1
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Hypoxia-induced autophagy in triple negative breast cancer: association with prognostic variables, patients' survival and response to neoadjuvant chemotherapy. Virchows Arch 2023; 482:823-837. [PMID: 36939902 PMCID: PMC10156790 DOI: 10.1007/s00428-023-03527-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
Autophagy is a cellular response to diverse stresses within tumor microenvironment (TME) such as hypoxia. It enhances cell survival and triggers resistance to therapy. This study investigated the prognostic importance of HIF-1α and miR-210 in triple negative breast cancer (TNBC). Also, we studied the relation between beclin-1 and Bcl-2 and their prognostic relevance in triple negative breast cancer. Furthermore, the involvement of hypoxia-related markers, beclin-1 and Bcl-2 in mediating resistance to neoadjuvant chemotherapy (NACT) in TNBC was evaluated. Immunohistochemistry was performed to evaluate HIF-1α, beclin-1 and Bcl-2 expression whereas, miR-210 mRNA was detected by quantitative reverse transcription PCR (q-PCR) in 60 TNBC patients. High HIF-1α expression was related to larger tumors, grade III cases, positive lymphovascular invasion, advanced stage, high Ki-67 and poor overall survival (OS). High miR-210 and negative Bcl-2 expression were related to nodal metastasis, advanced stage and poor OS. High beclin-1 was associated with grade III, nodal metastasis, advanced stage and poor OS. Also, high beclin-1 and negative Bcl-2 were significantly associated with high HIF-1α and high miR-210. High HIF- 1α, miR-210 and beclin-1 as well as negative Bcl-2 were inversely related to pathologic complete response following NACT. High beclin-1 and lack of Bcl-2 are significantly related to hypoxic TME in TNBC. High HIF-1α, miR-210, and beclin-1 expression together with lack of Bcl-2 are significantly associated with poor prognosis as well as poor response to NACT. HIF-1α and miR-210 could accurately predict response to NACT in TNBC.
Collapse
|
4
|
Powell BH, Turchinovich A, Wang Y, Gololobova O, Buschmann D, Zeiger MA, Umbricht CB, Witwer KW. miR-210 Expression Is Strongly Hypoxia-Induced in Anaplastic Thyroid Cancer Cell Lines and Is Associated with Extracellular Vesicles and Argonaute-2. Int J Mol Sci 2023; 24:4507. [PMID: 36901936 PMCID: PMC10002857 DOI: 10.3390/ijms24054507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Hypoxia, or low oxygen tension, is frequently found in highly proliferative solid tumors such as anaplastic thyroid carcinoma (ATC) and is believed to promote resistance to chemotherapy and radiation. Identifying hypoxic cells for targeted therapy may thus be an effective approach to treating aggressive cancers. Here, we explore the potential of the well-known hypoxia-responsive microRNA (miRNA) miR-210-3p as a cellular and extracellular biological marker of hypoxia. We compare miRNA expression across several ATC and papillary thyroid cancer (PTC) cell lines. In the ATC cell line SW1736, miR-210-3p expression levels indicate hypoxia during exposure to low oxygen conditions (2% O2). Furthermore, when released by SW1736 cells into the extracellular space, miR-210-3p is associated with RNA carriers such as extracellular vesicles (EVs) and Argonaute-2 (AGO2), making it a potential extracellular marker for hypoxia.
Collapse
Affiliation(s)
- Bonita H. Powell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Biolabs GmbH, 69120 Heidelberg, Germany
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martha A. Zeiger
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Christopher B. Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel) 2023; 15:cancers15041346. [PMID: 36831687 PMCID: PMC9953970 DOI: 10.3390/cancers15041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Large numbers of breast cancers arise within a familial context, either with known inherited germline mutations largely within DNA repair genes, or with a strong family history of breast and/or ovarian cancer, with unknown genetic underlying mechanisms. These cancers appear to be different to sporadic cases, with earlier age of onset, increased multifocality and with association with specific breast cancer histological and phenotypic subtypes. Furthermore, tumours showing homologous recombination deficiency, due to loss of BRCA1, BRCA2, PALB2 and CHEK2 function, have been shown to be especially sensitive to platinum-based chemotherapeutics and PARP inhibition. While there is extensive research and data accrued on risk stratification and genetic predisposition, there are few data pertaining to relevant prognostic and predictive biomarkers within this breast cancer subgroup. The following is a review of such biomarkers in male and female familial breast cancer, although the data for the former are particularly sparse.
Collapse
Affiliation(s)
- Siddhartha Deb
- Anatpath, Gardenvale, VIC 3185, Australia
- Monash Health Pathology, Clayton, VIC 3168, Australia
- Correspondence:
| | | | - Stephen B. Fox
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Mebourne, Melbourne, VIC 3101, Australia
| |
Collapse
|
6
|
The Role of miRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 13:diagnostics13010127. [PMID: 36611419 PMCID: PMC9818368 DOI: 10.3390/diagnostics13010127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is one of the most common malignancies among women around the world. The basal or triple-negative subtype (TNBC) is a heterogeneous group of tumors, characterized by its aggressive and metastatic nature, with low survival and worse prognosis. Research on genetic biomarkers, such as microRNAs (miRs) in TNBC, demonstrate their relevance in the prognosis of the disease. Therefore, the objective of this research was to verify the role of miRs in the prognosis of TNBC. A search was carried out in the PubMed (MEDLINE), Web of Science, and Scopus databases, with articles in the English language from 2010 to 2022. Only articles that analyzed the role of miRNAs in the prognosis of TNBC and that met the criteria of the MOOSE method were included. For the preparation and planning of this systematic review, a PRISMA checklist and the MOOSE method were used. The Newcastle-Ottawa Scale was used to analyze the quality of the included studies. The excluded criteria considered were: (1) studies that presented duplication in the databases; (2) reviews of the literature, clinical case reports, meta-analyses, conference abstracts, letters to the editor, theses, dissertations, and book chapters; (3) studies that stratified only women diagnosed with other subtypes of breast cancer subtypes; (4) experiments without a control or comparison group. After the bibliographic survey of the 2.274 articles found, 43 articles met the inclusion criteria, totaling 5421 patients with TNBC analyzed for this review. Six miRs (miR-155, miR-21, miR-27a/b/, miR-374a/b, miR-30a/c/e, and miR-301a) were included in the meta-analysis. A low expression of miR-155 was associated with reduced overall survival (OS) (HR: 0.68, 95% CI: 0.58-0.81). A high expression of miR-21 was a predictor of OS reduction (HR: 2.56; 95% CI: 1.49-4.40). In addition, high levels of miR-27a/b and miR-301a/b were associated with lower OS, while the decreased expression levels of miR-30 and miR-374a/b were associated with worse relapse-free survival (RFS) and shorter disease-free survival (DFS), respectively. The present study revealed that miRs play essential roles in the development of metastases, in addition to acting as suppressors of the disease, thus improving the prognosis of TNBC. However, the clinical application of these findings has not yet been investigated.
