1
|
Desai O, Rathore M, Boutros CS, Wright M, Bryson E, Curry K, Wang R. HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway. Genes Dis 2025; 12:101354. [PMID: 40290122 PMCID: PMC12022662 DOI: 10.1016/j.gendis.2024.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/30/2025] Open
Abstract
HER3, formally referred to as ERB-B2 receptor tyrosine kinase 3, is a member of the ErbB receptor tyrosine kinases (also known as EGFR) family. HER3 plays a significant pro-cancer role in various types of cancer due to its overexpression and abnormal activation, which initiates downstream signaling pathways crucial in cancer cell survival and progression. As a result, numerous monoclonal antibodies have been developed to block HER3 activation and subsequent signaling pathways. While pre-clinical investigations have effectively showcased significant anti-cancer effects of HER3-targeted therapies, these therapies have had little impact on cancer patient outcomes in the clinic, except for patients with rare NRG1 fusion mutations. This review offers a comprehensive description of the oncogenic functions of HER3, encompassing its structure and mediating signaling pathways. More importantly, it provides an in-depth exploration of past and ongoing clinical trials investigating HER3-targeted therapies for distinct types of cancer and discusses the tumor microenvironment and other critical determinants that may contribute to the observed suboptimal outcomes in most clinical studies using HER3-targeted therapies. Lastly, we suggest alternative approaches and the exploration of novel strategies to potentially improve the efficacy of targeting the pivotal oncogenic HER3 signaling pathway in future translational investigations.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christina S. Boutros
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Yin Q, Zhang Y, Xie X, Hou M, Chen X, Ding J. Navigating the future of gastric cancer treatment: a review on the impact of antibody-drug conjugates. Cell Death Discov 2025; 11:144. [PMID: 40188055 PMCID: PMC11972320 DOI: 10.1038/s41420-025-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Gastric cancer, marked by its high incidence and poor prognosis, demands the urgent development of novel and effective treatment strategies, especially for patients ineligible for surgery or those who have had limited success with chemotherapy, radiotherapy and targeted therapies. Recently, antibody-drug conjugates (ADCs) have become a key area of investigation due to their high specificity and potent antitumor effects. These therapies combine monoclonal antibodies, designed to bind to tumor-specific antigens, with cytotoxic agents that selectively target and destroy malignant cells. ADCs have generated significant interest in clinical trials as a promising approach to improve both treatment efficacy and patient outcomes in gastric cancer. However, their clinical application is not without challenges and limitations that must be addressed. This review discusses the recent progress in the use of ADCs for gastric cancer treatment.
Collapse
Affiliation(s)
- Qingling Yin
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Xueqing Xie
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Meijun Hou
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, 563006, China
| | - Xunsheng Chen
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China.
| |
Collapse
|
3
|
Sultana S, Sultana S, Najib Ullah SNM, Zafar A. Novel Products as Promising Therapeutic Agents for Angiogenesis Inhibition. Curr Drug Deliv 2025; 22:181-194. [PMID: 38204254 DOI: 10.2174/0115672018277869231217165048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Angiogenesis is the process of forming new blood vessels from pre-existing vessels and occurs during development, wound healing, and tumor growth. In this review, we aimed to present a comprehensive view of various factors contributing to angiogenesis during carcinogenesis. Anti-angiogenesis agents prevent or slow down cancer growth by interrupting the nutrients and blood supply to the tumor cells, and thus can prove beneficial for treatment. METHOD The discovery of several novel angiogenic inhibitors has helped to reduce both morbidity and mortality from several life-threatening diseases, such as carcinomas. There is an urgent need for a new comprehensive treatment strategy combining novel anti-angiogenic agents for the control of cancer. The article contains details of various angiogenic inhibitors that have been adopted by scientists to formulate and optimize such systems in order to make them suitable for cancer. RESULTS The results of several researches have been summarized in the article and all of the data support the claim that anti-angiogenic agent is beneficial for cancer treatment. CONCLUSION This review focuses on novel antiangiogenic agents that play a crucial role in controlling carcinogenesis.
