1
|
Yeo HS, Lim JY. Effects of exercise prehabilitation on muscle atrophy and contractile properties in hindlimb-unloaded rats. Muscle Nerve 2023; 68:886-893. [PMID: 37772693 DOI: 10.1002/mus.27979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION/AIMS Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.
Collapse
Affiliation(s)
- Hyo-Seong Yeo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
2
|
The Influence of Full-Time Holistic Support Delivered by a Sports Nutritionist on Within-Day Macronutrient Distribution in New Zealand Provincial Academy Rugby Union Players. Nutrients 2022; 15:nu15010017. [PMID: 36615675 PMCID: PMC9823601 DOI: 10.3390/nu15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Dietary intake is an important consideration for rugby union ('rugby') players to ensure substrate provision for optimal performance and facilitate recovery. Within-day meal distribution is especially important for athletes, particularly those with congested schedules and multiple daily training sessions. In the present study, 10 provincial academy rugby players engaged in a holistic support protocol informed by behaviour-change techniques led by a full-time sports nutritionist. Dietary intake was estimated during a 4-week monitoring and 4-week intervention period using the remote food photography method on one high-volume training day (two training sessions) and two low-volume training days (≤1 training session) per week. Lean body mass did not change significantly in response to the intervention. Significant increases were observed for protein on both low-volume (breakfast, AM snack, evening snack) and high-volume (post-gym, AM snack, evening snack) training days. Carbohydrate intake post-intervention was significantly greater at the pre-gym eating occasion but lower at PM snack and dinner eating occasions on high-volume days. These data suggest that incorporating a holistic support protocol led by a sports nutritionist can influence within-day nutrient intake in rugby players; however, no change to lean body mass was observed, and the influence of these changes in nutrient intake on performance and recovery warrants further investigation.
Collapse
|
3
|
Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling. Nat Commun 2022; 13:5415. [PMID: 36109503 PMCID: PMC9478160 DOI: 10.1038/s41467-022-32905-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.
Collapse
|
4
|
Ford KL, Arends J, Atherton PJ, Engelen MPKJ, Gonçalves TJM, Laviano A, Lobo DN, Phillips SM, Ravasco P, Deutz NEP, Prado CM. The importance of protein sources to support muscle anabolism in cancer: An expert group opinion. Clin Nutr 2022; 41:192-201. [PMID: 34891022 DOI: 10.1016/j.clnu.2021.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
This opinion paper presents a short review of the potential impact of protein on muscle anabolism in cancer, which is associated with better patient outcomes. Protein source is a topic of interest for patients and clinicians, partly due to recent emphasis on the supposed non-beneficial effect of proteins; therefore, misconceptions involving animal-based (e.g., meat, fish, dairy) and plant-based (e.g., legumes) proteins in cancer are acknowledged and addressed. Although the optimal dietary amino acid composition to support muscle health in cancer is yet to be established, animal-based proteins have a composition that offers superior anabolic potential, compared to plant-derived proteins. Thus, animal-based foods should represent the majority (i.e., ≥65%) of protein intake during active cancer treatment. A diet rich in plant-derived proteins may support muscle anabolism in cancer, albeit requiring a larger quantity of protein to fulfill the optimal amino acid intake. We caution that translating dietary recommendations for cancer prevention to cancer treatment may be inadequate to support the pro-inflammatory and catabolic nature of the disease. We further caution against initiating an exclusively plant-based (i.e., vegan) diet upon a diagnosis of cancer, given the presence of elevated protein requirements and risk of inadequate protein intake to support muscle anabolism. Amino acid combination and the long-term sustainability of a dietary pattern void of animal-based foods requires careful and laborious management of protein intake for patients with cancer. Ultimately, a dietary amino acid composition that promotes muscle anabolism is optimally obtained through combination of animal- and plant-based protein sources.
Collapse
Affiliation(s)
- Katherine L Ford
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jann Arends
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Philip J Atherton
- MRC Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Centre of Metabolism & Physiology (COMAP), University of Nottingham, Derby, UK
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Thiago J M Gonçalves
- Department of Nutrology and Clinical Nutrition, Sancta Maggiore Hospital, Prevent Senior Institute, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Dileep N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | - Paula Ravasco
- Catolica Medical School and Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Lisbon, Portugal; Centre for Interdisciplinary Research Egas Moniz (CiiEM), Egas Moniz Cooperativa de Ensino Superior, CRL, Almada, Portugal
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Salomão R, Neto IVDS, Ramos GV, Tibana RA, Durigan JQ, Pereira GB, Franco OL, Royer C, Neves FDAR, de Carvalho ACA, Nóbrega OT, Haddad R, Prestes J, Marqueti RDC. Paternal Resistance Exercise Modulates Skeletal Muscle Remodeling Pathways in Fathers and Male Offspring Submitted to a High-Fat Diet. Front Physiol 2021; 12:706128. [PMID: 34646148 PMCID: PMC8503191 DOI: 10.3389/fphys.2021.706128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1β, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| | | | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFTM), Cuiabá, Brazil
| | | | - Guilherme Borges Pereira
- Interinstitutional Program of Post-Graduation in Physiological Sciences (UFSCar/UNESP), Department of Physiological Sciences, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Octávio Luiz Franco
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Carine Royer
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Laboratory of Molecular Pharmacology, Faculty of Health Sciences, Universidade de Brasília, Brasília, Brazil
| | | | | | - Otávio Toledo Nóbrega
- Graduate Program of Medical Sciences, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Rodrigo Haddad
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasilia, Brasília, Brazil
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Sadri S, Sharifi G, Jalali Dehkordi K. Nano branched-chain amino acids enhance the effect of uphill (concentric) and downhill (eccentric) treadmill exercise on muscle gene expression of Akt and mTOR on aged rats. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Thioredoxin reductase as a pharmacological target. Pharmacol Res 2021; 174:105854. [PMID: 34455077 DOI: 10.1016/j.phrs.2021.105854] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Thioredoxin reductases (TrxRs) belong to the pyridine nucleotide disulfide oxidoreductase family enzymes that reduce thioredoxin (Trx). The couple TrxR and Trx is one of the major antioxidant systems that control the redox homeostasis in cells. The thioredoxin system, comprised of TrxR, Trx and NADPH, exerts its activities via a disulfide-dithiol exchange reaction. Inhibition of TrxR is an important clinical goal in all conditions in which the redox state is perturbed. The present review focuses on the most critical aspects of the cellular functions of TrxRs and their inhibition mechanisms by metal ions or chemicals, through direct targeting of TrxRs or their substrates or protein interactors. To update the involvement of overactivation/dysfunction of TrxRs in various pathological conditions, human diseases associated with TrxRs genes were critically summarized by publicly available genome-wide association study (GWAS) catalogs and literature. The pieces of evidence presented here justify why TrxR is recognized as one of the most critical clinical targets and the growing current interest in developing molecules capable of interfering with the functions of TrxR enzymes.
Collapse
|
8
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
9
|
Højfeldt G, Bülow J, Agergaard J, Simonsen LR, Bülow J, Schjerling P, van Hall G, Holm L. Postprandial muscle protein synthesis rate is unaffected by 20-day habituation to a high protein intake: a randomized controlled, crossover trial. Eur J Nutr 2021; 60:4307-4319. [PMID: 34032900 DOI: 10.1007/s00394-021-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE During the last decade more researchers have argued in favor of an increased protein intake for older adults. However, there is a lack of knowledge on the long-term effects of conforming to such a high protein intake with regards to the basal and postprandial muscle protein turnover. The purpose of this study was to compare the postprandial synthesis response in muscle proteins, and the abundance of directly incorporated food-derived amino acids following habituation to high vs. recommended level of protein intake. METHODS In a double blinded crossover intervention 11 older male participants (66.6 ± 1.7 years of age) were habituated for 20 days to a recommended protein (RP) intake (1.1 g protein/kg lean body mass (LBM)/day) and a high protein (HP) intake (> 2.1 g protein/kg LBM/day). Following each habituation period, intrinsically labelled proteins were ingested as part of a mixed meal to determine the incorporation of meal protein-derived amino acids into myofibrillar proteins. Furthermore, the myofibrillar fractional synthesis rate (FSR) and amino acid kinetics across the leg were determined using gold standard stable isotope tracer methodologies. RT qPCR was used to assess the expression of markers related to muscle proteinsynthesis and breakdown. RESULTS No impact of habituation was observed on skeletal muscle amino acid or protein kinetics. However, the shunting of amino acids directly from artery to vein was on average 2.9 [Formula: see text]mol/min higher following habituation to HP compared to RP. CONCLUSIONS In older males, habituation to a higher than the currently recommended protein intake did not demonstrate any adaptions in the muscle protein turnover or markers hereof when subjected to an intake of an identical mixed meal. CLINICAL TRIAL REGISTRY Journal number NCT02587156, Clinicaltrials.org. Date of registration: October 27th, 2015.
