1
|
Yang H, Chen R, Zheng X, Luo Y, Yao M, Ke F, Guo X, Liu X, Liu Q. Cooperative Role of Carbonic Anhydrase IX/XII in Driving Tumor Invasion and Metastasis: A Novel Targeted Therapeutic Strategy. Cells 2025; 14:693. [PMID: 40422196 DOI: 10.3390/cells14100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/27/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Cancer invasion and metastasis are critical factors that influence patient prognosis. Carbonic anhydrase IX (CA IX) and carbonic anhydrase XII (CA XII) are key regulators of hypoxia and pH homeostasis in the tumor microenvironment (TME). It has been verified that both CA IX and CA XII play significant roles in promoting tumor metastasis in recent years, but most of the literature tends to treat them as separate entities rather than exploring their synergistic effects. This review provides a comprehensive overview of the roles of CA IX and CA XII in tumor invasion and metastasis, along with their clinical applications, including their spatial distribution characteristics, molecular mechanisms that facilitate tumor metastasis, and their potential for clinical translation. Moreover, this review incorporates the classical tumor core-invasive front model to propose a metabolic coupling model of CA IX and CA XII, offering a fresh perspective on precision therapies that target tumor metabolism. By emphasizing the metabolic coupling between these two molecules, this review offers new insights distinct from previous studies and highlights the clinical therapeutic potential of simultaneously targeting both during treatment. It sheds new light on future research and clinical applications, aiming to enhance the prognosis of cancer patients through innovative therapeutic strategies.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yufan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyan Liu
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Quattrociocchi C, Padovan S, Fagoonee S, Aime S, Menchise V, Castelli DD. In vivo MRI of breast cancer using carbonic anhydrase IX proteoglycan-like domain -targeting liposomes. J Control Release 2025; 380:957-966. [PMID: 39956395 DOI: 10.1016/j.jconrel.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Molecular imaging of breast cancer is increasingly recognized as a valuable tool for optimizing therapeutic interventions. Among potential targets for molecular imaging reporters, Carbonic Anhydrase IX (CAIX) stands out for its overexpression in tumors characterized by large hypoxic areas and aggressive phenotypes. CAIX, a transmembrane glycoprotein involved in pH regulation, displays a unique proteoglycan-like (PG) domain, not present in other isoforms, that could represent a specific target for imaging and therapy. While high sensitivity imaging techniques such as Positron Emission Tomography (PET) and optical imaging have been applied for CAIX targeting, no in vivo study utilizing Magnetic Resonance Imaging (MRI) to target CAIX has yet been reported. Herein, we address this gap by applying CAIX PG-targeting functionalized liposomes in the first in vivo MRI study on a murine model of breast cancer. TS/A cells were subcutaneously injected to generate primary tumors in mice, and targeted liposomes were delivered intravenously after 15 days. Internalization of the targeted liposomes by receptor-mediated endocytosis led to an enhanced MRI signal in the tumor region. Cytoplasmic and endosomal distribution of the liposomes' payload was observed. Conversely, non-functionalized liposomes and liposomes bearing a scrambled peptide, while entering tumor cells in smaller amounts, localized only to endosomes as expected. The findings reported herein suggest that CAIX PG domain-targeting liposomal formulations exploiting receptor-mediated endocytosis can lead to improved diagnostic capabilities and open avenues for targeted therapeutic delivery for the treatment of tumors overexpressing CAIX, particularly breast cancer.
Collapse
Affiliation(s)
- Claudia Quattrociocchi
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre "Guido Tarone", I-10126 Turin, Italy
| | - Sergio Padovan
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre "Guido Tarone", I-10126 Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, Molecular Biotechnology Centre "Guido Tarone", I-10126 Turin, Italy
| | - Silvio Aime
- IRCCS SDN SYNLAB, Via Gianturco 113, Napoli, Italy
| | - Valeria Menchise
- Institute of Biostructure and Bioimaging, Molecular Biotechnology Centre "Guido Tarone", I-10126 Turin, Italy.
| | - Daniela Delli Castelli
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre "Guido Tarone", I-10126 Turin, Italy
| |
Collapse
|
3
|
Onali A, Sanna E, Lupia A, Secci D, Atzeni G, Demuru L, Angeli A, Cottiglia F, Meleddu R, Emmolo R, Corona A, Maccioni E, Supuran CT, Distinto S. Synthesis and Evaluation of Thiazolidinone-Isatin Hybrids for Selective Inhibition of Cancer-Related Carbonic Anhydrases. ACS Med Chem Lett 2025; 16:560-566. [PMID: 40236560 PMCID: PMC11995222 DOI: 10.1021/acsmedchemlett.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
A small library of novel thiazolidinone-based sulfonamide derivatives was designed, synthesized and evaluated for their ability to target human carbonic anhydrase (hCA) isoforms IX and XII, which are overexpressed in malignant cells and play a key role in metastasis and therapeutic response of cancer cells. A molecular hybridization approach was employed to design the molecules by combining different moieties identified as having antitumor activity. The thiazolidinone core was functionalized with benzenesulfonamide as a zinc-binding group and different isatin derivatives to enhance the chemical profile and optimize the hydrophilic/lipophilic balance. Biological evaluation against hCA I, II, IX and XII isoforms showed promising inhibitory activities, and some compounds exhibited selectivity and high inhibitory activity against hCA IX and hCA XII while not affecting off-target hCA I and hCA II. In particular, compound 3h demonstrated high selectivity with Ki values of 57.8 nM for hCA IX and 44.3 nM for hCA XII.