Collapse
Affiliation(s)
- Shaheen Sultana
- Department of Pharmaceutics, IIMT College of Pharmacy, Uttar Pradesh 201310, India
| | - Shahnaz Sultana
- Department of Pharmacognosy and Phytochemistry, Jazan University, Kingdom of Saudi Arabia
| | | | - Ameeduzzafar Zafar
- Department of Pharmaceutics, Jouf University, Al-Jouf, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Chen Y, Lu A, Hu Z, Li J, Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett 2024; 599:217146. [PMID: 39098760 DOI: 10.1016/j.canlet.2024.217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.
Collapse
Affiliation(s)
- Yutao Chen
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyao Li
- College of Life Sciences, Xijiang University, Urumqi, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand; College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China; College of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi Province, China; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| |
Collapse
|
5
|
Li X, Yao J, Qu C, Luo L, Li B, Zhang Y, Zhu Z, Qiu Y, Hua H. DB-1310, an ADC comprised of a novel anti-HER3 antibody conjugated to a DNA topoisomerase I inhibitor, is highly effective for the treatment of HER3-positive solid tumors. J Transl Med 2024; 22:362. [PMID: 38632563 PMCID: PMC11022355 DOI: 10.1186/s12967-024-05133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.
Collapse
Affiliation(s)
- Xi Li
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China.
| | - Jun Yao
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Chen Qu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Lan Luo
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Bing Li
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Yu Zhang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China.
| |
Collapse
|
6
|
Dri A, Arpino G, Bianchini G, Curigliano G, Danesi R, De Laurentiis M, Del Mastro L, Fabi A, Generali D, Gennari A, Guarneri V, Santini D, Simoncini E, Zamagni C, Puglisi F. Breaking barriers in triple negative breast cancer (TNBC) - Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat Rev 2024; 123:102672. [PMID: 38118302 DOI: 10.1016/j.ctrv.2023.102672] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of molecules composed of a recombinant monoclonal antibody targeted to a specific cell surface antigen, conjugated to a cytotoxic agent through a cleavable or non-cleavable synthetic linker. The rationale behind the development of ADCs is to overcome the limitations of conventional chemotherapy, such as the narrow therapeutic window and the emergence of resistance mechanisms. ADCs had already revolutionized the treatment algorithm of HER2-positive breast cancer. Currently, emergent non-HER2 targeted ADCs are gaining momentum, with special focus on triple-negative disease therapeutic landscape. Sacituzumab govitecan (SG) is an ADC consisting of a humanized monoclonal antibody hRS7 targeting trophoblast cell surface antigen 2 (Trop2), linked to the topoisomerase I inhibitor SN-38 by a hydrolysable linker. It currently stands as the only non-HER2 targeted ADC that already received approval for the treatment of unresectable locally advanced or metastatic triple negative breast cancer (TNBC) in patients who had received two or more prior systemic therapies, with at least one for advanced disease. The purpose of these review is to analyze the available evidence regarding ADCs in TNBC, alongside with providing an overview on the ongoing and future research horizons in this field.
Collapse
Affiliation(s)
- Arianna Dri
- Department of Medicine, University of Udine, Udine, Italy; Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano (PN), Italy.
