1
|
Afrose D, Alfonso-Sánchez S, McClements L. Targeting oxidative stress in preeclampsia. Hypertens Pregnancy 2025; 44:2445556. [PMID: 39726411 DOI: 10.1080/10641955.2024.2445556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction. Targeting oxidative stress appears to be a promising therapeutic approach that has the potential to improve both short- and long-term maternal and fetal outcomes, thus reducing the global burden of preeclampsia. The purpose of this review is to provide a comprehensive account of the mechanisms of oxidative stress in preeclampsia. Furthermore, it also examines potential interventions for reducing oxidative stress in preeclampsia, including natural antioxidant supplements, lifestyle modifications, mitochondrial targeting antioxidants, and pharmacological agents.A better understanding of the mechanism of action of proposed therapeutic strategies targeting oxidative stress is essential for the identification of companion biomarkers and personalized medicine approaches for the development of effective treatments of preeclampsia.
Collapse
Affiliation(s)
- Dinara Afrose
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sofía Alfonso-Sánchez
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Gao Q, Hägglund P, Gamon LF, Davies MJ. Inactivation of mitochondrial pyruvate dehydrogenase by singlet oxygen involves lipoic acid oxidation, side-chain modification and structural changes. Free Radic Biol Med 2025; 234:19-33. [PMID: 40203999 DOI: 10.1016/j.freeradbiomed.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The multi-subunit pyruvate dehydrogenase complex (PDC) plays a crucial role in glucose oxidation as it determines whether pyruvate is used for mitochondrial oxidative phosphorylation or is converted to lactate for aerobic glycolysis. PDC contains multiple lipoic acid groups, covalently attached at lysine residues to give lipoyllysine, which are responsible for acyl group transfer and critical to complex activity. We have recently reported that both free lipoic acid, and lipoyllysine in alpha-keto glutarate dehydrogenase, are highly susceptible to singlet oxygen (1O2)-induced oxidation. We therefore hypothesized that PDC activity and structure would be influenced by 1O2 (generated using Rose Bengal and light) via modification of the lipoyllysines and other residues. PDC activity was decreased by photooxidation, with this being dependent on light exposure, O2, the presence of Rose Bengal, and D2O consistent with 1O2-mediated reactions. These changes were modulated by pre-illumination addition of free lipoic acid and lipoamide. Activity loss occurred concurrently with lipoyllysine and sidechain modification (determined by mass spectrometry) and protein aggregation (detected by SDS-PAGE). Peptide mass mapping provided evidence for modification at 42 residues (Met, Trp, His and Tyr; with modification extents of 20-50 %) and each of the lipoyllysine sites (6-20 % modification). Structure modelling indicated the modifications occur across all 4 subunit types, and occur in functional domains or at multimer interfaces, consistent with damage at multiple sites contributing to the overall loss of activity. These data indicate that PDC activity and structure are susceptible to 1O2-induced damage with potential effects on cellular pathways of glucose metabolism.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
3
|
Li J, Shen J, Ye W, Tang X, Wang Z, Geng M, Liu Y, Chen X, Zhou L. Dynamically metabolic engineering overflow metabolism for efficient production of l-alanine in Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 428:132446. [PMID: 40139466 DOI: 10.1016/j.biortech.2025.132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/20/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
l-Alanine, a key chiral amino acid with broad industrial applications, was previously synthesized via thermal-regulated fermentation using an engineered Escherichia coli B0016-060BC. Upon thermal induction optimization, this strain achieved 167.7 g/L l-alanine from glucose. A scarless genome editing system integrating sacB and tetA enabled deletion of the phosphotransacetylase gene (eutD), reducing acetate accumulation by 26.3 %. Dynamic control of glycolysis mediated by pyruvate-sensing minimized overflow metabolism with 87.9 % lower pyruvate, 67.4 % lower acetate, and substantially reduced byproducts derived from the tricarboxylic acid (TCA) cycle. Further attenuation of the TCA cycle via a degradation tag fused to pyruvate dehydrogenase decreased TCA-derived byproducts. The final strain B0016-090BC produced 195.2 g/L l-alanine with a yield of 88.6 g/100 g glucose and productivity of 3.07 g/L/h. This systematic metabolic engineering strategy significantly enhanced l-alanine production efficiency and purity, which was helpful to improve large-scale fermentation of l-alanine.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Wuyue Ye
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Xinyan Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Zhiyu Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Muyun Geng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yunye Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Chen T, Wei N, Lv W, Qu L, Qu Q, Wu C, Ling Y, Liu H, Liu H. Modulation of copper homeostasis and cuproptosis by PDHA1 in acute myeloid leukemia. Discov Oncol 2025; 16:1044. [PMID: 40493296 DOI: 10.1007/s12672-025-02814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/24/2025] [Indexed: 06/12/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis. Recent studies highlight cuproptosis, a copper-dependent cell death mechanism, as a potential therapeutic target in cancers. This study investigates the expression and functional significance of CRGs, particularly PDHA1, in AML progression and cuproptosis regulation METHODS: We integrated bioinformatics analysis and experimental validation. Bioinformatics analysis of RNA-seq data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) was performed to identify CRGs associated with AML. Among these, pyruvate dehydrogenase E1 alpha subunit (PDHA1) was selected for further investigation. AML cell lines (Kasumi-1, U937, etc.) were treated with Elesclomol-CuCl2 to induce cuproptosis. PDHA1 was overexpressed via transfection, and its effects on proliferation (CCK-8, spheroid formation), apoptosis (flow cytometry), cell cycle (propidium iodide staining), and copper ion content were assessed. qPCR, Western blot, and glutathione (GSH) assays evaluated gene/protein expression and redox status. RESULTS Our analysis revealed that PDHA1 is significantly downregulated in AML tissues compared to normal controls. Overexpression of PDHA1 in AML cell lines led to reduced cell proliferation, increased apoptosis, and G1 phase arrest. Additionally, PDHA1 overexpression was associated with downregulation of Cyclins D1 and D3. Importantly, PDHA1 overexpression enhanced the sensitivity of AML cells to copper-induced cytotoxicity, indicating its potential to modulate cuproptosis. CONCLUSION These findings suggest that PDHA1 regulates cuproptosis by modulating copper metabolism and may serve as a potential therapeutic target and biomarker in AML.
Collapse
Affiliation(s)
- Tianping Chen
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics, Hefei, China
| | - Nan Wei
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Wenxiu Lv
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Lijun Qu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Qian Qu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Chaohong Wu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Yuan Ling
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China
| | - Haipeng Liu
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics, Hefei, China
| | - Hongjun Liu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Pediatric Hospital of Fudan University Anhui Hospital), No. 39, Wangjiang East Road, Hefei, 230000, Anhui, China.
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics, Hefei, China.
| |
Collapse
|
5
|
Lu D, Grant M, Lim BL. NAD(H) and NADP(H) in plants and mammals. MOLECULAR PLANT 2025; 18:938-959. [PMID: 40369879 DOI: 10.1016/j.molp.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/31/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) are essential metabolic coenzymes in prokaryotic and eukaryotic cells, with their reduced forms, NAD(P)H, serving as electron donors for myriad reactions. NADH is mainly involved in catabolic reactions, whereas NADPH is mainly involved in anabolic and antioxidative reactions. The presence of endosymbiont-derived organelles in eukaryotes has made the functional division of NADH and NADPH systems more complex. Chloroplasts in photoautotrophic eukaryotes provide additional sources of reductants, complicating the maintenance of the redox balance of NAD(P)+/NAD(P)H compared with heterotrophic eukaryotes. In this review, we discuss the two redox systems in plants and systematically compare them with those in mammals, including the similarities and differences in the biosynthesis and subcellular transport of NAD+, the biosynthesis of NADP+, and metabolic reactions for the reduction and oxidation of NAD(P)H. We also review the regulation of pyridine nucleotide pools and their ratios in different plant subcellular compartments and the effects of light on these ratios. We discuss the advantages of having both NADH and NADPH systems, highlight current gaps in our understanding of NAD(P)H metabolism, and propose research approaches that could fill in those gaps. The knowledge about NADH and NADPH systems could be used to guide bioengineering strategies to optimize redox-regulated processes and improve energy-use efficiency in crop plants.
Collapse
Affiliation(s)
- Danying Lu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Murray Grant
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
6
|
Chen L, Wu Z, Yuan W, Chen N, Lin P, Liao S, Xie G. Nuclear-localized metabolic enzymes: emerging key players in tumor epigenetic regulation. Mol Cell Biochem 2025:10.1007/s11010-025-05316-w. [PMID: 40434518 DOI: 10.1007/s11010-025-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Advancements in tumor research have highlighted the potential of epigenetic therapies as a targeted approach to cancer treatment. However, the application of these therapies has faced challenges due to the issue of substrate availability since the discovery of epigenetic modifications. Interestingly, metabolic changes are closely associated with epigenetic changes, and notably, certain metabolic enzymes exhibit nuclear localization within epigenetically active cellular contexts. This suggests that nuclear localization of metabolic enzymes may provide a mechanistic foundation for addressing substrate availability issues in epigenetic regulation. To date, there has been limited progress in synthesizing this information systematically. In this study, we provide an overview of the interplay between metabolic enzymes and epigenetic mechanisms, highlighting their critical roles. Subsequently, we summarize recent advances regarding the nuclear localization of metabolic enzymes, shedding light on their emerging roles in epigenetic regulation and oncogenesis.