Collapse
Affiliation(s)
- Alessia Onali
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Erica Sanna
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Antonio Lupia
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Daniela Secci
- Faculty
of Pharmacy, University of Lubiana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Giulia Atzeni
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Laura Demuru
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Andrea Angeli
- Dipartimento
NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Filippo Cottiglia
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Rita Meleddu
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Roberta Emmolo
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Angela Corona
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Elias Maccioni
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| | - Claudiu T. Supuran
- Dipartimento
NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Simona Distinto
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria sp8, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
4
|
Saravanan V, Palani SP, Chagaleti BK, Gao QZ, Valsaladevi AG, Kumaradoss KM. Molecular dynamics simulation reveals structural insights into isozyme selectivity of carbonic anhydrase XII inhibitors in hypoxic tumor microenvironment. Biochem Biophys Res Commun 2025; 753:151471. [PMID: 39965264 DOI: 10.1016/j.bbrc.2025.151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Human carbonic anhydrase (CA) isoenzymes IX and XII are overexpressed in cancer cells, contributing to tumor microenvironment acidification and representing important targets for cancer therapy. In this study, we identified compound V35 (ZINC09419065) as a selective inhibitor of CA IX and CA XII with enhanced binding stability and selectivity compared to standard inhibitors. We analyzed conserved regions in CA I, CA II, CA IX, and CA XII to investigate their isozyme selectivity, revealing critical selectivity determinants at positions 95, 141, and 203. Molecular docking results indicated that V35 interacts robustly with CA XII, forming a metal ion coordination complex with Zn via HIS94, HIS96, HIS119, and THR199, similar to the interaction pattern of standard inhibitor SLC-0111. Molecular dynamics (MD) simulations conducted over 500 ns under hypoxic conditions showed that V35 has high binding stability, with root mean square deviation (RMSD) and fluctuation (RMSF) values comparable to SLC-0111, demonstrating its conformational stability in CA XII. Binding free energy calculations using the MMGBSA method showed that V35 achieves binding free energy of -44.17 kcal/mol with CA XII, closely matching SLC-0111 (-49.41 kcal/mol). Density functional theory (DFT) calculations further highlighted V35's electrostatic potential distribution, supporting its isozyme selectivity. Post-dynamics analysis indicated that the ester functional groups and the inward movement of HIS64 stabilize V35's interactions in CA XII, a feature absent in CA I.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Sathiya Priya Palani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Quan-Ze Gao
- National Applied Research Laboratories, National Centre for High-Performance Computing, Hsinchu City, 30076, Taiwan
| | - Anjana Gopi Valsaladevi
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
5
|
Moi D, Carradori S, Gallorini M, Mencarelli N, Deplano A, Angeli A, Vittorio S, Supuran CT, Onnis V. Investigation on Human Carbonic Anhydrase IX and XII Inhibitory Activity and A549 Antiproliferative Activity of a New Class of Coumarinamides. Pharmaceuticals (Basel) 2025; 18:372. [PMID: 40143148 PMCID: PMC11944513 DOI: 10.3390/ph18030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Background-Aggressive solid tumors are commonly characterized by both basic intracellular pH and acidic extracellular pH, which increase cell survival and proliferation. As carbonic anhydrases IX/XII are involved in this pH regulation, their inhibition is an appealing approach in cancer therapy, avoiding cancer cell survival and proliferation. Substituted coumarins are selective non-classical CA IX and CA XII inhibitors. Methods-In this study, new 7-hydroxycoumarinamides were synthesized and assayed for CA inhibition and antiproliferative activity. Results-All of the coumarinamides showed human CA IX and CA XII selective inhibition over the off-target CA I and CA II isoforms. Coumarin acts as a suicide inhibitor because its heterocyclic ring can be hydrolyzed by CA esterase activity to give the corresponding 2-hydroxycinnamic acid derivative which blocks the entrance of the active site. The 2-hydroxycinnamic acid derivatives deriving from the most potent and selective coumarinamides were docked into CA IX and XII to better understand the activity and selectivity against the two CA isoforms. The most active coumarinamides also produced a decrease of A549 cell proliferation and were able to arrest cells at the G1/S checkpoint. Conclusions-These results may open new perspectives for developing coumarin-based CA IX/XII inhibitors.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Noemi Mencarelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Alberto Deplano
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, FI, Italy; (A.A.); (C.T.S.)
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, MI, Italy;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, FI, Italy; (A.A.); (C.T.S.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| |
Collapse
|
6
|
Amiranda S, Succoio M, Anzilotti S, Cuomo O, Petrozziello T, Tedeschi V, Finizio A, Mele G, Parkkila S, Annunziato L, De Simone G, Pignataro G, Secondo A, Zambrano N. Pharmacological inhibition of carbonic anhydrases with a positively charged pyridinium sulfonamide phenocopies the neuroprotective effects of Car9 genetic ablation in a murine setting of oxygen/glucose deprivation followed by re-oxygenation and is associated with improved neuronal function in ischemic rats. Heliyon 2025; 11:e42457. [PMID: 40028587 PMCID: PMC11868941 DOI: 10.1016/j.heliyon.2025.e42457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Carbonic anhydrases constitute a family of metalloenzymes vital for maintaining acid-base balance and regulating pH in physio-pathological processes. These findings suggest carbonic anhydrases as potential therapeutic targets for treating pH-associated disorders, including cerebral ischemia, to mitigate hypoxia- and reoxygenation-induced neuronal damage. A focus on carbonic anhydrase IX showed that ischemic stress altered subcellular distributions of this enzyme in rodent neuronal populations. Given the enzyme's canonical membrane localization, we implemented pharmacological inhibition using a membrane-impermeant sulfonamide inhibitor in neuronal models of brain ischemia. The treatments exerted neuroprotective effects on neurons from Car9 knockout mice. Moreover, administration of the sulfonamide inhibitor to rats subjected to transient middle cerebral artery occlusion decreased infarct volumes and improved neurological deficits. Our results support the involvement of carbonic anhydrase IX in postischemic damage and pave the way for possible pharmacological interventions with selective inhibitors in the management of brain ischemia.
