1
|
Li X, Wen X, Luo Z, Wang X, Zhang Y, Wei J, Tian Y, Ling R, Duan Y. Simultaneous detection of volatile and non-volatile metabolites in urine using UPLC-Q-Exactive Orbitrap-MS and HS-SPME/GC-HRMS: A promising strategy for improving the breast cancer diagnosis accuracy. Talanta 2025; 291:127812. [PMID: 40023122 DOI: 10.1016/j.talanta.2025.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) is the primary cause of cancer-related deaths in women. Currently, the discovery of biomarkers primarily relies on single platform, which might overlook other potential biomarkers and lead to inaccurate diagnoses. This study aims to: (1) expand the detection range of biomarkers through multiple analytical techniques, thereby improving the accuracy of BC diagnosis, and (2) analyze the metabolic pathways of the biomarkers to explore the metabolic mechanisms underlying BC. Urine samples from BC patients and healthy controls were analyzed using two techniques: Ultra-high performance liquid chromatography combined with Quadrupole-Exactive-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS), and headspace solid-phase microextraction combined with gas chromatography-high resolution mass spectrometry (HS-SPME/GC-HRMS). Data from each platform was analyzed independently using both univariate and multivariate statistical approaches to identify candidate biomarkers. Subsequently, a mid-level data fusion approach was applied to integrate the candidate biomarkers identified by each platform. The fused data were used to construct orthogonal partial least squares discriminant analysis (OPLS-DA) models and random forest (RF) models, which were then compared against models based on individual platform. The fused RF and OPLS-DA models demonstrated enhanced diagnostic accuracy compared to the individual model. Integrating GC-HRMS and UPLC-Q-Exactive Orbitrap-MS achieved the best performance, with an AUC value of 0.967, sensitivity of 86.37 %, and specificity of 89.19 %. Metabolic pathway analysis revealed that 10 metabolic pathways exert an impact on BC. Four pathways-pyruvate metabolism, sulfur metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were found to be associated with BC in both metabolomics and volatolomics studies, indicating that these pathways play pivotal roles in BC. This study confirmed the potential of merging multi-platforms to enhance the accuracy of BC diagnosis, offering new avenues for understanding the metabolic mechanisms of BC.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China; Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yilin Zhang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Jing Wei
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
2
|
Tang ZF, Zhang M, Yang FR, Chen Y, Wang T, Chen ZP, Yu RQ. Mitochondria- and nucleus-targeted fluorescent probe for chemometrics-enhanced detection of cysteine. Talanta 2025; 291:127870. [PMID: 40043376 DOI: 10.1016/j.talanta.2025.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
The detection and imaging of cysteine (Cys) are vital for clinical applications, given its critical role as a biomarker in various diseases. In this study, a cationic fluorescent probe (probe T) was synthesized, featuring benzothiazole as a fluorescent group and acrylate as a Cys recognition site. Compared to other biothiols, probe T specifically detects Cys while targeting mitochondria and nuclei. In addition, probe T has low cytotoxicity and successfully imaged mitochondria and nuclei in MCF-7 cells. The fluorescence intensity ratio (F560 nm/F500 nm) of probe T was linearly correlated with the Cys concentration under 360 nm excitation, and the limit of detection was 60.4 nM. When quantifying Cys in complex biological samples, background interferences often lead to biased quantitative results. To mitigate this, chemometric method based on spectral shape deformation (SSD) theory was used to correct the spectral shape and intensity changes caused by background signals. By combining the SSD model with the ratiometric fluorescence sensing method, it was able to accurately quantify Cys in cell lysate, and the quantitative results were consistent with the kit. Therefore, this method not only provides a new diagnostic tool for the study of Cys-related diseases, but also provides an effective solution for background interference correction.
Collapse
Affiliation(s)
- Zhang-Feng Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Min Zhang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
| | - Feng-Rui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Yao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| |
Collapse
|
3
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
4
|
Li X, Zhang Y, Liu A, Li L, Yang X, Wang Y, Zhao Y, Zvyagin AV, Wang T, Lin Q. Nanozyme as tumor energy homeostasis disruptor mediated ferroptosis for high-efficiency radiotherapy. J Colloid Interface Sci 2025; 688:44-58. [PMID: 39987840 DOI: 10.1016/j.jcis.2025.02.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Radioresistance in tumors, driven by the insufficiency and rapid depletion of reactive oxygen species (ROS), limits the efficacy of radiotherapy (RT). This study introduces an Ir@Au nanozyme that enhances tumor radiosensitivity by disrupting energy homeostasis and inducing ferroptosis in tumor cells. The Ir@Au nanozyme mimics glucose oxidase to block the tumor's energy supply, continuously produces hydrogen peroxide (H2O2), and lowers the pH to optimize Fenton reactions. Acting as a peroxidase (POD), it generates additional ROS for chemodynamic therapy (CDT), depletes glutathione (GSH), and perturbs the tumor's antioxidant defenses. Upon exposure to ionizing radiation, the nanozyme absorbs photons and emits electrons, interacting with water to amplify ROS production. This ROS accumulation, combined with radiation, enhances DNA damage and lipid peroxidation, reversing radioresistance and promoting ferroptosis. Additionally, Ir@Au serves as a contrast agent for computed tomography, enabling precise RT through the delineation of tumor boundaries. In summary, the Ir@Au nanozyme effectively disrupts tumor energy homeostasis, initiating ROS-based cascades that inhibit tumor growth. It thus offers a promising strategy for overcoming radioresistance during cancer therapy.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun 130041, China
| | - Yuan Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yuechen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Andrei V Zvyagin
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Zhang C, Zhang S, Wang G, Huang X, Xu S, Wang D, Guo C, Wang Y. Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101414. [PMID: 39813916 DOI: 10.1016/j.cbd.2025.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources. Therefore, we conducted mass selection for fast-growing strain P. argenteus for several consecutive years. Various genetic improvement programs have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In the present study, we combined bulked segregant analysis and transcriptome sequencing to identify candidate single nucleotide polymorphisms (SNPs) and key genes for growth-related traits in P. argenteus. A total of 7,280,936 SNPs and 2,212,379 insertions/deletions were identified in the extreme phenotypes of the fast-growing and slow-growing groups. Based on the examination of SNP frequency differences and sliding-window analysis, 42 SNPs were identified as candidate markers. Moreover, 14 of the 42 SNPs linked to growth-related traits were confirmed to be credible SNPs, and eight growth-related genes were screened, namely myb-binding protein 1 A, insulin A/B chains, α-1B adrenoceptor, engulfment and cell motility protein 3, myosin light chain kinase family member 4, insulin receptor located, unconventional myosin-9b, and matrilin-1. An optimal three-factor model (SNP4&SNP12&SNP14) was constructed using the generalized multifactor dimensionality reduction method, and its accuracy was verified as 67.72 %. These results may benefit genetic studies and accelerate genetic improvement of fast-growing strains of P. argenteus.
Collapse
Affiliation(s)
- Cheng Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shun Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Guanlin Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Xiang Huang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shanliang Xu
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Danli Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Chunyang Guo
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China.
| | - Yajun Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China.
| |
Collapse
|
6
|
Wei HJ, Tan HY, Cao JP, He J, Zhang QL, Jiang L, Zhou GJ, Xiao F. Therapeutic importance of hydrogen sulfide in cognitive impairment diseases. Brain Res 2025; 1856:149547. [PMID: 40120710 DOI: 10.1016/j.brainres.2025.149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
The brain naturally synthesizes hydrogen sulfide (H2S) via enzymes such as cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), cysteine aminotransferase (CAT), and cystathionine-γ-lyase (CSE). From a physiological point of view, H2S serves as a neuromodulator with antioxidant and neuroprotective properties. Recent research suggests that H2S is crucial in regulating learning and memory, as its downregulation is commonly observed in cognitive impairment diseases. Preclinical studies suggest that external supplementation, through donors like sodium hydrosulfide (NaHS), can improve cognitive impairment in various cognitive disorder models. Moreover, numerous molecular mechanisms have been proposed to explain the effects of these H2S donors. This review aims to detail the roles of H2S in various models of cognitive impairment and in human subjects, highlighting its potential mechanisms and providing experimental support for its use as a novel therapeutic approach in treating cognitive disorders. Overall, H2S plays a significant role in the treatment of cognitive impairment diseases, but further large-scale studies are still required to support the results of current research.