Collapse
Affiliation(s)
- Limei Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China.
| | - Zhihui Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Weixi Yuan
- Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Peina Lin
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Senyi Liao
- Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Guopeng Xie
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China.
| |
Collapse
|
7
|
Kumar V, Greenberg ML. Emerging roles of pyruvate dehydrogenase phosphatase 1: a key player in metabolic health. Front Physiol 2025; 16:1596636. [PMID: 40491447 PMCID: PMC12146199 DOI: 10.3389/fphys.2025.1596636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025] Open
Abstract
Pyruvate dehydrogenase phosphatase (PDP), a structurally conserved member of the protein phosphatase C family (PP2C) of proteins, is a key regulatory enzyme responsible for reactivation of the mitochondrial gate-keeper, pyruvate dehydrogenase (PDH). Tissue-specific expression of PDP isozymes, specifically PDP1 and PDP2 facilitate regulation of the multi-subunit PDH, influencing flux of substrates to the TCA cycle. PDP1 is a heterodimeric, Ca2+ sensitive isoform, predominantly expressed in muscle tissue where its role in regulating PDH activity is well established. Emerging research suggests that it is involved in various diseases, including pancreatic ductal adenocarcinoma, cardiomyogenesis defects, traumatic brain injury, and Barth syndrome. In this review, we discuss recent studies revealing the crucial role of PDP1 and its dysregulation in various metabolic disorders, thereby highlighting its potential as a therapeutic target for these debilitating diseases.
Collapse
Affiliation(s)
| | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
8
|
Nosal CR, Majumdar A, Arroyo-Currás N, Freel Meyers CL. Trihydroxybenzaldoximes are Redox Cycling Inhibitors of ThDP-Dependent DXP Synthase. ACS Chem Biol 2025. [PMID: 40383931 DOI: 10.1021/acschembio.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Pathogenic bacteria must swiftly adapt to dynamic infection environments in order to survive and colonize in the host. 1-Deoxy-d-xylulose-5-phosphate synthase (DXPS) is thought to play a critical role in bacterial adaptation during infection and is a promising drug target. DXPS utilizes a thiamine diphosphate (ThDP) cofactor to catalyze the decarboxylative condensation of pyruvate and d-glyceraldehyde-3-phosphate (d-GAP) to form DXP, a precursor to isoprenoids and B vitamins. DXPS follows a ligand-gated mechanism in which pyruvate reacts with ThDP to form a long-lived lactyl-ThDP (LThDP) adduct which is coordinated by an active-site network of residues. d-GAP binding ostensibly disrupts this network to activate LThDP for decarboxylation. Our lab previously reported trihydroxybenzaldoxime inhibitors which are competitive with respect to d-GAP, and uncompetitive with respect to pyruvate, suggesting they bind after E-LThDP complex formation. Here, we conducted mechanistic studies to determine if these compounds inhibit DXPS by preventing LThDP activation or if they act as inducers of LThDP activation. We discovered that the catechol moiety of the trihydroxybenzaldoxime scaffold undergoes oxidation under alkaline aerobic conditions, and inhibitory potency is reduced under oxygen restriction. Leveraging long-range 1H-15N HSQC NMR and electrochemical measurements, we demonstrated that the oxidized form of the trihydroxybenzaldoxime induces LThDP decarboxylation and accepts electrons from the resulting carbanion, resulting in reduction to the catechol and formation of acetyl-ThDP which hydrolyzes to form acetate. Under aerobic conditions the catechol is reoxidized. Thus, these compounds act as redox cycling, substrate-wasting inhibitors of DXP formation. These findings uncover a novel activity and mechanism of DXPS inhibition which may have implications for DXPS-mediated redox activity in bacteria. Further exploration of redox active DXPS probes may provide new insights for inhibition strategies and selective probe development.
Collapse
Affiliation(s)
- Charles R Nosal
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
10
|
Jin X, Zhang N, Yan T, Wei J, Hao L, Sun C, Zhao H, Jiang S. Lactate-mediated metabolic reprogramming of tumor-associated macrophages: implications for tumor progression and therapeutic potential. Front Immunol 2025; 16:1573039. [PMID: 40433363 PMCID: PMC12106438 DOI: 10.3389/fimmu.2025.1573039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) is characterized by distinct metabolic adaptations that not only drive tumor progression but also profoundly influence immune responses. Among these adaptations, lactate, a key metabolic byproduct of aerobic glycolysis, accumulates in the TME and plays a pivotal role in regulating cellular metabolism and immune cell function. Tumor-associated macrophages (TAMs), known for their remarkable functional plasticity, serve as critical regulators of the immune microenvironment and tumor progression. Lactate modulates TAM polarization by influencing the M1/M2 phenotypic balance through diverse signaling pathways, while simultaneously driving metabolic reprogramming. Furthermore, lactate-mediated histone and protein lactylation reshapes TAM gene expression, reinforcing their immunosuppressive properties. From a therapeutic perspective, targeting lactate metabolism has shown promise in reprogramming TAMs and enhancing anti-tumor immunity. Combining these metabolic interventions with immunotherapies may further augment treatment efficacy. This review underscores the crucial role of lactate in TAM regulation and tumor progression, highlighting its potential as a promising therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyang Wei
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingli Hao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibo Zhao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
12
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers W, Wolstenholme J, Miles M. A Selective GSK3β Inhibitor, Tideglusib, Decreases Intermittent Access and Binge Ethanol Self-Administration in C57BL/6J Mice. Addict Biol 2025; 30:e70044. [PMID: 40390305 PMCID: PMC12089657 DOI: 10.1111/adb.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/07/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Over 10% of the US population over 12 years old meets criteria for alcohol use disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3-beta (GSK3β) has been implicated in ethanol behaviours and poses as a potential therapeutic target in the treatment of AUD. Here, we investigated the preclinical evidence for tideglusib, a clinically available selective GSK3β inhibitor, in modulating chronic and binge ethanol consumption. Tideglusib decreased ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behaviour (drinking in the dark) without effecting water intake. With drinking in the dark, tideglusib was more potent in males (ED50 = 64.6, CI = 58.9-70.8) than females (ED50 = 79.4, CI = 70.8-93.3). Further, we found tideglusib had no effect on ethanol pharmacokinetics, taste preference or anxiety-like behaviour, although there was a transient increase in total locomotion following treatment. Additionally, tideglusib treatment did not alter liver function as measured by serum activity of alanine aminotransferase and aspartate aminotransferase but did cause a decrease in serum alkaline phosphatase activity. RNA sequencing analysis of tideglusib actions on ethanol consumption revealed alterations in genes involved in synaptic plasticity and transmission, as well as genes downstream of the canonical Wnt signalling pathway, suggesting tideglusib may modulate ethanol consumption via β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
Affiliation(s)
- Sam Gottlieb
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Program in NeuroscienceVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrew van der Vaart
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Annalise Hassan
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Douglas Bledsoe
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Alanna Morgan
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brennen O'Rourke
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Walker D. Rogers
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
13
|
Kim D, Kesavan R, Ryu K, Dey T, Marckx A, Menezes C, Praharaj PP, Morley S, Ko B, Soflaee MH, Tom HJ, Brown H, Vu HS, Tso SC, Brautigam CA, Lemoff A, Mettlen M, Mishra P, Cai F, Allen DK, Hoxhaj G. Mitochondrial NADPH fuels mitochondrial fatty acid synthesis and lipoylation to power oxidative metabolism. Nat Cell Biol 2025; 27:790-800. [PMID: 40258949 DOI: 10.1038/s41556-025-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is a vital electron donor essential for macromolecular biosynthesis and protection against oxidative stress. Although NADPH is compartmentalized within the cytosol and mitochondria, the specific functions of mitochondrial NADPH remain largely unexplored. Here we demonstrate that NAD+ kinase 2 (NADK2), the principal enzyme responsible for mitochondrial NADPH production, is critical for maintaining protein lipoylation, a conserved lipid modification necessary for the optimal activity of multiple mitochondrial enzyme complexes, including the pyruvate dehydrogenase complex. The mitochondrial fatty acid synthesis (mtFAS) pathway utilizes NADPH for generating protein-bound acyl groups, including lipoic acid. By developing a mass-spectrometry-based method to assess mammalian mtFAS, we reveal that NADK2 is crucial for mtFAS activity. NADK2 deficiency impairs mtFAS-associated processes, leading to reduced cellular respiration and mitochondrial translation. Our findings support a model in which mitochondrial NADPH fuels the mtFAS pathway, thereby sustaining protein lipoylation and mitochondrial oxidative metabolism.