Collapse
Affiliation(s)
- Sara Amiranda
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Mariangela Succoio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Serenella Anzilotti
- Department of Human Sciences and Quality of Life Promotion, Università San Raffaele, Rome, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Arianna Finizio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Giorgia Mele
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | | | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Agnese Secondo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| |
Collapse
|
7
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
8
|
Choi SH, Jin MS. Crystal structure of γ-carbonic anhydrase from the polyextremophilic bacterium Aeribacillus pallidus. Mol Cells 2025; 48:100165. [PMID: 39637945 PMCID: PMC11721427 DOI: 10.1016/j.mocell.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The polyextremophilic bacterium Aeribacillus pallidus produces a thermo- and alkali-stable γ-carbonic anhydrase (γ-apCA), a homotrimeric metalloenzyme containing a zinc ion in its active site that catalyzes the reversible hydration of carbon dioxide (CO2). Here, we present the first crystal structure of γ-apCA at 1.7-Å resolution, revealing 2 trimers in the asymmetric unit. The overall structure is consistent with other γ-CAs, where each monomer adopts a prism-like structure consisting of an N-terminal left-handed β-helix and a C-terminal α-helix. The active site, located at the interface between 2 monomers, coordinates the zinc ion with 3 histidine residues (H65, H82, and H87) and a water molecule in a tetrahedral configuration. The structural comparison indicates that the amino acid composition at the active site of γ-apCA differs significantly from the prototypic γ-CA from Methanosarcina thermophila. This variation likely accounts for the lack of measurable CO2 hydration activity in γ-apCA. Additionally, the structure reveals noncatalytic zinc and sulfate ions trapped at the trimer core and trimer-trimer noncrystallographic interfaces. These may contribute to stabilizing enzyme assembly and promoting crystal packing.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Renzi G, Ladu F, Carta F, Supuran CT. The carbonic anhydrase enzymes as new targets for the management of neglected tropical diseases. Arch Pharm (Weinheim) 2025; 358:e2400626. [PMID: 39520343 PMCID: PMC11726158 DOI: 10.1002/ardp.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Diseases caused by protozoan parasites represent a huge challenge to global health care, due to the lack of selective and efficient treatments for the management and spreading of such complex pathologies. The protozoans Trypanosoma cruzi (T. cruzi) and Leishmania spp. are the etiological agents of the so-called neglected tropical diseases (NTDs), that is, Chagas disease (CD) and leishmaniasis, respectively. In such a context, the metalloenzymes carbonic anhydrases (CAs; EC 4.2.1.1) emerged as potential protozoan druggable enzymes, being involved in the parasites' life cycle. Several studies suggested the relevance of the protozoan-expressed CAs as future candidates for the management of NTDs.
Collapse
Affiliation(s)
- Gioele Renzi
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| | - Federico Ladu
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | - Fabrizio Carta
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| | - Claudiu T. Supuran
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| |
Collapse
|
10
|
Vaškevičius A, Baronas D, Leitans J, Kvietkauskaitė A, Rukšėnaitė A, Manakova E, Toleikis Z, Kaupinis A, Kazaks A, Gedgaudas M, Mickevičiūtė A, Juozapaitienė V, Schiöth HB, Jaudzems K, Valius M, Tars K, Gražulis S, Meyer-Almes FJ, Matulienė J, Zubrienė A, Dudutienė V, Matulis D. Targeted anticancer pre-vinylsulfone covalent inhibitors of carbonic anhydrase IX. eLife 2024; 13:RP101401. [PMID: 39688904 DOI: 10.7554/elife.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
We designed novel pre-drug compounds that transform into an active form that covalently modifies particular His residue in the active site, a difficult task to achieve, and applied to carbonic anhydrase (CAIX), a transmembrane protein, highly overexpressed in hypoxic solid tumors, important for cancer cell survival and proliferation because it acidifies tumor microenvironment helping invasion and metastases processes. The designed compounds have several functionalities: (1) primary sulfonamide group recognizing carbonic anhydrases (CA), (2) high-affinity moieties specifically recognizing CAIX among all CA isozymes, and (3) forming a covalent bond with the His64 residue. Such targeted covalent compounds possess both high initial affinity and selectivity for the disease target protein followed by complete irreversible inactivation of the protein via covalent modification. Our designed prodrug candidates bearing moderately active pre-vinylsulfone esters or weakly active carbamates optimized for mild covalent modification activity to avoid toxic non-specific modifications and selectively target CAIX. The lead inhibitors reached 2 pM affinity, the highest among known CAIX inhibitors. The strategy could be used for any disease drug target protein bearing a His residue in the vicinity of the active site.