Collapse
|
7
|
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022; 12:978276. [PMID: 36226050 PMCID: PMC9550190 DOI: 10.3389/fonc.2022.978276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a kind of malignant tumor disease that poses a serious threat to human health. Its biological characteristics of rapid proliferation and delayed angiogenesis, lead to intratumoral hypoxia as a common finding in breast cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic microenvironment, including metabolic reprogramming, tumor angiogenesis, tumor cell proliferation and metastasis and other important physiological and pathological processes, as well as gene instability under hypoxia. In addition, in the immune microenvironment of hypoxia, both innate and acquired immunity of tumor cells undergo subtle changes to support tumor and inhibit immune activity. Thus, the elucidation of tumor microenvironment hypoxia provides a promising target for the resistance and limited efficacy of current breast cancer therapies. We also summarize the hypoxic mechanisms of breast cancer treatment related drug resistance, as well as the current status and prospects of latest related drugs targeted HIF inhibitors.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Cao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| |
Collapse
|
8
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
9
|
Zheng F, Du F, Qian H, Zhao J, Wang X, Yue J, Hu N, Si Y, Xu B, Yuan P. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer. Biomark Res 2021; 9:28. [PMID: 33926554 PMCID: PMC8082898 DOI: 10.1186/s40364-021-00285-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background N6-methyladenosine(m6A) methylation modification affects the tumorigenesis, progression, and metastasis of breast cancer (BC). However, the expression characteristics and prognostic value of m6A modification in BC are still unclear. We aimed to evaluate the relationship between m6A modification and clinicopathological characteristics, and to explore the underlying mechanisms. Methods Three public cohorts and our clinical cohort were included: 1091 BC samples and 113 normal samples from the TCGA database, 1985 BC samples from the METABRIC database, 1764 BC samples from the KM Plotter website, and 134 BC samples of our clinical cohort. We collected date from these cohorts and analyzed the genetic expression, gene-gene interactions, gene mutations, copy number variations (CNVs), and clinicopathological and prognostic features of 28 m6A RNA regulators in BC. Results This study demonstrated that some m6A regulators were significantly differenially expressed in BCs and their adjacent tissues, and also different in various molecular types. All 28 studied m6A regulators exhibited interactions. KIAA1429 had the highest mutation frequency. CNVs of m6A regulators were observed in BC patients. The expression of the m6A regulators was differentially associated with survival of BC. Higher CBLL1 expression was associated with a better prognosis in BC than lower CBLL1 expression. Functional analysis showed that CBLL1 was related to the ESR1-related pathway, apoptosis-related pathway, cell cycle pathway and immune-related pathway in BC. Conclusions m6A RNA modification modulated gene expression and thereby affected clinicopathological features and survival outcomes in BC. CBLL1 may be a promising prognostic biomarker for BC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00285-w.
Collapse
Affiliation(s)
- Fangchao Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China. .,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Qattan A, Al-Tweigeri T, Alkhayal W, Suleman K, Tulbah A, Amer S. Clinical Identification of Dysregulated Circulating microRNAs and Their Implication in Drug Response in Triple Negative Breast Cancer (TNBC) by Target Gene Network and Meta-Analysis. Genes (Basel) 2021; 12:549. [PMID: 33918859 PMCID: PMC8068962 DOI: 10.3390/genes12040549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to therapy is a persistent problem that leads to mortality in breast cancer, particularly triple-negative breast cancer (TNBC). MiRNAs have become a focus of investigation as tissue-specific regulators of gene networks related to drug resistance. Circulating miRNAs are readily accessible non-invasive potential biomarkers for TNBC diagnosis, prognosis, and drug-response. Our aim was to use systems biology, meta-analysis, and network approaches to delineate the drug resistance pathways and clinical outcomes associated with circulating miRNAs in TNBC patients. MiRNA expression analysis was used to investigate differentially regulated circulating miRNAs in TNBC patients, and integrated pathway regulation, gene ontology, and pharmacogenomic network analyses were used to identify target genes, miRNAs, and drug interaction networks. Herein, we identified significant differentially expressed circulating miRNAs in TNBC patients (miR-19a/b-3p, miR-25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p) that regulate several molecular pathways (PAM (PI3K/Akt/mTOR), HIF-1, TNF, FoxO, Wnt, and JAK/STAT, PD-1/PD-L1 pathways and EGFR tyrosine kinase inhibitor resistance (TKIs)) involved in drug resistance. Through meta-analysis, we demonstrated an association of upregulated miR-93, miR-210, miR-19a, and miR-19b with poor overall survival outcomes in TNBC patients. These results identify miRNA-regulated mechanisms of drug resistance and potential targets for combination with chemotherapy to overcome drug resistance in TNBC. We demonstrate that integrated analysis of multi-dimensional data can unravel mechanisms of drug-resistance related to circulating miRNAs, particularly in TNBC. These circulating miRNAs may be useful as markers of drug response and resistance in the guidance of personalized medicine for TNBC.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, Washington, DC 20073, USA
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| | - Wafa Alkhayal
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Suad Amer
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| |
Collapse
|
11
|
Evangelista AF, Oliveira RJ, O Silva VA, D C Vieira RA, Reis RM, C Marques MM. Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer. BMC Cancer 2021; 21:76. [PMID: 33461524 PMCID: PMC7814437 DOI: 10.1186/s12885-020-07731-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.
Collapse
Affiliation(s)
- Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Renato J Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rene A D C Vieira
- Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Marcia M C Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Tumor Biobank, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Barretos School of Health Sciences, FACISB, Barretos, São Paulo, 14784-400, Brazil
| |
Collapse
|
12
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Chen T, Yan J, Li Z. Expression of miR-34a is a sensitive biomarker for exposure to genotoxic agents in human lymphoblastoid TK6 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503232. [PMID: 32928372 DOI: 10.1016/j.mrgentox.2020.503232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023]
Abstract
miR-34a has been identified as a tumor suppressor microRNA (miRNA) involved in the P53 network. Its expression levels correlate to carcinogenesis, which are generally lower in tumor tissue and higher in response to DNA damage. In this study, the response of miR-34a from exposure to genotoxic agents in human lymphoblastoid TK6 cells was evaluated to assess whether the expression of this miRNA could be used as an early indicator for genotoxic damage in mammalian cells. TK6 cells were treated with seven genotoxic agents with different mode-of-actions (cisplatin, N-ethyl-N-nitrosourea, etoposide, mitomycin C, methyl methanesulphonate, taxol, and X-ray radiation) and a non-genetic toxin (usnic acid) at different concentrations for four hours (except for X-rays) and the expression levels of miR-34a were measured 24 h after the beginning of the treatments. The expression levels of miR-34a were significantly increased by these genetic toxins in a dose-dependent manner, while no significant change in miRNA expression was found in the usnic acid-treated cells. These results suggest that miR-34a can respond to genotoxic insults sensitively; thus, miR-34a expression has the potential to be used to evaluate genotoxicity of agents.
Collapse
Affiliation(s)
- Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States.
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| | - Zhiguang Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| |
Collapse
|
14
|
Xia W, Gong D, Qin X, Cai Z. [MicroRNA-671-3p suppresses proliferation and invasion of breast cancer cells by targeting DEPTOR]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:42-48. [PMID: 32376551 DOI: 10.12122/j.issn.1673-4254.2020.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects of miR-671-3p on the proliferation and invasion of breast cancer cells and explore the possible mechanism. METHODS We examined the expressions of miR-671-3p in human normal epithelial cells (MCF-10A) and breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR3) using RT-PCR. The effects of transfection with a miR-671-3p mimic or inhibitor on the proliferation, migration and invasion of MCF-7 cells were evaluated using CCK-8 assay and Transwell chamber assay. The target gene of miR-671-3p was predicated with Targetscan and validated by a dual luciferase reporter system and Western blotting. RESULTS The expression of miR-671-3p was significantly lower in breast cancer cells than in normal breast epithelial cells. Compared with negative control group, MCF-7 cells with miR-671-3p overexpression exhibited significantly reduced proliferation and invasion, whereas inhibition of miR-671-3p obviously promoted the cell proliferation and invasion. Luciferase reporter assay demonstrated that DEPTOR was the target gene of miR-671-3p, and miR-671-3p overexpression caused significant down-regulation of the protein expression of DEPTOR. CONCLUSIONS MiR-671-3p suppresses the proliferation and invasion of breast cancer cell line MCF-7 by directly targeting DEPTOR protein.