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelino De Laurentiis
- Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, Clinical Unit of Medical Oncology, IRCCS Hospital Policlinico San Martino, Genova, Italy
| | - Alessandra Fabi
- Precision Medicine in Breast Cancer Unit, Department of Woman and Child Health and Public Health, IRCCS, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy, Ospedale Maggiore della Caritá, Novara, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology (IOV), IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Edda Simoncini
- Medical Oncology Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Claudio Zamagni
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy; Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano (PN), Italy
| |
Collapse
|
7
|
Weng W, Meng T, Pu J, Ma L, Shen Y, Wang Z, Pan R, Wang M, Chen C, Wang L, Zhang J, Zhou B, Shao S, Qian Y, Liu S, Hu W, Meng X. AMT-562, a Novel HER3-targeting Antibody-Drug Conjugate, Demonstrates a Potential to Broaden Therapeutic Opportunities for HER3-expressing Tumors. Mol Cancer Ther 2023; 22:1013-1027. [PMID: 37302522 PMCID: PMC10477830 DOI: 10.1158/1535-7163.mct-23-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
HER3 is a unique member of the EGFR family of tyrosine kinases, which is broadly expressed in several cancers, including breast, lung, pancreatic, colorectal, gastric, prostate, and bladder cancers and is often associated with poor patient outcomes and therapeutic resistance. U3-1402/Patritumab-GGFG-DXd is the first successful HER3-targeting antibody-drug conjugate (ADC) with clinical efficacy in non-small cell lung cancer. However, over 60% of patients are nonresponsive to U3-1402 due to low target expression levels and responses tend to be in patients with higher target expression levels. U3-1402 is also ineffective in more challenging tumor types such as colorectal cancer. AMT-562 was generated by a novel anti-HER3 antibody Ab562 and a modified self-immolative PABC spacer (T800) to conjugate exatecan. Exatecan showed higher cytotoxic potency than its derivative DXd. Ab562 was selected because of its moderate affinity for minimizing potential toxicity and improving tumor penetration purposes. Both alone or in combination therapies, AMT-562 showed potent and durable antitumor response in low HER3 expression xenograft and heterogeneous patient-derived xenograft/organoid models, including digestive system and lung tumors representing of unmet needs. Combination therapies pairing AMT-562 with therapeutic antibodies, inhibitors of CHEK1, KRAS, and tyrosine kinase inhibitor showed higher synergistic efficacy than Patritumab-GGFG-DXd. Pharmacokinetic and safety profiles of AMT-562 were favorable and the highest dose lacking severe toxicity was 30 mg/kg in cynomolgus monkeys. AMT-562 has potential to be a superior HER3-targeting ADC with a higher therapeutic window that can overcome resistance to generate higher percentage and more durable responses in U3-1402-insensitive tumors.
Collapse
Affiliation(s)
- Weining Weng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Multitude Therapeutics, Shanghai, P.R. China
| | - Tao Meng
- MabCare Therapeutics, Shanghai, P.R. China
- HySlink Therapeutics, Shanghai, P.R. China
| | - Junyi Pu
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Linjie Ma
- Multitude Therapeutics, Shanghai, P.R. China
| | - Yi Shen
- Multitude Therapeutics, Shanghai, P.R. China
| | | | - Rong Pan
- Abmart Inc, Shanghai, P.R. China
| | | | - Caiwei Chen
- Multitude Therapeutics, Shanghai, P.R. China
| | - Lijun Wang
- Multitude Therapeutics, Shanghai, P.R. China
| | | | - Biao Zhou
- Multitude Therapeutics, Shanghai, P.R. China
| | - Siyuan Shao
- Shanghai OneTar Biomedicine, Shanghai, P.R. China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shuhui Liu
- Multitude Therapeutics, Shanghai, P.R. China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xun Meng
- Multitude Therapeutics, Shanghai, P.R. China
- Abmart Inc, Shanghai, P.R. China
| |
Collapse
|
8
|
Zhu Y, Zhou M, Kong W, Li C. Antibody-drug conjugates: the clinical development in gastric cancer. Front Oncol 2023; 13:1211947. [PMID: 37305567 PMCID: PMC10250015 DOI: 10.3389/fonc.2023.1211947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system worldwide, ranking among the top five in terms of incidence and mortality. However, the clinical efficacy of conventional treatments for gastric cancer remains limited, with a median overall survival of approximately eight months for advanced cases. In recent years, researchers have increasingly focused on antibody-drug conjugates (ADCs) as a promising approach. ADCs are potent chemical drugs that selectively target cancer cells by binding to specific cell surface receptors with antibodies. Notably, ADCs have demonstrated promising results in clinical studies and have made significant strides in the treatment of gastric cancer. Currently, several ADCs are under investigation in clinical trials for gastric cancer patients, targeting various receptors such as EGFR, HER-2, HER-3, CLDN18.2, Mucin 1, among others. This review offers a comprehensive exploration of ADC drug characteristics and provides an overview of the research progress in ADC-based therapies for gastric cancer.