Collapse
Affiliation(s)
- Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lene R Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Department of Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Grande AJ, Silva V, Sawaris Neto L, Teixeira Basmage JP, Peccin MS, Maddocks M. Exercise for cancer cachexia in adults. Cochrane Database Syst Rev 2021; 3:CD010804. [PMID: 33735441 PMCID: PMC8094916 DOI: 10.1002/14651858.cd010804.pub3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cancer cachexia is a multifactorial syndrome characterised by an ongoing loss of skeletal muscle mass, with or without a loss of fat mass, leading to progressive functional impairment. Physical exercise may attenuate cancer cachexia and its impact on patient function. This is the first update of an original Cochrane Review published in Issue 11, 2014, which found no studies to include. OBJECTIVES To determine the effectiveness, acceptability and safety of exercise, compared with usual care, no treatment or active control, for cancer cachexia in adults. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and eight other databases to March 2020. We searched for ongoing studies in trial registries, checked reference lists and contacted experts to seek relevant studies. SELECTION CRITERIA We sought randomised controlled trials in adults with cancer cachexia, that compared a programme of exercise alone or in combination with another intervention, with usual care, no treatment or an active control group. DATA COLLECTION AND ANALYSIS Two review authors independently assessed titles and abstracts for relevance and extracted data on study design, participants, interventions and outcomes from potentially relevant articles. We used standard methodological procedures expected by Cochrane. Our primary outcome was lean body mass and secondary outcomes were adherence to exercise programme, adverse events, muscle strength and endurance, exercise capacity, fatigue and health-related quality of life. We assessed the certainty of evidence using GRADE and included two Summary of findings tables. MAIN RESULTS We included four new studies in this update which overall randomised 178 adults with a mean age of 58 (standard deviation (SD) 8.2) years. Study sample size ranged from 20 to 60 participants and in three studies the proportion of men ranged from 52% to 82% (the fourth study was only available in abstract form). Three studies were from Europe: one in the UK and Norway; one in Belgium and one in Germany. The remaining study was in Canada. The types of primary cancer were head and neck (two studies), lung and pancreas (one study), and mixed (one study). We found two comparisons: exercise alone (strength-based exercise) compared to usual care (one study; 20 participants); and exercise (strength-based exercise/endurance exercise) as a component of a multimodal intervention (pharmacological, nutritional or educational (or a combination) interventions) compared with usual care (three studies, 158 participants). Studies had unclear and high risk of bias for most domains. Exercise plus usual care compared with usual care We found one study (20 participants). There was no clear evidence of a difference for lean body mass (8 weeks: MD 6.40 kg, 95% CI -2.30 to 15.10; very low-certainty evidence). For our secondary outcomes, all participants adhered to the exercise programme and no participant reported any adverse event during the study. There were no data for muscle strength and endurance, or maximal and submaximal exercise capacity. There was no clear evidence of a difference for either fatigue (4 to 20 scale, lower score was better) (8 weeks: MD -0.10, 95% CI -4.00 to 3.80; very low-certainty evidence) or health-related quality of life (0 to 104 scale, higher score was better) (8 weeks: MD 4.90, 95% CI -15.10 to 24.90; very low-certainty evidence). Multimodal intervention (exercise plus other interventions) plus usual care compared with usual care We found three studies but outcome data were only available for two studies. There was no clear evidence of a difference for lean body mass (6 weeks: MD 7.89 kg, 95% CI -9.57 to 25.35; 1 study, 44 participants; very low-certainty evidence; 12 weeks: MD -2.00, 95% CI -8.00 to 4.00; one study, 60 participants; very low-certainty evidence). For our secondary outcomes, there were no data reported on adherence to the exercise programme, endurance, or maximal exercise capacity. In one study (44 participants) there was no clear evidence of a difference for adverse events (patient episode report) (6 weeks: risk ratio (RR) 1.18, 95% CI 0.67 to 2.07; very low-certainty evidence). Another study assessed adverse events but reported no data and the third study did not assess this outcome. There was no clear evidence of a difference in muscle strength (6 weeks: MD 3.80 kg, 95% CI -2.87 to 10.47; 1 study, 44 participants; very low-certainty evidence; 12 weeks MD -5.00 kg, 95% CI -14.00 to 4.00; 1 study, 60 participants; very low-certainty evidence), submaximal exercise capacity (6 weeks: MD -16.10 m walked, 95% CI -76.53 to 44.33; 1 study, 44 participants; very low-certainty evidence; 12 weeks: MD -62.60 m walked, 95% CI -145.87 to 20.67; 1 study, 60 participants; very low-certainty evidence), fatigue (0 to 10 scale, lower score better) (6 weeks: MD 0.12, 95% CI -1.00 to 1.24; 1 study, 44 participants; very low-certainty evidence) or health-related quality of life (0 to 104 scale, higher score better) (12 weeks: MD -2.20, 95% CI -13.99 to 9.59; 1 study, 60 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS The previous review identified no studies. For this update, our conclusions have changed with the inclusion of four studies. However, we are uncertain of the effectiveness, acceptability and safety of exercise for adults with cancer cachexia. Further high-quality randomised controlled trials are still required to test exercise alone or as part of a multimodal intervention to improve people's well-being throughout all phases of cancer care. We assessed the certainty of the body of evidence as very low, downgraded due to serious study limitations, imprecision and indirectness. We have very little confidence in the results and the true effect is likely to be substantially different from these. The findings of at least three more studies (one awaiting classification and two ongoing) are expected in the next review update.
Collapse
Affiliation(s)
- Antonio Jose Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul, Campo Grande, Brazil
| | - Valter Silva
- Postgraduate Program on Society, Technology and Public Policies (SOTEPP); Department of Medicine, Centro Universitário Tiradentes (UNIT/AL), Maceió, Brazil
| | | | | | - Maria S Peccin
- Department of Human Movement Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Matthew Maddocks
- Department of Palliative Care, Policy and Rehabilitation, Cicely Saunders Institute, King's College London, London, UK
| |
Collapse
|
11
|
Alomar FA, Tian C, Dash PK, McMillan JM, Gendelman HE, Gorantla S, Bidasee KR. Efavirenz, atazanavir, and ritonavir disrupt sarcoplasmic reticulum Ca 2+ homeostasis in skeletal muscles. Antiviral Res 2021; 187:104975. [PMID: 33450312 DOI: 10.1016/j.antiviral.2020.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
While muscle fatigue, pain and weakness are common co-morbidities in HIV-1 infected people, their underlying cause remain poorly defined. To this end, we evaluated whether the common antiretroviral drugs efavirenz (EFV), atazanavir (ATV) and ritonavir (RTV) could be a contributing factor by pertubating sarcoplasmic reticulum (SR) Ca2+ cycling. In live-cell imaging, EFV (6.0 μM), ATV (6.0 μM), and RTV (3.0 μM) elicited Ca2+ transients and blebbing of the plasma membranes of C2C12 skeletal muscle myotubes. Pretreating C2C12 skeletal muscle myotubes with the SR Ca2+ release channel blocker ryanodine (50 μM), slowed the rate and amplitude of Ca2+ release from and reuptake of Ca2+ into the SR. EFV, ATV and RTV (1 nM - 20 μM) potentiated and then displaced [3H] ryanodine binding to rabbit skeletal muscle ryanodine receptor Ca2+ release channel (RyR1). These drugs at concentrations 0.25-31.2 μM also increased and or decreased the open probability of RyR1 by altering its gating and conductance. ATV (≤5 μM) potentiated and >5μM inhibited the ability of sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA1) to hydrolyze ATP and transport Ca2+. RTV (2.5-31.5 μM) dose-dependently inhibited SERCA1-mediated, ATP-dependent Ca2+ transport. EFV (0.25-31.5 μM) had no measurable effect on SERCA1's ability to hydrolyze ATP and transport Ca2+. These data support the notion that EFV, ATV and RTV could be contributing to skeletal muscle co-morbidities in PLWH by modulating SR Ca2+ homeostasis.
