon T cell receptor (TCR) stimulation. We generated mice specifically deficient in sCTLA-4 production, which exhibited spontaneous activation of type 1 immune cells and heightened autoantibody/immunoglobulin E (IgE) production. Conversely, mCTLA-4-deficient mice developed severe type 2-skewed autoimmunity. sCTLA-4 blockade of CD80/86 on antigen-presenting cells inhibited T helper (Th)1, but not Th2, differentiation in vitro. In vivo, Treg-produced sCTLA-4, suppressed Th1-mediated experimental colitis, and enhanced wound healing but hampered tumor immunity. Thus, sCTLA-4 is essential for immune homeostasis and controlling type 1 immunity while allowing type 2 immunity to facilitate resolution in inflammatory conditions.
Collapse
Affiliation(s)
- Motonao Osaki
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
27
|
Ikeda H. Cancer immunotherapy in progress-an overview of the past 130 years. Int Immunol 2025; 37:253-260. [PMID: 39792088 PMCID: PMC11975553 DOI: 10.1093/intimm/dxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025] Open
Abstract
Since the first approval of an immune checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy. Now, we face the next step of issues to be solved in this field, such as tumor heterogeneity, the tumor microenvironment, the metabolism of tumors and the immune system, and personalized approaches for patients, aiming to expand the population benefitted by the therapies.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
- Leading Medical Research Core Unit, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
28
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Lonberg N. The Problem with Syngeneic Mouse Tumor Models. Cancer Immunol Res 2025; 13:456-462. [PMID: 39996612 DOI: 10.1158/2326-6066.cir-24-1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
The advent of syngeneic mouse tumor models provided the scientific foundation for cancer immunotherapies now in widespread use. However, in many respects, these models do not faithfully recapitulate the interactions between cancer cells and the immune systems of human patients who have solid tumors because they represent a very early stage in the immune response to the newly transplanted cancer cells compared with the relatively mature stage found in human patients at the time of treatment. The lack of translatability of syngeneic models is probably responsible for many failed clinical trials conducted at considerable expense, involving far too many patients with cancer who received no benefit. Better mouse models would substantially accelerate the pace of discovery of new immunotherapies. Until these models emerge, a better understanding of the differences between the existing syngeneic models and human cancers may provide a more efficient path for moving experimental drugs into clinical development. To accomplish this, we must consider mice transplanted with syngeneic tumor cells to be in vivo assays, potentially useful for understanding the mechanism of action of immunotherapies rather than disease models.
Collapse
|
30
|
Wang LH, Jiang Y, Sun CH, Chen PT, Ding YN. Advancements in the application of ablative therapy and its combination with immunotherapy in anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189285. [PMID: 39938664 DOI: 10.1016/j.bbcan.2025.189285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer is a significant health issue impacting humans. Currently, systemic therapies such as chemotherapy have significantly increased the life expectancy of cancer patients. However, some patients are unable to endure systemic treatment due to its significant adverse effects, leading to an increased focus on local therapies including radiation and ablation therapy. Ablation therapy is a precise, low-toxicity, and minimally invasive localized therapy that is increasingly acknowledged by clinicians and cancer patients. Many cancer patients have benefited from it, with some achieving full recovery. Currently, numerous studies have shown that ablation therapy is effective due to its ability to kill cancer cells efficiently and activate the body's anti-cancer immunity. It can also convert "cold cancers" into "hot cancers" and enhance the effectiveness of immunotherapy when used in combination. In this article, we categorize ablation therapy into thermal ablation, cryoablation, photodynamic therapy (PDT), irreversible electroporation (IRE), etc. Thermal ablation is further divided into Radiofrequency ablation (RFA), microwave ablation (WMA), high-frequency focused ultrasound (HIFU), photothermal therapy (PTT), magnetic heat therapy (MHT), etc. We systematically review the most recent advancements in these ablation therapies that are either currently used in clinic or are anticipated to be used in clinic. Then, we also review the latest development of various ablative therapies combined with immunotherapy, and its future development. CLINICAL RELEVANCE STATEMENT: Ablation therapy, an invasive localized treatment, offers an alternative to systemic therapies for cancer patients who cannot tolerate their adverse effects. Its ability to kill cancer cells efficiently and activate anti-cancer immunity. This article reviews recent advancements in ablation therapies, including thermal, cryoablation, PDT, and IRE, and their potential clinical applications, both standalone and in combination with immunotherapy.