Collapse
Affiliation(s)
- Hai-Jun Wei
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Hui-Ying Tan
- The People's Hospital Dongkou, Shaoyang, Hunan 422300 PR China
| | - Jian-Ping Cao
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Juan He
- Hunan University of Medicine, Huaihua, Hunan 418000 PR China
| | - Qing-Li Zhang
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421005 PR China
| | - Li Jiang
- Department of Neurology, Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Gui-Juan Zhou
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Fan Xiao
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001 PR China.
| |
Collapse
|
7
|
Xu N, Lin H, Ding X, Wang P, Lin JM. Isotope tracing-assisted chip-based solid-phase extraction mass spectrometry for monitoring metabolic changes and vitamin D3 regulation in cells. Talanta 2025; 288:127754. [PMID: 39970803 DOI: 10.1016/j.talanta.2025.127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Cellular metabolism is a dynamic and essential process, with alterations in metabolic pathways serving as hallmark features of cancer. In this study, we developed a chip-based solid-phase extraction mass spectrometry (Chip-SPE-MS) platform for high-sensitivity, high-throughput analysis of cellular metabolites and real-time tracking of metabolic fluxes. The system achieved detection limits ranging from 0.10 to 9.43 μmol/mL for various amino acids and organic acids, with excellent linearity (r ≥ 0.992). By incorporating isotope tracing, the platform enabled derivatization-free, real-time monitoring of 13C-labeled metabolites, such as lactic acid. Our analysis revealed significant metabolic differences between normal (L02) and cancerous (HepG2, HCT116) cells, including enhanced glycolytic activity and elevated lactate production in cancer cells. Furthermore, treatment with 1,25-dihydroxyvitamin D3 was shown to suppress glucose uptake and modulate metabolic activity in HCT116 cells, highlighting the regulatory effects of vitamin D3 on cancer metabolism. This study not only provides novel insights into the metabolic reprogramming associated with cancer but also demonstrates the potential of the Chip-SPE-MS platform as a powerful tool for real-time monitoring of dynamic metabolic processes. The findings have broad implications for cancer therapy and the study of metabolic diseases.
Collapse
Affiliation(s)
- Ning Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Hu R, Duan Z, Wang M, Liu M, Zhang Y, Lu Y, Qian Y, Wei E, Feng J, Guo P, Chen Y. Stable isotope tracing reveals glucose metabolism characteristics of drug-resistant B-cell acute lymphoblastic leukemia. Anal Chim Acta 2025; 1352:343884. [PMID: 40210293 DOI: 10.1016/j.aca.2025.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/26/2024] [Accepted: 03/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Adult B-cell acute lymphocytic leukemia (B-ALL) is a malignant hematologic tumor characterized by the uncontrolled proliferation of B-cell lymphoblasts in the bone marrow. Despite advances in treatment, including chemotherapy and consolidation therapy, many B-ALL patients experience unfavorable prognoses due to the development of drug resistance. The precise mechanisms governing chemotherapy resistance, particularly those related to metabolic reprogramming within tumors, remain inadequately elucidated. RESULTS Nalm6/DOX cells exhibited significantly elevated levels of glucose, pyruvate, alanine, glutamine, and glycine compared to Nalm6 cells. Conversely, reduced levels of citrate, acetate, and leucine were observed in Nalm6/DOX cells. Upon exposure to the culture medium supplemented with tracer 13C6-glucose, the Nalm6/DOX cells showed an increase in the abundance of 13C-alanine and a decrease in the levels of 13C-lactate, indicating impaired utilization of 13C-pyruvate. Combining β-chloro-alanine (ALTi) with DOX could decrease the drug resistance phenotype of Nalm6/DOX cells. The results demonstrated that glycolysis and tricarboxylic acid cycle were suppressed in Nalm6/DOX cells, while metabolic flux through the alanine and glutamine pathways was increased. Therefore, inhibition of alanine biosynthesis in Nalm6/DOX exhibits the potential to reverse drug resistance. SIGNIFICANCE A new insight into the impact of metabolism on chemotherapy resistance in B-ALL has been gained through the use of stable isotope resolved metabolomics based on nuclear magnetic resonance and ultra-performance liquid chromatography/tandem mass spectrometry. This provides promising ways for the development of innovative therapeutic strategies to alleviate drug resistance and relapse in affected patients.
Collapse
Affiliation(s)
- Rong Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Zhengwei Duan
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Mengyao Wang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Mengting Liu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yaoxin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yanxi Lu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yuhan Qian
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Enjie Wei
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
10
|
Filip R, Bélanger É, Chen X, Lefebvre D, Uguccioni SM, Pezacki JP. LYPLAL1 enzyme activity is linked to hepatic glucose metabolism. Biochem Biophys Res Commun 2025; 759:151656. [PMID: 40147354 DOI: 10.1016/j.bbrc.2025.151656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The serine hydrolase LYPLAL1 is a poorly characterised enzyme with emerging roles in hepatic metabolism. A multitude of association studies have shown links between variants of this gene locus and metabolic conditions such as obesity and insulin resistance. However, the enzyme's function is still largely unknown. Recent biochemical studies have revealed that it may play a role in hepatic glucose metabolism and that its activity is allosterically regulated. Herein, we use a selective activity-based probe to delineate LYPLAL1's involvement in hepatic metabolism. We show that the enzyme's activity is modulated during metabolic stress, specifically pointing to a putative role in negatively regulating gluconeogenesis and upregulating glycolysis. We also determine that knock-out of the enzyme does not affect liver lipid profiles and bring forth evidence for insulin-mediated control of LYPLAL1 in HepG2 cells. Furthermore, LYPLAL1 activity appears to be largely post-translationally regulated as gene expression levels remain largely constant under insulin and glucagon treatments. Taken together these data point to an enzymatic role in regulating glucose metabolism that may be part of a feedback mechanism of signal transduction.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Étienne Bélanger
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Xinhzu Chen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - David Lefebvre
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Spencer M Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
11
|
Wang J, Gao X, Ren J, Song B, Zhang W, Yuan J. A novel ratiometric luminescent probe based on a ruthenium(II) complex-rhodamine scaffold for ATP detection in cancer cells. Talanta 2025; 286:127538. [PMID: 39778491 DOI: 10.1016/j.talanta.2025.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology. Herein, we report a novel ratiometric luminescent probe, Ru-Rho, comprised of a ruthenium(II)-based complex and rhodamine 6G (Rho 6G) with excellent water solubility and photostability. Notably, Ru-Rho selectively responds to ATP at acidic conditions, matching the need of monitoring ATP under the acidic intracellular environment of cancer cells. Moreover, the fast ratiometric detection and imaging of ATP under single wavelength excitation improve the detection accuracy. Ru-Rho has been effectively utilized not only for ratio imaging ATP in cells and zebrafish, but also for assessing the efficacy of glycolysis-inhibiting anticancer drugs in intracellular levels, which accelerates the screening process for anticancer drugs and supports the development of new therapeutic agents. The design strategy based on transition metal ruthenium(II) complexes opens a new pathway for constructing ATP luminescent probes, allowing for better adaptation to complex detection requirements.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
12
|
Wu Y, Zhao J, Zhao S, Li J, Luo J, Wang Y. PFKFB4 promotes endometrial cancer by regulating glycolysis through SRC‑3 phosphorylation. Oncol Rep 2025; 53:53. [PMID: 40116122 PMCID: PMC11948970 DOI: 10.3892/or.2025.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