Collapse
Affiliation(s)
- Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - JoEllyn M McMillan
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Nebraska Redox Biology Center, Lincoln, NE, USA.
| |
Collapse
|
12
|
Pascual-Fernández J, Fernández-Montero A, Córdova-Martínez A, Pastor D, Martínez-Rodríguez A, Roche E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int J Mol Sci 2020; 21:ijms21228844. [PMID: 33266508 PMCID: PMC7700275 DOI: 10.3390/ijms21228844] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with sarcopenia. The loss of strength results in decreased muscle mass and motor function. This process accelerates the progressive muscle deterioration observed in older adults, favoring the presence of debilitating pathologies. In addition, sarcopenia leads to a decrease in quality of life, significantly affecting self-sufficiency. Altogether, these results in an increase in economic resources from the National Health Systems devoted to mitigating this problem in the elderly, particularly in developed countries. Different etiological determinants are involved in the progression of the disease, including: neurological factors, endocrine alterations, as well as nutritional and lifestyle changes related to the adoption of more sedentary habits. Molecular and cellular mechanisms have not been clearly characterized, resulting in the absence of an effective treatment for sarcopenia. Nevertheless, physical activity seems to be the sole strategy to delay sarcopenia and its symptoms. The present review intends to bring together the data explaining how physical activity modulates at a molecular and cellular level all factors that predispose or favor the progression of this deteriorating pathology.
Collapse
Affiliation(s)
| | | | - Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Diego Pastor
- Department of Sport Sciences, University Miguel Hernández (Elche), 03202 Alicante, Spain;
| | - Alejandro Martínez-Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Sciences, University of Alicante, 3690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Enrique Roche
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222029
| |
Collapse
|
13
|
Roberts C, Gill N, Sims S. The Influence of COVID-19 Lockdown Restrictions on Perceived Nutrition Habits in Rugby Union Players. Front Nutr 2020; 7:589737. [PMID: 33195376 PMCID: PMC7649138 DOI: 10.3389/fnut.2020.589737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
The global outbreak of COVID-19 has led to governments and local authorities implementing nationwide lockdowns in an attempt to encourage social distancing and minimize the spread of the virus. Only essential businesses have been able to remain open, with non-essential businesses and activities either closing or restricting services. With no group training sessions allowed, canceled matches, an inability to work and the closure of eating establishments, Rugby Union players have experienced disruption to their daily lives. Two surveys were distributed among Rugby Union athletes to explore (1) the influence of COVID-19 lockdown restrictions on Rugby Union players' nutrition and training habits and (2) how nutrition habits in New Zealand Rugby Union players change after lockdown restrictions were lifted. In total, 258 respondents completed Survey 1 (84.1% male, 26.4% professional/semi-professional). Of the respondents, 58% indicated they lived with family during lockdown. Total food intake was reported to be higher in 36% of respondents. Fruit and vegetable intake was lower (17%) and packaged/convenience food intake higher (26%) in a minority of respondents. In total, 106 respondents completed Survey 2 (84.9% male, 34.0% professional/semi-professional). Of the respondents, 72% prepared and 67% purchased their own food. Less than half of respondents consumed high-protein food more than twice daily either during or following lockdown. Compared to during lockdown, motivation to train and exercise was greater in 58% of respondents following lockdown. Dieticians and nutritionists within clubs provided most of the nutrition knowledge to athletes however other unreliable sources were identified, such as social media and family members. The ongoing pandemic has presented significant challenges for athletes concerning training and nutrition habits and the current study provides some insight into these. Coaches and performance staff should ensure athletes receive appropriate nutritional and training support whilst being aware of the unique demands the individuals' may face.
Collapse
Affiliation(s)
- Charlie Roberts
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Nicholas Gill
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand.,New Zealand Rugby Union, Wellington, New Zealand
| | - Stacy Sims
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
14
|
Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome. Mol Neurobiol 2020; 57:4598-4607. [PMID: 32761353 DOI: 10.1007/s12035-020-01939-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS) is a complex, multisystem disease that is characterized by long-term fatigue, exhaustion, disabilities, pain, neurocognitive impairments, gastrointestinal symptoms, and post-exertional malaise, as well as lowered occupational, educational, and social functions. The clinical and biomarker diagnosis of this disorder is hampered by the lack of validated diagnostic criteria and laboratory tests with adequate figures of merit, although there are now many disease biomarkers indicating the pathophysiology of CFS. Here, we review multiple factors, such as immunological and environmental factors, which are associated with CFS and evaluate current concepts on the involvement of immune and environmental factors in the pathophysiology of CFS. The most frequently reported immune dysregulations in CFS are modifications in immunoglobulin contents, changes in B and T cell phenotypes and cytokine profiles, and decreased cytotoxicity of natural killer cells. Some of these immune aberrations display a moderate diagnostic performance to externally validate the clinical diagnosis of CFS, including the expression of activation markers and protein kinase R (PKR) activity. Associated with the immune aberrations are activated nitro-oxidative pathways, which may explain the key symptoms of CFS. This review shows that viral and bacterial infections, as well as nutritional deficiencies, may further aggravate the immune-oxidative pathophysiology of CFS. Targeted treatments with antioxidants and lipid replacement treatments may have some clinical efficacy in CFS. We conclude that complex interactions between immune and nitro-oxidative pathways, infectious agents, environmental factors, and nutritional deficiencies play a role in the pathophysiology of CFS.
Collapse
|
15
|
Kamel FH, Basha MA, Alsharidah AS, Salama AB. Resistance Training Impact on Mobility, Muscle Strength and Lean Mass in Pancreatic Cancer Cachexia: A Randomized Controlled Trial. Clin Rehabil 2020; 34:1391-1399. [DOI: 10.1177/0269215520941912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: To determine the efficacy of a three-month resistance training programme on the mobility, muscle strength and lean body mass of patients with pancreatic cancer-induced cachexia. Design: Randomized controlled trial. Setting: Elsahel Teaching Hospital, outpatient clinic of the Faculty of Physical Therapy, Cairo, Egypt. Participants: Patients with pancreatic cancer-induced cachexia. Interventions: Participants were randomized to the resistance training group ( n = 20) and control group ( n = 20). Main measures: Outcomes including mobility, muscle strength and lean body mass were measured at baseline, three months after surgical resection and 12 weeks after intervention. Results: The mean (SD) age was 51.9 (5.03) years and body mass index was 21.1 (1.13) kg/m²; 65% of patients were male. Compared to the control group, the resistance training group showed significant improvement in mobility: 400-m walk performance (270.3–256.9 seconds vs 266.4–264.2 seconds, respectively) and chair rise (13.82–12.53 seconds vs 13.77–13.46 seconds, respectively). Similarly, muscle strength was also significantly improved in the resistance training group than in the control group; we observed increase in peak torque of knee extensors ( P = 0.004), elbow flexors ( P = 0.001) and elbow extensors, improvement in lean mass of the upper limb (6.28–6.46 kg vs 6.31–6.23 kg, respectively) and lower limb (16.31–16.58 kg vs 16.4–16.31 kg, respectively). Conclusion: A three-month resistance training improved the mobility of patients with pancreatic cancer-induced cachexia. Muscle strength and lean body mass also improved.