Collapse
Affiliation(s)
- Aivaras Vaškevičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Denis Baronas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Janis Leitans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Agnė Kvietkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein - DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zigmantas Toleikis
- Sector of Biocatalysis, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Saulius Gražulis
- Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Dinh Thanh N, Ngoc Toan V, Minh Trang V. Sulphonyl thiourea compounds containing pyrimidine as dual inhibitors of I, II, IX, and XII carbonic anhydrases and cancer cell lines: synthesis, characterization and in silico studies. RSC Med Chem 2024:d4md00816b. [PMID: 39823041 PMCID: PMC11734695 DOI: 10.1039/d4md00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase hCA I, hCA II, hCA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the hCA I isoform), 7f > 7b > 7c (against the hCA II isoform), 7c > 7g > 7a > 7b (against the hCA IX isoform), and 7d > 7c > 7g > 7f (against the hCA XII isoform). The obtained inhibitory activity data against the hCA IX and XII isoforms showed that compound 7c was the most potent inhibitor in this sulphonyl thiourea series against enzyme hCA IX, with K I = 125.1 ± 12.4 nM, while compound 7d was the most potent inhibitor against enzyme hCA XII, with K I = 111.0 ± 12.3 nM. Compound 7c exhibited strong inhibitory activity among all four tested hCA enzymes, while thiourea 7f was a potent inhibitor for enzymes hCA I, II and XII. All these compounds demonstrated non-competitive inhibition of both enzymes. Some selected potential inhibitory compounds, including 7c, 7d, and 7g, exhibited remarkable cytotoxic activity against human cancer cell lines, including human breast adenocarcinoma (MCF-7), human liver adenocarcinoma (HepG2), human cervical epithelial carcinoma (HeLa), and human lung adenocarcinoma cells (A549). These compounds exhibited low cytotoxicity in the WI-38 cell line. The compounds 7c and 7d were the most potent inhibitors against tumour-associated hCA IX and hCA XII isoenzymes. Furthermore, these compounds exhibited remarkable inhibition against some cancer cell lines, such as MCF-7, HepG2, HeLa, and A549. They were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7c and 7d were the most promising derivatives in this series owing to their significant effects on the studied hCA IX and hCA XII isoenzymes, respectively. The results showed that the sulphonyl thiourea moiety was deeply accommodated in the active site and interacted with zinc ions in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| | - Vu Ngoc Toan
- Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence 17 Hoang Sam, Cau Giay Ha Noi Vietnam
| | - Vu Minh Trang
- VNU University of Education, Vietnam National University, Hanoi 144 Xuan Thuy, Cau Giay Ha Noi Vietnam
| |
Collapse
|
12
|
Yang J, Tong X, Wang W, Yu X, Xu J, Shi S. Targeting CA9 restricts pancreatic cancer progression through pH regulation and ROS production. Cell Oncol (Dordr) 2024; 47:2367-2382. [PMID: 39656421 DOI: 10.1007/s13402-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 01/25/2025] Open
Abstract
PURPOSE Lactate is a key metabolite produced by glycolytic metabolism, yet it also serves as an energy source for cancer cells. Lactate accumulation in the tumor microenvironment (TME) has been demonstrated to correlate with immunosuppressive TME and tumor progression. As a highly glycolytic tumor, it is crucial to decipher the underlying mechanism in pancreatic ductal adenocarcinoma (PDAC). METHODS Bioinformation analysis was used to identify lactate mediated carbonic anhydrase IX (CA9) upregulation. CCK-8, colony formation and mouse xenograft assay were utilized to study the effect of CA9 in PDAC. ECAR, OCR and pHi measurement confirmed the impacts of CA9 in Warburg phenotype. Using confocal microscopy, flow cytometry, qRT-PCR, co-IP, we validated the signaling pathways in PDAC to regulate reactive oxygen species (ROS) production. RESULTS We confirmed that CA9 is highly expressed in PDAC and positively regulated by lactate levels. CA9 can enhance the proliferative and migratory capabilities of PDAC cells. Pharmacologic inhibition or knockdown of CA9 significantly reduce pHi, increase the intracellular lactate and reverse the Warburg phenotype. The intracellular lactate accumulation caused by CA9 knockdown upregulates ROS and mitochondrial dysfunction. Furthermore, it was discovered that the competitive binding of CA9 with FUS inhibits the facilitation of FUS on NOX4 pre-mRNA splicing. CONCLUSION Collectively, our data illustrate that CA9 has a direct regulatory role in pHi homeostasis and ROS production, providing a potential therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Zengin M, Unsal Tan O, Sabuncuoglu S, Arafa RK, Balkan A. Design and Discovery of New Dual Carbonic Anhydrase IX and VEGFR-2 Inhibitors Based on the Benzenesulfonamide-Bearing 4-Thiazolidinones/2,4-Thiazolidinediones Scaffold. Drug Dev Res 2024; 85:e70030. [PMID: 39660547 DOI: 10.1002/ddr.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Dual-targeting drug design has become a popular approach in investigating and developing potent anticancer agents. In this regard, carbonic anhydrase (CAIX) and vascular endothelial growth factor receptor (VEGFR-2) are emerging as highly effective targets in the battle against cancer. In the present study, two series of 4-thiazolidinones/2,4-thiazolidinediones carrying 2-methylbenzenesulfonamide derivatives were designed and synthesized as potential dual CAIX/VEGFR-2 inhibitors. All the target compounds were evaluated against CAIX enzyme compared to dorzolamide and acetazolamide, subsequently the most potent CAIX inhibitors (3a, 3b, 3o, 6d, 6g, and 6i) were selected to evaluate their inhibitory activity against VEGFR-2 using sorafenib as a reference drug. These compounds were also evaluated against MCF-7 breast cancer cells and the murine fibroblast 3T3 cell line. According to the results, 3b (CAIX IC50 = 0.035 µM, VEGFR-2 IC50 = 0.093 µM) and 6i (CAIX IC50 = 0.041 µM, VEGFR-2 IC50 = 0.048 µM) emerged the most potent compounds against CAIX and VEGFR-2. Furthermore, docking studies of selected compounds were performed with the CAIX and the tyrosine kinase domain of VEGFR-2 to comprehend the ligand-binding interactions. Physicochemical predictions were examined using in silico techniques. In conclusion, these scaffolds present promising leads and furnish promising chemical backbones for the design of potent dual CAIX and VEGFR-2 inhibitors.b.