Collapse
Affiliation(s)
- Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rushendhiran Kesavan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Ryu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Austin Marckx
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cameron Menezes
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prakash P Praharaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stewart Morley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mona H Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Harrison J Tom
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Harrison Brown
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture, Agriculture Research Service, St. Louis, MO, USA
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Zhu X, Wang Z, Ye X, Liang P, Chen L, Chen J, Li C, Zhu J, Zhuo S, Yang L, Yang L, Chen Y. Short-term methionine deprivation inhibits TCA cycle and regulates macrophage polarization through uncharged tRNA and PDHA1 phosphorylation. J Nutr Biochem 2025; 143:109939. [PMID: 40306332 DOI: 10.1016/j.jnutbio.2025.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Methionine restriction diet has been extensively studied for its beneficial effects on metabolic health and aging. However, the impact of methionine deprivation on glucose metabolism per se and macrophage functions remains incompletely understood. In this study, we analyzed the functional roles of methionine deprivation on glucose flux and macrophage polarization. We used metabolic flux to investigate how methionine deprivation affected glucose metabolism. The functions of methionine deficiency on macrophage polarization and the underlying mechanisms were studied at both the cellular and animal levels. We found that short-term methionine deprivation represses the tricarboxylic acid (TCA) cycle in mitochondria, accompanied by rapid phosphorylation of the E1 subunit of pyruvate dehydrogenase (PDH) complex, PDHA1. This phosphorylation by methionine deprivation is dependent on increased levels of uncharged tRNA but is independent of GCN2. Furthermore, methionine deprivation promotes M1-like polarization of macrophages, consistent with metabolic reprogramming. Notably, the proinflammatory effect of methionine deprivation on macrophages is also mediated by PDHA1 phosphorylation and increases in uncharged tRNA, but independent of GCN2. Our study not only elucidates a direct regulatory role of methionine depletion on the TCA cycle but also reveals that such a regulation is tightly linked to the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Xinyu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Ye
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Puyang Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinzhu Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shixuan Zhuo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lanzexin Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Abyadeh M, Kaya A. Multiomics from Alzheimer's Brains and Mesenchymal Stem Cell-Derived Extracellular Vesicles Identifies Therapeutic Potential of Specific Subpopulations to Target Mitochondrial Proteostasis. J Cent Nerv Syst Dis 2025; 17:11795735251336302. [PMID: 40297324 PMCID: PMC12035200 DOI: 10.1177/11795735251336302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Alzheimer's disease (AD) is characterized by complex molecular alterations that complicate its pathogenesis and contribute to the lack of effective treatments. Mesenchymal stem cell-derived extracellular vesicles (EVs) have shown promise in AD models, but results across different EV subpopulations remain inconsistent. Objectives This study investigates proteomic and transcriptomic data from publicly available postmortem AD brain datasets to identify molecular changes at both the gene and protein levels. These findings are then compared with the proteomes of various EV subpopulations, differing in size and distribution, to determine the most promising subtype for compensating molecular degeneration in AD. Design We conducted a comprehensive analysis of 788 brain samples, including 481 AD cases and 307 healthy controls, examining protein and mRNA levels to uncover AD-associated molecular changes. These findings were then compared with the proteomes of different EV subpopulations to identify potential therapeutic candidates. Methods A multi-omics approach was employed, integrating proteomic and transcriptomic data analysis, miRNA and transcription factor profiling, protein-protein network construction, hub gene identification, and enrichment analyses. This approach aimed to explore molecular changes in AD brains and pinpoint the most relevant EV subpopulations for therapeutic intervention. Results We identified common alterations in the cAMP signaling pathway and coagulation cascade at both the protein and mRNA levels. Distinct changes in energy metabolism were observed at the protein level but not at the mRNA level. A specific EV subtype, characterized by a broader size distribution obtained through high-speed centrifugation, was identified as capable of compensating for dysregulated mitochondrial proteostasis in AD brains. Network biology analyses further highlighted potential regulators of key therapeutic proteins within this EV subtype. Conclusion This study underscores the critical role of proteomic alterations in AD and identifies a promising EV subpopulation, enriched with proteins targeting mitochondrial proteostasis, as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
16
|
Sivakumar R, Aravaanan ASK, Mohanakrishnan VV, Kumar J. The Emerging Role of Adropin in Neurological Health: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:675-687. [PMID: 40321920 PMCID: PMC12045872 DOI: 10.18502/ijph.v54i4.18407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 05/08/2025]
Abstract
Background Adropin, a peptide hormone has role in various various physiological processes, including metabolic regulation and cardiovascular health. This systematic review aimed to synthesize findings from observational studies on the involvement of adropin in neurological disorders and cognitive performance. Methods An extensive literature search was conducted across PubMed, Scopus, Web of Science, Embase, CORE, and Google Scholar using terms such as "adropin," "Neurological Disorders," "cognitive function," "Alzheimer's disease," "Parkinson's disease," "cognition," and "brain function." Studies published from 2020 to 2024 were selected and reviewed. The search and selection process adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Out of 127 screened articles, 5 met the inclusion criteria for this review. Results The combined research findings suggest a consistent link between decreased adropin levels and a range of neurological disorders and cognitive impairments. In particular, reduced adropin levels were seen in individuals with dementia, cognitive impairment, bipolar disorder, Parkinson's disease, and multiple sclerosis. These findings highlight adropin's potential role in modulating neurological health and cognitive function. Conclusion This systematic review underscores the importance of adropin in neurological health and its potential as a therapeutic agent. Based on the observed connections, adropin might serve as a new focus for treating neurological disorders, prompting the need for more research and trials.
Collapse
Affiliation(s)
- Rooban Sivakumar
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur – 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Arul Senghor Kadalangudi Aravaanan
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur – 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Vinodhini Vellore Mohanakrishnan
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur – 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Janardhanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur – 603203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
17
|
Frisch AT, Wang Y, Xie B, Yang A, Ford BR, Joshi S, Kedziora KM, Peralta R, Wilfahrt D, Mullett SJ, Spahr K, Lontos K, Jana JA, Dean VG, Gunn WG, Gelhaus S, Poholek AC, Rivadeneira DB, Delgoffe GM. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab 2025; 37:870-885.e8. [PMID: 39879981 PMCID: PMC12101091 DOI: 10.1016/j.cmet.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo. We used dichloroacetate (DCA) to modulate glycolytic metabolism during expansion, resulting in elevated mitochondrial capacity, stemness, and improved antitumor efficacy in murine T cell receptor (TCR)-Tg and human CAR-T cells. DCA-conditioned T cells surprisingly show no elevated intratumoral effector function but rather have improved engraftment. DCA conditioning decreases reliance on glucose, promoting usage of serum-prevalent physiologic carbon sources. Further, DCA conditioning promotes metabolic flux from mitochondria to chromatin, resulting in increased histone acetylation at key longevity genes. Thus, hyperglycemic culture conditions promote expansion at the expense of metabolic flexibility and suggest pharmacologic metabolic rewiring as a beneficial strategy for improvement of cellular immunotherapies.
Collapse
Affiliation(s)
- Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University, Beijing, China
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aaron Yang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronal Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica A Jana
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria G Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William G Gunn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
19
|
Gao Y, Yang J, Wan L, Li W, Luo H, Zhang L. An Intelligent Electrochemical Multi-Enzyme Molecular Machine for Chiral Chemical. Chemistry 2025; 31:e202404426. [PMID: 39829395 DOI: 10.1002/chem.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
In vitro multi-enzyme synthesis pathways harness the core elements of cellular synthesis while simplifying the complexities of cellular processes, facilitating the production of high-value chemicals. However, these in vitro synthesis processes often operate like a "black box" with limited monitoring of each reaction step, leading to a low substrate conversion efficiency. In this study, we present an intelligent multi-enzyme molecular machine(iMEMM) as a model system for achieving the deracemization of D, L-phosphinothricin (D, L-PPT). The entire system leverages electrochemical power and enzyme-catalyzed (cascade) reactions to establish substrate channel and enhance efficiency. By modularizing each reaction step and using electrochemical real-time monitoring of the reaction process, a single-step electrobiotransformation efficiency of up to 98 % and a chiral target L-PPT synthesis efficiency exceeding 99 % have been achieved. This iMEMM eliminates the need for intermediate separation, enabling a "substrate in, product out" process. Our research paves the way for future green, intelligent, and automated biological manufacturing.