Collapse
Affiliation(s)
- FatmaAlzahraa H Kamel
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Maged A Basha
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Ashwag S Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Amr B Salama
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
- Department of Medical Rehabilitation, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| |
Collapse
|
16
|
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med 2020; 9:jcm9030741. [PMID: 32182904 PMCID: PMC7141192 DOI: 10.3390/jcm9030741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Guglielmo Torre
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
- Correspondence: ; Tel.: +6-225-418-825
| | - Stefano Campi
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Erika Albo
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Marco Bravi
- Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| |
Collapse
|
17
|
Cistanche tubulosa (Schenk) Wight Extract Enhances Hindlimb Performance and Attenuates Myosin Heavy Chain IId/IIx Expression in Cast-Immobilized Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9283171. [PMID: 31885674 PMCID: PMC6925718 DOI: 10.1155/2019/9283171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Skeletal muscle atrophy is encountered in many clinical conditions, but a pharmacological treatment has not yet been established. Cistanche tubulosa (Schenk) Wight is an herbal medicine used in traditional Japanese and Chinese medicine. In the current study, we investigated the effect of C. tubulosa extract (CTE) on atrophied muscle in vivo. We also investigated hindlimb cast immobilization in mice and devised a novel type of hindlimb-immobilizing cast, consisting of sponge-like tape and a thin plastic tube. Using this method, 3 out of 4 groups of mice (n = 11 for each group) were cast-immobilized in the hindlimbs and administered CTE or vehicle for 13 days. A sham procedure was performed in the mice of the fourth group to which the vehicle was administered. Next, the triceps surae muscles (TS) were excised. To analyze the effect of the novel cast system and CTE administration on muscle atrophy, we evaluated TS wet weight and myofiber cross-sectional area (CSA). We also determined MyHC IId/IIx expression levels by western blotting, since their increase is a hallmark of disuse muscle atrophy, suggesting slow-to-fast myofiber type shift. Moreover, we performed two tests of hindlimb performance. The novel cast immobilization method significantly reduced TS wet weight and myofiber CSA. This was accompanied by deterioration of hindlimb function and an increase in MyHC IId/IIx expression. CTE administration did not alter TS wet weight or myofiber CSA; however, it showed a trend of amelioration of the loss of hindlimb function and of suppression of the increased MyHC IId/IIx expression in cast-immobilized mice. Our novel hindlimb cast immobilization method effectively induced muscle atrophy. CTE did not affect muscle mass, but suppressed the shift from slow to fast myofiber type in cast-immobilized mice, ameliorating hindlimb function deterioration.
Collapse
|
18
|
Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 2019; 234:14852-14864. [PMID: 30767204 DOI: 10.1002/jcp.28304] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Maiorano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Bjørklund G, Chirumbolo S, Dadar M, Pen JJ, Doşa MD, Pivina L, Semenova Y, Aaseth J. Insights on Nutrients as Analgesics in Chronic Pain. Curr Med Chem 2019; 27:6407-6423. [PMID: 31309880 DOI: 10.2174/0929867326666190712172015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Many serious inflammatory disorders and nutrient deficiencies induce chronic pain, and anti-inflammatory diets have been applied successfully to modify the inflammatory symptoms causing chronic pain. Numerous scientific data and clinical investigations have demonstrated that long-term inflammation could lead to an inappropriate or exaggerated sensibility to pain. In addition, some Non-steroidal Anti-inflammatory Drugs (NSAID), which directly act on the many enzymes involved in pain and inflammation, including cyclooxygenases, are used to dampen the algesic signal to the central nervous system, reducing the responses of soft C-fibers to pain stimuli. On the other hand, there are a few reports from both health authorities and physicians, reporting that decreased transmission of pain signals can be achieved and improved, depending on the patient's dietary habit. Many nutrients, as well as a suitable level of exercise (resistance training), are the best methods for improving the total mitochondrial capacity in muscle cells, which can lead to a reduction in sensitivity to pain, particularly by lowering the inflammatory signaling to C-fibers. According to the current literature, it could be proposed that chronic pain results from the changed ratio of neuropeptides, hormones, and poor nutritional status, often related to an underlying inflammatory disorder. The current review also evaluates the effective role of nutrition-related interventions on the severity of chronic pain. This review pointed out that nutritional interventions can have a positive effect on pain experience through the indirect inhibitory effect on prostaglandin E2 and attenuation of mitochondrial dysfunction caused by ischemia/reperfusion in skeletal muscle, improving the intracellular antioxidant defense system. These data highlight the need for more nutrition studies where chronic pain is the primary outcome, using accurate interventions. To date, no nutritional recommendation for chronic pain has been officially proposed. Therefore, the goal of this article is to explore pain management and pain modulation, searching for a mode of nutrition efficient in reducing pain.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Yulia Semenova
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
20
|
Horstman AMH, Backx EMP, Smeets JSJ, Marzuca-Nassr GN, van Kranenburg J, de Boer D, Dolmans J, Snijders T, Verdijk LB, de Groot LCPGM, van Loon LJC. Nandrolone decanoate administration does not attenuate muscle atrophy during a short period of disuse. PLoS One 2019; 14:e0210823. [PMID: 30689637 PMCID: PMC6349315 DOI: 10.1371/journal.pone.0210823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A few days of bed rest or immobilization following injury, disease, or surgery can lead to considerable loss of skeletal muscle mass and strength. It has been speculated that such short, successive periods of muscle disuse may be largely responsible for the age-related loss of muscle mass throughout the lifespan. OBJECTIVE To assess whether a single intramuscular injection of nandrolone decanoate prior to immobilization can attenuate the loss of muscle mass and strength in vivo in humans. DESIGN, SETTING AND PARTICIPANTS Thirty healthy (22 ± 1 years) men were subjected to 7 days of one-legged knee immobilization by means of a full leg cast with (NAD, n = 15) or without (CON, n = 15) prior intramuscular nandrolone decanoate injection (200 mg). MEASURES Before and immediately after immobilization, quadriceps muscle cross-sectional area (CSA) (by means of single-slice computed tomography (CT) scans of the upper leg) and one-legged knee extension strength (one-repetition maximum [1-RM]) were assessed for both legs. Furthermore, muscle biopsies from the immobilized leg were taken before and after immobilization to assess type I and type II muscle fiber cross-sectional area. RESULTS Quadriceps muscle CSA decreased during immobilization in both CON and NAD (-6 ± 1% and -6 ± 1%, respectively; main effect of time P<0.01), with no differences between the groups (time × treatment interaction, P = 0.59). Leg muscle strength declined following immobilization (-6 ± 2% in CON and -7 ± 3% in NAD; main effect of time, P<0.05), with no differences between groups (time × treatment interaction, P = 0.55). CONCLUSIONS This is the first study to report that nandrolone decanoate administration does not preserve skeletal muscle mass and strength during a short period of leg immobilization in vivo in humans.
Collapse
Affiliation(s)
- Astrid M. H. Horstman
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evelien M. P. Backx
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Joey S. J. Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel N. Marzuca-Nassr
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Douwe de Boer
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John Dolmans
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B. Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Luc J. C. van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
2,000 Steps/Day Does Not Fully Protect Skeletal Muscle Health in Older Adults During Bed Rest. J Aging Phys Act 2019; 27:191-197. [PMID: 29989486 DOI: 10.1123/japa.2018-0093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physical activity in an inpatient setting is often limited to brief periods of walking. For healthy adults, public health agencies recommend a minimum of 150 min/week of moderate-intensity exercise. The authors sought to determine if meeting this activity threshold, in the absence of incidental activities of daily living, could protect skeletal muscle health during bed rest. Healthy older adults (68 ± 2 years) were randomized to 7-day bed rest with (STEP, n = 7) or without (CON, n = 10) a 2,000 steps/day intervention. Performing 2018 ± 4 steps/day did not prevent the loss of lean leg mass and had no beneficial effect on aerobic capacity, strength, or muscle fiber volume. However, the insulin response to an oral glucose challenge was preserved. Performing a block of 2,000 steps/day, in the absence of incidental activities of daily living, was insufficient to fully counter the catabolic effects of bed rest in healthy older adults.