Collapse
Affiliation(s)
- Lu-Hong Wang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Center of Interventional Radiology & Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; State Key Laboratory of Digital Medical Engineering, National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yi Jiang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chen-Hang Sun
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Peng-Tao Chen
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Nan Ding
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
31
|
Geng Q, Xu J, Du C, Zhang D, Jin Y, Song J, Qu W, Zhang C, Su G, Jiao P. Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024). Expert Opin Ther Pat 2025; 35:409-440. [PMID: 39907457 DOI: 10.1080/13543776.2025.2462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Targeting immune checkpoint proteins (ICPs) via small molecules open a new window for cancer immunotherapy. Herein, we summarize recent advances of small molecules with novel chemical structures targeting ICPs, discusses their anti-tumor efficacies, which are important for the development of novel small molecules for cancer immunotherapy. AREAS COVERED In this review, the latest patents and literature were gathered through the comprehensive searches in the databases of European Patent Office (EPO), Cortellis Drug Discovery Intelligence (CDDI), PubMed and Web of Science using ICPs and compounds as key words. EXPERT OPINION To develop novel weapons to fight against cancer, small molecules targeting ICPs including CTLA-4, LAG-3, PD-L1, Siglec-9, TIM-3, TIGIT, and VISTA have been synthesized and evaluated in succession. Chief among them are the small molecules targeting PD-L1, which have been intensively investigated in recent years. Various in vitro assays such as ALPHA, HTRF binding assay, NFAT assay have been successfully developed to screen novel IPCs inhibitors. However, the in vivo assay, for example, using double-humanized PD-1/PD-L1 (hPD-1/hPD-L1) mouse as evaluation model, are seldom reported. Novel pharmacophores with new working mechanisms such as proteolysis targeting chimeras (PROTACs) and peptides are needed to enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Qiaohong Geng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Juanjuan Xu
- Department of Neurology, Changyi People's Hospital, Weifang, Shandong, China
| | - Chunsheng Du
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Deheng Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Yanrui Jin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Jiatong Song
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Wenjing Qu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Changnan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
32
|
Kodama T, Sukhbaatar A. Development of an intranodal drug delivery system using a mouse model with lymphadenopathy: novel discoveries and clinical application. Expert Opin Drug Deliv 2025; 22:555-564. [PMID: 39995110 DOI: 10.1080/17425247.2025.2471982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION The low drug delivery rate of systemic chemotherapy to metastatic lymph nodes (LNs) may be due to tumor growth without tumor neovascularization in the LNs, loss of existing blood vessels and lymph sinuses due to the tumor growth, and increased intranodal pressure. The lymphatic drug delivery system (LDDS) is a method of injecting anticancer drugs directly into the LNs and can overcome these problems. The world's first specific clinical study using the LDDS for head and neck cancer started in 2024 in Japan. In this review, the background of the development of LDDS up to the present clinical trials is described. AREAS COVERED The MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) recombinant inbred model mouse, vascular and lymphatic flow through LNs, the clinical N0 (cN0) LN model, preclinical studies of the LDDS, and its clinical application to treat head and neck cancer. EXPERT OPINION Conventionally, hematogenous and lymphatic administration have been the focus of attention for drug delivery to LNs. The LDDS is a method for injecting drugs directly to LNs, so it is important to develop a solvent and injecting method that can increase the uniformity of drug distribution within LNs.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Kamali MJ, Salehi M, Fath MK. Advancing personalized immunotherapy for melanoma: Integrating immunoinformatics in multi-epitope vaccine development, neoantigen identification via NGS, and immune simulation evaluation. Comput Biol Med 2025; 188:109885. [PMID: 40010174 DOI: 10.1016/j.compbiomed.