Collapse
Affiliation(s)
- Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Cairo, Egypt
| | - Ayla Balkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Dey R, Taraphder S. Molecular Modeling of Glycosylated Catalytic Domain of Human Carbonic Anhydrase IX. J Phys Chem B 2024; 128:11054-11068. [PMID: 39487784 DOI: 10.1021/acs.jpcb.4c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Glycans exhibit significant structural diversity due to the flexibility of glycosidic bonds linking their constituent monosaccharides and the formation of numerous hydrogen bonds. The present work searches a simulated ensemble of glycan chain conformations attached to the catalytic domain of N-glycosylated human carbonic anhydrase IX (HCA IX-c) to identify conformations pointed away or back-folded toward the protein surface guided by different amino acid residues. A series of classical molecular dynamics (MD) simulation studies for a total of 30 μs followed by accelerated MD simulations for a total of 2 μs have been performed using two different force fields to capture varying degrees of fluctuations of both glycan chain and HCA IX. From the underlying free energy profile and kinetics derived using hidden Markov state model, several stable glycan orientations are identified that extend away from the protein surface and convert among each other with rate constants of the order 107-1010 S-1. Most importantly, we have identified a rare glycan conformation which reaches close to a catalytically important amino acid residue, Glu-106. We further enlist the protein residues that couple such less frequent event of the glycan chain back-folding toward the surface of the protein.
Collapse
Affiliation(s)
- Ritwika Dey
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
15
|
Abdelaal HI, Mohamed AR, Abo-Ashour MF, Giovannuzzi S, Fahim SH, Abdel-Aziz HA, Supuran CT, Abou-Seri SM. Mitigating the resistance of MCF-7 cancer cells to Doxorubicin under hypoxic conditions with novel coumarin based carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2024; 152:107759. [PMID: 39213797 DOI: 10.1016/j.bioorg.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In the present study, the design and synthesis of novel coumarin derivatives 8a-h, 11a-d and 16a-c as potential selective inhibitors for the tumor associated human carbonic anhydrase isoforms (hCA IX and XII) was reported. All the newly synthesized derivatives showed potent to mild activity against the targeted CA IX (KI = 0.08-9.57 µM), with selectivity indices over CA I (SI = 2.0-21.9) and over CA II (SI = 1.1-15.7). They showed similar activities against CA XII (KI = 0.06-9.48 µM) with selectivity indices over CA I (SI = 1.4-21.2) and CA II (SI = 0.9-15.5). Compound 16b featuring sulfonamide function possessed promising inhibitory activities against the targeted isoforms CA IX and XII with KI values of 0.08 and 0.06 µM, respectively. Interestingly, it was found that using compound 16b at a nontoxic concentration as an adjuvant with Doxorubicin against MCF-7 cells enhanced the cytotoxicity under hypoxia by almost 3.5 folds; IC50 decreased from 25.74 to 7.43 µM. Therefore, compound 16b restored the cytotoxicity of Doxorubicin against MCF-7 cells under hypoxia, almost as normoxia. Furthermore, flow cytometry analysis of a combination treatment of compound 16b and Doxorubicin to the MCF7 cell line revealed an increase in cell cycle arrest at the G2/M phase and a more efficient apoptotic effect than Doxorubicin alone. Furthermore, compound 16b showed no cytotoxicity against normal breast MCF-10A cell line (IC50 = 296.25 µM).
Collapse
Affiliation(s)
- Hend I Abdelaal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Abdalla R Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pahros University in Alexandria, Canal El Mahmoudia Street, Alexandria 21648, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
16
|
Han Mİ, Gündüz MG, Ammara A, Supuran CT, Doğan ŞD. Tail-approach based design, synthesis, and molecular modeling of benzenesulfonamides carrying thiadiazole and urea moieties as novel carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400439. [PMID: 39079940 DOI: 10.1002/ardp.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
We synthesized herein 16 compounds (SUT1-SUT16) as potential carbonic anhydrase (CA) inhibitors utilizing the tail-approach design. Based on this strategy, we connected benzenesulfonamide, the zinc-binding scaffold, to different urea moieties with the 1,3,4-thiadiazole ring as a linker. We obtained the target compounds by the reaction of 4-(5-amino-1,3,4-thiadiazol-2-yl)benzenesulfonamide with aryl isocyanates. Upon confirmation of their structures, the compounds were screened for their ability to inhibit the tumor-related human (h) isoforms human carbonic anhydrase (hCA) IX and XII, as well as the physiologically dominant hCA I and II. Most of the molecules demonstrated Ki values ≤ 10 nM with different selectivity profiles. The binding modes of SUT9, SUT10, and SUT5, the most effective inhibitors of hCA II, IX, and XII, respectively, were predicted by molecular docking. SUT16 (4-{5-[3-(naphthalen-1-yl)ureido]-1,3,4-thiadiazol-2-yl}benzenesulfonamide) was found to be the most selective inhibitor of the cancer-associated isoforms hCA IX and XII over the off-target isoforms, hCAI and II. The interaction dynamics and stability of SUT16 within hCA IX and XII were investigated by molecular dynamics simulations as well as dynophore analysis. Based on computational data, increased hydrophobic contacts and hydrogen bonds in the tail part of these molecules within hCA IX and XII were found as favorable interactions leading to effective inhibitors of cancer-related isoforms.