The present study aimed to investigate the role of 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 4 (PFKFB4) in endometrial cancer cells and to explore its potential molecular mechanisms. PFKFB4 expression in endometrial cancer tissues was detected by immunohistochemistry. Cell Counting Kit‑8, Transwell assays and flow cytometry were used to detect cell proliferation, invasion and apoptosis in endometrial cancer cells after PFKFB4 knockdown. An enzyme‑linked immunosorbent assay was used to detect the glucose and lactic acid contents. Western blotting was performed to detect the levels of glycolysis‑related enzymes, steroid receptor coactivator‑3 (SRC‑3), and phosphorylated SRC‑3. In vivo experiments were performed to investigate the tumorigenic potential of PFKFB4. PFKFB4 expression was upregulated in endometrial cancer tissues compared with that in normal controls, and its upregulation was positively correlated with the depth of myometrial invasion, lymph node metastasis, surgical pathological stage and vascular invasion. PFKFB4 knockdown significantly inhibited proliferation and invasion, increased apoptosis, and decreased oxygen consumption and lactic acid production in endometrial cancer cells. PFKFB4 knockdown decreased SRC‑3 phosphorylation. After simultaneous PFKFB4 knockdown and SRC‑3 overexpression in cancer cells, oxygen consumption, lactic acid production, and glycolysis‑related protein expression were increased compared with those in control cells. PFKFB4 knockdown inhibited tumor proliferation, apoptosis and the expression of Ki‑67. PFKFB4 may regulate glycolysis in endometrial cancer cells by targeting SRC‑3, thus promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Yaling Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianfang Li
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jin Luo
- Department of Pathology, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
13
|
Lechtenberg M, Chéneau C, Riquin K, Koenig L, Mota C, Halary F, Dehne EM. A perfused iPSC-derived proximal tubule model for predicting drug-induced kidney injury. Toxicol In Vitro 2025; 105:106038. [PMID: 40020762 DOI: 10.1016/j.tiv.2025.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The kidney is frequently exposed to high levels of drugs and their metabolites, which can injure the kidney and the proximal tubule (PT) in particular. In order to detect nephrotoxicity early during drug development, relevant in vitro models are essential. Here, we introduce a robust and versatile cell culture insert-based iPSC-derived PT model, which can be maintained in a microphysiological system for at least ten days. We demonstrate the model's ability to predict drug-induced PT injury using polymyxin B, cyclosporin A, and cisplatin, and observe that perfusion distinctly impacts our model's response to xenobiotics. We observe that the upregulation of metallothioneins that is described in vivo after treatment with these drugs is reliably detected in dynamic, but not static in vitro PT models. Finally, we use our model to alleviate polymyxin-induced nephrotoxicity by supplementing the antioxidant curcumin. Together, these findings illustrate that our perfused iPSC-derived PT model is versatile and well-suited for in vitro studies investigating nephrotoxicity and its prevention. Reliable and user-friendly in vitro models like this enable the early detection of nephrotoxic potential, thereby minimizing adverse effects and reducing drug attrition.
Collapse
Affiliation(s)
| | - Coraline Chéneau
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Kevin Riquin
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Franck Halary
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | |
Collapse
|
14
|
Qiu H, Zhang C, Ma X, Li Y. Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncol Rep 2025; 53:54. [PMID: 40116086 DOI: 10.3892/or.2025.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Acute myeloid leukemia, myelodysplasia‑related (AML‑MR), a challenging and aggressive subtype of AML, is characterized by unique genetic abnormalities and molecular features, which contribute to its poor prognosis compared with other AML subtypes. The present review summarizes the current understanding of AML‑MR pathogenesis, highlighting notable advancements in genetic and cytogenetic insights. Critical mutations, such as those in the tumor antigen p53 and additional sex combs like 1 genes, and their role in disease progression and resistance to treatment, are explored. The review further investigates how clonal evolution and cellular microenvironment alterations drive AML‑MR transformation and impact patient outcomes. Despite the poor outlook typically associated with AML‑MR, developments in treatment approaches offer hope. The present review considers the efficacy of novel therapeutic agents, including CPX‑351, hypomethylating agents and targeted molecular therapies. Additionally, innovations in immunotherapy and allogeneic hematopoietic stem cell transplantation are discussed as promising avenues to improve patient survival rates. The challenges of treating AML‑MR, particularly in elderly and pretreated patients, underline the necessity for individualized treatment strategies that consider both the biological complexity of the disease and the overall health profile of the patient. The present review focuses on the mechanisms of AML‑MR transformation, highlighting factors that may offer a crucial theoretical foundation and pave the way for future applications in precision medicine. Future research directions include exploring novel targeted therapies and combination regimens to mitigate the transformation risks and enhance the quality of life of patients with AML‑MR.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chaowei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochen Ma
- Department of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Li X, Wu M, Chen G, Ma W, Chen Y, Ding Y, Dong P, Ding W, Zhang L, Yang L, Gan W, Li D. The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC. Mol Carcinog 2025; 64:923-935. [PMID: 39991877 DOI: 10.1002/mc.23898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengmeng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Guijuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Liu J, Chen Z, Deng L, Yao C, Zhou Z, Zhou C, Bin Y, Liu M, Wang L, Wang L, Wang Z. Metal-phenolic networks specifically eliminate hypoxic tumors by instigating oxidative and proteotoxic stresses. Bioact Mater 2025; 47:361-377. [PMID: 40026824 PMCID: PMC11870026 DOI: 10.1016/j.bioactmat.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Hypoxia, a prevalent characteristic of solid tumors, substantially impairs the efficacy of cancer treatments. However, there are no feasible clinical approaches for treating hypoxic tumors. Here, we develop metal-phenolic networks (CuGI) utilizing the natural glycolysis inhibitor (epigallocatechin gallate) and the essential metal element in the human body (copper ions), specifically targeting and annihilating hypoxic cancer cells. CuGI redirects the metabolic pathway of hypoxic cancer cells from anaerobic glycolysis to oxidative phosphorylation, thereby enhancing reactive oxygen species production and promoting oligomerization of lipoylated proteins in the tricarboxylic acid cycle. Through targeted induction of oxidative and proteotoxic stresses, CuGI induces apoptosis and cuproptosis specifically in cancer cells under hypoxic conditions while sparing normal cells. Moreover, cancer cell membrane-coated CuGI (CuGI@CM) exhibits enhanced tumor penetration effect and demonstrates commendable biocompatibility, effectively suppressing colorectal tumor growth. Importantly, CuGI@CM, when combined with vascular disruptors or radiotherapy which aggravate tumor hypoxia, synergistically potentiates therapeutic efficacy. Thus, CuGI represents a specific and potent nanotherapeutic capable of selectively eliminating hypoxic tumors, offering promise in combination therapies to address tumor hypoxia.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zuoyu Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lixue Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chundong Yao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhixin Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yawen Bin
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liping Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
17
|
Zhong YX, Zhao HB, Lian MH, Shen JM, Li CX, Ma HM, Xu D, Chen GQ, Zhang C. SUMOylated hnRNPM suppresses PFKFB3 phosphorylation to regulate glycolysis and tumorigenesis. Cancer Lett 2025; 616:217573. [PMID: 39983892 DOI: 10.1016/j.canlet.2025.217573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Heterogeneous nuclear ribonucleoprotein M (hnRNPM), a splicing regulatory factor with a majority of studies focused on its RNA-binding properties and effects on splicing outcome, is implicated in the progression of various kinds of human cancers, but its mechanisms remain largely enigmatic. Applying the global SUMOylated proteomic screening in colorectal cancer cells, herein we find that hnRNPM is SUMOylated at lysine 17 and Sentrin-specific protease 1 (SENP1) is essential for its de-SUMOylation. Although hnRNPM SUMOylation does not affect its known pre-mRNA splicing-related effects, more intriguingly, it remarkably influences lactate production. Mechanistically, SUMOylated hnRNPM interacts with 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) to affect its localization and inhibit its phosphorylation, thus suppressing glycolysis. Accordingly, SUMO-deficient hnRNPM promotes colorectal cancer cell proliferation and tumorigenesis in mice. Also, a negative correlation between hnRNPM SUMOylation and SENP1 expression or phosphorylated PFKFB3 levels can be found in CRC patient samples. These findings not only enhance our understanding of the multifaceted roles of hnRNPM in cancer biology but also open new avenues for the development of targeted therapies aimed at modulating hnRNPM SUMOylation.