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The use of cancer vaccines represents a promising avenue in cancer immunotherapy. Advances in next-generation sequencing (NGS) technology, coupled with the development of sophisticated analysis tools, have enabled the identification of somatic mutations by comparing genetic sequences between normal and tumor samples. Tumor neoantigens, derived from these mutations, have emerged as potential candidates for therapeutic cancer vaccines. In this study, raw NGS data from two melanoma patients (NCI_3903 and NCI_3998) were analyzed using publicly available SRA datasets from NCBI to identify patient-specific neoantigens. A comprehensive pipeline was employed to select candidate peptides based on their antigenicity, immunogenicity, physicochemical properties, and toxicity profiles. These validated epitopes were utilized to design multi-epitope chimeric vaccines tailored to each patient. Peptide linkers were employed to connect the epitopes, ensuring optimal vaccine structure and function. The two-dimensional (2D) and three-dimensional (3D) structures of the chimeric vaccines were predicted and refined to ensure structural stability and immunogenicity. Furthermore, molecular docking simulations were conducted to evaluate the binding interactions between the vaccine chimeras and the HLA class I receptors, confirming their potential to elicit a robust immune response. This work highlights a personalized approach to cancer vaccine development, demonstrating the feasibility of utilizing neoantigen-based immunoinformatics pipelines to design patient-specific therapeutic vaccines for melanoma.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
| |
Collapse
|
34
|
Patel AM, Haleem A, Cowan PT, Roden DF. Neck Dissection and Survival Among Head and Neck Cancer Patients Undergoing Adjuvant Immunotherapy. Laryngoscope Investig Otolaryngol 2025; 10:e70120. [PMID: 40104563 PMCID: PMC11915686 DOI: 10.1002/lio2.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
Background Some studies suggest that neck dissection (ND) should be avoided in candidates for immunotherapy because lymph nodes are primary sites for immunotherapy activation. Our study investigates ND utilization and associated differences in overall survival (OS) among patients with head and neck cancer (HNC) undergoing adjuvant immunotherapy. Methods The 2013-2018 National Cancer Database was retrospectively reviewed for patients with HNC undergoing surgery with curative intent, and adjuvant immunotherapy. Multivariable binary logistic and Cox regression models adjusted for patient demographics, clinicopathologic features, and treatment. Results Of 1335 patients satisfying inclusion criteria, 679 (50.9%) patients underwent ND: 94 (13.8%) had pN0, 109 (16.1%) had pN1, 411 (60.5%) had pN2, 60 (8.8%) had pN3, and 5 (0.7%) had pNx classification. On multivariable binary logistic regression, academic treatment facility, cT4, and cN1-3 classification were associated with higher odds of undergoing ND (p < 0.05); salivary, sinonasal, oropharyngeal, hypopharyngeal, and laryngeal primary sites were associated with decreased odds (p < 0.05). Compared with those undergoing neck observation, patients undergoing ND had worse OS (49.4% vs. 61.5%, p < 0.001) on Kaplan-Meier but not multivariable Cox (adjusted hazard ratio [aHR] 1.00, 95% confidence interval [CI] 0.82-1.24, p = 0.968) regression. Compared with adjuvant immunotherapy alone, the addition of radiotherapy (aHR 0.64, 95% CI 0.44-0.93) and chemoradiotherapy (aHR 0.56, 95% CI 0.37-0.86) were associated with higher OS (p < 0.025). Conclusion ND was utilized in approximately 51% of patients with HNC undergoing adjuvant immunotherapy. ND was not associated with worse OS, possibly related to the high rate of pN1-3 classification. Level of Evidence 4.
Collapse
Affiliation(s)
- Aman M Patel
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Afash Haleem
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Paul T Cowan
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Dylan F Roden
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| |
Collapse
|
35
|
Omero F, Speranza D, Murdaca G, Cavaleri M, Marafioti M, Cianci V, Berretta M, Casciaro M, Gangemi S, Santarpia M. The Role of Eosinophils, Eosinophil-Related Cytokines and AI in Predicting Immunotherapy Efficacy in NSCLC Cancer. Biomolecules 2025; 15:491. [PMID: 40305195 PMCID: PMC12024677 DOI: 10.3390/biom15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunotherapy and chemoimmunotherapy are standard treatments for non-oncogene-addicted advanced non-small cell lung cancer (NSCLC). Currently, a limited number of biomarkers, including programmed death-ligand 1 (PD-L1) expression, microsatellite instability (MSI), and tumor mutational burden (TMB), are used in clinical practice to predict benefits from immune checkpoint inhibitors (ICIs). It is therefore necessary to search for novel biomarkers that could be helpful to identify patients who respond to immunotherapy. In this context, research efforts are focusing on different cells and mechanisms involved in anti-tumor immune response. Herein, we provide un updated literature review on the role of eosinophils in cancer development and immune response, and the functions of some cytokines, including IL-31 and IL-33, in eosinophil activation. We discuss available data demonstrating a correlation between eosinophils and clinical outcomes of ICIs in lung cancer. In this context, we underscore the role of absolute eosinophil count (AEC) and tumor-associated tissue eosinophilia (TATE) as promising biomarkers able to predict the efficacy and toxicities from immunotherapy. The role of eosinophils and cytokines in NSCLC, treated with ICIs, is not yet fully understood, and further research may be crucial to determine their role as biomarkers of response. Artificial intelligence, through the analysis of big data, could be exploited in the future to elucidate the role of eosinophils and cytokines in lung cancer.