Collapse
Affiliation(s)
- Yingze Zhu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Miao Zhou
- Tangshan Central Hospital, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
9
|
Subhan MA, Torchilin VP. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023; 15:1242. [PMID: 37111727 PMCID: PMC10144345 DOI: 10.3390/pharmaceutics15041242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a potential and promising therapy for a wide variety of cancers, including breast cancer. ADC-based drugs represent a rapidly growing field of breast cancer therapy. Various ADC drug therapies have progressed over the past decade and have generated diverse opportunities for designing of state-of-the-art ADCs. Clinical progress with ADCs for the targeted therapy of breast cancer have shown promise. Off-target toxicities and drug resistance to ADC-based therapy have hampered effective therapy development due to the intracellular mechanism of action and limited antigen expression on breast tumors. However, innovative non-internalizing ADCs targeting the tumor microenvironment (TME) component and extracellular payload delivery mechanisms have led to reduced drug resistance and enhanced ADC effectiveness. Novel ADC drugs may deliver potent cytotoxic agents to breast tumor cells with reduced off-target effects, which may overcome difficulties related to delivery efficiency and enhance the therapeutic efficacy of cytotoxic cancer drugs for breast cancer therapy. This review discusses the development of ADC-based targeted breast cancer therapy and the clinical translation of ADC drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Al Jarroudi O, El Bairi K, Curigliano G, Afqir S. Antibody-Drug Conjugates: A New Therapeutic Approach for Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:1-27. [PMID: 38175340 DOI: 10.1007/978-3-031-33602-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subset associated with a worse prognosis and poor response to conventional chemotherapy. Despite recent advances in drug discovery, its management is still a challenge for clinicians, illuminating the unmet need to develop novel treatment approaches. Antibody-drug conjugates (ADC) are innovative oncology drugs that combine the specificity of monoclonal antibodies and the high efficacy of anticancer payloads, to deliver cytotoxic drugs selectively to cancer cells. Various ADCs were investigated for TNBC and have provided a promise for this aggressive women's cancer including the FDA-approved sacituzumab govitecan. In this chapter, we reviewed different ADCs studied for TNBC including their mechanisms of action, efficacy, and tolerability. Moreover, we have also discussed their therapeutic potential based on combinatorial approaches with other targeted therapies in early and metastatic TNBC.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
11
|
Jänne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, Kim DW, Koczywas M, Gold KA, Steuer CE, Murakami H, Yang JCH, Kim SW, Vigliotti M, Shi R, Qi Z, Qiu Y, Zhao L, Sternberg D, Yu C, Yu HA. Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer. Cancer Discov 2022; 12:74-89. [PMID: 34548309 PMCID: PMC9401524 DOI: 10.1158/2159-8290.cd-21-0715] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Receptor tyrosine-protein kinase ERBB3 (HER3) is expressed in most EGFR-mutated lung cancers but is not a known mechanism of resistance to EGFR inhibitors. HER3-DXd is an antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. This phase I, dose escalation/expansion study included patients with locally advanced or metastatic EGFR-mutated non-small cell lung cancer (NSCLC) with prior EGFR tyrosine kinase inhibitor (TKI) therapy. Among 57 patients receiving HER3-DXd 5.6 mg/kg intravenously once every 3 weeks, the confirmed objective response rate by blinded independent central review (Response Evaluation Criteria in Solid Tumors v1.1) was 39% [95% confidence interval (CI), 26.0-52.4], and median progression-free survival was 8.2 (95% CI, 4.4-8.3) months. Responses were observed in patients with known and unknown EGFR TKI resistance mechanisms. Clinical activity was observed across a broad range of HER3 membrane expression. The most common grade ≥3 treatment-emergent adverse events were hematologic toxicities. HER3-DXd has clinical activity in EGFR TKI-resistant cancers independent of resistance mechanisms, providing an approach to treat a broad range of drug-resistant cancers. SIGNIFICANCE: In metastatic EGFR-mutated NSCLC, after disease progression on EGFR TKI therapy, treatment approaches include genotype-directed therapy targeting a known resistance mechanism or chemotherapy. HER3-DXd demonstrated clinical activity spanning known and unknown EGFR TKI resistance mechanisms. HER3-DXd could present a future treatment option agnostic to the EGFR TKI resistance mechanism.See related commentary by Lim et al., p. 16.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Pasi A. Jänne