Collapse
Affiliation(s)
- Ya-Xian Zhong
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Meng-Han Lian
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Jia-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Cheng-Xiao Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Dan Xu
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
18
|
Marino KM, Shippy DC, Ulland TK. Sugar utilization by microglia in Alzheimer's disease. J Neuroimmunol 2025; 401:578552. [PMID: 39970850 PMCID: PMC11908943 DOI: 10.1016/j.jneuroim.2025.578552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD), yet the effect of specific carbohydrate sources in the diet on AD pathology remains unclear. The primary neuroimmune cell, microglia, undergo a metabolic shift during neuroinflammation associated with AD pathology. We utilized existing gene expression data and identified changes in sugar transporters (increased Slc2a1 (glucose) and decreased Slc2a5 (fructose) expression). To examine gene expression with respect to primary sugar source, N9 cells, a mouse microglia cell line, were cultured in glucose or fructose supplemented media and stimulated with lipopolysaccharide (LPS). RNA-sequencing analyses indicated significant changes between control and sugar supplemented media and several differentially expressed genes between glucose and fructose media. Concurrently, 5XFAD mice received equicaloric diets with specific carbohydrate sources: dextrose or fructose. Regardless of diet, sex, or genotype, all mice developed high blood sugar levels; confocal microscopy analyses indicated similar amyloid plaque burden and microglial response relative to the control diet, but there was a change in the microglial response between dextrose and fructose fed mice. Overall, these data indicate microglia preferentially express sugar transporters and sugar source may influence microglial reactivity in response to plaque pathology.
Collapse
Affiliation(s)
- Kaitlyn M Marino
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Tyler K Ulland
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America.
| |
Collapse
|
19
|
Xu X, Huang Z, Han H, Yu Z, Ye L, Zhao Z, Qian Y, Li Y, Zhao R, Zhang T, Liu Y, Cai J, Lin S, Zhai E, Chen J, Cai S. N 7-methylguanosine tRNA modification promotes gastric cancer progression by activating SDHAF4-dependent mitochondrial oxidative phosphorylation. Cancer Lett 2025; 615:217566. [PMID: 39965707 DOI: 10.1016/j.canlet.2025.217566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
N7-methylguanosine (m7G) tRNA modification is closely implicated in tumor occurrence and development. However, the precise function and molecular mechanisms of m7G tRNA modification in gastric cancer (GC) remain unclear. In this study, we evaluated the expression and function of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) in GC and elucidated the mechanisms underlying the role of METTL1/WDR4-mediated m7G tRNA modifications in promoting GC progression. Upregulation of m7G methyltransferase complex proteins, METTL1 and WDR4, in GC tissues significantly correlates with poor patient prognosis. Functionally, METTL1 and WDR4 facilitate GC progression in vitro and in vivo. Mechanistically, METTL1 knockdown reduces the expression of m7G-modified tRNAs and attenuates the translation of oncogenes enriched in pathways associated with oxidative phosphorylation. Furthermore, METTL1 strengthens mitochondrial electron transport chain complex II (ETC II) activity by promoting succinate dehydrogenase assembly factor 4 (SDHAF4) translation, thereby accelerating GC metabolism and progression. Forced expression of SDHAF4 and chemical modulators of ETC II could reverse the effects of METTL1 on mouse GC. Collectively, our findings delineate the oncogenic role and molecular mechanisms of METTL1/WDR4-mediated m7G tRNA modifications in GC progression, suggesting METTL1/WDR4 and its downstream signaling axis as potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiang Xu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Hui Han
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zihan Yu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Linying Ye
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zeyu Zhao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianhao Zhang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Junchao Cai
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of General Surgery, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-sen University, Nanning, 530000, Guangxi, China.
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
20
|
Omezzolli G, Iannello A, Vallone FE, Brandimarte L, Micillo M, Bertola N, Lavarello C, Grinovero N, Ferrero G, Mellert K, Möller P, Bruno S, Furman RR, Allan JN, Petretto A, Deaglio S, Ravera S, Vaisitti T. Complementary approaches define the metabolic features that accompany Richter syndrome transformation. Cell Mol Life Sci 2025; 82:152. [PMID: 40204982 PMCID: PMC11982009 DOI: 10.1007/s00018-025-05670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade lymphoma with previously unknown metabolic features. Transcriptomic data from primary CLL and RS samples, as well as RS-patient-derived xenografts, highlighted cellular metabolism as one of the most significant differentially expressed processes. Activity assays of key enzymes confirmed the intense metabolic rewiring of RS cells, which is characterized by an elevated rate of Krebs cycle, oxidative phosphorylation, and glutamine metabolism. These pathways were sustained by increased uptake of glucose and glutamine, two critical substrates for these cells. Moreover, RS cells showed activation of anabolic processes that resulted in the synthesis of nucleotides and lipids necessary to support their high proliferation. Exposure to drugs targeting PI3K and NF-kB, two master regulators of cellular metabolism, resulted in the shutdown of ATP production and glycolysis. Overall, these data suggest that metabolic rewiring characterizes the transformation of CLL into RS, presenting new translational opportunities.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/genetics
- Glycolysis
- Citric Acid Cycle
- Mice
- Oxidative Phosphorylation
- Glucose/metabolism
- Glutamine/metabolism
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Phosphatidylinositol 3-Kinases/metabolism
Collapse
Affiliation(s)
- Giulia Omezzolli
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Andrea Iannello
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Francesco E Vallone
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Lorenzo Brandimarte
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Matilde Micillo
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Nadia Bertola
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Nicole Grinovero
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Richard R Furman
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - John N Allan
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
21
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
22
|
Dumas L, Shin S, Rigaud Q, Cargnello M, Hernández-Suárez B, Herviou P, Saint-Laurent N, Leduc M, Le Gall M, Monchaud D, Dassi E, Cammas A, Millevoi S. RNA G-quadruplexes control mitochondria-localized mRNA translation and energy metabolism. Nat Commun 2025; 16:3292. [PMID: 40195294 PMCID: PMC11977240 DOI: 10.1038/s41467-025-58118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer cells rely on mitochondria for their bioenergetic supply and macromolecule synthesis. Central to mitochondrial function is the regulation of mitochondrial protein synthesis, which primarily depends on the cytoplasmic translation of nuclear-encoded mitochondrial mRNAs whose protein products are imported into mitochondria. Despite the growing evidence that mitochondrial protein synthesis contributes to the onset and progression of cancer, and can thus offer new opportunities for cancer therapy, knowledge of the underlying molecular mechanisms remains limited. Here, we show that RNA G-quadruplexes (RG4s) regulate mitochondrial function by modulating cytoplasmic mRNA translation of nuclear-encoded mitochondrial proteins. Our data support a model whereby the RG4 folding dynamics, under the control of oncogenic signaling and modulated by small molecule ligands or RG4-binding proteins, modifies mitochondria-localized cytoplasmic protein synthesis. Ultimately, this impairs mitochondrial functions, affecting energy metabolism and consequently cancer cell proliferation.