Collapse
Affiliation(s)
- Wei Xia
- Department of Cell biology, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Degui Gong
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Xiaoping Qin
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Zhuo Cai
- Department of Pharmacy, Air Force Hospital of Southern Theater Command of PLA, Guangzhou 510602, China
| |
Collapse
|
15
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
17
|
Ni J, Zhou S, Yuan W, Cen F, Yan Q. Mechanism of miR-210 involved in epithelial-mesenchymal transition of pancreatic cancer cells under hypoxia. J Recept Signal Transduct Res 2019; 39:399-406. [PMID: 31875764 DOI: 10.1080/10799893.2019.1683863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to analyze cell viability. The MiRNA expression level was measured by qRT-PCR. HOXA9, EMT-related proteins, and NF-κB activities were examined by immunoblotting assay. Dual luciferase reporter assay was used to assess whether HOXA9 was a target of miR-210.Results: Under hypoxia condition, miR-210, HIF-1α and NF-κB were increased, and the HOXA9 was reduced in PANC-1 cells. When miR-210 was overexpressed in normoxic PANC-1 cells, EMT epithelial markers of E-cadherin and β-catenin were down-regulated, and mesenchymal markers of vimentin and N-cadherin were up-regulated to promote cell migration/invasive ability, and the HOXA9 level was decreased. After HOXA9 level decreased, the sensitivity to chemotherapeutic drug of gemcitabine was reduced, NF-κB expression level and cell migration/invasive ability was enhanced. Whereas, miR-210 antagonist into hypoxic PANC-1 cells, which up-regulated E-cadherin, β-catenin level, and down-regulated vimentin and N-cadherin levels to decrease cell migration/invasive ability, and increase the HOXA9. Furthermore, increasing HOXA9 level decreased NF-κB expression level and cell migration/invasive ability, enhanced the sensitivity to gemcitabine. At last, miRDB and TargetScan predicted that HOXA9 was a target of miR-210, and dual luciferase reporter assay verified this hypothesis.Conclusion: MiR-210 inhibited the expression of HOXA9 to activate the NF-κB signaling pathway and mediated the occurrence of EMT of pancreatic cancer cells induced by HIF-1α under hypoxia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Hepatological Surgery, Fuyang hospital of traditional Chinese medicine, Hangzhou, China
| | - Shiyu Zhou
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenbin Yuan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Feng Cen
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Qiang Yan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
18
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Tang Q, Ouyang H, He D, Yu C, Tang G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2800-2809. [PMID: 31284781 DOI: 10.1080/21691401.2019.1638791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer characterized by high recurrence rates and poor prognosis compared to other breast cancers. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of various post-transcriptional gene and silence a broad set of target genes. Many recent studies have demonstrated that miRNAs play an important role in the initiation, promotion, malignant conversion, progression, and metastasis of TNBC. Therefore, the aim of this review is to focus on recent advancements of microRNAs-based potential applications in diagnosis, treatment and prognosis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Qian Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Hu Ouyang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Dongxiu He
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Cuiyun Yu
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Guotao Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| |
Collapse
|
20
|
Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, Qiao H. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 2019; 39:BSR20192298. [PMID: 31701999 PMCID: PMC6879377 DOI: 10.1042/bsr20192298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (MiR)-942 regulates the development of a variety of tumors, however, its function in breast cancer (BCa) has been less reported. Therefore, the present study investigated the regulatory effects of miR-942 on BCa cells. The expression of miR-942 in whole blood samples and BCa cell lines was detected by quantitative real-time (qRT)-PCR. Direct target gene for miR-942 was confirmed by dual-luciferase reporter assay. FOXA2 expression in adjacent tissues was detected by qRT-PCR. The effects of miR-942, or miR-942 with FOXA2, on the cell viability, proliferation, apoptosis, migration and invasion of BCa cells were determined by cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, wound scratch and Transwell, respectively. The levels of N-Cadherin, E-Cadherin and Snail were determined by Western blot. Kaplan-Meier was used to explore the relationship among the expressions of miR-942 and FOXA2 and the prognosis of BCa patients. MiR-942 had high expressed in BCa, while its low expression significantly suppressed the cell viability, proliferation, migration and invasion of BCa, but increased cell apoptosis. Down-regulation of N-Cadherin and Snail and up-regulation of E-Cadherin were also induced by low-expression of miR-942. FOXA2, which was proved as the direct target gene for miR-942 and was low-expressed in BCa, partially reversed the effect of overexpressed miR-942 on promoting cell viability, proliferation, migration and invasion, and suppressed cell apoptosis. A lower survival rate was observed in BCa patients with a high expression of miR-942 and a low expression of FOXA2. MiR-942 promoted the progression of BCa by down-regulating the expression of FOXA2.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Jirui Sun
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Qiushuang Ma
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Wenming Zhao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Xue Chen
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Haizhi Qiao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| |
Collapse
|
21
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J, Cui Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019; 8:cells8121492. [PMID: 31766744 PMCID: PMC6953059 DOI: 10.3390/cells8121492] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive, prevalent, and distinct subtype of breast cancer characterized by high recurrence rates and poor clinical prognosis, devoid of both predictive markers and potential therapeutic targets. MicroRNAs (miRNA/miR) are a family of small, endogenous, non-coding, single-stranded regulatory RNAs that bind to the 3′-untranslated region (3′-UTR) complementary sequences and downregulate the translation of target mRNAs as post-transcriptional regulators. Dysregulation miRNAs are involved in broad spectrum cellular processes of TNBC, exerting their function as oncogenes or tumor suppressors depending on their cellular target involved in tumor initiation, promotion, malignant conversion, and metastasis. In this review, we emphasize on masses of miRNAs that act as oncogenes or tumor suppressors involved in epithelial–mesenchymal transition (EMT), maintenance of stemness, tumor invasion and metastasis, cell proliferation, and apoptosis. We also discuss miRNAs as the targets or as the regulators of dysregulation epigenetic modulation in the carcinogenesis process of TNBC. Furthermore, we show that miRNAs used as potential classification, prognostic, chemotherapy and radiotherapy resistance markers in TNBC. Finally, we present the perspective on miRNA therapeutics with mimics or antagonists, and focus on the challenges of miRNA therapy. This study offers an insight into the role of miRNA in pathology progression of TNBC.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Huan Gu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
22
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
23
|
Sugita BM, Pereira SR, de Almeida RC, Gill M, Mahajan A, Duttargi A, Kirolikar S, Fadda P, de Lima RS, Urban CA, Makambi K, Madhavan S, Boca SM, Gusev Y, Cavalli IJ, Ribeiro EMSF, Cavalli LR. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget 2019; 10:6184-6203. [PMID: 31692930 PMCID: PMC6817452 DOI: 10.18632/oncotarget.27250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC), a clinically aggressive breast cancer subtype, affects 15-35% of women from Latin America. Using an approach of direct integration of copy number and global miRNA profiling data, performed simultaneously in the same tumor specimens, we identified a panel of 17 miRNAs specifically associated with TNBC of ancestrally characterized patients from Latin America, Brazil. This panel was differentially expressed between the TNBC and non-TNBC subtypes studied (p ≤ 0.05, FDR ≤ 0.25), with their expression levels concordant with the patterns of copy number alterations (CNAs), present mostly frequent at 8q21.3-q24.3, 3q24-29, 6p25.3-p12.2, 1q21.1-q44, 5q11.1-q22.1, 11p13-p11.2, 13q12.11-q14.3, 17q24.2-q25.3 and Xp22.33-p11.21. The combined 17 miRNAs presented a high power (AUC = 0.953 (0.78-0.99);95% CI) in discriminating between the TNBC and non-TNBC subtypes of the patients studied. In addition, the expression of 14 and 15 of the 17miRNAs was significantly associated with tumor subtype when adjusted for tumor stage and grade, respectively. In conclusion, the panel of miRNAs identified demonstrated the impact of CNAs in miRNA expression levels and identified miRNA target genes potentially affected by both CNAs and miRNA deregulation. These targets, involved in critical signaling pathways and biological functions associated specifically with the TNBC transcriptome of Latina patients, can provide biological insights into the observed differences in the TNBC clinical outcome among racial/ethnic groups, taking into consideration their genetic ancestry.