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: Pasi A. Jänne, Dana-Farber Cancer Institute, 450 Brookline Avenue, LC4114, Boston, MA 02215. Phone: 617-632-6036; Fax: 617-582-7683; E-mail:
| | | | - Wu-Chou Su
- National Cheng Kung University Hospital, Tainan, Taiwan
| | - Melissa L. Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLCC, Nashville, Tennessee
| | | | - Makoto Nishio
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, South Korea
| | | | | | - Conor E. Steuer
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | | | - Sang-We Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Rong Shi
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Zhenhao Qi
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Yang Qiu
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Lihui Zhao
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | | | - Channing Yu
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Helena A. Yu
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol 2021; 19:91-113. [PMID: 34754128 DOI: 10.1038/s41571-021-00565-2] [Citation(s) in RCA: 645] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Tumour heterogeneity and a long-standing paucity of effective therapies other than chemotherapy have contributed to triple-negative breast cancer (TNBC) being the subtype with the least favourable outcomes. In the past few years, advances in omics technologies have shed light on the relevance of the TNBC microenvironment heterogeneity, unveiling a close dynamic relationship with cancer cell features. An improved understanding of tumour-immune system co-evolution supports the need to adopt a more comprehensive view of TNBC as an ecosystem that encompasses the intrinsic and extrinsic features of cancer cells. This new appreciation of the biology of TNBC has already led to the development of novel targeted agents, including PARP inhibitors, antibody-drug conjugates and immune-checkpoint inhibitors, which are revolutionizing the therapeutic landscape and providing new opportunities both for patients with early-stage TNBC and for those with advanced-stage disease. The current therapeutic scenario is only the tip of the iceberg, as hundreds of new compounds and combinations are in development. The translation of these experimental therapies into clinical benefit is a welcome and ongoing challenge. In this Review, we describe the current and upcoming therapeutic landscape of TNBC and discuss how an integrated view of the TNBC ecosystem can define different levels of risk and provide improved opportunities for tailoring treatment.
Collapse
Affiliation(s)
- Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy. .,Università Vita-Salute San Raffaele, Milan, Italy.
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.,Laster and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Licata
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
13
|
Medford A, Spring LM, Moy B, Bardia A. Antibody drug conjugates for patients with breast cancer. Curr Probl Cancer 2021; 45:100795. [PMID: 34635342 DOI: 10.1016/j.currproblcancer.2021.100795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022]
Abstract
The receptor-based classification of breast cancer predicts its optimal therapy. Hormone Receptor (HR) positive breast cancer is treated with endocrine therapy, and HER2+ disease is treated with HER2-targeted therapy. Triple negative breast cancer (TNBC), defined as tumors lacking HR and HER2, represents an aggressive subtype of breast cancer associated with poor prognosis. Development of targeted therapy for this subtype has been challenging since TNBC usually lacks targetable genomic alterations. However, the advent of antibody drug conjugates (ADC) to target antigens overexpressed in breast cancer has opened the door to a new class of breast cancer therapeutics. In this review, we describe the current FDA-approved ADC therapies for breast cancer, including sacituzumab govitecan, as well as agents currently in advanced stages of investigation. In addition, we review the potential therapeutic application of ADCs across different breast cancer subtypes. In the future, therapeutic advances in ADCs targeting different antigens could redefine the current receptor-based classification of breast cancer.