Collapse
Affiliation(s)
- M İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Şengül Dilem Doğan
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
Bonardi A, Nocentini A, de Luca V, Capasso C, Elkaeed EB, Eldehna WM, Supuran CT. Hydrogen Sulfide-Releasing Carbonic Anhydrase Inhibitors Effectively Suppress Cancer Cell Growth. Int J Mol Sci 2024; 25:10006. [PMID: 39337494 PMCID: PMC11432087 DOI: 10.3390/ijms251810006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
This study proposes a novel therapeutic strategy for cancer management by combining the antitumor effects of hydrogen sulfide (H2S) and inhibition of carbonic anhydrases (CAs; EC 4.2.1.1), specifically isoforms IV, IX, and XII. H2S has demonstrated cytotoxicity against various cancers at high concentrations. The inhibition of tumor-associated CAs leads to lethal intracellular alkalinization and acidification of the extracellular tumor microenvironment and restores tumor responsiveness to the immune system, chemotherapy, and radiotherapy. The study proposes H2S donor-CA inhibitor (CAI) hybrids for tumor management. These compounds effectively inhibit the target CAs, release H2S consistently, and exhibit potent antitumor effects against MDA-MB-231, HCT-116, and A549 cancer cell lines. Notably, some compounds display high cytotoxicity across all investigated cell lines. Derivative 30 shows a 2-fold increase in cytotoxicity (0.93 ± 0.02 µM) under chemically induced hypoxia in HCT-116 cells. These compounds also disturb the cell cycle, leading to a reduction in cell populations in G0/G1 and S phases, with a notable increase in G2/M and Sub-G1. This disruption is correlated with induced apoptosis, with fold increases of 37.2, 24.5, and 32.9 against HCT-116 cells and 14.2, 13.1, and 19.9 against A549 cells compared to untreated cells. These findings suggest the potential of H2S releaser-CAI hybrids as effective and versatile tools in cancer treatment.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Viviana de Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
18
|
Matar IK, Muhammad ZA, Gomha SM, Al-Hussain SA, Al-Ali M, Zaki MEA, El-Khouly AS. Novel 3-substituted coumarins inspire a custom pharmacology prediction pipeline: an anticancer discovery adventure. Future Med Chem 2024; 16:1761-1776. [PMID: 39230519 PMCID: PMC11457655 DOI: 10.1080/17568919.2024.2379232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: This research aims to expand the established pharmacological space of tumor-associated carbonic anhydrases (TACAs) by exploring the synthetically accessible chemical space of 3-substituted coumarins, with the help of in silico pharmacology prediction.Materials & methods: 52 novel 3-substituted coumarins were sketched, prioritizing synthetic feasibility. Their pharmacological potentials were estimated using a custom machine-learning approach. 17 compounds were predicted as cytotoxic against HeLa cells by interfering with TACAs. Those compounds were synthesized and biologically tested against HeLa cells. The three most potent compounds were assayed against multiple carbonic anhydrases, and their enzyme binding mechanism(s) were studied using molecular docking.Results: Experimental results exhibited pronounced consensus with in silico pharmacology predictions.Conclusion: Novel 3-substituted coumarins are herein dispatched to the cancer therapeutics space.
Collapse
Affiliation(s)
- Islam K Matar
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
- Department of Chemistry & Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada
| | - Zeinab A Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control & Research (NODCAR), Giza, 12311, Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Maha Al-Ali
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Magdi EA Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ahmed S El-Khouly
- Department of Organic & Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32897, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, 26150, Jordan
| |
Collapse
|
19
|
Xiao-Qun Z, Xian-Li M, Ariffin NS. The potential of carbonic anhydrase enzymes as a novel target for anti-cancer treatment. Eur J Pharmacol 2024; 976:176677. [PMID: 38825301 DOI: 10.1016/j.ejphar.2024.176677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Carbonic anhydrase (CA) is a zinc-dependent metal enzyme that maintains the pH and carbon dioxide (CO2) homeostasis in cells by catalyzing the reversible hydration and dehydration of CO2 and bicarbonate (HCO3-). In mammals, there are 16 isozymes of CA existed, namely CAI to CAXIV, but only 15 isozymes are found in humans except CAXV. Human CAs have highly conserved catalytic domains, all of which are distributed in different tissues and play important physiological roles. Changes in their functions may disrupt the typical distribution of CAs throughout human body and therefore CAs can be used as diagnostic biomarkers for many diseases. Furthermore, the expression of CAs is correlated to the progression of numerous tumors, therapeutic sensitivity and patient prognosis. In this review, we discuss thoroughly the structure of CAs, their functional activities in human physiology, dysregulations and diseases related to CAs, and different types of CA inhibitors that can reverse their dysregulation.