Collapse
Affiliation(s)
- Leïla Dumas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Sauyeun Shin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Quentin Rigaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie Cargnello
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Beatriz Hernández-Suárez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Pauline Herviou
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nathalie Saint-Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marjorie Leduc
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon CNRS UMR6302, Dijon, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy.
| | - Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| |
Collapse
|
23
|
Lv H, Mu B, Xu H, Li X, Yao X, Wang Q, Yang H, Ding J, Wang J. Do emerging alternatives pose similar soil ecological risks as traditional plasticizers? A multi-faceted analysis using earthworms as a case study. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137298. [PMID: 39847925 DOI: 10.1016/j.jhazmat.2025.137298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
The extensive application of plasticizers has led to significant environmental issues. This study focused on the ecotoxic effects on earthworms of the traditional plasticizer di(2-ethylhexyl) phthalate (DEHP) and non-phthalate plasticizers di(ethylhexyl) terephthalate (DEHT) and acetyltributyl citrate (ATBC). At an environmentally relevant concentration (50 mg/kg), significant accumulation of ROS was observed in earthworms, with a trend of DEHP > DEHT > ATBC, inducing oxidative stress and lipid peroxidation. DEHP, DEHT, and ATBC impaired the energy metabolism in earthworms, as evidenced by a sharp reduction in ATP content ranging from 43.2 % to 75.8 %, which was attributed to the disruption of glycolysis and the TCA cycle. Concurrently, the numbers of cocoons and juvenile earthworms decreased by 23.3 %-76.7 % and 24.2 %-75.8 %, respectively, indicating a significant decline in reproductive capacity. Using qPCR, AlphaFold2, and molecular docking techniques, this study is the first to report that because of their similar molecular structures, the alternatives to DEHP exhibit estrogen-like effects in earthworms, which may be a key mechanism of reproductive toxicity. These results provide valuable references and profound insights for the development of novel plasticizer alternatives and the assessment of their impact on soil ecosystems.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haixia Xu
- Dongying Ecological Environment Monitoring Centre, Dongying Ecological Environment Bureau, Dongying, Shandong 257000, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huiyan Yang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
24
|
Zhang Z, Wang R, Cai J, Li X, Feng X, Xu S, Jiang Z, Lin P, Huang Z, Xie Y. Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor. Toxicon 2025; 258:108339. [PMID: 40188992 DOI: 10.1016/j.toxicon.2025.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including Cd36, Fabp4, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Runzhi Wang
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Jin Cai
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Xinyi Li
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaosong Feng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shengming Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhihong Jiang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Peiyi Lin
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zengyi Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, 400016, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Medical University, Chongqing, 400016, PR China; Children's Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
25
|
Xin L, Zheng W, Lin K, Lin S, Huang Z. Deciphering Metabolic Alterations Associated with Glioma Grading Using Hyperspectral Stimulated Raman Scattering Imaging. Anal Chem 2025. [PMID: 40183640 DOI: 10.1021/acs.analchem.4c07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Metabolic dysregulation is a critical feature of various cancers, including brain tumors. Studying metabolic changes in tumor cells and tissues significantly improves our understanding of tumor development, progression, and treatment response. In this study, we utilize hyperspectral stimulated Raman scattering (SRS) imaging combined with biochemical spectral modeling to identify unique histological and molecular signatures linked to metabolic diversity across different glioma grades, without the need for labeling. By employing rapid label-free SRS histopathology and multivariate curve resolution analysis, we uncover changes in lipid profiles and varying levels of neuron demyelination from low-grade (LG) to high-grade (HG) gliomas. Quantitative analysis of key metabolites using non-negative least-squares regression spectral modeling reveals a significant increase in cellular proteins, DNA, and cholesterol levels, alongside a reduced redox ratio (flavin adenine dinucleotide (FAD)/NADH) in the glioblastoma (GBM, grade IV) tissue compared to pilocytic astrocytoma (PA, grade I) and healthy brain tissues, indicating a shift toward a pro-malignant metabolic state. A neural network diagnostic classifier, trained on 4547 SRS spectra (healthy: 1263; LG: 815; HG: 2469) from 45 patients with PA and GBM, achieves 99.6% accuracy in detecting and grading brain tumors. This study highlights the potential of hyperspectral SRS imaging for rapid, label-free, and spatially resolved analysis of metabolic heterogeneity in human gliomas, paving the way for metabolome-targeted therapeutic strategies in precision brain tumor treatment.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Shulang Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
- NUS Graduate School for Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
26
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
28
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025:10.1038/s42255-025-01259-0. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
29
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
30
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025:S0891-5849(25)00204-7. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. dditionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029 Madrid.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029 Madrid
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029 Madrid
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | | | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València. 46980, PaternaValencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029 Madrid.
| |
Collapse
|
31
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
32
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
33
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Chen Y, Cao H, Jiang C, Li Y. Tumor-microenvironment-mediated second near-infrared light activation multifunctional cascade nanoenzyme for self-replenishing O 2/H 2O 2 multimodal tumor therapy. J Colloid Interface Sci 2025; 683:930-943. [PMID: 39755017 DOI: 10.1016/j.jcis.2024.12.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme Cu2-xO@MnO2@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT). First, the MnO2 nanolayer specifically decomposes within the acidic TME to generate Mn2+ and oxygen (O2), thereby alleviating the hypoxic TME. Subsequently, Cu2-xO can be vulcanized into Cu2-xS by overexpressing sulfuretted hydrogen (H2S) gas in the colorectal tumor for a second near-infrared (NIR-II) light-triggered deep tissue PTT. Cu2-xS nanoparticles can react with hydrogen peroxide (H2O2) to generate hydroxyl radical (OH) for the CDT. In addition, GOx catalyzes the conversion of glucose into H2O2 for starvation therapy and enhances the CDT efficiency by self-supplying H2O2. Interestingly, the generated reactive oxygen species (ROS) induce immunogenic cell death (ICD), which further activates adaptive cancer immunity for anti-tumor immunotherapy. Finally, therapeutic efficiency was greatly improved after coating with tumor-targeted HA. Collectively, these TME-responsive cascade nanoenzymes can realize PTT, CDT starvation therapy, and immunotherapy, paving the way for the design of TME-responsive cascade nanoenzymes for synergistically enhanced tumor-specific therapy.