Collapse
Affiliation(s)
- Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Mariacarmela Cavaleri
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Mariapia Marafioti
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
| | - Massimiliano Berretta
- Medical Oncology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| |
Collapse
|
36
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
37
|
Berry D, Moldoveanu D, Rajkumar S, Lajoie M, Lin T, Tchelougou D, Sakthivel S, Sharon I, Bernard A, Pelletier S, Ripstein Y, Spatz A, Miller WH, Jamal R, Lapointe R, Mes-Masson AM, Petrecca K, Meguerditchian AN, Richardson K, Wang B, Chergui M, Guiot MC, Watters K, Stagg J, Schmeing TM, Rodier F, Turcotte S, Mihalcioiu C, Meterissian S, Watson IR. The NF1 tumor suppressor regulates PD-L1 and immune evasion in melanoma. Cell Rep 2025; 44:115365. [PMID: 40023845 DOI: 10.1016/j.celrep.2025.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Hotspot BRAF, hotspot NRAS, and NF1 loss-of-function mutations are found in approximately 50%, 25%, and 15% of cutaneous melanomas, respectively. Compared to mutant BRAF and NRAS, the role of NF1 loss in melanoma remains understudied. NF1 has a RAS GTPase-activating protein (GAP) function; however, studies also support NF1 RAS-independent tumor-suppressor functions. Recent reports indicate that patients with NF1 mutant melanoma have high response rates to anti-PD-1 immune checkpoint inhibitors (ICIs) for reasons that are not entirely clear. Here, we present data demonstrating that NF1 interacts with PD-L1. Furthermore, NF1 loss in melanoma lines increases PD-L1 cell surface expression through a RAS-GAP-independent mechanism. Co-culture experiments demonstrate that NF1 depletion in melanoma increases resistance to T cell killing, which can be abrogated with anti-PD-1/PD-L1 ICIs. These results support a model whereby NF1 loss leads to immune evasion through the PD-L1/PD-1 axis, providing support for the examination of anti-PD-1 therapies in other NF1 mutant cancers.
Collapse
Affiliation(s)
- Diana Berry
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Dan Moldoveanu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Shivshankari Rajkumar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Mathieu Lajoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tiffany Lin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Samridhi Sakthivel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Antoine Bernard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yael Ripstein
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Alan Spatz
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Wilson H Miller
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Rahima Jamal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Réjean Lapointe
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | | | | | - Beatrice Wang
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - May Chergui
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | | | - Kevin Watters
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
38
|
Palma M. Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges. Vaccines (Basel) 2025; 13:344. [PMID: 40333213 PMCID: PMC12030785 DOI: 10.3390/vaccines13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge due to its complex biology, which complicates both diagnosis and treatment. Immunotherapy and cancer vaccines have emerged as promising alternatives, harnessing the body's immune system to precisely target and eliminate cancer cells. However, several key factors influence the selection and effectiveness of these therapies, including BC subtype, tumor mutational burden (TMB), tumor-infiltrating lymphocytes (TILs), PD-L1 expression, HER2 resistance, and the tumor microenvironment (TME). BC subtypes play a critical role in shaping treatment responses. Triple-negative breast cancer (TNBC) exhibits the highest sensitivity to immunotherapy, while HER2-positive and hormone receptor-positive (HR+) subtypes often require combination strategies for optimal outcomes. High TMB enhances immune responses by generating neoantigens, making tumors more susceptible to immune checkpoint inhibitors (ICIs); whereas, low TMB may indicate resistance. Similarly, elevated TIL levels are associated with better immunotherapy efficacy, while PD-L1 expression serves as a key predictor of checkpoint inhibitor success. Meanwhile, HER2 resistance and an immunosuppressive TME contribute to immune evasion, highlighting the need for multi-faceted treatment approaches. Current breast cancer immunotherapies encompass a range of targeted treatments. HER2-directed therapies, such as trastuzumab and pertuzumab, block HER2 dimerization and enhance antibody-dependent cellular cytotoxicity (ADCC), while small-molecule inhibitors, like lapatinib and tucatinib, suppress HER2 signaling to curb tumor growth. Antibody-drug conjugates (ADCs) improve tumor targeting by coupling monoclonal antibodies with cytotoxic agents, minimizing off-target effects. Meanwhile, ICIs, including pembrolizumab, restore T-cell function, and CAR-macrophage (CAR-M) therapy leverages macrophages to reshape the TME and overcome immunotherapy resistance. While immunotherapy, particularly in TNBC, has demonstrated promise by eliciting durable immune responses, its efficacy varies across subtypes. Challenges such as immune-related adverse events, resistance mechanisms, high costs, and delayed responses remain barriers to widespread success. Breast cancer vaccines-including protein-based, whole-cell, mRNA, dendritic cell, and epitope-based vaccines-aim to stimulate tumor-specific immunity. Though clinical success has been limited, ongoing research is refining vaccine formulations, integrating combination therapies, and identifying biomarkers for improved patient stratification. Future advancements in BC treatment will depend on optimizing immunotherapy through biomarker-driven approaches, addressing tumor heterogeneity, and developing innovative combination therapies to overcome resistance. By leveraging these strategies, researchers aim to enhance treatment efficacy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