Collapse
Affiliation(s)
- Bruna M Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Silma R Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | - Rodrigo C de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rubens S de Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Simina M Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
24
|
Hsa-miR-210-3p expression in breast cancer and its putative association with worse outcome in patients treated with Docetaxel. Sci Rep 2019; 9:14913. [PMID: 31624308 PMCID: PMC6797767 DOI: 10.1038/s41598-019-51581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-210-3p is the most prominent hypoxia regulated microRNA, and it has been found significantly overexpressed in different human cancers. We performed the expression analysis of miR-210-3p in a retrospective cohort of breast cancer patients with a median follow-up of 76 months (n = 283). An association between higher levels of miR-210-3p and risk of disease progression (HR: 2.13, 95%CI: 1.33-3.39, P = 0.002) was found in the subgroup of patients treated with Epirubicin and Cyclophosphamide followed by Docetaxel. Moreover, a cut off value of 20.966 established by ROC curve analyses allowed to discriminate patients who developed distant metastases with an accuracy of 85% at 3- (AUC: 0.870, 95%CI: 0.690-1.000) and 83% at 5-years follow up (AUC: 0.832, 95%CI: 0.656–1.000). Whereas the accuracy in discriminating patients who died for the disease was of 79.6% at both 5- (AUC: 0.804, 95%CI: 0.517–1.000) and 10-years (AUC: 0.804. 95%CI: 0.517–1.000) follow-up. In silico analysis of miR-210-3p and Docetaxel targets provided evidence for a putative molecular cross-talk involving microtubule regulation, drug efflux metabolism and oxidative stress response. Overall, our data point to the miR-210-3p involvement in the response to therapeutic regimens including Docetaxel in sequential therapy with anthracyclines, suggesting it may represent a predictive biomarker in breast cancer patients.
Collapse
|
25
|
Shao B, Wang X, Zhang L, Li D, Liu X, Song G, Cao H, Zhu J, Li H. Plasma microRNAs Predict Chemoresistance in Patients With Metastatic Breast Cancer. Technol Cancer Res Treat 2019; 18:1533033819828709. [PMID: 30786836 PMCID: PMC6383099 DOI: 10.1177/1533033819828709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: MicroRNAs contribute to chemotherapy response in different types
of cancer. We hypothesized that plasma miRNAs are potentially associated with chemotherapy
response in patients with metastatic breast cancer. Patients and Methods: Fourteen
candidate microRNAs were chosen from the literature, and their plasma levels were measured
by quantitative polymerase chain reaction (PCR). Forty metastatic breast cancer patients
were chosen as the training groups. The potential significant microRNAs were validated in
another 103 plasma samples. Results: In the training set, we identified 3 microRNAs
(miR-200a, miR-210, and miR-451) as significantly dysregulated miRNAs between sensitive
group (partial response (and stable disease) and resistant group (progressive disease).
Then, in the validation set, miR-200a (area under the curve = 0.881, sensitivity = 94.1%,
specificity = 76.7%) and miR-210 (area under the curve = 0.851, sensitivity = 88.2%,
specificity = 72.1%) showed high diagnostic accuracy for distinguishing sensitive group
from resistant group. Furthermore, the plasma level of miR-200a was significantly
associated with the stage in surgery (P = .035), and the high level of
miR-210 expression was associated with internal organ metastasis (liver, lung, and brain;
P = .024). Conclusions: Plasma miR-200a and miR-210 could be effective
biomarkers for the prediction of chemotherapy resistance in metastatic breast cancer
patients.
Collapse
Affiliation(s)
- Bin Shao
- 1 Department of Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xiaoxia Wang
- 2 Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Lei Zhang
- 2 Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Deyu Li
- 3 Kunshan RNAi institute, Kunshan, Jiangsu province, People's Republic of China
| | - Xiaoran Liu
- 1 Department of Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Guohong Song
- 1 Department of Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Huiqing Cao
- 2 Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Jun Zhu
- 1 Department of Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Huiping Li
- 1 Department of Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
26
|
Aberrant miRNAs expressed in HER-2 negative breast cancers patient. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:257. [PMID: 30342533 PMCID: PMC6196003 DOI: 10.1186/s13046-018-0920-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Background Breast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’. Method Triple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls. Results Three downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes. Conclusion The miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Wei HT, Guo EN, Liao XW, Chen LS, Wang JL, Ni M, Liang C. Genome‑scale analysis to identify potential prognostic microRNA biomarkers for predicting overall survival in patients with colon adenocarcinoma. Oncol Rep 2018; 40:1947-1958. [PMID: 30066920 PMCID: PMC6111604 DOI: 10.3892/or.2018.6607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to identify potential prognostic microRNA (miRNA) biomarkers for colon adenocarcinoma (COAD) prognostic prediction using the dataset of The Cancer Genome Atlas (TCGA). The genome‑wide miRNA sequencing dataset and corresponding COAD clinical information were downloaded from TCGA. Prognosis‑related miRNA screening was performed by genome‑wide multivariable Cox regression analysis and used for prognostic signature construction. Ten miRNAs (hsa‑mir‑891a, hsa‑mir‑6854, hsa‑mir‑216a, hsa‑mir‑378d‑1, hsa‑mir‑92a‑1, hsa‑mir‑4709, hsa‑mir‑92a‑2, hsa‑mir‑210, hsa‑mir‑940 and hsa‑mir‑887) were identified as prognostic miRNAs and used for further prognostic signature construction. The 10‑miRNA prognostic signature showed good performance in prognosis prediction (adjusted P<0.0001; adjusted hazard ratio, 4.580; 95% confidence interval, 2.783‑7.538). In the time‑dependent receiver operating characteristic analysis, the area under the curve was 0.735, 0.788, 0.806, 0.806, 0.775 and 0.900 for 1‑, 2‑, 3‑, 4‑, 5‑ and 10‑year COAD overall survival prediction, respectively. Comprehensive survival analysis suggested that the 10‑miRNA prognostic signature is an independent prognostic factor in COAD, with a better performance in COAD overall survival prediction than other traditional clinical parameters. Functional enrichment indicated that the corresponding target genes were significantly enriched in multiple biological processes and pathways, including regulation of cell proliferation, cell cycle, cell growth, and Wnt and transforming growth factor‑β signaling pathways. In conclusion, our present study identified a 10‑miRNA expression signature that may serve as a potential prognostic biomarker in COAD patients.
Collapse
Affiliation(s)
- Hao-Tang Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Er-Na Guo
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Sheng Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Lei Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Min Ni
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Chi Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| |
Collapse
|
28
|
Qu Y, Huang W. Effects of microRNA‑210 on the diagnosis and treatment of prostate cancer. Mol Med Rep 2018; 18:1740-1744. [PMID: 29901117 DOI: 10.3892/mmr.2018.9105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/05/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of microRNA-210 (miR-210) in the diagnosis and treatment of prostate cancer. Venous blood was collected from 30 prostate cancer patients, that were treated in the Medical Group of Ping Mei Shenma General Hospital (Pingdingshan, China) from June 2013 to May 2015, and 20 healthy men. The miR‑210 expression levels in patients and healthy men was quantified. Primary prostate cancer cells were placed in three treatment groups: i) NC group, untreated; ii) BL group, empty vector; and iii) anti‑miR‑210 group, miR‑210 inhibitor‑transfected. Cell proliferation and apoptotic rate were detected by MTT and flow cytometry, respectively. The expression levels of miR‑210 and regulator of differentiation 1 (ROD1) were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and the ROD1 protein expression in each group was detected by western blotting. Cell proliferation rate of the anti‑miR‑210 group was significantly reduced when compared with the NC and BL groups (P≤0.05); however, the apoptotic rate of the anti‑miR‑210 group was significantly increased compared with the NC and BL groups (P≤0.05). RT‑qPCR revealed that the expression level of miR‑210 and ROD1 in the anti‑miR‑210 group was significantly reduced when compared with the NC and BL groups (P<0.05). MiR‑210 was overexpressed in the serum of prostate cancer patients and transfection with an miR‑210 inhibitor was able to effectively inhibit the proliferation of prostate cancer cells and promote apoptosis.