Collapse
Affiliation(s)
- Yu Chen
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Haiqiong Cao
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Chaoqun Jiang
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Youbin Li
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
35
|
Wang D, Nie T, Fang Y, Zhang L, Yu C, Yang M, Du R, Liu J, Zhang L, Feng L, Zhu H. Tailored Liposomal Nanomedicine Suppresses Incomplete Radiofrequency Ablation-Induced Tumor Relapse by Reprogramming Antitumor Immunity. Adv Healthc Mater 2025; 14:e2403979. [PMID: 39962820 DOI: 10.1002/adhm.202403979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Indexed: 04/08/2025]
Abstract
Radiofrequency ablation (RFA), a thermoablative treatment for small hepatocellular carcinoma (HCC), has limited therapeutic benefit for advanced HCC patients with large, multiple, and/or irregular tumors owing to incomplete RFA (iRFA) of the tumor mass. It is first identified that iRFA-treated tumors exhibited increased pyruvate kinase M2 (PKM2) expression, exacerbated tumor immunosuppression featured with increased tumor infiltration of suppressive immune cells and increased proliferation, and programmed cell death ligand 1 expression of cancer cell and ultimately a poor prognosis. Herein, a multifunctional nanomedicine is fabricated by encapsulating nanoassemblies of anti-PD-L1 and spermidine-grafted oxidized dextran with shikonin-containing lipid bilayers to reverse iRFA-induced treatment failure. Shikonin, a PKM2 inhibitor, is used to suppress glycolysis in cancer cells, while anti-PD-L1 and spermidine are introduced to collectively reprogram the proliferation and functions of infiltrated CD8+ T lymphocytes. Combined with iRFA, which promoted the exposure of tumor antigens, the intravenous injection of liposomal SPS-NPs effectively stimulated dendritic cell maturation and reversed tumor immunosuppression, thus eliciting potent antitumor immunity to synergistically suppress the growth of residual tumor masses and lung metastasis. The as-prepared liposomal nanomedicine is promising for potentiating the therapeutic benefits of RFA toward advanced HCC patients through reprogramming iRFA-induced tumor immunosuppression.
Collapse
Affiliation(s)
- Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
| | - Yifei Fang
- Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Linzhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Ming Yang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Ruijie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Haidong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| |
Collapse
|
36
|
Vanisree AJ, Thamizhoviya G, Thiruvalluvan A. Targeted Metabolic Profiling in Determining the Metabolic Heterogeneity in Human Biopsies of Different Grades of Glioma. Mol Neurobiol 2025; 62:4377-4390. [PMID: 39446218 DOI: 10.1007/s12035-024-04538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Gliomas are intricate tumors with numerous metabolic and genetic abnormalities contributing to their aggressive phenotypes and poor prognoses. The study aims at identifying the key molecular metabolic as well as gene expressional variations that could be used to differentiate between different grades of glioma to obtain deeper insights the about metabolic status of glioma that may serve as good candidates of diagnosis in future. In the present study, the metabolomic profiling along with clinical and expressional analyses of glioma biopsies (n = 52; patients comprising both of benign and malignant lesions) was analyzed. The biopsies were subjected to gene/protein expressional analysis using RT-PCR and western blotting and also were subjected to metabolite analyses. The results of the gene/protein expressional analysis exhibited elevated levels of carnitine palmitoyltransferase, monoglyceride lipase, human phosphofructokinase, and isocitrate dehydrogenase in higher grades of glioma when compared to those of control. Our study suggested that the metabolites and gene/protein expressional levels were found to be discriminative among the grades of glioma. The study is deemed as a provider of deeper insights that are essential for differential therapeutic approaches that specifically target the dysregulated metabolome to the benefit of patients.
Collapse
|
37
|
Lin J, Yin Y, Cao J, Zou B, Han K, Chen Y, Li S, Huang C, Chen J, Lv Y, Xu S, Xie D, Wang F. Nudix Hydrolase 13 Impairs the Initiation of Colorectal Cancer by Inhibiting PKM1 ADP-Ribosylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410058. [PMID: 39921866 PMCID: PMC11967829 DOI: 10.1002/advs.202410058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Indexed: 02/10/2025]
Abstract
Metabolic dysregulation has been implicated as a key factor in colorectal cancer (CRC) initiation, however, the underlying driving forces and mechanisms remain poorly understood. Herein, transcriptome profiling of paired early-stage CRCs and adenomas identifies Nudix hydrolase 13 (NUDT13) as a critical suppressor. Elevated NUDT13 expression impedes the proliferation of CRC cells under hypoxic conditions and markedly inhibits CRC initiation by upregulating PKM1. Mechanistically, NUDT13 directly binds and stabilizes PKM1 protein by reducing its poly ADP-ribosylation (PARylation), which is catalyzed by PARP1 at E275/D281/E282/E285/D296, thereby inducing an oxidative phosphorylation (OXPHOS) phenotype in CRC cells. Moreover, spatiotemporal knockout of Nudt13 enhances intestinal tumorigenesis in mice, which can be significantly suppressed by PARP1 inhibitor Olaparib. Notably, residues E245/E248/E249 within the Nudix box motif of NUDT13 are essential for PKM1 PARylation, and a mimic peptide derived from this motif is sufficient to stabilize PKM1 protein and robustly inhibit CRC tumorigenesis. Collectively, this study reveals a previously unknown PARylation-dependent mechanism that regulates PKM1 protein stability and switches the metabolic pathway of CRC cells, providing a promising target for CRC treatment.
Collapse
Affiliation(s)
- Jinlong Lin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yixin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of AnesthesiologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinghua Cao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bingxu Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Kai Han
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yufan Chen
- Department of EndoscopySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Siyu Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cijun Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jiewei Chen
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yongrui Lv
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Shuidan Xu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dan Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
38
|
Tang X, Zheng N, Lin Q, You Y, Gong Z, Zhuang Y, Wu J, Wang Y, Huang H, Ke J, Chen F. Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis. Neural Regen Res 2025; 20:1103-1123. [PMID: 38845218 PMCID: PMC11438345 DOI: 10.4103/nrr.nrr-d-23-01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00027/figure1/v/2024-07-06T104127Z/r/image-tiff Cardiac arrest can lead to severe neurological impairment as a result of inflammation, mitochondrial dysfunction, and post-cardiopulmonary resuscitation neurological damage. Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest, but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown. To this end, we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis, possibly through inhibition of the MAPK and nuclear factor κB pathways. Subsequently, we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia. The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis, oxidative stress, and mitochondrial damage, whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects. To conclude, hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest, and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
Collapse
Affiliation(s)
- Xiahong Tang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Nan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qingming Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yan You
- The Second Department of Intensive Care Unit, Fujian Provincial Hospital South Branch, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yangping Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiali Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hanlin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
39
|
Zhu L, Ding J, Xue W, Zhou S, Wang L, Jiang A, Zhao M, He Q, Ren A. Manganese Peroxidase Participates in the Liquid-Solid-Gas Triphase Regulation on Microbial Degradation of Lignocellulose in Solid-State Fermentation. Biotechnol Bioeng 2025; 122:908-921. [PMID: 39810331 DOI: 10.1002/bit.28927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The three-phase structure of solid-state fermentation (SSF) directly affects substrate degradation and fermentation efficiency. However, the mechanism of three-phase regulation on lignocellulose utilization and microbial metabolism is still unclear. Based on comparative transcriptome analysis, a lignocellulose degrading enzyme, manganese peroxidase (GlMnP), which was significantly affected by water stress meanwhile related to triphase utilization, was screened to reveal the mechanism using Ganoderma lucidum as the reference strain. The results showed that GlMnP directly participates in lignocellulose degradation by positively regulating the activity of carboxymethylcellulase (CMCase), filter paper (FPAse), and laccase (LACase) enzymes, and indirectly participates in lignocellulose degradation by negatively regulating the redox levels in microorganisms. In addition, GlMnP can also control microbial glycolysis rate to enhance lignocellulose utilization. The results indicated that GlMnP participates in the liquid-solid-gas triphase regulation on lignocellulose degradation by G. lucidum in SSF.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Ding
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Xue
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Zhou
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Longyu Wang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ailiang Jiang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qin He
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Behan-Bush RM, Schrodt MV, Kilburg E, Liszewski JN, Bitterlich LM, English K, Klingelhutz AJ, Ankrum JA. Polychlorinated biphenyls induce immunometabolic switch of antiinflammatory macrophages toward an inflammatory phenotype. PNAS NEXUS 2025; 4:pgaf100. [PMID: 40191133 PMCID: PMC11969150 DOI: 10.1093/pnasnexus/pgaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are a group of environmental toxicants associated with increased risk of diabetes, obesity, and metabolic syndrome. These metabolic disorders are characterized by systemic and local inflammation within adipose tissue, the primary site of PCB accumulation. These inflammatory changes arise when resident adipose tissue macrophages undergo phenotypic plasticity-switching from an antiinflammatory to an inflammatory phenotype. Thus, we sought to assess whether PCB exposure drives macrophage phenotypic switching. We investigated how human monocyte-derived macrophages polarized toward an M1, M2a, or M2c phenotype were impacted by exposure to Aroclor 1254, a PCB mixture found at high levels in school air. We showed that PCB exposure not only exacerbates the inflammatory phenotype of M1 macrophages but also shifts both M2a and M2c cells toward a more inflammatory phototype in both a dose- and time-dependent manner. Additionally, we show that PCB exposure leads to significant metabolic changes. M2 macrophages exposed to PCBs exhibit increased reliance on aerobic glycolysis and reduced capacity for fatty acid and amino acid oxidation-both indicators of an inflammatory macrophage phenotype. Collectively, these results demonstrate that PCBs promote immunometabolic macrophage plasticity toward a more M1-like phenotype, thereby suggesting that PCBs exacerbate metabolic diseases by altering the inflammatory environment in adipose tissue.