| |
Collapse
|
39
|
Ren X, Guo A, Geng J, Chen Y, Wang X, Zhou L, Shi L. Pan-cancer analysis of co-inhibitory molecules revealing their potential prognostic and clinical values in immunotherapy. Front Immunol 2025; 16:1544104. [PMID: 40196117 PMCID: PMC11973099 DOI: 10.3389/fimmu.2025.1544104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The widespread use of immune checkpoint inhibitors (anti-CTLA4 or PD-1) has opened a new chapter in tumor immunotherapy by providing long-term remission for patients. Unfortunately, however, these agents are not universally available and only a minority of patients respond to them. Therefore, there is an urgent need to develop novel therapeutic strategies targeting other co-inhibitory molecules. However, comprehensive information on the expression and prognostic value of co-inhibitory molecules, including co-inhibitory receptors and their ligands, in different cancers is not yet available. Methods We investigated the expression, correlation, and prognostic value of co-inhibitory molecules in different cancer types based on TCGA, UCSC Xena, TIMER, CellMiner datasets. We also examined the associations between the expression of these molecules and the extent of immune cell infiltration. Besides, we conducted a more in-depth study of VISTA. Result The results of differential expression analysis, correlation analysis, and drug sensitivity analysis suggest that CTLA4, PD-1, TIGIT, LAG3, TIM3, NRP1, VISTA, CD80, CD86, PD-L1, PD-L2, PVR, PVRL2, FGL1, LGALS9, HMGB1, SEMA4A, and VEGFA are associated with tumor prognosis and immune cell infiltration. Therefore, we believe that they are hopefully to serve as prognostic biomarkers for certain cancers. In addition, our analysis indicates that VISTA plays a complex role and its expression is related to TMB, MSI, cancer cell stemness, DNA/RNA methylation, and drug sensitivity. Conclusions These co-inhibitory molecules have the potential to serve as prognostic biomarkers and therapeutic targets for a broad spectrum of cancers, given their strong associations with key clinical metrics. Furthermore, the analysis results indicate that VISTA may represent a promising target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Anjie Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiahui Geng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuling Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lian Zhou
- Department of Head&Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
40
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025; 99:e0224224. [PMID: 39912665 PMCID: PMC11915808 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N. Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
41
|
Tian L, Wang Y, Guan J, Zhang L, Fan J. The Prognostic Value and Immunomodulatory Role of Spsb2, a Novel Immune Checkpoint Molecule, in Hepatocellular Carcinoma. Genes (Basel) 2025; 16:346. [PMID: 40149497 PMCID: PMC11941779 DOI: 10.3390/genes16030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Liver cancer, specifically hepatocellular carcinoma (LIHC), ranks as the second most common cause of cancer-related fatalities globally. Moreover, the occurrence rate of LIHC is steadily increasing. A recently identified gene, SPSB2, has been implicated in cell signaling, impacting the development and progression of non-small cell lung cancer. Nevertheless, studies on the role of SPSB2 in the pathogenesis of LIHC are lacking. METHODS Using the TCGA, GTEx, and GEO databases, we obtained differentially expressed genes that affect the prognosis of patients with LIHC. We utilized the Kruskal-Wallis test, along with univariate and multivariate COX regression analyses, to determine the correlation between SPSB2 and patient clinical indicators. Potential biological functions of SPSB2 in LIHC were explored by enrichment analysis, ssGSEA, and Spearman correlation analysis. Finally, LIHC cell lines Huh7 and SMMC-7721 were used to validate the biological function of SPSB2. RESULTS The results showed LIHC patients with higher SPSB2 expression had a poorer prognosis, and SPSB2 expression was significantly correlated with LIHC patients' Histologic grade, Pathologic T stage, Prothrombin time, Pathologic stage, BMI, weight, adjacent hepatic tissue inflammation, AFP level, and OS event (p < 0.05). SPSB2 shows notable enrichment in pathways linked to tumorigenesis and the immune system. Moreover, its expression is strongly connected to immune cells and immune checkpoints. Knockdown of SPSB2 expression in Huh7 cells and SMMC-7721 cells inhibits SPSB2's biological functions, including proliferation, invasion, metastasis, and other phenotypes. CONCLUSIONS SPSB2 plays a crucial role in the development of LIHC. It is related to the immune response and unfavorable outcomes. SPSB2 may function as a clinical biomarker for prognosis.