Collapse
Affiliation(s)
- Arielle Medford
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Laura M Spring
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Okines AFC, Ulrich L. Investigational antibody-drug conjugates in clinical trials for the treatment of breast cancer. Expert Opin Investig Drugs 2021; 30:789-795. [PMID: 34114911 DOI: 10.1080/13543784.2021.1940950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alicia F C Okines
- Department of Breast Oncology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Lara Ulrich
- Department of Breast Oncology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Wehrenberg-Klee E, Sinevici N, Nesti S, Kalomeris T, Austin E, Larimer B, Mahmood U. HER3 PET Imaging Identifies Dynamic Changes in HER3 in Response to HER2 Inhibition with Lapatinib. Mol Imaging Biol 2021; 23:930-940. [PMID: 34101105 DOI: 10.1007/s11307-021-01619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Standard therapy for HER2+ breast cancers includes HER2 inhibition. While HER2 inhibitors have significantly improved therapeutic outcomes, many patients remain resistant to therapy. An important intrinsic resistance mechanism to HER2 inhibition in some breast cancers is dynamic upregulation of HER3. Increase in HER3 expression that occurs in response to HER2 inhibition allows for continued growth signaling through HER2/HER3 heterodimers, promoting tumor escape. We hypothesized that a non-invasive method to image changes in HER3 expression would be valuable to identify those breast cancers that dynamically upregulate HER3 in response to HER2 inhibition. We further hypothesized that this imaging method could identify those tumors that would benefit by additional HER3 knockdown. PROCEDURES In a panel of HER2+ breast cancer cell lines treated with the HER2 inhibitor lapatinib, we evaluate changes in HER3 expression and viability. Mouse HER2+ breast cancer models treated with lapatinib were imaged with a peptide-based HER3-specific PET imaging agent [68Ga]HER3P1 to assess for dynamic changes in tumoral HER3 expression and uptake confirmed by biodistribution. Subsequently, HER2+ cell lines were treated with the HER2 inhibitor lapatinib as well HER3-specific siRNA to assess for changes in viability and correlate with HER3 expression upregulation. For all statistical comparisons, P<0.05 was considered statistically significant. RESULTS Lapatinib treatment of a panel of HER2+ breast cancer cell lines increased HER3 expression in the lapatinib-resistant cell line MDA-MB 453 but not the lapatinib-resistant cell-line HCC-1569. Evaluation of [68Ga]HER3P1 uptake in mice implanted with the HER2+ breast cancer cell lines MDA-MB453 or HCC-1569 prior to and after treatment with lapatinib demonstrated a significant increase in MDA-MB453 tumors only, consistent with in vitro findings. The additional knockdown of HER3 increased therapeutic efficacy of lapatinib only in MDA-MB453 cells, but not in HCC-1569 cells. CONCLUSION HER3 PET imaging can be used to visualize dynamic changes in HER3 expression that occur in HER2+ breast cancers with HER2 inhibitor treatment and identify those likely to benefit by the addition of combination HER3 and HER2 inhibition.
Collapse
Affiliation(s)
- Eric Wehrenberg-Klee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Nicoleta Sinevici
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Sarah Nesti
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Taylor Kalomeris
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Emily Austin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Benjamin Larimer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Suite 5.407, Boston, MA, 02129, USA.