Collapse
Affiliation(s)
- Yuejun Qu
- Department of Biochemistry and Molecular Biology, The Medical Group of Ping Mei Shenma General Hospital, Pingdingshan, Henan 467000, P.R. China
| | - Wenqiang Huang
- Department of Medical Laboratory Medicine, Qiannan Medical College for Nationalities, Duyun, Guizhou 558000, P.R. China
| |
Collapse
|
29
|
Turashvili G, Lightbody ED, Tyryshkin K, SenGupta SK, Elliott BE, Madarnas Y, Ghaffari A, Day A, Nicol CJB. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J 2018; 32:fj201800120R. [PMID: 29812973 DOI: 10.1096/fj.201800120r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Triple-negative breast cancers (TNBCs) account for ∼25% of all invasive carcinomas and represent a large subset of aggressive, high-grade tumors. Despite current research focused on understanding the genetic landscape of TNBCs, reliable prognostic and predictive biomarkers remain limited. Although dysregulated microRNAs (miRNAs) have emerged as key players in many cancer types, the role of miRNAs in TNBC disease progression is unclear. We performed miRNA profiling of 51 TNBCs by next-generation sequencing to reveal differentially expressed miRNAs. A total of 228 miRNAs were identified. Three miRNAs (miR-224-5p, miR-375, and miR-205-5p) separated the tumors based on basal status. Six miRNAs (high let-7d-3p, miR-203b-5p, and miR-324-5p; low miR-30a-3p, miR-30a-5p, and miR-199a-5p) were significantly associated with decreased overall survival (OS) and 5 miRNAs (high let-7d-3p; low miR-30a-3p, miR-30a-5p, miR-30c-5p, and miR-128-3p) with decreased relapse-free survival (RFS). On multivariate analysis, high expression of let-7d-3p and low expression of miR-30a were independent predictors of decreased OS and RFS. High expression of miR-95-3p was significantly associated with decreased OS and RFS in patients treated with anthracycline-based chemotherapy. Five miRNAs (let-7d-3p, miR-30a-3p, miR-30c-5p, miR-128-3p, and miR-95-3p) were validated by quantitative RT-PCR. Our findings unveil novel prognostic and predictive miRNA targets for TNBC, including a miRNA signature that predicts patient response to anthracycline-based chemotherapy. This may improve clinical management and/or lead to the development of novel therapies.-Turashvili, G., Lightbody, E. D., Tyryshkin, K., SenGupta, S. K., Elliott, B. E., Madarnas, Y., Ghaffari, A., Day, A., Nicol, C. J. B. Novel prognostic and predictive microRNA targets for triple-negative breast cancer.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth D Lightbody
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sandip K SenGupta
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Bruce E Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | - Abdi Ghaffari
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Andrew Day
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Christopher J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
30
|
Sugita B, Gill M, Mahajan A, Duttargi A, Kirolikar S, Almeida R, Regis K, Oluwasanmi OL, Marchi F, Marian C, Makambi K, Kallakury B, Sheahan L, Cavalli IJ, Ribeiro EM, Madhavan S, Boca S, Gusev Y, Cavalli LR. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 2018; 7:79274-79291. [PMID: 27813494 PMCID: PMC5346713 DOI: 10.18632/oncotarget.13024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.
Collapse
Affiliation(s)
- Bruna Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Akanskha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rodrigo Almeida
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Kenny Regis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Olusayo L Oluwasanmi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Fabio Marchi
- International Research Center-CIPE, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Catalin Marian
- The Ohio State University Comprehensive Cancer Center, Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio.,The University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Departments of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Laura Sheahan
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Enilze M Ribeiro
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Simina Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
31
|
Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017; 17:799. [PMID: 29183284 PMCID: PMC5706292 DOI: 10.1186/s12885-017-3776-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background Female breast cancer is frequently diagnosed at a later stage and the leading cause of cancer deaths world-wide. Levels of cell-free circulating microRNAs (miRNAs) can potentially be used as biomarkers to measure disease progression in breast cancer patients in a non-invasive way and are therefore of high clinical value. Methods Using quantitative RT-PCR, circulating miRNAs were measured in blood samples collected from disease-free individuals (n = 34), triple-negative breast tumours (TNBC) (n = 36) and luminal tumours (n = 57). In addition to intergroup comparisons, plasma miRNA expression levels of all groups were analyzed against RNASeq data from cancerous breast tissue via The Cancer Genome Atlas (TCGA). Results A differential set of 18 miRNAs were identified in the plasma of breast cancer patients and 10 miRNAs were uniquely identified based on ROC analysis. The most striking findings revealed elevated tumor suppressor let-7 miRNA in luminal breast cancer patients, irrespective of subtype, and elevated miR-195 in plasma of TNBC breast cancer patients. In contrast, hsa-miR-195 and let-7 miRNAs were absent from cancerous TCGA tissue and strongly expressed in surrounding non-tumor tissue indicating that cancerous cells may selectively export tumor suppressor hsa-miR-195 and let-7 miRNAs in order to maintain oncogenesis. Conclusions While studies have indicated that the restoration of let-7 and miR-195 may be a potential therapy for cancer, these results suggested that tumor cells may selectively export hsa-miR-195 and let-7 miRNAs thereby neutralizing their potential therapeutic effect. However, in order to facilitate earlier detection of breast cancer, blood based screening of hsa-miR-195 and let-7 may be beneficial in a female patient cohort. Electronic supplementary material The online version of this article (10.1186/s12885-017-3776-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, 2600 Virginia Avenue, NW, Suite 300, Washington, DC, 20037, USA. .,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Haya Intabli
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia
| | - Wafa Alkhayal
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Surgery, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Chafica Eltabache
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia
| | - Taher Tweigieri
- Department of Oncology, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Suad Bin Amer
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
32
|
Liu Y, Wang Y, Xu Q, Zhou X, Qin Z, Chen C, Zhang Q, Tian Y, Zhang C, Li X, Qin C. Prognostic evaluation of microRNA-210 in various carcinomas: Evidence from 19 studies. Medicine (Baltimore) 2017; 96:e8113. [PMID: 29068983 PMCID: PMC5671816 DOI: 10.1097/md.0000000000008113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We performed this meta-analysis to provide a comprehensive evaluation of the role of MicroRNA-210 (miR-210) expression on the overall survival (OS) rate of cancers. METHODS We searched for relevant available literatures on miR-210 and cancer until November 1st, 2016 on the databases PubMed, EMBASE, Cochrane Library, and Science Direct database. We calculated the pooled hazard ratio (HR) with 95% confidence intervals (CIs) for OS, which compared the high and low expression levels of miR-210 in patients of the available studies. Subgroup analysis was performed to evaluate the specific role of miR-210 in ethnicity and the type of cancers. Publication bias was evaluated using Begg funnel plots and Egger regression test. RESULTS Overall, 19 studies were involved in this meta-analysis. The result indicated that upregulated miR-210 might be associated with poor OS outcome in various carcinomas, with the pooled HR of 1.80 (95% CI: 1.29-2.51). When stratified by disease, significant results were detected in breast cancer (HR = 2.67, 95% CI: 1.24-5.76) and glioma (HR = 2.42, 95% CI: 1.32-4.43). Besides, in the subgroup analysis by ethnicity, significant results were detected only in Asian populations (HR = 2.14, 95% CI: 1.37-3.34). CONCLUSION The present meta-analysis suggests that high expressed miR-210 is significantly associated with OS in cancer patients, which has the potential to be a prognostic marker in cancers.
Collapse
Affiliation(s)
- Yincheng Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
- First Clinical Medical College of Nanjing Medical University
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Qitong Xu
- First Clinical Medical College of Nanjing Medical University
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Chen Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Xiao Li
- Department of Urology, The affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
33
|
The roles of ncRNAs in the diagnosis, prognosis and clinicopathological features of breast cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:81215-81225. [PMID: 29113381 PMCID: PMC5655276 DOI: 10.18632/oncotarget.20149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background A number of studies have shown that noncoding RNAs (ncRNAs) are abnormally expressed in breast cancers. However, the roles of ncRNAs remain unclear in breast cancer. Here, we aim to investigate the potential diagnostic and prognostic roles of ncRNAs in breast cancer. Methods Comprehensive literature search in Medline and Web of Science and a meta-analysis were performed to identify the association between ncRNAs and diagnosis, prognosis, and clinicopathological features of breast cancer. Results A total of 103 eligible studies, involving16, 828 independent participants, were included in the meta-analysis. In total, there were 98 individual and 11 grouped ncRNAs. 51 studies were eligible for survival analysis, 27 studies were eligible for diagnostic analysis, and 46 studies were eligible for clinicopathological features analysis. The abnormal expression of ncRNAs is associated with OS, RFS and PFS in breast cancer patients. For the diagnosis value of ncRNAs, the pooled OR and 95% CI for sensitivity, specificity, DOR and AUC on all ncRNAs were 0.83 [95% CI: 0.82- 0.84], 0.80 [95% CI: 0.79- 0.82], 24.77 [95% CI: 17.44- 35.16] and 0.9037, respectively. The analysis showed that downregulation of ncRNAs in breast cancer was associated with decreased risk of LNM, increased tumor size and PR expression, whereas, upregulation of ncRNAs was associated with increased HER2 expression. Conclusions High expression of ncRNAs was associated with poor OS, RFS, and PFS, while low expression of ncRNAs was related to favorable OS and RFS. Meanwhile, ncRNAs have potential diagnostic value for breast cancer.