Collapse
Affiliation(s)
- Lv Tian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun 130021, China
| | - Jiexin Guan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
42
|
Ward FJ, Kennedy PT, Al-Fatyan F, Dahal LN, Abu-Eid R. CTLA-4-two pathways to anti-tumour immunity? IMMUNOTHERAPY ADVANCES 2025; 5:ltaf008. [PMID: 40265076 PMCID: PMC12012449 DOI: 10.1093/immadv/ltaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/02/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have revolutionized cancer therapy and improved patient outcomes in a range of cancers. ICIs enhance anti-tumour immunity by targeting the inhibitory checkpoint receptors CTLA-4, PD-1, PD-L1, and LAG-3. Despite their success, efficacy, and tolerance vary between patients, raising new challenges to improve these therapies. These could be addressed by the identification of robust biomarkers to predict patient outcome and a more complete understanding of how ICIs affect and are affected by the tumour microenvironment (TME). Despite being the first ICIs to be introduced, anti-CTLA-4 antibodies have underperformed compared with antibodies that target the PD-1/PDL-1 axis. This is due to the complexity regarding their precise mechanism of action, with two possible routes to efficacy identified. The first is a direct enhancement of effector T-cell responses through simple blockade of CTLA-4-'releasing the brakes', while the second requires prior elimination of regulatory T cells (TREG) to allow emergence of T-cell-mediated destruction of tumour cells. We examine evidence indicating both mechanisms exist but offer different antagonistic characteristics. Further, we investigate the potential of the soluble isoform of CTLA-4, sCTLA-4, as a confounding factor for current therapies, but also as a therapeutic for delivering antigen-specific anti-tumour immunity.
Collapse
Affiliation(s)
- Frank J Ward
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul T Kennedy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Farah Al-Fatyan
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Rasha Abu-Eid
- Medical Sciences and Nutrition, Institute of Dentistry, School of Medicine, Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Dentistry, College of Medicine and Health, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Moore GL, Zeng VG, Diaz JE, Bonzon C, Avery KN, Rashid R, Qi J, Nam DH, Jacinto J, Dragovich MA, Kim YK, Balcazar KP, Bakhit CG, Eivazi A, Nguyen H, Muchhal US, Szymkowski DE, Desjarlais JR, Hedvat M. A B7-H3-Targeted CD28 Bispecific Antibody Enhances the Activity of Anti-PD-1 and CD3 T-cell Engager Immunotherapies. Mol Cancer Ther 2025; 24:331-344. [PMID: 39301613 PMCID: PMC11876962 DOI: 10.1158/1535-7163.mct-24-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
T-cell activation is a multistep process requiring T-cell receptor engagement by peptide-MHC complexes (Signal 1) coupled with CD28-mediated costimulation (Signal 2). Tumors typically lack expression of CD28 ligands, so tumor-specific Signal 1 (e.g., neoepitope presentation) without costimulation may be ineffective or even induce T-cell anergy. We designed the bispecific antibody XmAb808 to co-engage the tumor-associated antigen B7-H3 with CD28 to promote T-cell costimulation within the tumor microenvironment. XmAb808 costimulation was measured by its ability to activate and expand T cells and enhance T cell-mediated cancer cell killing in cocultures of human peripheral blood mononuclear cells and cancer cells and in mice engrafted with human peripheral blood mononuclear cells and tumor xenografts. XmAb808 avidly bound cancer cells and stimulated IL2 and IFNγ secretion from T cells cocultured with cancer cells engineered to deliver Signal 1 to T cells via a surface-expressed anti-CD3 antibody. XmAb808 enhanced expression of the antiapoptotic factor Bcl-xL and CD25, promoting survival and IL2-dependent expansion of T cells coupled with increased T cell-mediated cytotoxicity in vitro. XmAb808 combined with an EpCAM×CD3 bispecific antibody to enhance target cell killing through IL2-dependent expansion of CD25+ T cells. This combination also suppressed pancreatic tumor xenograft growth in mice. Furthermore, XmAb808 combined with an anti-programmed cell death protein 1 antibody to suppress breast tumor xenograft growth in mice. XmAb808 as monotherapy and in combination with an anti-programmed cell death protein 1 antibody is currently in clinical development in patients with advanced solid tumors. Our results suggest that XmAb808 may also combine with tumor antigen-targeted anti-CD3 (Signal 1) T-cell engagers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Qi
- Xencor, Inc., Pasadena, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bosenberg M. Advances in Studying Cancer Immunology in Mice. Cold Spring Harb Perspect Med 2025; 15:a041682. [PMID: 38772704 PMCID: PMC11875087 DOI: 10.1101/cshperspect.a041682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The recent rise in effective immuno-oncology therapies has increased demand for experimental approaches to model anticancer immunity. A variety of mouse models have been developed and used to study cancer immunology. These include mutagen-induced, genetically engineered, syngeneic, and other models of cancer immunology. These models each have the potential to define mechanistic aspects of anticancer immune responses, identify potential therapeutic targets, and serve as preclinical models for further therapeutic development. Specific benefits and liabilities are characteristic of particular cancer immunology modeling approaches. The optimal choice and utilization of models depends on the cancer immunology scientific question being addressed and can serve to increase mechanistic understanding and development of human immuno-oncology therapies.