Collapse
Affiliation(s)
- Riley M Behan-Bush
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Kilburg
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Jesse N Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Laura M Bitterlich
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland W23 F2H6
- Department of Biology, Maynooth University, Maynooth, Ireland W23 F2H6
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland W23 F2H6
- Department of Biology, Maynooth University, Maynooth, Ireland W23 F2H6
| | - Aloysius J Klingelhutz
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
Harada Y. Manipulating mannose metabolism as a potential anticancer strategy. FEBS J 2025; 292:1505-1519. [PMID: 39128015 DOI: 10.1111/febs.17230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Cancer cells acquire metabolic advantages over their normal counterparts regarding the use of nutrients for sustained cell proliferation and cell survival in the tumor microenvironment. Notable among the metabolic traits in cancer cells is the Warburg effect, which is a reprogrammed form of glycolysis that favors the rapid generation of ATP from glucose and the production of biological macromolecules by diverting glucose into various metabolic intermediates. Meanwhile, mannose, which is the C-2 epimer of glucose, has the ability to dampen the Warburg effect, resulting in slow-cycling cancer cells that are highly susceptible to chemotherapy. This anticancer effect of mannose appears when its catabolism is compromised in cancer cells. Moreover, de novo synthesis of mannose within cancer cells has also been identified as a potential target for enhancing chemosensitivity through targeting glycosylation pathways. The underlying mechanisms by which alterations in mannose metabolism induce cancer cell vulnerability are just beginning to emerge. This review summarizes the current state of our knowledge of mannose metabolism and provides insights into its manipulation as a potential anticancer strategy.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Japan
| |
Collapse
|
42
|
Wang DW, Ren XH, Ma YJ, Wang FQ, He XW, Li WY, Zhang YK. Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment. J Colloid Interface Sci 2025; 683:890-905. [PMID: 39755015 DOI: 10.1016/j.jcis.2024.12.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy. The imprinting factors of D-MIP for the recognition of the template molecules, the GLUT1 epitope and the HK2 epitope, were 2.1 and 2.5, respectively, enabling specific recognition of the entire target protein. Targeting GLUT1 with D-MIP could impede its Glu uptake, while simultaneously inhibiting the activity of cytoplasmic HK2, thereby reducing the metabolic rate of Glu. Cell experiments demonstrated that inhibition of HK2 resulted in downregulation of the downstream, products glucose-6-phosphate (6PG) and lactate (LA). In vitro and in vivo experimental results indicated that D-MIP exhibited significant targeting and inhibitory effects on GLUT1 and HK2, respectively, which suppressed tumor glycolysis and induced apoptosis in MCF-7 cells. Furthermore, mouse tumor models and hematoxylin-eosin (H&E) staining confirmed the excellent anti-tumor efficacy and favorable biocompatibility of D-MIP. This work represents the first design and development of a dual-template imprinted polymer targeting key transport channels and metabolic enzymes involved in glycolysis, advancing the research and application of anti-glycolytic tumor therapy.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing-Hui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao-Jia Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Qi Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
43
|
Ray SK, Mukherjee S. New insights into reductive stress responses and its clinical relation in cancer. Tissue Cell 2025; 93:102736. [PMID: 39826384 DOI: 10.1016/j.tice.2025.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Cells are susceptible to both oxidative and reductive stresses, with reductive stress being less studied and potentially therapeutic in cancer. Reductive stress, characterized by an excess of reducing equivalents exceeding the activity of endogenous oxidoreductases, can lead to an imbalance in homeostasis, causing an increase in reactive oxygen species induction, affecting cellular antioxidant load and flux. Unlike oxidative stress, reductive stress has been understudied and poorly understood, and there is still much to learn about its mechanisms in cancer, its therapeutic potential, and how cancer cells react to it. Changes in redox balance and interference with redox signaling are linked to cancer cell growth, metastasis, and resistance to chemotherapy and radiation. Overconsumption of reducing equivalents can reduce metabolism, alter protein disulfide bond formation, disrupt mitochondrial homeostasis, and disrupt cancer cell signaling pathways. Novel approaches to delivering or using cancer medicines and techniques to influence redox biology have been discovered. Under reductive stress, cancer cells may coordinate separate pools of redox pairs, potentially impacting biology.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
44
|
Gore M, Kabekkodu SP, Chakrabarty S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: From mechanisms to therapeutic targets. Biochim Biophys Acta Rev Cancer 2025; 1880:189292. [PMID: 40037419 DOI: 10.1016/j.bbcan.2025.189292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The role of human Papillomavirus (HPV) in metabolic reprogramming is implicated in the development and progression of cervical cancer. During carcinogenesis, cancer cells modify various metabolic pathways to generate energy and sustain their growth and development. Cervical cancer, one of the most prevalent malignancies affecting women globally, involves metabolic alterations such as increased glycolysis, elevated lactate production, and lipid accumulation. The oncoproteins, primarily E6 and E7, which are encoded by high-risk HPVs, facilitate the accumulation of several cancer markers, promoting not only the growth and development of cancer but also metastasis, immune evasion, and therapy resistance. HPV oncoproteins interact with cellular MYC (c-MYC), retinoblastoma protein (pRB), p53, and hypoxia-inducible factor 1α (HIF-1α), leading to the induction of metabolic reprogramming and favour the Warburg effect. Metabolic reprogramming enables HPV to persist for an extended period and accelerates the progression of cervical cancer. This review summarizes the role of HPV oncoproteins in metabolic reprogramming and their contributions to the development and progression of cervical cancer. Additionally, this review provides insights into how metabolic reprogramming opens avenues for novel therapeutic strategies, including the discovery of new and repurposed drugs that could be applied to treat cervical cancer.