Collapse
|
34
|
Lü L, Mao X, Shi P, He B, Xu K, Zhang S, Wang J. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7085. [PMID: 28562579 PMCID: PMC5459744 DOI: 10.1097/md.0000000000007085] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by their aggressive nature and poor associated survival. MicroRNAs (miRs) have been found to play an important role in the occurrence and development of human cancers, but their role in the prognosis of TNBC patients remains unclear. We performed a meta-analysis to explore the prognostic value of miRs in TNBC. METHODS We systematically searched the PubMed, Embase, and Web of Science databases to identify eligible studies. A meta-analysis was performed to estimate the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for the associations between levels of miR expression (predictive factors) and overall survival (OS) and disease-free survival (DFS) (outcomes) in patients with TNBC. RESULTS After performing the literature search and review, 21 relevant studies including 2510 subjects were identified. Six miRs (miR-155, miR-21, miR-27a/b, miR-374a/b, miR-210, and miR-454) were assessed in the meta-analysis. Decreased expression of miR-155 was associated with reduced OS (adjusted HR = 0.58, 95% CI: 0.34-0.99; crude HR = 0.67, 95% CI: 0.58-0.79). High miR-21 expression was also predictive of reduced OS (crude HR = 2.50, 95% CI: 1.56-4.01). We found that elevated levels of miR-27a/b, miR-210, and miR-454 expression were associated with shorter OS, while the levels of miR-454 and miR-374a/b expression were associated with DFS. CONCLUSIONS Specific miRs could serve as potential prognostic biomarkers in TNBC. Due to the limited research available, the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Lingshuang Lü
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi
| | - Peiyi Shi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Biyu He
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Kun Xu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Simin Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- The Innovation Center for Social Risk Governance in Health, Nanjing, China
| |
Collapse
|
35
|
Bar I, Merhi A, Abdel-Sater F, Ben Addi A, Sollennita S, Canon JL, Delrée P. The MicroRNA miR-210 Is Expressed by Cancer Cells but Also by the Tumor Microenvironment in Triple-Negative Breast Cancer. J Histochem Cytochem 2017; 65:335-346. [PMID: 28402752 DOI: 10.1369/0022155417702849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The triple-negative breast cancer (TNBC) subtype occurs in about 15% of breast cancer and is an aggressive subtype of breast cancer with poor outcome. Furthermore, treatment of patients with TNBC is more challenging due to the heterogeneity of the disease and the absence of well-defined molecular targets. Microribonucleic acid (RNA) represents a new class of biomarkers that are frequently dysregulated in cancer. It has been described that the microRNA miR-210 is highly expressed in TNBC, and its overexpression had been linked to poor prognosis. TNBC are often infiltrated by immune cells that play a key role in cancer progression. The techniques traditionally used to analyze miR-210 expression such as next generation sequencing or quantitative real-time polymerase chain reaction (PCR) do not allow the precise identification of the cellular subtype expressing the microRNA. In this study, we have analyzed miR-210 expression by in situ hybridization in TNBC. The miR-210 signal was detected in tumor cells, but also in the tumor microenvironment, in a region positive for the pan-leucocyte marker CD45-LCA. Taken together, our results demonstrate that miR-210 is expressed in tumor cells but also in the tumor microenvironment. Our results also highlight the utility of using complementary approaches to take into account the cellular context of microRNA expression.
Collapse
Affiliation(s)
- Isabelle Bar
- Laboratory of Translational Oncology (IB, SS, PD), Grand Hôpital de Charleroi/Institute of Pathology and Genetics, Gosselies, Belgium
| | - Ahmad Merhi
- IPG-Biobank (AM, FA-S, ABA), Gosselies, Belgium
| | | | | | - Sara Sollennita
- Laboratory of Translational Oncology (IB, SS, PD), Grand Hôpital de Charleroi/Institute of Pathology and Genetics, Gosselies, Belgium
| | - Jean-Luc Canon
- Service of Oncology-Haematology (J-LC), Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Paul Delrée
- Laboratory of Translational Oncology (IB, SS, PD), Grand Hôpital de Charleroi/Institute of Pathology and Genetics, Gosselies, Belgium
| |
Collapse
|
36
|
MiRNAs Predict the Prognosis of Patients with Triple Negative Breast Cancer: A Meta-Analysis. PLoS One 2017; 12:e0170088. [PMID: 28085956 PMCID: PMC5234799 DOI: 10.1371/journal.pone.0170088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE miRNAs are stable and can be extracted from tissues, blood and other body fluid without degradation. miRNAs are abnormally expressed in the presence of a pathological status, including cancer. Therefore, miRNAs are ideal biomarkers for cancer diagnosis and prognosis. Patients with triple negative breast cancer (TNBC) suffer the worst prognosis, although great efforts have been made. Many studies have investigated the role of miRNAs in predicting the outcomes of TNBC patients for better adjustment of treatment. However, results were inconsistent. Thus, we performed a meta-analysis to summarize the published studies for conclusive results. METHODS Eligible studies from different database were retrieved from the online databases, and we used STSTA 12.0 to analysis the prognostic role of miRNAs in triple negative breast cancer. RESULTS Overall high miRNA expression indicated a worse survival with HR value of 1.78 (95% CI: 0.97-3.25). However, subtotal HRs of oncogenic miRNAs and tumor suppressive miRNAs were 2.73 (95% CI: 2.08-3.57; P<0.001) and 0.44 (95% CI: 0.21-0.90; P = 0.024), respectively, and no heterogeneity was observed within the subgroups. CONCLUSIONS The miRNAs showed a slightly stronger prognostic value for disease-free survival, relapse-free survival and distant metastasis-free survival compared to the overall survival of TNBC patients. Circulating miRNAs could serve as potential biomarkers for the prognosis of TNBC patients and need further investigation.
Collapse
|
37
|
Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 2016; 172:34-49. [PMID: 27916656 DOI: 10.1016/j.pharmthera.2016.11.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
38
|
Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 2016; 18:e18. [PMID: 27817751 DOI: 10.1017/erm.2016.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours characterised by lack of expression of oestrogen-, progesterone- and human epidermal growth factor receptors. TNBC, which represents approximately 15% of all mammary tumours, has a poor prognosis because of an aggressive behaviour and the lack of specific treatment. Accordingly, TNBC has become a major focus of research into breast cancer and is now classified into several molecular subtypes, each with a different prognosis. Pathological angiogenesis occurs at a late stage in the proliferation of TNBC and is associated with invasion and metastasis; there is an association with metabolic syndrome. Semaphorins are a versatile family of proteins with multiple roles in angiogenesis, tumour growth and metastasis and may represent a clinically useful focus for therapeutic targeting in this type of breast cancer. Another important field of investigation into the control of pathological angiogenesis is related to the expression of noncoding RNA (ncRNA) – these molecules can be considered as a therapeutic target or as a biomarker. Several molecular agents for intervening in the activity of different signalling pathways are being explored in TNBC, but none has so far proved effective in clinical trials and the disease continues to pose a defining challenge for clinical management as well as innovative cancer research.
Collapse
|
39
|
Girotra S, Yeghiazaryan K, Golubnitschaja O. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics. Per Med 2016; 13:469-484. [PMID: 29767597 DOI: 10.2217/pme-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.