Collapse
|
22
|
Kou K, Momosaki R, Miyazaki S, Wakabayashi H, Shamoto H. Impact of Nutrition Therapy and Rehabilitation on Acute and Critical Illness: A Systematic Review. J UOEH 2019; 41:303-315. [PMID: 31548485 DOI: 10.7888/juoeh.41.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been no reviews describing the efficacy of the combination of both rehabilitation and nutritional treatments. This systematic review aimed to assess the effects of nutritional therapy on patients with an acute and critical illness undergoing rehabilitation. Online searches using PubMed (MEDLINE), Cochrane Central Register of Controlled Trials, EMBASE (ELSEVIER), and Ichu-shi Web databases identified 986 articles, and 16 additional articles were found through other sources. Each trial assessed for the risk of bias using the Cochrane Collaboration's tool, and the quality of the body of evidence with The Grading of Recommendations Assessment, Development and Evaluation approach. Two randomized controlled trials were included in this review. Jones et al reported that with an enhanced rehabilitation program, there was no effect of nutritional intervention on quality of life (standardized mean difference [SMD] 0.55, 95% confidence intervals [CI] -0.05 to 1.15; P = 0.12). However, Hegerova et al reported positive effects of physical therapy and oral supplements on muscle mass (0.65; 95% CI, 0.36 to 0.93; P < 0.00001) and activities of daily living (SMD 0.28, 95% CI 0.00 to 0.56; P = 0.05). Strengthened nutritional intervention with enhanced rehabilitation treatment for patients with acute and critical illness may possibly be effective for increasing muscle mass, as well as for improving activities of daily living within a short period after discharge.
Collapse
Affiliation(s)
- Keitoku Kou
- Division of Rehabilitation, Shimabara Hospital
| | - Ryo Momosaki
- Department of Rehabilitation Medicine, Teikyo University School of Medicine University Hospital
| | | | | | - Hiroshi Shamoto
- Department of Neurosurgery, Minamisoma Municipal General Hospital
- Department of Disaster and Comprehensive Medicine, Fukushima Medical University
| |
Collapse
|
23
|
Bjørklund G, Dadar M, Pen JJ, Chirumbolo S, Aaseth J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2018; 109:1000-1007. [PMID: 30551349 DOI: 10.1016/j.biopha.2018.10.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is known as a multi-systemic and complex illness, which induces fatigue and long-term disability in educational, occupational, social, or personal activities. The diagnosis of this disease is difficult, due to lacking a proper and suited diagnostic laboratory test, besides to its multifaceted symptoms. Numerous factors, including environmental and immunological issues, and a large spectrum of CFS symptoms, have recently been reported. In this review, we focus on the nutritional intervention in CFS, discussing the many immunological, environmental, and nutritional aspects currently investigated about this disease. Changes in immunoglobulin levels, cytokine profiles and B- and T- cell phenotype and declined cytotoxicity of natural killer cells, are commonly reported features of immune dysregulation in CFS. Also, some nutrient deficiencies (vitamin C, vitamin B complex, sodium, magnesium, zinc, folic acid, l-carnitine, l-tryptophan, essential fatty acids, and coenzyme Q10) appear to be important in the severity and exacerbation of CFS symptoms. This review highlights a far-driven analysis of mineral and vitamin deficiencies among CFS patients.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
24
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J. Fibromyalgia and nutrition: Therapeutic possibilities? Biomed Pharmacother 2018; 103:531-538. [DOI: 10.1016/j.biopha.2018.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
|
25
|
Ferioli M, Zauli G, Martelli AM, Vitale M, McCubrey JA, Ultimo S, Capitani S, Neri LM. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget 2018; 9:14005-14034. [PMID: 29568412 PMCID: PMC5862633 DOI: 10.18632/oncotarget.24456] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience symptoms and adverse effects of treatments that may last even after the end of treatments. Exercise is a safe, non-pharmacological and cost-effective therapy that can provide several health benefits in cancer patient and survivors, reducing cancer symptoms and cancer treatment side effects. The purpose of this review is to describe how the physical exercise is capable to reduce cancer symptoms and cancer treatment side effects. We realized a pragmatic classification of symptoms, dividing them into physical, psychological and psycho-physical aspects. For each symptom we discuss causes, therapies, we analyse the effects of physical exercise and we summarize the most effective type of exercise to reduce the symptoms. This review also points out what are the difficulties that patients and survivors face during the practice of physical activity and provides some solutions to overcome these barriers. Related to each specific cancer, it emerges that type, frequency and intensity of physical exercise could be prescribed and supervised as a therapeutic program, like it occurs for the type, dose and duration of a drug treatment.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:529-545. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.
Collapse
Affiliation(s)
- Liang Shen
- Physical Education College of Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
27
|
|
28
|
Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther Adv Med Oncol 2017; 9:369-382. [PMID: 28529552 PMCID: PMC5424865 DOI: 10.1177/1758834017698643] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a severe and disabling clinical condition that frequently accompanies the development of many types of cancer. Muscle wasting is the hallmark of cancer cachexia and is associated with serious clinical consequences such as physical impairment, poor quality of life, reduced tolerance to treatments and shorter survival. Cancer cachexia may evolve through different stages of clinical relevance, namely pre-cachexia, cachexia and refractory cachexia. Given its detrimental clinical consequences, it appears mandatory to prevent and/or delay the progression of cancer cachexia to its refractory stage by implementing the early recognition and treatment of the nutritional and metabolic alterations occurring during cancer. Research on the molecular mechanisms underlying muscle wasting during cancer cachexia has expanded in the last few years, allowing the identification of several potential therapeutic targets and the development of many promising drugs. Several of these agents have already reached the clinical evaluation, but it is becoming increasingly evident that a single therapy may not be completely successful in the treatment of cancer-related muscle wasting, given its multifactorial and complex pathogenesis. This suggests that early and structured multimodal interventions (including targeted nutritional supplementation, physical exercise and pharmacological interventions) are necessary to prevent and/or treat the devastating consequences of this cancer comorbidity, and future research should focus on this approach.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Maurizio Muscaritoli
- Department of Clinical Medicine, Sapienza, University of Rome, Viale dell’Università 37, 00185 Rome, Italy
| |
Collapse
|
29
|
George M, Azhar G, Pangle A, Peeler E, Dawson A, Coker R, Coleman KS, Schrader A, Wei J. Feasibility of Conducting a 6-month long Home-based Exercise Program with Protein Supplementation in Elderly Community-dwelling Individuals with Heart Failure. ACTA ACUST UNITED AC 2017; 2. [PMID: 29226282 DOI: 10.4172/2573-0312.1000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective Cardiac cachexia is a condition associated with heart failure, particularly in the elderly, and is characterized by loss of muscle mass with or without the loss of fat mass. Approximately 15% of elderly heart failure patients will eventually develop cardiac cachexia; such a diagnosis is closely associated with high morbidity and increased mortality. While the mechanism(s) involved in the progression of cardiac cachexia is incompletely established, certain factors appear to be contributory. Dietary deficiencies, impaired bowel perfusion, and metabolic dysfunction all contribute to reduced muscle mass, increased muscle wasting, increased protein degradation, and reduced protein synthesis. Thus slowing or preventing the progression of cardiac cachexia relies heavily on dietary and exercise-based interventions in addition to standard heart failure treatments and medications. Methods The aim of the present study was to test the feasibility of an at-home exercise and nutrition intervention program in a population of elderly with heart failure, in an effort to determine whether dietary protein supplementation and increased physical activity may slow the progression, or prevent the onset, of cardiac cachexia. Frail elderly patients over the age of 55 with symptoms of heart failure from UAMS were enrolled in one of two groups, intervention or control. To assess the effect of protein supplementation and exercise on the development of cardiac cachexia, data on various measures of muscle quality, cardiovascular health, mental status, and quality of life were collected and analyzed from the two groups at the beginning and end of the study period. Results More than 50% of those who were initially enrolled actually completed the 6-month study. While both groups showed some improvement in their study measures, the protein and exercise group showed a greater tendency to improve than the control group by the end of the six months. Conclusion These findings suggest that with a larger cohort, this intervention may show significant positive effects for elderly patients who are at risk of developing cardiac cachexia.