Collapse
Affiliation(s)
- Yanxin Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
| | - Jiayue Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Wan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, Guangdong 518045, P. R. China
| | - Wenjin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
| | - Hang Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, Guangdong 518045, P. R. China
| |
Collapse
|
20
|
Zhang L, Guo Y, Huang E, Lu J, Wang T, Shi Y, Lv M, Chen Y, Li S, Yuan X, Li J. Pyruvate Regulates the Expression of DLAT to Promote Follicular Growth. Cells 2025; 14:444. [PMID: 40136693 PMCID: PMC11941520 DOI: 10.3390/cells14060444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Increasing evidence has suggested that dihydrolipoamide S-acetyltransferase (DLAT), a subunit of the pyruvate dehydrogenase complex, is crucial for pyruvate metabolism and the regulation of cell death. The excessive death of granulosa cells (GCs) hinders the progression of follicular growth. However, the relationship between DLAT and follicular growth is poorly understood. Here, we found that pyruvate significantly shortened the age of pubertal initiation in mice and promoted follicular growth by promoting the proliferation of GCs. In addition, pyruvate up-regulated the expression of DLAT and the high level of DLAT was observed in large follicles, which were associated with follicular growth. Mechanistically, DLAT increased the mRNA and protein levels of proliferation pathways such as PCNA and MCL1 to promote GC proliferation. Additionally, DLAT bound to CASP3 and CASP9 proteins to inhibit the apoptosis of GCs. Taken together, these results reveal a mechanism that pyruvate regulated DLAT to promote follicular growth, and DLAT represents a promising target that supports new strategies for improving the growth of follicles.
Collapse
Affiliation(s)
- Liuhong Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Yixuan Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Enyuan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Jianing Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Tiantian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Yonghua Shi
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801,China
| | - Meng Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Yongcai Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (Y.G.); (E.H.); (J.L.); (T.W.); (Y.S.); (M.L.); (Y.C.); (S.L.)
| |
Collapse
|
21
|
Nosal CR, Majumdar A, Arroyo-Currás N, Freel Meyers CL. Trihydroxybenzaldoximes are redox cycling inhibitors of ThDP-dependent DXP synthase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641193. [PMID: 40093103 PMCID: PMC11908136 DOI: 10.1101/2025.03.03.641193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pathogenic bacteria must swiftly adapt to dynamic infection environments in order to survive and colonize in the host. 1-Deoxy-d-xylulose-5-phosphate synthase (DXPS) is thought to play a critical role in bacterial adaptation during infection and is a promising drug target. DXPS utilizes a thiamine diphosphate (ThDP) cofactor to catalyze the decarboxylative condensation of pyruvate and D-glyceraldehyde-3-phosphate (d-GAP) to form DXP, a precursor to isoprenoids and B vitamins. DXPS follows a ligand-gated mechanism in which pyruvate reacts with ThDP to form a long-lived lactyl-ThDP (LThDP) adduct which is coordinated by an active-site network of residues. d-GAP binding ostensibly disrupts this network to activate LThDP for decarboxylation. Our lab previously reported trihydroxybenzaldoximes inhibitors which are competitive with respect to D-GAP, and uncompetitive with respect to pyruvate, suggesting they bind after E-LThDP complex formation. Here, we conducted mechanistic studies to determine if these compounds inhibit DXPS by preventing LThDP activation or if they act as inducers of LThDP activation. We discovered that the catechol moiety of the trihydroxybenzaldoxime scaffold undergoes oxidation under alkaline aerobic conditions, and inhibitory potency is reduced under oxygen restriction. Leveraging long range 1H-15N HSQC NMR and electrochemical measurements, we demonstrated that the oxidized form of the trihydroxybenzaldoxime induces LThDP decarboxylation. The oxime moiety accepts electrons from the resulting carbanion, resulting in formation of acetyl-ThDP which hydrolyzes to form acetate. SAR studies revealed that the catechol attenuates the redox activity of the oxime moiety, and under aerobic conditions these compounds are oxidized and thus act as redox cycling inhibitors of DXPS. Further exploration of redox active DXPS probes may provide new insights for inhibition strategies and selective probe development.
Collapse
Affiliation(s)
- Charles R Nosal
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
22
|
Tharayil JS, Kandettu A, Chakrabarty S. The curious case of mitochondrial sirtuin in rewiring breast cancer metabolism: Mr Hyde or Dr Jekyll? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167691. [PMID: 39864670 DOI: 10.1016/j.bbadis.2025.167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins. Several studies have identified the role of mitochondrial sirtuins in age-related pathologies and the rewiring of cancer metabolism. Mitochondrial sirtuins regulate cellular functions by contributing to post-translational modifications, including deacetylation, ADP-ribosylation, demalonylation, and desuccinylation of diverse cellular proteins to maintain cellular homeostasis. Here, we review and discuss the structure and function of the mitochondrial sirtuins and their role as metabolic regulators in breast cancer. Altered breast cancer metabolism may promote tumor progression and has been an essential target for therapy. Further, we discuss the potential role of targeting mitochondrial sirtuin and its impact on breast cancer progression using sirtuin inhibitors and activators as anticancer agents.
Collapse
Affiliation(s)
- Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
23
|
Sun J, Hua C, Zhang J, Ding N, Liu Y, Liu M, Tao H, Dong J, Zhao X, Li X. Decreased energy production and Ca 2+ homeostasis imbalance induce myocardial hypertrophy in PDHA1-deficient human pluripotent stem cell derived cardiomyocytes. Life Sci 2025; 364:123439. [PMID: 39920986 DOI: 10.1016/j.lfs.2025.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
AIMS The PDHA1 gene, responsible for regulating the conversion of the glycolytic product pyruvate to acetyl CoA, is significantly reduced in cardiomyocytes of patients with hypertrophic cardiomyopathy. Cardiac-specific PDHA1-deficient mice demonstrate cardiac hypertrophy and heart failure. However, the mechanisms underlying the pathogenesis of PDHA1 deficiency remain unclear. MAIN METHODS PDHA1 gene in human induced pluripotent stem cell line (iPSC) was knockout (KO) using CRISPR-Cas9 technology and differentiated it into cardiomyocytes (CMs) in vitro. Contractile force was quantified by video analysis, Ca2+ handling was assessed with Ca2+ transient analysis and mitochondrial function was detected using flow cytometry. KEY FINDINGS The PDHA1 KO iPSC-CMs displayed myocardial hypertrophy phenotypes by day 40 post-differentiation, characterized by enlarged cell size, increased contractility, abnormal calcium handling, and progressed to mimic heart failure phenotypes by day 50, including reduced contractility, lower calcium release and increased ROS generation. RNA-seq analysis revealed dysregulated expression of pathways related to cardiac hypertrophy and the calcium signaling pathway in KO iPSC-CMs. Furthermore, KO iPSC-CMs exhibited decreased energy production before the manifestation of myocardial hypertrophic phenotype at day 30, exacerbating intracellular lactate accumulation, leading to increased sodium‑hydrogen and sodium‑calcium exchange, ultimately resulting in elevated diastolic calcium concentration. Augmenting energy production with l-carnitine restored diastolic Ca2+ and prevented the development of myocardial hypertrophy in KO iPSC-CMs. SIGNIFICANCE Elevated diastolic Ca2+ resulting from reduced energy production and lactate accumulation can trigger overactivation of the calcium signaling pathway, diastolic dysfunction, mitochondrial damage, which constitutes the core pathogenic mechanism of myocardial hypertrophy in KO iPSC-CMs.
Collapse
Affiliation(s)
- Jihong Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chongpei Hua
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Ningyu Ding
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Hailong Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China.
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Wang G, Fang K, Shang Y, Zhou X, Shao Q, Li S, Wang P, Chen CD, Zhang L, Wang S. Testis-Specific PDHA2 Is Required for Proper Meiotic Recombination and Chromosome Organisation During Spermatogenesis. Cell Prolif 2025:e70003. [PMID: 39973374 DOI: 10.1111/cpr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Proper segregation of homologous chromosomes during meiosis requires crossovers that are tightly regulated by the chromosome structure. PDHA2 is the testis-specific paralog of PDHA1, a core subunit of pyruvate dehydrogenase. However, its role during spermatogenesis is unclear. We show that PDHA2 knockout results in male infertility in mice, but meiotic DSBs in spermatocytes occur normally and are efficiently repaired. Detailed analysis reveals that mid/late recombination intermediates are moderately reduced, resulting in fewer crossovers and many chromosomes without a crossover. Furthermore, defective chromosome structure is observed, including aberrant histone modifications, defective chromosome ends, precocious release of REC8 from chromosomes and fragmented chromosome axes after pachytene. These defects contribute to the failure of pyruvate conversion to acetyl-CoA, resulting in decreased acetyl-CoA and precursors for metabolites and energy in the absence of PDHA2. These findings reveal the important functions of PDHA2 in ensuring proper crossover formation and in modulating chromosome structure during spermatogenesis.