Collapse
|
40
|
Abstract
Breast cancer affects approximately 12 % women worldwide and results in 14 % of all cancer-related fatalities. Breast cancer is commonly categorized into one of four main subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and basal), indicating molecular characteristics and informing treatment regimes. The most severe form of breast cancer is metastasis, when the tumour spreads from the breast tissue to other parts of the body. Significantly, the primary tumour subtype affects rates and sites of metastasis. Currently, up to 5 % of patients present with incurable metastasis, with an additional 10–15 % of patients going on to develop metastasis within 3 years of diagnosis. MicroRNAs (miRNAs) are short 21–25 long nucleotides that have been shown to significantly affect gene expression. Currently, >2000 miRNAs have been identified and significantly, specific miRNAs have been found associated with diseases states. Importantly, miRNAs are found circulating in the blood, presenting an opportunity to use these circulating disease-related miRNAs as biomarkers. Clearly, the identification of circulating miRNA specific to metastatic breast cancer presents a unique opportunity for early disease identification and for monitoring disease burden. Currently however, few groups have identified miRNA associated with metastatic breast cancer. Here, we review the literature surrounding the identification of metastatic miRNA in breast cancer patients, highlighting key areas where miRNA biomarker discovery could be beneficial, identifying key concepts, recognizing critical areas requiring further research and discussing potential problems.
Collapse
|
41
|
MiRNAs and Other Epigenetic Changes as Biomarkers in Triple Negative Breast Cancer. Int J Mol Sci 2015; 16:28347-76. [PMID: 26633365 PMCID: PMC4691037 DOI: 10.3390/ijms161226090] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) is characterised by the lack of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2). Since it cannot be treated by current endocrine therapies which target these receptors and due to its aggressive nature, it has one of the worst prognoses of all breast cancer subtypes. The only treatments remain chemo- and/or radio-therapy and surgery and because of this, novel biomarkers or treatment targets are urgently required to improve disease outcomes. MicroRNAs represent an attractive candidate for targeted therapies against TNBC, due to their natural ability to act as antisense interactors and regulators of entire gene sets involved in malignancy and their superiority over mRNA profiling to accurately classify disease. Here we review the current knowledge regarding miRNAs as biomarkers in TNBC and their potential use as therapeutic targets in this disease. Further, we review other epigenetic changes and interactions of these changes with microRNAs in this breast cancer subtype, which may lead to the discovery of new treatment targets for TNBC.
Collapse
|
42
|
Tang Y, Zhou X, Ji J, Chen L, Cao J, Luo J, Zhang S. High expression levels of miR-21 and miR-210 predict unfavorable survival in breast cancer: a systemic review and meta-analysis. Int J Biol Markers 2015; 30:e347-58. [PMID: 26349663 DOI: 10.5301/jbm.5000160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been emerging as valuable prognostic biomarkers of breast cancer. We therefore summarized recent research into miRNAs involved in human breast cancer and, further, completed a meta-analysis to predict the role of specific miRNAs in the survival of breast cancer patients. METHODS Studies were identified by searching PubMed, Embase and Web of Science. Descriptive characteristics for studies were described, and an additional meta-analysis for specific miRNAs was performed. Pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated. RESULTS A total of 41 articles including 27 types of miRNAs were found regarding prognostic biomarkers for breast cancer survival, of which, micRNA-21 (miR-21) was the most-studied specific miRNA that appeared repeatedly among the selected classifiers. For the studies evaluating miR-21's association with clinical outcomes, the median HR in the studies was 2.32 (interquartile range [IQR] = 1.04-3.40), and the pooled HR suggested that high expression of miR-21 has a negative impact on overall survival (OS; HR = 1.46, 95% CI, 1.25-1.70; p<0.05) and disease/recurrence-free survival in breast cancer (HR = 1.49, 95% CI, 1.17-1.90; p<0.01). We also found that higher expression levels of miR-210 significantly predicted poorer outcome, with median HR in the reported studies of 4.07 (IQR = 1.54-4.43) and a pooled HR of 2.94 (95% CI, 2.08-4.17; p<0.05). CONCLUSIONS These results indicate that miRNAs show promising associations with prognosis in breast cancer. Moreover, specific miRNAs such as miR-21 and miR-210 can predict poor survival rates in breast cancer patients.
Collapse
Affiliation(s)
- Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou - China
| | - Xifa Zhou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou - China
| | - Jianfeng Ji
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou - China
| | - Ling Chen
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou - China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou - China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou - China
| | - Judong Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou - China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou - China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou - China
| |
Collapse
|
43
|
Mo ZH, Wu XD, Li S, Fei BY, Zhang B. Expression and clinical significance of microRNA-376a in colorectal cancer. Asian Pac J Cancer Prev 2015; 15:9523-7. [PMID: 25422250 DOI: 10.7314/apjcp.2014.15.21.9523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing in many Asian countries and microRNAs have already been proven to be associated with tumorigenesis. Currently, microRNA-376a (miR-376a) expression and association with clinical factors in CRC remains unclear. In this study, real-time quantitative reverse transcriptase- polymerase chain reaction (qRT-PCR) was carried out on 53 matched pairs of CRC and adjacent normal mucosa to investigate the expression levels of miR-376a. According to the high or low expression of miR-376a, patients were divided into two groups. The relationship between miR-376a expression and clinicopathological factors of 53 patients was evaluated. Survival analysis of 53 CRC patients was performed with clinical follow- up information and survival curves were assessed by the Kaplan-Meier method. Immunohistochemistry (IHC) staining was performed on sections of paraffin-embedded tissue to investigate the vascular endothelial growth factor (VEGF) expression. MiR-376a showed low expression in cancer tissues compared to the adjacent normal tissues and altered high miR-376a expression tended to be positively correlated with advanced lymph node metastasis and shorter patient survival. VEGF IHC positivity was significantly more common in patients with high expression levels of miR-376a.Those results demonstrated that miR-376a may be a meaningful prognostic biomarker and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Zhan-Hao Mo
- Endoscopy Center, China- Japan Union Hospital, Jilin University, Changchun, China E-mail :
| | | | | | | | | |
Collapse
|
44
|
Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:425708. [PMID: 26064420 PMCID: PMC4429193 DOI: 10.1155/2015/425708] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/19/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that most of the tumors are sustained by a distinct population of cancer stem cells (CSCs), which are responsible for growth, metastasis, invasion, and recurrence. CSCs are typically characterized by self-renewal, the key biological process allowing continuous tumor proliferation, as well as by differentiation potential, which leads to the formation of the bulk of the tumor mass. CSCs have several advantages over the differentiated cancer cell populations, including the resistance to radio- and chemotherapy, and their gene-expression programs have been shown to correlate with poor clinical outcome, further supporting the relevance of stemness properties in cancer. The observation that CSCs possess enhanced mechanisms of protection from reactive oxygen species (ROS) induced stress and a different metabolism from the differentiated part of the tumor has paved the way to develop drugs targeting CSC specific signaling. In this review, we describe the role of ROS and of ROS-related microRNAs in the establishment and maintenance of self-renewal and differentiation capacities of CSCs.