Collapse
Affiliation(s)
- Zhou Xiao-Qun
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300, Bandar Puncak Alam, Selangor, Malaysia; Guilin Medical University, GuiLin, China
| | | | - Nur Syamimi Ariffin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300, Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
20
|
Angeli A, Petrou A, Kartsev VG, Zubenko A, Divaeva LN, Chekrisheva V, Iacopetta D, Sinicropi MS, Sirakanyan S, Geronikaki A, Supuran CT. Phthalazine Sulfonamide Derivatives as Carbonic Anhydrase Inhibitors. Synthesis, Biological and in silico Evaluation. ChemMedChem 2024; 19:e202400147. [PMID: 38713763 DOI: 10.1002/cmdc.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several biological processes. They show a wide diversity in tissue distribution and their subcellular localization. Twenty-two novel phthalazine derivatives were designed, synthesized, and evaluated against four human isoforms: hCA I, hCA II, hCA IX, and hCA XII. Compounds appeared to be very active mostly against hCA IX (7) and hCA I (6) isoforms being more potent than reference drug acetazolamide (AAZ). Some compounds appeared to be very selective with a selectivity index up to 13.8. Furthermore, docking was performed for some of these compounds on all isoforms to understand the possible interactions with the active site. Additionally, the most active compounds against hCA IX were subjected to cell viability assay. The anticancer activity of the compounds (3 a-d, 5 d, 5 i, and 5 m) was investigated using two human breast cancer cell lines, i. e. MCF-7 and MDA-MB-231 cells, and the normal counterpart, namely MCF10-A cells.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Alexandr Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Lyudmila N Divaeva
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, Italy
| | - Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Armenia, 0014, Yerevan
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Albelwi FF, Nafie MS, Albujuq NR, Hourani W, Aljuhani A, Darwish KM, Tawfik MM, Rezki N, Aouad MR. Design and synthesis of chromene-1,2,3-triazole benzene sulfonamide hybrids as potent carbonic anhydrase-IX inhibitors against prostate cancer. RSC Med Chem 2024; 15:2440-2461. [PMID: 39026656 PMCID: PMC11253856 DOI: 10.1039/d4md00302k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Considering the promising effects of molecular hybridization on drug discovery in recent years and the ongoing endeavors to develop bioactive scaffolds tethering the 1,2,3-triazole core, the present study sought to investigate whether the 1,2,3-triazole-linked chromene and benzene sulfonamide nucleus could exhibit activity against the human breast cancer cell line MCF-7 and prostate cancer cell line PC-3. To this end, three focused bioactive series of mono- and -bis-1,2,3-triazoles were effectively synthesized via copper-assisted cycloaddition of mono- and/or di-alkyne chromenone derivatives 2a and b and 9 with several sulfa drug azides 4a-d and 6. The resulting molecular derivatives were tested for cytotoxicity against prostate and breast cancer cells. Among the derivatives, 10a, 10c, and 10e exhibited potent cytotoxicity against PC-3 cells with IC50 values of 2.08, 7.57, and 5.52 μM compared to doxorubicin (IC50 = 2.31 μM) with potent inhibition of CA IX with IC50 values of 0.113, 0.134, and 0.214 μM. The most active compound, 10a, was tested for apoptosis-induction; it induced apoptosis by 31.9-fold cell cycle arrest at the G1-phase. Further, the molecular modeling approach highlighted the relevant binding affinity for the top-active compound 10a against CA IX as one of the most prominent PC-3 prostate cancer-associated biotargets.
Collapse
Affiliation(s)
- Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University Amman 19392 Jordan
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
22
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
23
|
Jevtovic V, Golubović L, Alshammari B, Alshammari MR, Rajeh SY, Alreshidi MA, Alshammari OAO, Rakić A, Dimić D. Crystal Structure, Theoretical Analysis, and Protein/DNA Binding Activity of Iron(III) Complex Containing Differently Protonated Pyridoxal- S-Methyl-Isothiosemicarbazone Ligands. Int J Mol Sci 2024; 25:7058. [PMID: 39000166 PMCID: PMC11241004 DOI: 10.3390/ijms25137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Pyridoxal-S-methyl-isothiosemicarbazone (PLITSC) is a member of an important group of ligands characterized by different complexation modes to various transition metals. In this contribution, a new complex containing two differently protonated PLITSC ligands ([Fe(PLITSC-H)(PLITSC)]SO4)∙2.5H2O was obtained. The crystal structure was solved by the X-ray analysis and used further for the optimization at B3LYP/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(Fe) level of theory. Changes in the interaction strength and bond distance due to protonation were observed upon examination by the Quantum Theory of Atoms in Molecules. The protein binding affinity of [Fe(PLITSC-H)(PLITSC)]SO4 towards transport proteins (Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA)) was investigated by the spectrofluorimetric titration and molecular docking. The interactions with the active pocket containing fluorescent amino acids were examined in detail, which explained the fluorescence quenching. The interactions between complex and DNA were followed by the ethidium-bromide displacement titration and molecular docking. The binding along the minor groove was the dominant process involving complex in the proximity of DNA.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Luka Golubović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Badriah Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | | | - Sahar Y Rajeh
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Maha Awjan Alreshidi
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Odeh A O Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Perlinska AP, Nguyen ML, Pilla SP, Staszor E, Lewandowska I, Bernat A, Purta E, Augustyniak R, Bujnicki JM, Sulkowska JI. Are there double knots in proteins? Prediction and in vitro verification based on TrmD-Tm1570 fusion from C. nitroreducens. Front Mol Biosci 2024; 10:1223830. [PMID: 38903539 PMCID: PMC11187310 DOI: 10.3389/fmolb.2023.1223830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/04/2023] [Indexed: 06/22/2024] Open
Abstract
We have been aware of the existence of knotted proteins for over 30 years-but it is hard to predict what is the most complicated knot that can be formed in proteins. Here, we show new and the most complex knotted topologies recorded to date-double trefoil knots (31 #31). We found five domain arrangements (architectures) that result in a doubly knotted structure in almost a thousand proteins. The double knot topology is found in knotted membrane proteins from the CaCA family, that function as ion transporters, in the group of carbonic anhydrases that catalyze the hydration of carbon dioxide, and in the proteins from the SPOUT superfamily that gathers 31 knotted methyltransferases with the active site-forming knot. For each family, we predict the presence of a double knot using AlphaFold and RoseTTaFold structure prediction. In the case of the TrmD-Tm1570 protein, which is a member of SPOUT superfamily, we show that it folds in vitro and is biologically active. Our results show that this protein forms a homodimeric structure and retains the ability to modify tRNA, which is the function of the single-domain TrmD protein. However, how the protein folds and is degraded remains unknown.