| |
Collapse
|
16
|
Pascual T, Oliveira M, Ciruelos E, Bellet Ezquerra M, Saura C, Gavilá J, Pernas S, Muñoz M, Vidal MJ, Margelí Vila M, Cejalvo JM, González-Farré B, Espinosa-Bravo M, Cruz J, Salvador-Bofill FJ, Guerra JA, Luna Barrera AM, Arumi de Dios M, Esker S, Fan PD, Martínez-Sáez O, Villacampa G, Paré L, Ferrero-Cafiero JM, Villagrasa P, Prat A. SOLTI-1805 TOT-HER3 Study Concept: A Window-of-Opportunity Trial of Patritumab Deruxtecan, a HER3 Directed Antibody Drug Conjugate, in Patients With Early Breast Cancer. Front Oncol 2021; 11:638482. [PMID: 33968735 PMCID: PMC8103897 DOI: 10.3389/fonc.2021.638482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Preclinical data support a key role for the human epidermal growth factor receptor 3 (HER3) pathway in hormone receptor (HR)-positive breast cancer. Recently, new HER3 directed antibody drug conjugates have shown activity in breast cancer. Given the need to better understand the molecular biology, tumor microenvironment, and mechanisms of drug resistance in breast cancer, we designed this window-of-opportunity study with the HER3 directed antibody drug conjugate patritumab deruxtecan (HER3-DXd; U3-1402). Trial Design: Based on these data, a prospective, multicenter, single-arm, window-of-opportunity study was designed to evaluate the biological effect of patritumab deruxtecan in the treatment of naïve patients with HR-positive/HER2-negative early breast cancer whose primary tumors are ≥1 cm by ultrasound evaluation. Patients will be enrolled in four cohorts according to the mRNA-based ERBB3 expression by central assessment. The primary endpoint is a CelTIL score after one single dose. A translational research plan is also included to provide biological information and to evaluate secondary and exploratory objectives of the study. Trial Registration Number: EudraCT 2019-004964-23; NCT number: NCT04610528.
Collapse
Affiliation(s)
- Tomás Pascual
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Mafalda Oliveira
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Eva Ciruelos
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Meritxell Bellet Ezquerra
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Cristina Saura
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Joaquin Gavilá
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, IVO-Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Sonia Pernas
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Institut Catala d' Oncologia (ICO), H. U. Bellvitge-Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Montserrat Muñoz
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Maria J Vidal
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Mireia Margelí Vila
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, ICO-Institut Català d' Oncologia Badalona, Hospital Universitario Germans Trias i Pujol, Badalona, Spain
| | - Juan M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Breast Cancer Biology Research Group, Biomedical Research Institute Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana, Valencia, Spain
| | - Blanca González-Farré
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain.,Pathology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Josefina Cruz
- Medical Oncology Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Juan Antonio Guerra
- Medical Oncology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | - Miriam Arumi de Dios
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Stephen Esker
- Research and Development, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Pang-Dian Fan
- Research and Development, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Olga Martínez-Sáez
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Guillermo Villacampa
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Oncology Data Science, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laia Paré
- SOLTI Innovative Cancer Research, Barcelona, Spain
| | | | | | - Aleix Prat
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain.,Medicine Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
O'Reilly D, Sendi MA, Kelly CM. Overview of recent advances in metastatic triple negative breast cancer. World J Clin Oncol 2021; 12:164-182. [PMID: 33767972 PMCID: PMC7968109 DOI: 10.5306/wjco.v12.i3.164] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Metastatic triple negative breast cancer (TNBC) has an aggressive phenotype with a predilection for visceral organs and brain. Best responses to chemotherapy are predominately in the first line. Recent studies have demonstrated improved progression free survival with the combination of atezolizumab/pembrolizumab and chemotherapy in programmed death-ligand 1 positive metastatic TNBC. However, a recent trial in a similar population showed no benefit for atezoli-zumab and paclitaxel which led to a Food and Drug Administration alert. Two phase III trials (OLYMPIAD and BROCADE3) demonstrated a benefit in progression free survival (PFS) but not overall survival in patients with BRCA-associated metastatic TNBC treated with Olaparib or Talazoparib respectively. For those treated with Talazoparib, the time to deterioration in health related-quality of life was also longer compared to chemotherapy. The BROCADE3 trial demonstrated that the combination of a platinum and veliparib increased PFS in first-line metastatic TNBC but at the cost of increased toxicity. There are no head-to-head comparisons of a poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and platinums. There are unanswered questions regarding the role of PARPi maintenance after platinum therapy as is standard of care in BRCA-associated ovarian cancer. Other areas of therapeutic interest include targeting aberrations in the phosphoinositide 3-kinase pathway, protein kinase B, mammalian target of rapamycin or utilising antibody drug conjugates. This review focusses on recent and emerging therapeutic options in metastatic TNBC. We searched PubMed, clinicaltrials.gov and recent international meetings from American Society of Clinical Oncology, San Antonio Breast Cancer Conference and the European Society of Medical Oncology.