Collapse
|
45
|
Sui X, Wang X, Han W, Li D, Xu Y, Lou F, Zhou J, Gu X, Zhu J, Zhang C, Pan H. MicroRNAs-mediated cell fate in triple negative breast cancers. Cancer Lett 2015; 361:8-12. [PMID: 25748387 DOI: 10.1016/j.canlet.2015.02.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as major modulators of posttranscriptional protein-coding gene expression in diverse biological processes including cell survival, cell cycle arrest, senescence, autophagy, and differentiation. The control of miRNAs plays an important role in cancer initiation and metastasis. Triple negative breast cancer (TNBC) is a distinct breast cancer subtype, which is defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu). Due to its high recurrence rate and poor prognosis, TNBC represents a challenge for breast cancer therapy. In recent years, a large number of microRNAs have been identified to play a crucial role in TNBC and some of them were found to be correlated with worse prognosis of TNBC. Thus, understanding the novel function of miRNAs may allow us to develop promising therapeutic targets for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fang Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xidong Gu
- Department of Breast Surgery, The First affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
46
|
Yu P, Fan S, Huang L, Yang L, Du Y. MIR210 as a potential molecular target to block invasion and metastasis of gastric cancer. Med Hypotheses 2015; 84:209-212. [PMID: 25618442 DOI: 10.1016/j.mehy.2014.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a process driving invasion, recurrence, and metastasis of gastric cancer, and EMT is triggered by specific physiological factors that arise during tumorigenesis, such as hypoxia. Identifying the molecular mechanisms underlying EMT will potentially yield insight into the pathways fueling cancer recurrence and metastasis and thus, lead to novel molecular targets that will improve treatment of the disease. The microRNA210 (MIR210) is such a candidate molecule mediating EMT in gastric cancer based on a number of observations. First, MIR210 is often highly overexpressed in gastric cancer. Second, MIR210 is a hypoxia-specific miRNA, and its expression is significantly increased in hypoxic environments where EMT develops. Third, MIR210 is regulated by hypoxia inducible factor 1α (HIF-1α), a key transcription factor mediating important tumor associated processes such as EMT and angiogenesis in response to hypoxia during tumorigenesis. Finally, MIR210 has been intriguingly associated with Helicobacterpylori infection, which typically develops in an anaerobic environment and is known to have a causal role in the development of gastric cancer. Although studies have shown that MIR210 is often highly expressed in gastric cancer and associated with specific pathological conditions, functional experiments have not yet been performed to determine the role of MIR210 and downstream mediators in the development and progression of gastric cancer. Here, MIR210 is proposed as a viable molecular target in the treatment of gastric cancer, specifically for the inhibition of invasion and metastasis.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Sunfu Fan
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ling Huang
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Litao Yang
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yian Du
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
47
|
Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. Critical analysis of the potential for microRNA biomarkers in breast cancer management. BREAST CANCER-TARGETS AND THERAPY 2015; 7:59-79. [PMID: 25759599 PMCID: PMC4346363 DOI: 10.2147/bctt.s43799] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is a complex and heterogeneous disease. Signaling by estrogen receptor (ER), progesterone receptor (PR), and/or human EGF-like receptor 2 (HER2) is a main driver in the development and progression of a large majority of breast tumors. Molecular characterization of primary tumors has identified major subtypes that correlate with ER/PR/HER2 status, and also subgroup divisions that indicate other molecular and cellular features of the tumors. While some of these research findings have been incorporated into clinical practice, several challenges remain to improve breast cancer management and patient survival, for which the integration of novel biomarkers into current practice should be beneficial. microRNAs (miRNAs) are a class of short non-coding regulatory RNAs with an etiological contribution to breast carcinogenesis. miRNA-based diagnostic and therapeutic applications are rapidly emerging as novel potential approaches to manage and treat breast cancer. Rapid technological development enables specific and sensitive detection of individual miRNAs or the entire miRNome in tissues, blood, and other biological specimens from breast cancer patients. This review focuses on recent miRNA research and its potential to address unmet clinical needs and challenges. The four sections presented discuss miRNA findings in the context of the following clinical challenges: biomarkers for early detection; prognostic and predictive biomarkers for treatment decisions using targeted therapies against ER and HER2; diagnostic and prognostic biomarkers for subgrouping of triple-negative breast cancer, for which there are currently no targeted therapies; and biomarkers for monitoring and characterization of metastatic breast cancer. The review concludes with a critical analysis of the current state of miRNA breast cancer research and the need for further studies using large patient cohorts under well-controlled conditions before considering the clinical implementation of miRNA biomarkers.
Collapse
Affiliation(s)
- Carrie R Graveel
- Breast Cancer Signaling and Therapeutics Team, Program in Molecular Oncology and Pre-clinical Therapeutics, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Heather M Calderone
- Laboratory of microRNA Diagnostics and Therapeutics, Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jennifer J Westerhuis
- Laboratory of microRNA Diagnostics and Therapeutics, Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Program for Technologies and Cores, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Lorenzo F Sempere
- Laboratory of microRNA Diagnostics and Therapeutics, Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
48
|
Kalniete D, Nakazawa-Miklaševiča M, Štrumfa I, Āboliņš A, Irmejs A, Gardovskis J, Miklaševičs E. High expression of miR-214 is associated with a worse disease-specific survival of the triple-negative breast cancer patients. Hered Cancer Clin Pract 2015; 13:7. [PMID: 25705321 PMCID: PMC4335782 DOI: 10.1186/s13053-015-0028-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/20/2015] [Indexed: 12/14/2022] Open
Abstract
Background Hereditary triple-negative breast cancer patients have better recurrence-free survival than triple-negative sporadic ones. High expression of some of the miRNAs is related to worse overall and disease-free survival of triple-negative breast cancer patients. The attempt to associate expression level of some miRNA in triple-negative hereditary and sporadic breast cancers to disease specific survival was performed in this study. Material and methods Study group was made of 18 triple-negative breast cancer patients harboring the BRCA1 gene mutations and 32 triple-negative sporadic breast cancer patients. Quantitative amount of mir-10b, mir-21, mir-29a, mir-31, and mir-214 by real-time PCR was assessed. The disease-specific survival in relation of high and low levels of some of the miRNAs was analyzed using Log-rank (Mantel-Cox) test. Results MiR-214 showed significantly higher expression level in sporadic tissues than in hereditary ones (p = 0.0005). Triple-negative breast cancer patients with high level of miR-214 showed significantly worse disease-specific survival than patients with low level (p = 0.0314). Conclusions Our finding suggests that miR-214 possibly could be used as a potential prognostic biomarker for triple-negative breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13053-015-0028-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dagnija Kalniete
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | | | - Ilze Štrumfa
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Arnis Āboliņš
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Arvīds Irmejs
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia ; Breast Disease Center, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002 Latvia
| | - Jānis Gardovskis
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Edvīns Miklaševičs
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| |
Collapse
|
49
|
Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, Dharmarajan AM, Lee ASG, Lobie PE, Yap CT, Kumar AP. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc 2015; 91:409-28. [DOI: 10.1111/brv.12176] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Jen N. Goh
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ser Y. Loo
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR); Singapore 138672 Singapore
| | - Arpita Datta
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| | - Kodappully S. Siveen
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wei N. Yap
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Eun M. Shin
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Chao Wang
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ji E. Kim
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Maurice Chan
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
| | - Arun M. Dharmarajan
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
| | - Ann S.-G. Lee
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
- Duke-NUS Graduate Medical School; Singapore 169857 Singapore
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Celestial T. Yap
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Alan P. Kumar
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
- National University Cancer Institute; Singapore 1192288 Singapore
- Department of Biological Sciences; University of North Texas; Denton TX 76203-5017 U.S.A
| |
Collapse
|
50
|
Zhang XJ, Feng XL, Huang Y, Gao Y, Cao ZY, Huang WL, Zhang Y, Jian QH, Zhong JC, Yang MT, Fan XM, Jin Z. Expression of miRNA-210 in gastric cancer cell lines and its function prediction. Shijie Huaren Xiaohua Zazhi 2015; 23:78-84. [DOI: 10.11569/wcjd.v23.i1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen microRNAs (miRNAs) associated with metastasis of gastric cancer (GC) by miRNA microarray and to explore the possible role of miRNA-210 in GC metastasis by bioinformatics.
METHODS: GC cell lines with low (RF1) or high metastatic potential (RF48) were used for miRNA expression profiling using human miRNA microarray. Expression of miRNA-210 in 7 GC cell lines was detected by RT-PCR. MiRNA-210 targets were obtained using miRWalk, and functions of these targets in GC were predicted with David online.
RESULTS: Compared with RF1 cells, 21 and 15 miRNAs were up-regulated and down-regulated in RF48 cells, respectively. Expression of miRNA-210 was further validated by real-time quantitative RT-PCR in multiple GC cell lines with different metastatic potential, which showed that miRNA-210 was overexpressed in GC cell lines with high metastatic potential. Bioinformatics analysis suggested that miRNA-210 was related with tumorgenesis and metastasis.
CONCLUSION: Screening miRNAs associated with metastasis lays a foundation for identifying early diagnostic markers and new therapeutic targets for GC metastasis. Expression profile of miRNAs associated with metastasis was obtained by miRNA microarray; dysregulated expression of miRNA-210 may be related with GC metastasis, and may serve as an early diagnostic biomarker and new treatment target.
Collapse
|