Collapse
Affiliation(s)
- Guoqiang Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Qiqi Shao
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Si Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Ping Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
| |
Collapse
|
25
|
Sawers RG. How FocA facilitates fermentation and respiration of formate by Escherichia coli. J Bacteriol 2025; 207:e0050224. [PMID: 39868885 PMCID: PMC11841067 DOI: 10.1128/jb.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g., by enterobacteria like Escherichia coli. As such, formic acid shares many features in common with dihydrogen, explaining perhaps why their metabolism and physiology show considerable overlap. At physiological pH, formic acid is mainly present as the dissociated formate anion and therefore cannot diffuse freely across the cytoplasmic membrane. Specific and bidirectional translocation of formate across the cytoplasmic membrane is, however, achieved in E. coli by the homopentameric membrane protein, FocA. Formic acid translocation from the cytoplasm into the periplasm (efflux) serves to maintain a near-neutral cytosolic pH and to deliver formate to the periplasmically-oriented respiratory formate dehydrogenases, Fdh-N and Fdh-O. These enzymes oxidize formate, with the electrons being used to reduce nitrate, oxygen, or other acceptors. In the absence of exogenous electron acceptors, formate is re-imported into the cytoplasm by FocA, where it is sensed by the transcriptional regulator FhlA, resulting in induction of the formate regulon. The genes and operons of the formate regulon encode enzymes necessary to assemble the formate hydrogenlyase complex, which disproportionates formic acid into H2 and CO2. Combined, these mechanisms of dealing with formate help to maintain cellular pH homeostasis and are suggested to maintain the proton gradient during growth and in stationary phase cells. This review highlights our current understanding of how formate metabolism helps balance cellular pH, how it responds to the redox status, and how it helps conserve energy.
Collapse
Affiliation(s)
- R. Gary Sawers
- Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| |
Collapse
|
26
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
27
|
Lipkin E, Strillacci MG, Cohen-Zinder M, Eitam H, Yishay M, Soller M, Ferrari C, Bagnato A, Shabtay A. Mapping genomic regions affecting sensitivity to bovine respiratory disease on chromosome X using selective DNA pooling. Sci Rep 2025; 15:4556. [PMID: 39915572 PMCID: PMC11802930 DOI: 10.1038/s41598-025-89020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Bovine respiratory disease is a leading health problem in feedlot cattle. Identification of affecting genes is essential for selection for decrease sensitivity. Chromosome X is a special attractive target for gene mapping in light of reports on both sexual dimorphism in immunity and higher susceptibility of males to this disease. However, diagnosis is challenging and clinical signs often go undetected. Kosher scoring of lung adhesions was used as a cost-effective proxy diagnosis. Selective DNA pooling was applied for cost-effective mapping of regions associated with sensitivity to the disease on chromosome X in Israeli Holstein male calves. A total of 9 regions were found, more than twice of any of the autosomes. All regions overlapped or were very close to previously reported regions. Bioinformatics survey found candidate-by-location genes in these regions. Functional analyses identified candidates-by-function among these genes. Network analyses connected the genes and found possible relations of the genes and the networks with morbidity, and specifically with sensitivity to bovine respiratory disease. The relatively large number of affecting regions and the candidate genes on the sex chromosome may explain part of the higher susceptibility of males and provide genomic and management targets for mitigating this disease.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Maria Giuseppina Strillacci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Miri Cohen-Zinder
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Harel Eitam
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Moran Yishay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Morris Soller
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Ariel Shabtay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
| |
Collapse
|
28
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2025; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
29
|
Li H, Cheng Z, Wu D, Hu Q. Nitric oxide and mitochondrial function in cardiovascular diseases. Nitric Oxide 2025; 154:42-50. [PMID: 39577487 DOI: 10.1016/j.niox.2024.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zijie Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
30
|
Zhou M, Qin Z, Zhu X, Ruan Y, Ling H, Li C, Gan X. Pyruvate dehydrogenase kinases: key regulators of cellular metabolism and therapeutic targets for metabolic diseases. J Physiol Biochem 2025; 81:21-34. [PMID: 40117090 DOI: 10.1007/s13105-025-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025]
Abstract
Pyruvate dehydrogenase kinases (PDKs) can regulate the conversion of pyruvate to acetyl coenzyme A through the mitochondrial pyruvate dehydrogenase complex (PDHC). As the rate-limiting enzymes of PDHC, PDKs link glycolysis to the tricarboxylic acid cycle. Pathological changes in many diseases involve alterations in cellular metabolism, which are partly reflected in changes in mitochondrial function. The intermediate role of PDKs in metabolic processes allows for the influence of both glycolysis and oxidative phosphorylation. Recent studies have shown that PDKs play a crucial role in regulating metabolic reprogramming, mitochondrial function and cellular activities in both oncological studies and various non-oncological diseases. This paper aims to clarify the molecular regulatory mechanisms of PDKs; review the relationship of PDKs with cellular metabolic reprogramming, regulation of ROS, and apoptosis; and the present status of research on PDKs in osteoporosis, diabetes mellitus, and vascular diseases. With this review, we have increased our understanding and insight at the molecular level, providing new insights into targeting PDKs to reverse metabolism-related diseases.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ziqi Qin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiting Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifeng Ruan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Ling
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
31
|
Jia Y, Wang S, Urban S, Müller JM, Sum M, Wang Q, Bauer H, Schulte U, Rampelt H, Pfanner N, Schüle KM, Imhof A, Forné I, Berlin C, Sigle A, Gratzke C, Greschik H, Metzger E, Schüle R. Mitochondrial KMT9 methylates DLAT to control pyruvate dehydrogenase activity and prostate cancer growth. Nat Commun 2025; 16:1191. [PMID: 39885202 PMCID: PMC11782658 DOI: 10.1038/s41467-025-56492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types. Mitochondrial KMT9 regulates PDC activity by monomethylation of its subunit dihydrolipoamide transacetylase (DLAT) at lysine 596. Depletion of KMT9 compromises PDC activity, de novo lipogenesis, and PCa cell proliferation, both in vitro and in a PCa mouse model. Finally, in human patients, levels of mitochondrial KMT9 and DLAT K596me1 correlate with Gleason grade. Together, we present a mechanism of PDC regulation and an example of a histone methyltransferase with nuclear and mitochondrial functions. The dependency of PCa cells on mitochondrial KMT9 allows to develop therapeutic strategies to selectively fight PCa.
Collapse
Affiliation(s)
- Yanhan Jia
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Judith M Müller
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Qing Wang
- Complete Omics Inc., Baltimore, MD, USA
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Imhof
- Institute Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Institute Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany.
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany.
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Wang H, Luo S, Yin Y, Liu Y, Sun X, Qiu L, Wu X. DLAT is involved in ovarian cancer progression by modulating lipid metabolism through the JAK2/STAT5A/SREBP1 signaling pathway. Cancer Cell Int 2025; 25:25. [PMID: 39871246 PMCID: PMC11773875 DOI: 10.1186/s12935-025-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) remains a lethal gynecological malignancy with an alarming mortality rate, primarily attributed to delayed diagnosis and a lack of effective treatment modalities. Accumulated evidence highlights the pivotal role of reprogrammed lipid metabolism in fueling OC progression, however, the intricate underlying molecular mechanisms are not fully elucidated. METHODS DLAT expression was assessed in OC tissues and cell lines by immunohistochemistry, western blot and qRT-PCR analysis. The effects of DLAT silencing on changes in lipid metabolism, cell viability, migration, and invasion were examined in SKOV3 and OVCAR3 cells using CCK-8, colony formation, Transwell migration and invasion, and wound-healing assays. GSEA analysis was used to examine the relationship between DLAT and lipid metabolism-related enzymes. Rescue experiments in which SREBP1 was overexpressed in DLAT-silenced cells were carried out. Western blot analysis was performed to determine whether the JAK2/STAT5 signaling pathway was involved in DLAT-regulated SREBP1 expression. Commercially available triglyceride and cholesterol detection kits, as well as Nile Red and Oil red O staining were used to measure lipid metabolism. A subcutaneous tumor model was established in BALB/c mice to confirm the role of the DLAT/SREBP1 axis in OC growth and metastasis in vivo. RESULTS DLAT expression was significantly upregulated in OC patient tissue and associated with poor prognosis. Silencing DLAT reduced lipid content and impaired OC cell proliferation, migration, and invasion. DLAT upregulated SREBP1 expression via the JAK2/STAT5 signaling pathway, enhancing expression of fatty acid synthesis enzymes and altering lipid metabolism. SREBP1 was essential for DLAT-dependent OC cell growth and metastasis both in vitro and in vivo. CONCLUSION This study uncovers a novel DLAT/JAK2/STAT5/SREBP1 axis that reprograms lipid metabolism in OC, providing insights into metabolic vulnerabilities and potential therapeutic targets for OC treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Shen Luo
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Yue Yin
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Yang Liu
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaomei Sun
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Ling Qiu
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.