Collapse
Affiliation(s)
- Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
45
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
46
|
Zheng Y, Peng Y, Gao Y, Yang G, Jiang Y, Zhang G, Wang L, Yu J, Huang Y, Wei Z, Liu J. Identification and dissection of prostate cancer grounded on fatty acid metabolism-correlative features for predicting prognosis and assisting immunotherapy. Comput Biol Chem 2025; 115:108323. [PMID: 39742702 DOI: 10.1016/j.compbiolchem.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Fatty acid metabolism (FAM) plays a critical role in tumor progression and therapeutic resistance by enhancing lipid biosynthesis, storage, and catabolism. Dysregulated FAM is a hallmark of prostate cancer (PCa), enabling cancer cells to adapt to extracellular signals and metabolic changes, with the tumor microenvironment (TME) playing a key role. However, the prognostic significance of FAM in PCa remains unexplored. METHODS We analyzed 309 FAM-related genes to develop a prognostic model using least absolute shrinkage and selection operator (LASSO) regression based on The Cancer Genome Atlas (TCGA) database. This model stratified PCa patients into high- and low-risk groups and was validated using the Gene Expression Omnibus (GEO) database. We constructed a nomogram incorporating risk score, clinical variables (T and N stage, Gleason score, age), and assessed its performance with calibration curves. The associations between risk score, tumor mutation burden (TMB), immune checkpoint inhibitors (ICIs), and TME features were also examined. Finally, a hub gene was identified via protein-protein interaction (PPI) networks and validated. RESULTS The risk score was an independent prognostic factor for PCa. High-risk patients showed worse survival outcomes but were more responsive to immunotherapy, chemotherapy, and targeted therapies. A core gene with high expression correlated with poor prognosis, unfavorable clinicopathological features, and immune cell infiltration. CONCLUSION These findings reveal the prognostic importance of FAM in PCa, providing novel insights into prognosis and potential therapeutic targets for PCa management.
Collapse
Affiliation(s)
- Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yueqiang Peng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingying Gao
- Department of Clinical Laboratory, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 401320, China
| | - Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yu Jiang
- Department of Urology, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Gaojie Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Linfeng Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jiang Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ziling Wei
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| |
Collapse
|
47
|
Mohammad Nezhady MA, Cagnone G, Bajon E, Chaudhari P, Modaresinejad M, Hardy P, Maggiorani D, Quiniou C, Joyal JS, Beauséjour C, Chemtob S. Unconventional receptor functions and location-biased signaling of the lactate GPCR in the nucleus. Life Sci Alliance 2025; 8:e202503226. [PMID: 39904567 PMCID: PMC11794946 DOI: 10.26508/lsa.202503226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
G-protein-coupled receptors (GPCRs) are virtually involved in every physiological process. However, mechanisms for their ability to regulate a vast array of different processes remain elusive. An unconventional functional modality could at least in part account for such diverse involvements but has yet to be explored. We found HCAR1, a multifunctional lactate GPCR, to localize at the nucleus and therein capable of initiating location-biased signaling notably nuclear-ERK and AKT. We discovered that nuclear HCAR1 (N-HCAR1) is directly involved in regulating diverse processes. Specifically, N-HCAR1 binds to protein complexes that are involved in promoting protein translation, ribosomal biogenesis, and DNA-damage repair. N-HCAR1 also interacts with chromatin remodelers to directly regulate gene expression. We show that N-HCAR1 displays a broader transcriptomic signature than its plasma membrane counterpart. Interestingly, exclusion of HCAR1 from the nucleus has the same effect as its complete cellular depletion on tumor growth and metastasis in vivo. These results reveal noncanonical functions for a cell nucleus-localized GPCR that are distinct from traditional receptor modalities and through which HCAR1 can participate in regulating various cellular processes.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Program in Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Gael Cagnone
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Emmanuel Bajon
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Prabhas Chaudhari
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
- Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Monir Modaresinejad
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
- Program in Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Pierre Hardy
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Damien Maggiorani
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Canada
| | - Christiane Quiniou
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Jean-Sébastien Joyal
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Canada
| | - Christian Beauséjour
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Sylvain Chemtob
- Program in Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Huang Y, Zhu H, Liang Z, Wei W, Yang H, Wang Q, Huang H, He H, Mo R, Ye J, Dai Q, Zhong W, Liang Y. Development and validation of a kinase-related gene signature as a novel diagnostic and prognostic model for prostate cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167722. [PMID: 39965532 DOI: 10.1016/j.bbadis.2025.167722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignant tumor in men worldwide. Kinases play a key role in the development of multiple tumors. Nevertheless, the role of kinases in PCa remains largely unclear. METHODS A kinase-related gene signature was constructed by LASSO Cox regression analysis using the TCGA_PRAD cohort. The diagnostic and prognostic values of the signature were then evaulated. Furthermore, a loss-of-function assay was carried out to explore the function of NEK5 in PCa. RESULTS A signature of 13 kinase-related genes (NEK5, FRK, STK39, STYK1, IGF1R, RPS6KC1, TTK, CDK1, NEK2, PTK6, DAPK1, MELK and EPHA10) was constructed. The PCa patients presenting a high-risk score according to the signature demonstrated poorer disease-free survival compared to those with a low score. Additionally, TMB was found to be remarkably increased in patients categorized as high-risk relative to low-risk patients. Moreover, the 13-gene signature may also have good predictive value for PCa diagnosis. Furthermore, NEK5 expression was remarkably elevated in PCa tissues relative to benign tissues. NEK5 deficiency significantly inhibited PCa cell growth and suppressed mitochondrial OXPHOS. CONCLUSION The 13-gene signature constructed in this study may exhibit good performance in PCa diagnosis and prognosis evaluation. We identified the oncogenic role of NEK5 in PCa. NEK5 may serve as a therapeutic target for treatting PCa.
Collapse
Affiliation(s)
- Yaqiang Huang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Haiying Zhu
- Department of Endocrinology and Metabolism, The Affiliated Shunde Hospital of Jinan University, Foshan 528305, Guangdong, China
| | - Zhenguo Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Weiyang Wei
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Hao Yang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Qi Wang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Hongxing Huang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Huichan He
- Guangzhou national laboratory, Guangzhou 510120, Guangdong, China
| | - Rujun Mo
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University, Dongguan People's Hospital, Dongguan 523018, Guangdong, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510120, Guangdong, China
| | - Qishan Dai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510120, Guangdong, China
| | - Weide Zhong
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510120, Guangdong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yingke Liang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
49
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
50
|
Tao M, Cui Y, Sun S, Zhang Y, Ge J, Yin W, Li P, Wang Y. Versatile application of magnesium-related bone implants in the treatment of bone defects. Mater Today Bio 2025; 31:101635. [PMID: 40124334 PMCID: PMC11930110 DOI: 10.1016/j.mtbio.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Magnesium-related bone implants have garnered significant attention in the treatment of bone defects. The applications of magnesium in promoting bone repair mainly include degradable magnesium-based scaffolds owing to its special physical properties and composite materials modified by magnesium ions because of its biological activity. Although numerous studies have confirmed the unique application advantages and efficacy of magnesium in promoting bone repair, some obvious shortcomings persist, including the rapid degradation of magnesium-based scaffolds. In this review, the deficiencies of magnesium and its alloys in the construction of orthopedic implants and their key influencing factors were summarized; furthermore, some advanced improvement schemes were summarized and analyzed. Additionally, the application strategies of magnesium-modified bone implants are summarized and discussed. Lastly, this review incorporates the latest research and discoveries on magnesium in orthopedic science, comprehensively exploring the mechanism of magnesium's role in the complex microenvironment of bone defects from multiple dimensions. This paper provides a comprehensive summary and analysis of cutting-edge concepts in the design and development of magnesium-based bone implants, considering various perspectives such as the physical properties and biological functions of magnesium.
Collapse
Affiliation(s)
- Mijia Tao
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yutao Cui
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Shicai Sun
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, PR China
| | - Yan Zhang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianli Ge
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Wen Yin
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Peng Li
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yanbing Wang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|