Collapse
Affiliation(s)
- Masil George
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gohar Azhar
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Amanda Pangle
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eric Peeler
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Amanda Dawson
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert Coker
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kellie S Coleman
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Amy Schrader
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jeanne Wei
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
30
|
Shehata AS, Al-Ghonemy NM, Ahmed SM, Mohamed SR. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. Int J Biochem Cell Biol 2017; 85:135-148. [PMID: 28232107 DOI: 10.1016/j.biocel.2017.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.
Collapse
Affiliation(s)
| | | | - Samah M Ahmed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
31
|
JafariNasabian P, Inglis JE, Kelly OJ, Ilich JZ. Osteosarcopenic obesity in women: impact, prevalence, and management challenges. Int J Womens Health 2017; 9:33-42. [PMID: 28144165 PMCID: PMC5245917 DOI: 10.2147/ijwh.s106107] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteosarcopenic obesity syndrome (OSO) has recently been identified as a condition encompassing osteopenia/osteoporosis, sarcopenia and obesity. OSO is especially deleterious in older adults (even if they are not obese by conventional measures), due to age-related redistribution of fat and its infiltration into bone and muscle. Osteoporosis and bone fractures in elderly increase the risk of sarcopenia, which, through decreased mobility, increases the risk of more falls and fractures, creating a vicious cycle. Obesity plays a dual role: to a certain extent, it promotes bone and muscle gains through mechanical loading; in contrast, increased adiposity is also a source of pro-inflammatory cytokines and other endocrine factors that impair bone and muscle. As the elderly population increases, changes in lifestyle to delay the onset of OSO, or prevent OSO, are warranted. Among these changes, dietary patterns and physical activity modifications are the first ones to be implemented. The typical Western diet (and lifestyle) promotes several chronic diseases including OSO, by facilitating a pro-inflammatory state, largely via the imbalance in omega-6/omega-3 fatty acid ratio and low-fiber and high-processed food consumption. Nutritional modifications to prevent and/or alleviate the OSO syndrome include adequate intake of protein, calcium, magnesium and vitamin D and increasing consumptions of foods containing omega-3 polyunsaturated fatty acids and fiber. Certain types of physical activity, often decreased in overweight/obese women and in elderly, might preserve bone and muscle, as well as help in reducing body fat accrual and fat infiltration. Habitual daily activities and some alternative modes of exercise may be more appropriate for older adults and play a crucial role in preventing bone and muscle loss and maintaining optimal weight. In conclusion, older adults who suffer from OSO syndrome may benefit from combined efforts to improve diet and physical activity, and such recommendations should be fostered as part of public health programs.
Collapse
Affiliation(s)
- Pegah JafariNasabian
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| | - Julia E Inglis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| | | | - Jasminka Z Ilich
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| |
Collapse
|
32
|
Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol 2016; 54:92-103. [DOI: 10.1016/j.semcdb.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
33
|
Paoli A, Pacelli QF, Cancellara P, Toniolo L, Moro T, Canato M, Miotti D, Neri M, Morra A, Quadrelli M, Reggiani C. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition. Nutrients 2016; 8:nu8060331. [PMID: 27258300 PMCID: PMC4924172 DOI: 10.3390/nu8060331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001), whole muscle CSA (p = 0.024), and single muscle fibers CSA (p < 0.05) of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005) and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Quirico F Pacelli
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | | | - Marco Neri
- AIFeM (Italian Medicine and Fitness Federation), Ravenna 48121, Italy.
| | - Aldo Morra
- Euganea Medica, Diagnostic Centre, Via Colombo 13, Albignasego (Padova) 35020, Italy.
| | - Marco Quadrelli
- Euganea Medica, Diagnostic Centre, Via Colombo 13, Albignasego (Padova) 35020, Italy.
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| |
Collapse
|
34
|
Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading. Sci Rep 2016; 6:20300. [PMID: 26831566 PMCID: PMC4735824 DOI: 10.1038/srep20300] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading.
Collapse
|
35
|
Tan HWS, Sim AYL, Huang SL, Leng Y, Long YC. HC toxin (a HDAC inhibitor) enhances IRS1-Akt signalling and metabolism in mouse myotubes. J Mol Endocrinol 2015; 55:197-207. [PMID: 26373795 DOI: 10.1530/jme-15-0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 01/04/2023]
Abstract
Exercise enhances numerous signalling pathways and activates substrate metabolism in skeletal muscle. Small molecule compounds that activate these cellular responses have been shown to recapitulate the metabolic benefits of exercise. In this study, a histone deacetylase (HDAC) inhibitor, HC toxin, was investigated as a small molecule compound that activates exercise-induced adaptations. In C2C12 myotubes, HC toxin treatment activated two exercise-stimulated pathways: AMP-activated protein kinase (AMPK) and Akt pathways. HC toxin increased the protein content and phosphorylation of insulin receptor substrate 1 as well as the activation of downstream Akt signalling. The effects of HC toxin on IRS1-Akt signalling were PI3K-dependent as wortmannin abolishes its effects on IRS1 protein accumulation and Akt phosphorylation. HC toxin-induced Akt activation was sufficient to enhance downstream mTOR complex 1 (mTORC1) signalling including p70S6K and S6, which were consistently abolished by PI3K inhibition. Insulin-stimulated glucose uptake, glycolysis, mitochondrial respiration and fatty acid oxidation were also enhanced in HC toxin-treated myotubes. When myotubes were challenged with serum starvation for the induction of atrophy, HC toxin treatment prevented the induction of genes that are involved in autophagy and proteasomal proteolysis. Conversely, IRS1-Akt signalling was not induced by HC toxin in several hepatoma cell lines, providing evidence for a favourable safety profile of this small molecule. These data highlight the potential of HDAC inhibitors as a novel class of small molecules for the induction of exercise-like signalling pathways and metabolism.
Collapse
Affiliation(s)
- Hayden Weng Siong Tan
- Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore, Block MD 7, 8 Medical Drive, #03-08, Singapore 117597, SingaporeState Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Arthur Yi Loong Sim
- Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore, Block MD 7, 8 Medical Drive, #03-08, Singapore 117597, SingaporeState Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Su Ling Huang
- Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore, Block MD 7, 8 Medical Drive, #03-08, Singapore 117597, SingaporeState Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Leng
- Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore, Block MD 7, 8 Medical Drive, #03-08, Singapore 117597, SingaporeState Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Chau Long
- Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore, Block MD 7, 8 Medical Drive, #03-08, Singapore 117597, SingaporeState Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
36
|
Devries MC, Breen L, Von Allmen M, MacDonald MJ, Moore DR, Offord EA, Horcajada MN, Breuillé D, Phillips SM. Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep 2015; 3:3/8/e12493. [PMID: 26265753 PMCID: PMC4562579 DOI: 10.14814/phy2.12493] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Step-reduction (SR) in older adults results in muscle atrophy and an attenuated rise in postprandial muscle protein synthesis (MPS): anabolic resistance. Knowing that resistance exercise (RT) can enhance MPS, we examined whether RT could enhance MPS following 2 weeks of SR. In addition, as we postulated that SR may impair feeding-induced vasodilation limiting nutrient delivery to muscle, we also examined whether citrulline (CIT), as an arginine and nitric oxide precursor, could attenuate muscle anabolic resistance accompanying SR. We used a unilateral leg model to compare older subjects’ who had undergone SR to a loaded condition of SR plus RT (SR + RT). Thirty older men (70 ± 1 years) underwent 14 days of SR (<1500 steps/day) with supplementation of either 5 g/day CIT or glycine placebo. Throughout SR, subjects performed unilateral low-load RT thrice weekly. We assessed muscle protein synthesis in the postabsorptive and postprandial state (20 g whey isolate plus 15 g glycine or as micellar-whey with 5 g CIT or 15 g glycine, n = 10/group). As MPS was similar after ingestion of either whey isolate, micellar-whey, or micellar-whey + CIT data related to different dietary groups were collapsed to compare SR and SR + RT legs. Subjects’ daily steps were reduced by 80 ± 2% during SR (P < 0.001) compared with baseline. Leg fat-free mass decreased with SR (−124 ± 61 g) and increased in the SR + RT (+126 ± 68 g; P = 0.003). Myofibrillar FSR was lower (P < 0.0001) in the SR as compared with the SR + RT leg in the postabsorptive (0.026 ± 0.001%/h vs. 0.045 ± 0.001%/h) and postprandial states (0.055 ± 0.002%/h vs. 0.115 ± 0.003%/h). We conclude that low-load RT, but not supplementation with CIT, can attenuate the deleterious effects of SR in aging muscle.