| | - Xin Wu
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Uta DV, Mares RG, Simionescu M, Schiopu A, Antohe F. Cardiac ATP production and contractility are favorably regulated by short-term S100A9 blockade after myocardial infarction. J Adv Res 2025:S2090-1232(25)00061-X. [PMID: 39870300 DOI: 10.1016/j.jare.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known. OBJECTIVES This study evaluates whether S100A9 blockade effects ATP synthesis and cardiac contractility in C57BL/6 mice at seven days post-MI. METHODS Three experimental groups were used: (i) mice with MI, induced by permanent left coronary ligation, (ii) mice with MI, short-term treated with the S100A9 blocker ABR-238901, and (iii) sham (control) mice. After removing the left ventricle, mass spectrometry, pathway enrichment analysis, Western blot, RT-PCR and pharmacological network analysis were performed. RESULTS A number of 600 differentially abundant proteins (DAPs) was significantly altered by the S100A9 blocker in MI-treated mice compared with MI mice. Some of these proteins were associated with oxidative phosphorylation, citrate cycle (TCA), mitochondrial fatty acid beta-oxidation, glycolysis and cardiac muscle contraction pathways. In the ischemic ventricle, ABR-238901 treatment increased (1.8- to 38-fold) the abundance of proteins NDUFAB1, UQCRC1, HADHA, ACAA2, ALDOA, PKM1, DLD, DLAT, PDHX, ACO2, IDH3A, FH1, CKM, CKMT2, TNNC1, crucial for early cellular metabolic changes, ATP distribution and contractility. The cardiac level of ATP increased (1.8-fold, p < 0.05) in MI mice treated with ABR-238901 compared to MI mice. The network pharmacology analysis uncovered potential pharmacologic targets of ABR-238901 that may interact with DAPs related to ATP production and contractility. CONCLUSION Short-term S100A9 blockade effectively regulates the proteins implicated in ATP production and cardiac contractility post-MI, providing a framework for future cardiac energy metabolism studies.
Collapse
Affiliation(s)
- Raluca M Boteanu
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Viorel I Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Elena Uyy
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Luminita Ivan
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Diana V Uta
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Razvan G Mares
- Department of Pathophysiology, University of Medicine Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Maya Simionescu
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Alexandru Schiopu
- Department of Pathophysiology, University of Medicine Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania; Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
34
|
Wang C, Ma C, Xu Y, Chang S, Wu H, Yan C, Chen J, Wu Y, An S, Xu J, Han Q, Jiang Y, Jiang Z, Chu X, Gao H, Zhang X, Chang Y. Dynamics of the mammalian pyruvate dehydrogenase complex revealed by in-situ structural analysis. Nat Commun 2025; 16:917. [PMID: 39843418 PMCID: PMC11754459 DOI: 10.1038/s41467-025-56171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography. The organization of peripheral E1 and E3 components varies substantially among the observed PDHcs, with an average of 21 E1 surrounding each PDHc core, and up to 12 E3 locating primarily along the pentagonal openings. In addition, we observed dynamic interactions of the substrate translocating lipoyl domains (LDs) with both E1 and E2, and the interaction interfaces were further analyzed by molecular dynamics simulations. By revealing intrinsic dynamics of PDHc peripheral compositions, our findings indicate a distinctive activity regulation mechanism, through which the number of E1, E3 and functional LDs may be coordinated to meet constantly changing demands of metabolism.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Ma
- Protein Facility, Core Facilities, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunlan Yan
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongping Wu
- College of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Shaoya An
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Han
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yujie Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yunjie Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Infectious Diseases of Sir Run Run Shaw Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Ewida H, Benson H, Tareq S, Ahmed MS. Molecular Targets and Small Molecules Modulating Acetyl Coenzyme A in Physiology and Diseases. ACS Pharmacol Transl Sci 2025; 8:36-46. [PMID: 39816789 PMCID: PMC11729435 DOI: 10.1021/acsptsci.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain. This Review delves into the role of acetyl-CoA in both physiological and pathological conditions, shedding light on the key players in its formation within the cytosol. We specifically focus on the physiological impact of malonyl-CoA decarboxylase (MCD), acetyl-CoA synthetase2 (ACSS2), and ATP-citrate lyase (ACLY) on metabolism, glucose homeostasis, free fatty acid utilization, and post-translational modification cellular processes. Additionally, we present the pathological implications of MCD, ACSS2, and ACLY in various clinical manifestations. This Review also explores the potential and limitations of targeting MCD, ACSS2, and ACLY using small molecules in different clinical settings.
Collapse
Affiliation(s)
- Heba Ewida
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
- Department
of Biochemistry, Faculty of Pharmacy, Future
University in Egypt, Cairo 11835, Egypt
| | - Harrison Benson
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Syed Tareq
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Mahmoud Salama Ahmed
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| |
Collapse
|
36
|
Jiang Z, Xiong N, Yan R, Li ST, Liu H, Mao Q, Sun Y, Shen S, Ye L, Gao P, Zhang P, Jia W, Zhang H. PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression. Protein Cell 2025; 16:49-63. [PMID: 39311688 DOI: 10.1093/procel/pwae052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 01/07/2025] Open
Abstract
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Collapse
Affiliation(s)
- Zetan Jiang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Nanchi Xiong
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Ronghui Yan
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Haiying Liu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiankun Mao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yuchen Sun
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ling Ye
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Pinggen Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weidong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
37
|
Chen M, Song Y, Zhang S, Zhang Y, Chen X, Zhang M, Han M, Gao X, Li S, Yang M. Molecular architecture of mammalian pyruvate dehydrogenase complex. Protein Cell 2025; 16:72-78. [PMID: 39180277 DOI: 10.1093/procel/pwae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Affiliation(s)
- Maofei Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Yutong Song
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Yitang Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Xudong Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Minghui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Meng Han
- Protein Research Technology Center, Protein Chemistry and Omics Platform, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
38
|
Li Q, Liu P, Zhu X, Zhou C, Hu Y, Cao S, Li H, Zou X, Gao S, Cao X, Bao X, Xu Y, Li J. NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner. Inflammation 2025:10.1007/s10753-024-02218-9. [PMID: 39751706 DOI: 10.1007/s10753-024-02218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings. Here, we found that NG-497, a previously identified human ATGL inhibitor, significantly increased LDs accumulation and inhibited LPS-induced pro-inflammatory responses in human microglia. Moreover, NG-497 also protected human neurons against neurotoxic cytokines in a humanized in vitro model of neuroinflammation. However, the anti-inflammatory capacity of NG-497 was independent of its effect on ATGL. Instead, we revealed that NG-497 alleviated microglia-mediated neuroinflammation through elevating the protein level of melatonin receptor 1A (MTNR1A). Therefore, in this study, we uncovered a novel MTNR1A-targeting compound, which exhibited anti-inflammatory and neuroprotective effect, highlighting its potential in the treatment of neuroinflammation. Moreover, the MTNRs agonist, Ramelteon, exerts comparable anti-inflammation effects with NG-497.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xuan Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shiying Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Huiya Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| |
Collapse
|
39
|
Gu T, Duan M, Chen L, Tian Y, Xu W, Zeng T, Lu L. The difference between young and older ducks: Amino acid, free fatty acid, nucleotide compositions and breast muscle proteome. Food Chem X 2025; 25:102117. [PMID: 39810946 PMCID: PMC11732586 DOI: 10.1016/j.fochx.2024.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Duck meat has a unique taste and nutritional value, but age probably affects meat quality. In this study, ducks of different ages (60-day-old, D60; 900-day-old, D900) were chosen, and the odor, taste, amino acid, nucleotide, and free fatty acid components of breast meat were evaluated to investigate the differences. The results showed that the amino acid contents of breast muscle in D900 ducks, especially in Asp (umami) and Thr (sweet), were richer than those in D60 ducks. In addition, the levels of guanosine-5'-monophosphate (GMP), inosine-5'-monophosphate (IMP), monounsaturated fatty acid (MUFA; C18:1 t), and polyunsaturated fatty acid (PUFA; C18:2) in D900 ducks were higher than those in D60 ducks. Proteomic approach was further performed to analyze the difference of breast muscle between young and older ducks in protein level. We found that 496 differentially expressed proteins (DEPs) were screened. GO and KEGG analysis mainly enriched in glycine, serine, and threonine metabolism, tyrosine metabolism, and pyruvate metabolism. Moreover, correlation analysis revealed that BPGM, ADH5, ME2, ME3, GLO1, and PDHB, were specifically correlated with amino acids, nucleotides, and free fatty acids in meat from D60 ducks, whereas only two proteins, GRHPR and COMT, showed specific correlations with amino acids, nucleotides, and free fatty acids in meat from D900 ducks. This study proposes several candidate protein biomarkers for older duck meat that should be evaluated in the future.