Collapse
Affiliation(s)
- Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
45
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 PMCID: PMC11874808 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
46
|
Morris ZS, Demaria S, Monjazeb AM, Formenti SC, Weichselbaum RR, Welsh J, Enderling H, Schoenfeld JD, Brody JD, McGee HM, Mondini M, Kent MS, Young KH, Galluzzi L, Karam SD, Theelen WSME, Chang JY, Huynh MA, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji QH, Nguyen AT, Patel RB, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera TA, Ong IM, Herrera F, Menon H, Smart D, Ahmed J, Gartrell RD, Roland CL, Fekrmandi F, Chakraborty B, Bent EH, Berg TJ, Hutson A, Khleif S, Sikora AG, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol 2025; 26:e152-e170. [PMID: 40049206 DOI: 10.1016/s1470-2045(24)00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/09/2025]
Abstract
Radiotherapy both promotes and antagonises tumour immune recognition. Some clinical studies show improved patient outcomes when immunotherapies are integrated with radiotherapy. Safe, greater than additive, clinical response to the combination is limited to a subset of patients, however, and how radiotherapy can best be combined with immunotherapies remains unclear. The National Cancer Institute-Immuno-Oncology Translational Network-Society for Immunotherapy of Cancer-American Association of Immunology Workshop on Combining Immunotherapy with Radiotherapy was convened to identify and prioritise opportunities and challenges for radiotherapy and immunotherapy combinations. Sessions examined the immune effects of radiation, barriers to anti-tumour immune response, previous clinical trial data, immunological and computational assessment of response, and next-generation radiotherapy-immunotherapy combinations. Panel recommendations included: developing and implementing patient selection and biomarker-guided approaches; applying mechanistic understanding to optimise delivery of radiotherapy and selection of immunotherapies; using rigorous preclinical models including companion animal studies; embracing data sharing and standardisation, advanced modelling, and multidisciplinary cross-institution collaboration; interrogating clinical data, including negative trials; and incorporating novel clinical endpoints and trial designs.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandra Demaria
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, Sacramento, CA, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Heiko Enderling
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M McGee
- Department of Radiation Oncology and Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michael S Kent
- Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joe Y Chang
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mai Anh Huynh
- Brigham and Women's Hospital-Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Daib
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Caroline Chung
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Serre
- Aix Marseille University, SMARTc Unit, Inserm S 911 CRO2, Marseille, France
| | | | - Jie Deng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quaovi H Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony T Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, USA
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, Department of Radiology, New York, NY, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Logan Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Irene M Ong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Hari Menon
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jalal Ahmed
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina L Roland
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Eric H Bent
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Fong
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Ma M, Jin C, Dong Q. Intratumoral Heterogeneity and Immune Microenvironment in Hepatoblastoma Revealed by Single-Cell RNA Sequencing. J Cell Mol Med 2025; 29:e70482. [PMID: 40099956 PMCID: PMC11915626 DOI: 10.1111/jcmm.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatoblastoma (HB) is a common paediatric liver malignancy characterised by significant intratumoral heterogeneity and a complex tumour microenvironment (TME). Using single-cell RNA sequencing (scRNA-seq), we analysed 43,592 cells from three tumour regions and adjacent normal tissue of an HB patient. Our study revealed distinct cellular compositions and varying degrees of malignancy across different tumour regions, with the T1 region showing the highest malignancy and overexpression of HMGB2 and TOP2A. Survival analysis demonstrated that high HMGB2 expression is associated with poor prognosis and increased recurrence, suggesting its potential as a prognostic marker. Additionally, we identified a diverse immune microenvironment enriched with regulatory T cells (Tregs) and CD8+ effector memory T cells (Tem), indicating potential immune evasion mechanisms. Notably, CTLA-4 and PD-1 were highly expressed in Tregs and Tem cells, highlighting their potential as immunotherapy targets. Myeloid cells, including Kupffer cells and dendritic cells, also exhibited distinct functional roles in different tumour regions. This study provides the first comprehensive single-cell atlas of HB, revealing critical insights into its intratumoral heterogeneity and immune microenvironment. Our findings not only advance the understanding of HB biology but also offer new directions for precision medicine, including the development of targeted therapies and immunotherapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mingdi Ma