Collapse
Affiliation(s)
| | - Leigh Breen
- Department of Kinesiology, McMaster University, Hamilton, Canada School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Mark Von Allmen
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | | | | | - Denis Breuillé
- Nestlé Research Center, Nestec Ltd, Lausanne, Switzerland
| | | |
Collapse
|
37
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
38
|
Grande AJ, Silva V, Riera R, Medeiros A, Vitoriano SGP, Peccin MS, Maddocks M. Exercise for cancer cachexia in adults. Cochrane Database Syst Rev 2014:CD010804. [PMID: 25424884 DOI: 10.1002/14651858.cd010804.pub2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cancer cachexia is a multi-factorial syndrome characterised by an ongoing loss of skeletal muscle mass, with or without a loss of fat mass, which leads to progressive functional impairment. Physical exercise may attenuate the effects of cancer cachexia via several mechanisms, including the modulation of muscle metabolism, insulin sensitivity and levels of inflammation. OBJECTIVES The primary objective was to determine the effects of exercise, compared to usual care or no treatment, on lean body mass, the main biomarker of cachexia, in adults with cancer. Secondary objectives, subject to the availability of data, were to examine the acceptability and safety of exercise in this setting and to compare effects according to the characteristics of the exercise intervention or patient population. SEARCH METHODS We searched the databases CENTRAL (Issue 6, 2014) , MEDLINE (1946 to June 2014), EMBASE (1974 to June 2014), DARE and HTA (Issue 6, 2014), ISI Web of Science (1900 to June 2014), LILACS (1985 to 28 June 2014), PEDro (inception to 28 June 2014), SciVerse SCOPUS (inception to 28 June 2014), Biosis Previews PreMEDLINE (1969 to June 2014) and Open Grey (inception to 28 June 2014). We also searched for ongoing studies, checked reference lists and contacted experts to seek potentially relevant research. SELECTION CRITERIA We included randomised controlled trials (RCTs) in adults meeting the clinical criteria for cancer cachexia comparing a programme of exercise as a sole or adjunct intervention to no treatment or an active control. We imposed no language restriction. DATA COLLECTION AND ANALYSIS Two review authors independently assessed titles and abstracts of articles for relevance and extracted data on study design, participants, interventions and outcomes from potentially relevant articles. MAIN RESULTS We screened 3154 individual references, of which we removed 3138 after title screening and read 16 in full. We found no trials that met the inclusion criteria. AUTHORS' CONCLUSIONS There is insufficient evidence to determine the safety and effectiveness of exercise for patients with cancer cachexia. Randomised controlled trials (i.e., preferably parallel-group or cluster-randomised trials) are required to test the effectiveness of exercise in this group. There are ongoing studies on the topic, so we will update this review to incorporate the findings.
Collapse
Affiliation(s)
- Antonio Jose Grande
- Department of Public Health, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, Santa Catarina, Brazil, 88806-000
| | | | | | | | | | | | | |
Collapse
|
39
|
Severe weight loss in 3 months after allogeneic hematopoietic SCT was associated with an increased risk of subsequent non-relapse mortality. Bone Marrow Transplant 2014; 50:100-5. [DOI: 10.1038/bmt.2014.228] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022]
|
40
|
Eyigor S, Akdeniz S. Is exercise ignored in palliative cancer patients? World J Clin Oncol 2014; 5:554-559. [PMID: 25114869 PMCID: PMC4127625 DOI: 10.5306/wjco.v5.i3.554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Exercise and rehabilitation approaches in palliative care programs for cancer patients affect patients’ symptoms, physical functioning, muscle strength, emotional wellbeing, psychological symptoms, functional capacities, quality of life, mortality and morbidity positively. Based on scientific data, palliative cancer patients should be recommended to participate in exercise programs. There is no standard approach to recipe an exercise regimen for a palliative cancer survivor. Studies for demonstrating the positive effects of exercising in palliative care patients are increasing in number day by day. At this point, increasing awareness about exercising in the entire team monitoring the patient and our efforts in this matter seems to be very important.
Collapse
|
41
|
Artioli GG, De Oliveira Silvestre JG, Guilherme JPLF, Baptista IL, Ramos GV, Da Silva WJ, Miyabara EH, Moriscot AS. Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice. Muscle Nerve 2014; 51:346-52. [PMID: 24934406 DOI: 10.1002/mus.24320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. METHODS Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. RESULTS Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. CONCLUSIONS Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy.
Collapse
Affiliation(s)
- Guilherme Giannini Artioli
- Laboratory of Cellular and Molecular Biology of Striated Muscle, Department of Anatomy, Institute of Biomedical Sciences, Avenida Prof. Lineu Prestes 2415, São Paulo CEP 05508-000, Brazil; Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, Department of Biodynamics, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lira FS, Neto JCR, Seelaender M. Exercise training as treatment in cancer cachexia. Appl Physiol Nutr Metab 2014; 39:679-86. [DOI: 10.1139/apnm-2013-0554] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cachexia is a wasting syndrome that may accompany a plethora of diseases, including cancer, chronic obstructive pulmonary disease, aids, and rheumatoid arthritis. It is associated with central and systemic increases of pro-inflammatory factors, and with decreased quality of life, response to pharmacological treatment, and survival. At the moment, there is no single therapy able to reverse cachexia many symptoms, which include disruption of intermediary metabolism, endocrine dysfunction, compromised hypothalamic appetite control, and impaired immune function, among other. Growing evidence, nevertheless, shows that chronic exercise, employed as a tool to counteract systemic inflammation, may represent a low-cost, safe alternative for the prevention/attenuation of cancer cachexia. Despite the well-documented capacity of chronic exercise to counteract sustained disease-related inflammation, few studies address the effect of exercise training in cancer cachexia. The aim of the present review was hence to discuss the results of cachexia treatment with endurance training. As opposed to resistance exercise, endurance exercise may be performed devoid of equipment, is well tolerated by patients, and an anti-inflammatory effect may be observed even at low-intensity. The decrease in inflammatory status induced by endurance protocols is paralleled by recovery of various metabolic pathways. The mechanisms underlying the response to the treatment are considered.