Collapse
Affiliation(s)
- Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Mingcai Duan
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
40
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
41
|
Zhou P, Wang N, Lu S, Xiong J, Zhang Y, Jiang Q, Qian Q, Zhou Q, Liu J, Chen S. Dihydrolipoamide S-acetyltransferase activation alleviates diabetic kidney disease via AMPK-autophagy axis and mitochondrial protection. Transl Res 2024; 274:81-100. [PMID: 39389296 DOI: 10.1016/j.trsl.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Diabetic kidney disease (DKD), a severe complication of diabetes marked by deregulated glucose metabolism, remains enigmatic in its pathogenesis. Herein, we delved into the functional role of Dihydrolipoamide S-acetyltransferase (DLAT), a pivotal E2 component of the pyruvate dehydrogenase complex (PDC), in the context of DKD. Our findings revealed a downregulation of DLAT in the kidneys of diabetic patients, correlating inversely with kidney function. Parallel downregulation was observed in both high-fat diet/streptozotocin (HFD/STZ) and db/db mouse models, as well as in human proximal tubular epithelial cells (HK-2) cultured under hyperglycemic conditions. To further elucidate the role of endogenous DLAT in DKD, we employed genetic ablation of Dlat in mouse models. Dlat haploinsufficient mice exhibited exacerbated renal dysfunction, structural damage, fibrosis, and mitochondrial dysfunction under DKD conditions. Consistent with these findings, modulation of DLAT expression in HK-2 cells highlighted its influence on fibrosis, with overexpression attenuating Fibronectin and Collagen I levels, while downregulation exacerbated fibrosis. Mechanistically, we discovered that DLAT activates mitochondria autophagy through the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby mitigating mitochondrial dysfunction associated with DKD progression. Inhibition of AMPK abrogated the protective effects of DLAT against mitochondrial dysfunction and DKD. Notably, we identified Hyperforin (HPF), a phytochemical, as a potential therapeutic agent. HPF activates DLAT and AMPK, subsequently ameliorating renal dysfunction, injuries, and fibrosis in both in vivo and in vitro models. In summary, our study underscores the pivotal role of DLAT and AMPK in kidney health and highlights the therapeutic potential of HPF in treating DKD.
Collapse
Affiliation(s)
- Peihui Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Qiqi Qian
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Qian Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
42
|
Ma H, Zhao Y, He X, Wang Q, Zhang Y, Xing X, Wu X, Quan G, Bao S. Dihydrolipoamide acetyltransferase is a key factor mediating adhesion and invasion of host cells by Mycoplasma synoviae. Vet Microbiol 2024; 299:110297. [PMID: 39561529 DOI: 10.1016/j.vetmic.2024.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Mycoplasma synoviae is a significant avian pathogen responsible for chronic respiratory diseases, arthritis, and infectious synovitis in chickens and turkeys. These infections result in substantial economic losses to the global poultry industry. Dihydrolipoamide acetyltransferase (E2) is a multifunctional protein that plays an indispensable role in energy metabolism and redox balance and is also a key virulence factor of various pathogens. In this study, we used the avian pathogen M. synoviae as a model to identify the role of the E2 protein in the colonization and invasion of host cells. First, we prepared the polyclonal antibody of recombinant E2 (rE2) protein and found that the rE2 antibody had a strong complement-activating ability. E2 was found to be distributed in the cytoplasm and cell membrane of M. synoviae by immunoelectron microscopy. E2 localized on the cell membrane is a key factor in the adhesion of M. synoviae and has good immunogenicity. Enzyme-linked immunosorbent assay showed that the binding of rE2 to membrane proteins of chicken embryo fibroblasts (DF-1) was dose-dependent, and antiserum effectively inhibited this binding ability. Furthermore, E2 interacted with various components of the host extracellular matrix (ECM) and promoted the conversion of plasminogen to plasmin through terephthalic acid (tPA). In addition, E2 can enhance the ability of M. synoviae to invade DF-1 cells, which was significantly reduced after treatment with anti-E2 serum. These results indicate that E2 is an adhesion- and invasion-related protein and may be involved in the pathogenesis of M. synoviae, which provides new ideas for studying the pathogenesis of M. synoviae and preparing subunit vaccines.
Collapse
Affiliation(s)
- Haiyun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Yunhai Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaoxiao He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Yuting Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Guomei Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
43
|
Aftab A, Sil S, Nath S, Basu A, Basu S. Intrinsic Disorder and Other Malleable Arsenals of Evolved Protein Multifunctionality. J Mol Evol 2024; 92:669-684. [PMID: 39214891 DOI: 10.1007/s00239-024-10196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Microscopic evolution at the functional biomolecular level is an ongoing process. Leveraging functional and high-throughput assays, along with computational data mining, has led to a remarkable expansion of our understanding of multifunctional protein (and gene) families over the past few decades. Various molecular and intermolecular mechanisms are now known that collectively meet the cumulative multifunctional demands in higher organisms along an evolutionary path. This multitasking ability is attributed to a certain degree of intrinsic or adapted flexibility at the structure-function level. Evolutionary diversification of structure-function relationships in proteins highlights the functional importance of intrinsically disordered proteins/regions (IDPs/IDRs) which are highly dynamic biological soft matter. Multifunctionality is favorably supported by the fluid-like shapes of IDPs/IDRs, enabling them to undergo disorder-to-order transitions upon binding to different molecular partners. Other new malleable members of the protein superfamily, such as those involved in fold-switching, also undergo structural transitions. This new insight diverges from all traditional notions of functional singularity in enzyme classes and emphasizes a far more complex, multi-layered diversification of protein functionality. However, a thorough review in this line, focusing on flexibility and function-driven structural transitions related to evolved multifunctionality in proteins, is currently missing. This review attempts to address this gap while broadening the scope of multifunctionality beyond single protein sequences. It argues that protein intrinsic disorder is likely the most striking mechanism for expressing multifunctionality in proteins. A phenomenological analogy has also been drawn to illustrate the increasingly complex nature of modern digital life, driven by the need for multitasking, particularly involving media.
Collapse
Affiliation(s)
- Asifa Aftab
- Department of Zoology, Asutosh College, (affiliated with University of Calcutta), Kolkata, 700026, India
| | - Souradeep Sil
- Department of Genetics, Osmania University, Hyderabad, 500007, India
| | - Seema Nath
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anirneya Basu
- Department of Microbiology, Asutosh College (Affiliated With University of Calcutta), Kolkata, 700026, India
| | - Sankar Basu
- Department of Microbiology, Asutosh College (Affiliated With University of Calcutta), Kolkata, 700026, India.
| |
Collapse
|
44
|
Piro MC, Pecorari R, Smirnov A, Cappello A, Foffi E, Lena AM, Shi Y, Melino G, Candi E. p63 affects distinct metabolic pathways during keratinocyte senescence, evaluated by metabolomic profile and gene expression analysis. Cell Death Dis 2024; 15:830. [PMID: 39543093 PMCID: PMC11564703 DOI: 10.1038/s41419-024-07159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Unraveling the molecular nature of skin aging and keratinocyte senescence represents a challenging research project in epithelial biology. In this regard, depletion of p63, a p53 family transcription factor prominently expressed in human and mouse epidermis, accelerates both aging and the onset of senescence markers in vivo animal models as well as in ex vivo keratinocytes. Nonetheless, the biochemical link between p63 action and senescence phenotype remains largely unexplored. In the present study, through ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography/mass spectrometry (GC/MS) metabolomic analysis, we uncover interesting pathways linking replicative senescence to metabolic alterations during p63 silencing in human keratinocytes. Integration of our metabolomic profiling data with targeted transcriptomic investigation empowered us to demonstrate that absence of p63 and senescence share similar modulation profiles of oxidative stress markers, pentose phosphate pathway metabolites and lyso-glycerophospholipids, the latter due to enhanced phospholipases gene expression profile often under p63 direct/indirect gene control. Additional biochemical features identified in deranged keratinocytes include a relevant increase in lipids production, glucose and pyruvate levels as confirmed by upregulation of gene expression of key lipid synthesis and glycolytic enzymes, which, together with improved vitamins uptake, characterize senescence phenotype. Silencing of p63 in keratinocytes instead, translates into a blunted flux of metabolites through both glycolysis and the Krebs cycle, likely due to a p63-dependent reduction of hexokinase 2 and citrate synthase gene expression. Our findings highlight the potential role of p63 in counteracting keratinocyte senescence also through fine regulation of metabolite levels and relevant biochemical pathways. We believe that our research might contribute significantly to the discovery of new implications of p63 in keratinocyte senescence and related diseases.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Erica Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy.
- IDI-IRCCS, Rome, Italy.
| |
Collapse
|
45
|
Li S, Yue Y, Wang W, Han M, Wan X, Li Q, Chen X, Cao J, Zhang Y, Li J, Li J, Cheng L, Yang J, Wang D, Zhou Z. Ultrasound-Activated Probiotics Vesicles Coating for Titanium Implant Infections Through Bacterial Cuproptosis-Like Death and Immunoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405953. [PMID: 39101293 DOI: 10.1002/adma.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.