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chen Jin
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qian Dong
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Shandong Key Laboratory of Digital Medicine and Computer Assisted SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
48
|
Katayama N, Ohuchida K, Son K, Tsutsumi C, Mochida Y, Noguchi S, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Oda Y, Nakamura M. Tumor infiltration of inactive CD8 + T cells was associated with poor prognosis in Gastric Cancer. Gastric Cancer 2025; 28:211-227. [PMID: 39722065 PMCID: PMC11842491 DOI: 10.1007/s10120-024-01577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC. METHODS We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC. RESULTS We categorized 157 GC patients into LOW, MID, and HIGH groups based on their CD8 + T-cell infiltration. Overall survival was notably lower for the HIGH and LOW groups compared with the MID group. Our scRNA-seq data analysis showed that CD8 + T-cell activity markers in the HIGH group were expressed at lower levels than in normal tissue, but the T-cell-attracting chemokine CCL5 was expressed at a higher level. Notably, CD8 + T-cells in the HIGH group displayed lower PD1 expression and higher CTLA4 expression. TCR repertoire analysis using only Epstein-Barr virus-negative cases showed that CD8 + T-cell receptor clonality was lower in the HIGH group than in the MID group. Furthermore, in the HIGH group, the antigen-presenting capacity of type 1 conventional dendritic cells was lower, the immunosuppressive capacity of myeloid-derived suppressor cells was higher, and the expression of CTLA4 in regulatory T-cells was higher. CONCLUSION The present data suggest that the infiltration of inactive CD8 + T-cells with low clonality is induced by chemotaxis in the HIGH group, possibly leading to a poor prognosis for patients with GC.
Collapse
Affiliation(s)
- Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kiwa Son
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shoko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
49
|
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
50
|
Luo X, Kugeratski FG, Dowlatshahi DP, Sugimoto H, Arian KA, Fan Y, Huang L, Wills D, Lilla S, Hodge K, Zanivan SR, LeBleu VS, McAndrews KM, Kalluri R. Engineered Immunomodulatory Extracellular Vesicles from Epithelial Cells with the Capacity for Stimulation of Innate and Adaptive Immunity in Cancer and Autoimmunity. ACS NANO 2025; 19:5193-5216. [PMID: 39869047 PMCID: PMC12043189 DOI: 10.1021/acsnano.4c09688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1. We demonstrated abundant levels of these proteins in the engineered cells and EVs. Functionally, the engineered EVs efficiently elicited positive and negative costimulation of human and murine T cells. In the setting of cancer and autoimmune hepatitis, the engineered EVs modulated T cell functions and altered disease progression. OX40L EVs also provided enhanced antitumor activity in combination with anti-CTLA-4 in melanoma-bearing mice. In addition, we added multiple immunomodulatory proteins in EVs (EVmIM), attempting to elicit an immune response in both lymphoid and myeloid compartments. The EVmIM containing CD80, 4-1BBL, CD40L, CD2, and CD32 engaged both T cells and antigen presenting cells (APCs) in melanoma tumors, demonstrating the capacity for EVmIM to elicit antitumor activity. Our work provides evidence that EVs can be engineered to induce specific immune responses with translational potential to modulate immune cell functions in pathological settings.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Fernanda G. Kugeratski
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dara P. Dowlatshahi
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Hikaru Sugimoto
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Kent A. Arian
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yibo Fan
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Li Huang
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Danielle Wills
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, G61 1BD, United Kingdom
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, G61 1BD, United Kingdom
| | - Sara R. Zanivan
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Valerie S. LeBleu
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kathleen M. McAndrews
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|