Collapse
Affiliation(s)
- Fábio Santos Lira
- Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524, CEP 05508-900, Butantã, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Although prolongation of life is a significant public health aim, at the same time the extended life should involve preservation of the capacity to live independently. Consequently, the identification of cost-effectiveness interventions to prevent frailty is one of the most important public health challenges. In the present review, we present the available evidence regarding the impact of physical exercise on the components of frailty syndrome and, in particular, as a remedy for sarcopenia. RECENT FINDINGS Resistance exercise training is more effective in increasing muscle mass and strength, whereas endurance exercises training is superior for maintaining and improving maximum aerobic power. Based on these evidences, recommendations for adult and frail older people should include a balanced program of both endurance and strength exercises, performed on a regular schedule (at least 3 days a week). SUMMARY Regular exercise is the only strategy found to consistently prevent frailty and improve sarcopenia and physical function in older adults. Physical exercises increase aerobic capacity, muscle strength and endurance, by ameliorating aerobic conditioning and/or strength. In older patients, exercise and physical activity produce at least the same beneficial effects observed in younger individuals.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Savary-Auzeloux I, Magne H, Migné C, Oberli M, Breuillé D, Faure M, Vidal K, Perrot M, Rémond D, Combaret L, Dardevet D. A dietary supplementation with leucine and antioxidants is capable to accelerate muscle mass recovery after immobilization in adult rats. PLoS One 2013; 8:e81495. [PMID: 24312309 PMCID: PMC3843669 DOI: 10.1371/journal.pone.0081495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6–8 months) were subjected to unilateral hindlimb casting for 8 days (I0–I8) and then permitted to recover for 10 to 40 days (R10–R40). They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX) (I0 to I8), AOX and leucine (AOX + LEU) (I8 to R15) and LEU alone (R15 to R40). Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP) and post absorptive (PA) states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37%) in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40) due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40) without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states) and could be a promising strategy to be tested during recovery from bed rest in humans.
Collapse
Affiliation(s)
- Isabelle Savary-Auzeloux
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
- * E-mail:
| | - Hugues Magne
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Carole Migné
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marion Oberli
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Denis Breuillé
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Magali Faure
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Marie Perrot
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Didier Rémond
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Lydie Combaret
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Dominique Dardevet
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
45
|
Grande AJ, Silva V, Maddocks M, Riera R, Medeiros A, Vitoriano SGP, Peccin MS. Exercise for cancer cachexia in adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2013. [DOI: 10.1002/14651858.cd010804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Effect of physical exercise on muscle mass and strength in cancer patients during treatment--a systematic review. Crit Rev Oncol Hematol 2013; 88:573-93. [PMID: 23932804 DOI: 10.1016/j.critrevonc.2013.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/13/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022] Open
Abstract
Cancer treatment and its side effects may cause muscle wasting. Physical exercise has the potential to increase muscle mass and strength and to improve physical function in cancer patients undergoing treatment. A systematic review was conducted to study the effect of physical exercise (aerobic, resistance or a combination of both) on muscle mass and strength in cancer patients with different type and stage of cancer disease. Electronic searches were performed up to January 11th 2012, identifying 16 randomised controlled trials for final data synthesis. The studies demonstrated that aerobic and resistance exercise improves upper and lower body muscle strength more than usual care. Few studies have assessed the effect of exercise on muscle mass. Most studies were performed in patients with early stage breast or prostate cancer. Evidence on the effect of physical exercise on muscle strength and mass in cancer patients with advanced disease is lacking. More exercise studies in patients with advanced cancer and at risk of cancer cachexia are warranted.
Collapse
|
47
|
Agergaard J, Reitelseder S, Pedersen TG, Doessing S, Schjerling P, Langberg H, Miller BF, Aagaard P, Kjaer M, Holm L. Myogenic, matrix, and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding. Muscle Nerve 2013; 47:748-59. [PMID: 23519763 DOI: 10.1002/mus.23667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We examined short-term (3-hour) and long-term (12-week) training effects after heavy load [HL; 70% 1RM] and light load (LL; 16% 1RM) exercise. METHODS mRNA expression of genes involved in skeletal muscle remodeling were analyzed and muscle activity (EMG measurements) was measured. RESULTS Relative muscle activity differed between HL and LL resistance exercise, whereas median power frequency was even, suggesting an equal muscle-fiber-type recruitment distribution. mRNA expression of Myf6, myogenin, and p21 was mostly increased, and myostatin was mostly depressed by HL resistance exercise. No major differences were seen in atrophy-related genes between HL and LL resistance exercise. No changes were seen over 12-week training for any of the targets. CONCLUSIONS Resistance exercise at LL and HL elevated the expression of genes involved in skeletal muscle hypertrophy, although the greatest response was from HL. However, no long-term effect from either LL or HL resistance exercise was seen on basal levels of the mRNA targets.
Collapse
Affiliation(s)
- Jakob Agergaard
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wall BT, van Loon LJC. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 2013; 71:195-208. [PMID: 23550781 DOI: 10.1111/nure.12019] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Situations such as recovery from injury or illness require otherwise healthy humans to undergo periods of disuse, which lead to considerable losses of skeletal muscle mass and, subsequently, numerous negative health consequences. It has been established that prolonged disuse (>10 days) leads to a decline in basal and postprandial rates of muscle protein synthesis, without an apparent change in muscle protein breakdown. It also seems, however, that an early and transient (1-5 days) increase in basal muscle protein breakdown may also contribute to disuse atrophy. A period of disuse reduces energy requirements and appetite. Consequently, food intake generally declines, resulting in an inadequate dietary protein consumption to allow proper muscle mass maintenance. Evidence suggests that maintaining protein intake during a period of disuse attenuates disuse atrophy. Furthermore, supplementation with dietary protein and/or essential amino acids can be applied to further aid in muscle mass preservation during disuse. Such strategies are of particular relevance to the older patient at risk of developing sarcopenia. More work is required to elucidate the impact of disuse on basal and postprandial rates of muscle protein synthesis and breakdown. Such information will provide novel targets for nutritional interventions to further attenuate muscle disuse atrophy and, as such, support healthy aging.
Collapse
Affiliation(s)
- Benjamin T Wall
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht 6200 MD, The Netherlands
| | | |
Collapse
|
49
|
Botros D, Somarriba G, Neri D, Miller TL. Interventions to address chronic disease and HIV: strategies to promote exercise and nutrition among HIV-infected individuals. Curr HIV/AIDS Rep 2012; 9:351-363. [PMID: 22933247 PMCID: PMC3492509 DOI: 10.1007/s11904-012-0135-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Food insecurity, micronutrient deficits, dyslipidemia, insulin resistance, obesity, cardiovascular disease, and bone disorders complicate the treatment of HIV infection. Nutrition and exercise interventions can be effective in ameliorating these symptoms that are associated with HIV and antiretroviral therapy (ART). In this literature review, we examine the most recent nutrition and exercise interventions for HIV-infected patients. Macronutrient supplementation can be useful in treating malnutrition and wasting. Multivitamin (vitamin B complex, vitamin C, and vitamin E) supplements and vitamin D may improve quality of life and decrease morbidity and mortality. Nutritional counseling and exercise interventions are effective for treating obesity, fat redistribution, and metabolic abnormalities. Physical activity interventions improve body composition, strength, and fitness in HIV-infected individuals. Taken collectively, the evidence suggests that a proactive approach to nutrition and physical activity guidance and interventions can improve outcomes and help abrogate the adverse metabolic, cardiovascular, and psychological consequences of HIV and its treatments.
Collapse
Affiliation(s)
- Diana Botros
- Division of Pediatric Clinical Research, Department of Pediatrics (D820), University of Miami, Miller School of Medicine, Batchelor Children's Research Institute, PO Box 016820, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Therapeutic exercise may help maintain or slow down the rate of decline in muscle mass and physical function that occurs with cachexia. This review considers recent evidence in relation to patients with cachexia as regards the rationale for the use of exercise, the challenges in its clinical application and future developments. RECENT FINDINGS Exercise may attenuate the effects of cachexia by modulating muscle metabolism, insulin sensitivity and levels of inflammation. Studies targeting cachectic patients have demonstrated that even in advanced disease peripheral muscle has the capacity to respond to exercise training. Nonetheless, there are challenges in implementing the use of exercise, particularly once cachexia is established in which tolerance to even low levels of exercise is poor. Strategies to make exercise a more accessible therapy are required and could include offering exercise earlier on in the course of the disease, at lower intensities and in various forms, including more novel approaches. SUMMARY The use of therapeutic exercise has a sound rationale, even in patients with advanced disease and cachexia. Because of practical issues with its application, further study is required to examine if benefits achieved in small studies can be translated to a wider clinical population.
Collapse
|