Collapse
Affiliation(s)
- Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenqi Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaochu Li
- Department of orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangming Zhang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Ysphaneendramallimoggala, Biswas M, Anburaj SE, Iqbal F, A S, Suryakanth VB, Lewis LES. Thiamine: An indispensable regulator of paediatric neuro-cardiovascular health and diseases. Eur J Pediatr 2024; 183:4597-4610. [PMID: 39271555 PMCID: PMC11473601 DOI: 10.1007/s00431-024-05756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The sustainable developmental goals emphasize good health, reduction in preventable neonatal and under-five mortalities, and attaining zero hunger. However, South Asian countries report a higher incidence of neonatal and under-five mortalities when compared to the Western world, many of which are attributed to maternal and perinatal micronutrient deficiencies. Isolated nutrient deficiency in the absence of calorie deficit poses a diagnostic challenge since such deficiencies present with acute multisystemic and enigmatic manifestations. Thiamine (vitamin B1) is a micronutrient of prime importance which exerts indispensable roles in energy metabolism. Deficiency of thiamine can lead to catastrophic consequences. This review provides insight into the biochemical actions of thiamine in energy metabolism, the compromised aerobic metabolism resulting from thiamine deficiency, and the crucial role of thiamine in the proper functioning of the nervous, cardiovascular, and immune systems. The review also explores the acute life-threatening consequences of thiamine deficiencies in neonates and infants and the speculative role of thiamine in other pathologies like encephalopathy, sepsis, and autism spectrum disorders. However, routine assessment of thiamine in pregnant women and neonates is yet to be implemented, due to the lack of affordable and automated diagnostic techniques, and the cost-intensive nature of mass spectrometry-based quantification. CONCLUSION Physicians are recommended to have a low threshold for suspecting thiamine deficiency especially in vulnerable populations. Laboratory diagnosis of thiamine deficiency needs to be implemented as a standard of care, especially in endemic regions. Further, public health policies on food fortification, mandatory supplementation, and surveillance are imperative to eliminate thiamine deficiency-induced health hazards. WHAT IS KNOWN • South Asian countries report a higher incidence of neonatal and under-five mortalities, many of which are attributed to maternal and perinatal micronutrient deficiencies. • Preventable causes of neonatal/ infantile deaths include birth factors (low birth weight, birth asphyxia), infectious diseases (pneumonia, diarrhoea, tetanus, tuberculosis, measles, diphtheria, malaria, acute infections), deficiency diseases and genetic diseases (vitamin & mineral deficiencies, IEMs, congenital heart disease, unexplained PPHN, SIDS etc). WHAT IS NEW • Acute thiamine deficiency presenting as multisystemic syndromes, has unfortunately been a long standing unresolved public health concern. However, accessible surveillance and diagnostic strategies remain elusive in most clinical settings. • Despite decades of reports and emerging guidelines, diagnosis of thiamine deficiency is often missed and policy mandates at national level are yet to be implemented even in endemic countries. • This review provides a comprehensive summary of the biochemical role of thiamine, its key functions and effects on major organ systems, the diagnostic gap, the enigmatic presentation of acute thiamine deficiency, the plausible role of thiamine in other pathologies and the preventive measures at individual and community level.
Collapse
Affiliation(s)
- Ysphaneendramallimoggala
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Monalisa Biswas
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher EducationKasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Stanly Elstin Anburaj
- Department of Health Information, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Faiza Iqbal
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Shrikiran A
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Varashree Bolar Suryakanth
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher EducationKasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
47
|
You D, Rasul F, Wang T, Daroch M. Insufficient Acetyl-CoA Pool Restricts the Phototrophic Production of Organic Acids in Model Cyanobacteria. Int J Mol Sci 2024; 25:11769. [PMID: 39519321 PMCID: PMC11546870 DOI: 10.3390/ijms252111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cyanobacteria are promising biological chassis to produce biochemicals such as carboxylic acids and their derivatives from CO2. In this manuscript, we reflected on cyanobacterial acetyl-CoA pool and TCA cycle as an important source of precursor molecules for the biosynthesis of carboxylic acids such as 3-hydroxypropionate, 3-hydroxybutyrate, succinate, malate, fumarate and free fatty acids, each of which is an important platform chemical for bioeconomy. We further highlighted specific features of the cyanobacterial TCA cycle, how it differs in structure and function from widely described TCA cycles of heterotrophic model organisms, and methods to make it more suitable for the production of carboxylic acids from CO2. Currently, the yields of these compounds are significantly lower than those in heterotrophic organisms and it was concluded that the primary cause of this can be attributed to the limited flux toward acetyl-CoA. Strategies like overexpressing pyruvate dehydrogenase complex or introducing synthetic bypasses are being explored to overcome these limitations. While significant progress has been made, further research is needed to enhance the metabolic efficiency of cyanobacteria, making them viable for the large-scale, sustainable production of carboxylic acids and their derivatives.
Collapse
Affiliation(s)
| | | | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (D.Y.); (F.R.); (T.W.)
| |
Collapse
|
48
|
Li Y, Sun W, Yuan S, Liu X, Zhang Z, Gu R, Li P, Gu X. The role of cuproptosis in gastric cancer. Front Immunol 2024; 15:1435651. [PMID: 39539553 PMCID: PMC11558255 DOI: 10.3389/fimmu.2024.1435651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
As a biologically essential transition metal, copper is widely involved in various enzymatic reactions and crucial biological processes in the body. It plays an increasingly important role in maintaining normal cellular metabolism and supporting the growth and development of the human body. As a trace element, copper maintains the dynamic balance of its concentration in body fluids through active homeostatic mechanisms. Both excess and deficiency of copper ions can impair cell function, ultimately leading to cell damage and death. Cuproptosis is a novel form of cell death where copper ions cause cell death by directly binding to the lipoylated components of the citric acid cycle (CAC) in mitochondrial respiration and interfering with the levels of iron-sulfur cluster (Fe-S cluster) proteins, ultimately causing protein toxic stress. Its primary characteristics are Cu2+ concentration dependence and high expression in mitochondrial respiratory cells. Recent research has revealed that, compared to other forms of programmed cell death such as apoptosis, necrosis, and autophagy, cuproptosis has unique morphological and biochemical features. Cuproptosis is associated with the occurrence and development of various diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases. This article focuses on a review of the relevance of cuproptosis in gastric cancer (GC).
Collapse
Affiliation(s)
- Yixian Li
- Nanjing University of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Wenhao Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Shaolin Yuan
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Xinxin Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Ziqi Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Wang P, Liang L, Ge Q, Liu S, Yang Z, Jiang L. Dichloroacetate attenuates brain injury through inhibiting neuroinflammation and mitochondrial fission in a rat model of sepsis-associated encephalopathy. Int Immunopharmacol 2024; 140:112840. [PMID: 39106713 DOI: 10.1016/j.intimp.2024.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, characterized by neuroinflammation, mitochondrial dysfunction, and oxidative stress, leading to cognitive decline and high mortality. The effectiveness of dichloroacetate (DCA) in modulating mitochondrial function provides a novel therapeutic strategy for SAE. In this study, we evaluated the neuroprotective effects of DCA in a rat model of SAE induced by cecal ligation and puncture (CLP). Rats treated with DCA exhibited significant improvements in neurological function and survival, as evidenced by less neuron loss from histopathologic analysis, restored neurologic deficit scores, improved Y-maze alternation percentages, and enhanced recognition index performance. Biochemical analyses showed that DCA administration at 25 mg/kg and 100 mg/kg reduced astrocyte and microglial activation, indicating reduced neuroinflammation. Furthermore, DCA simultaneously reduced the production of circulating and cerebral inflammatory cytokines (including TNF-α, IL-1β, and IL-10), concomitant with mitigating oxidative stress through down-regulating expression of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) in the brain. Mechanistically, DCA modulated mitochondrial dynamics by suppressing Drp1 and pDrp1 expression, which are indicators of mitochondrial fission. This was corroborated by transmission electron microscopy, quantification of mitochondrial area, and Western blot analyses. Furthermore, DCA treatment improved ATP levels, mitochondrial complex I activity, and NAD+/NADH ratio, indicating a significant attenuation of brain mitochondrial dysfunction. In conclusion, our findings suggest that DCA confers neuroprotection in SAE by curtailing neuroinflammation and mitochondrial fission, outlining a promising therapeutic strategy for treating SAE in critically ill patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Siqi Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
50
|
Träger TK, Tüting C, Kastritis PL. The human touch: Utilizing AlphaFold 3 to analyze structures of endogenous metabolons. Structure 2024; 32:1555-1562. [PMID: 39303718 DOI: 10.1016/j.str.2024.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Computational structural biology aims to accurately predict biomolecular complexes with AlphaFold 3 spearheading the field. However, challenges loom for structural analysis, especially when complex assemblies such as the pyruvate dehydrogenase complex (PDHc), which catalyzes the link reaction in cellular respiration, are studied. PDHc subcomplexes are challenging to predict, particularly interactions involving weaker, lower-affinity subcomplexes. Supervised modeling, i.e., integrative structural biology, will continue to play a role in fine-tuning this type of prediction (e.g., removing clashes, rebuilding loops/disordered regions, and redocking interfaces). 3D analysis of endogenous metabolic complexes continues to require, in addition to AI, precise and multi-faceted interrogation methods.
Collapse
Affiliation(s)
- Toni K Träger
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany; Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle/Saale, Germany.
| |
Collapse
|