Collapse
Affiliation(s)
- David O'Reilly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Maha Al Sendi
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Catherine M Kelly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| |
Collapse
|
18
|
Clinical Development of New Antibody-Drug Conjugates in Breast Cancer: To Infinity and Beyond. BioDrugs 2021; 35:159-174. [PMID: 33666903 PMCID: PMC7933915 DOI: 10.1007/s40259-021-00472-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/09/2023]
Abstract
Metastatic breast cancer remains an incurable disease, and new therapies are needed. One major limitation of chemotherapy is the toxicity associated with higher dose exposure. Antibody-drug conjugates (ADCs) are a complex and evolving class of agents specifically designed with the objective of delivering antineoplastic medicines in the most precise and selectively targeted way. ADCs are composed of four key components: (1) the target antigen, (2) an antibody construct, (3) a payload (most commonly a cytotoxic agent), and (4) a linker moiety that couples the payload and the antibody. In this review, we discuss the clinical development of ADCs for the treatment of breast cancer, focusing on two recently FDA-approved agents, trastuzumab deruxtecan and sacituzumab govitecan, and discuss the ongoing efforts exploring new agents. Finally, we summarize the current portfolio of clinical trials that could change the algorithm of treatment for early and advanced breast cancer.
Collapse
|
19
|
Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol 2021; 14:20. [PMID: 33509252 PMCID: PMC7844898 DOI: 10.1186/s13045-021-01035-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a relatively new class of anticancer agents designed to merge the selectivity of monoclonal antibodies with cell killing properties of chemotherapy. They are commonly described as the "Trojan Horses" of therapeutic armamentarium, because of their capability of directly conveying cytotoxic drug (payloads) into the tumor space, thus transforming chemotherapy into a targeted agent. Three novel ADCs have been recently approved, i.e., trastuzumab deruxtecan, sacituzumab govitecan and enfortumab vedotin, respectively, targeting HER2, Trop2 and Nectin4. Thanks to progressive advances in engineering technologies these drugs rely on, the spectrum of diseases sensitive to these drugs as well as their indications are in continuous expansion. Several novel ADCs are under evaluation, exploring new potential targets along with innovative payloads. This review aims at providing a summary of the technology behind these compounds and at presenting the latest ADCs approved in solid tumors, as well as at describing novel targets for ADCs under investigation and new strategies to optimize their efficacy in solid tumors.
Collapse
Affiliation(s)
- Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
20
|
|
21
|
Nagayama A, Vidula N, Ellisen L, Bardia A. Novel antibody-drug conjugates for triple negative breast cancer. Ther Adv Med Oncol 2020; 12:1758835920915980. [PMID: 32426047 PMCID: PMC7222243 DOI: 10.1177/1758835920915980] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous subtype of breast cancer often associated with an aggressive phenotype and poor prognosis. Antibody–drug conjugate (ADC), comprising of a monoclonal antibody linked to a cytotoxic payload by a linker, is gaining increasing traction as an anti-cancer therapeutic. Emerging ADC drugs such as sacituzumab govitecan (IMMU-132) and trastuzumab deruxtecan (DS-8201a) are in late stages of clinical development for patients with metastatic breast cancer, including TNBC. In this article, we review and discuss the development and clinical application of ADCs in patients with advanced TNBC.
Collapse
Affiliation(s)
- Aiko Nagayama
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Neelima Vidula
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Leif Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 10 North Grove Street, Boston, MA 02114-2621, USA
| |
Collapse
|
22
|
Yver A, Agatsuma T, Soria JC. The art of innovation: clinical development of trastuzumab deruxtecan and redefining how antibody-drug conjugates target HER2-positive cancers. Ann Oncol 2020; 31:430-434. [DOI: 10.1016/j.annonc.2019.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
|