Collapse
Affiliation(s)
| | - Mai Lan Nguyen
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Smita P. Pilla
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Emilia Staszor
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Agata Bernat
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | |
Collapse
|
25
|
Abbas HAS, Nossier ES, El-Manawaty MA, El-Bayaa MN. New sulfonamide-based glycosides incorporated 1,2,3-triazole as cytotoxic agents through VEGFR-2 and carbonic anhydrase inhibitory activity. Sci Rep 2024; 14:13028. [PMID: 38844493 PMCID: PMC11156913 DOI: 10.1038/s41598-024-62864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
New sulfonamide-triazole-glycoside hybrids derivatives were designed, synthesised, and investigated for anticancer efficacy. The target glycosides' cytotoxic activity was studied with a panel of human cancer cell lines. Sulfonamide-based derivatives, 4, 7 and 9 exhibited promising activity against HepG-2 and MCF-7 (IC50 = 8.39-16.90 μM against HepG-2 and 19.57-21.15 μM against MCF-7) comparing with doxorubicin (IC50 = 13.76 ± 0.45, 17.44 ± 0.46 μM against HepG-2 and MCF-7, rescpectively). To detect the probable action mechanism, the inhibitory activity of these targets was studied against VEGFR-2, carbonic anhydrase isoforms hCA IX and hCA XII. Compoumds 7 and 9 gave favorable potency (IC50 = 1.33, 0.38 μM against VEGFR-2, 66, 40 nM against hCA IX and 7.6, 3.2 nM against hCA XII, respectively), comparing with sorafenib and SLC-0111 (IC50 = 0.43 μM, 53 and 4.8 nM, respectively). Moreover, the docking simulation was assessed to supply better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes that was used for further modification in the anticancer field.
Collapse
Affiliation(s)
- Hebat-Allah S Abbas
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt.
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - May A El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed N El-Bayaa
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| |
Collapse
|
26
|
Singh P, Nerella SG, Swain B, Angeli A, Ullah Q, Supuran CT, Arifuddin M. Design, synthesis and in vitro evaluation of novel thiazole-coumarin hybrids as selective and potent human carbonic anhydrase IX and XII inhibitors. Int J Biol Macromol 2024; 268:131548. [PMID: 38642682 DOI: 10.1016/j.ijbiomac.2024.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sridhar Goud Nerella
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Qasim Ullah
- Physical Science Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| |
Collapse
|
27
|
An K, Qiao Q, Zhou W, Jiang W, Li J, Xu Z. Stable Super-Resolution Imaging of Cell Membrane Nanoscale Subcompartment Dynamics with a Buffering Cyanine Dye. Anal Chem 2024; 96:5985-5991. [PMID: 38557031 DOI: 10.1021/acs.analchem.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.
Collapse
Affiliation(s)
- Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
29
|
Wang Y, Buck A, Piel B, Zerefa L, Murugan N, Coherd CD, Miklosi AG, Johal H, Bastos RN, Huang K, Ficial M, Laimon YN, Signoretti S, Zhong Z, Hoang SM, Kastrunes GM, Grimaud M, Fayed A, Yuan HC, Nguyen QD, Thai T, Ivanova EV, Paweletz CP, Wu MR, Choueiri TK, Wee JO, Freeman GJ, Barbie DA, Marasco WA. Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target off-tumor side effects. Mol Cancer 2024; 23:56. [PMID: 38491381 PMCID: PMC10943873 DOI: 10.1186/s12943-024-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/18/2024] Open
Abstract
One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Brandon Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Luann Zerefa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Christian D Coherd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | | | - Kun Huang
- Molecular Imaging Core, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Miriam Ficial
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | - Gabriella M Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marion Grimaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Atef Fayed
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Hsien-Chi Yuan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elena V Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Toni K Choueiri
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jon O Wee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Gordon J Freeman
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David A Barbie
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Higazy S, Samir N, El-Khouly A, Giovannuzzi S, Begines P, Gaber HM, Supuran CT, Abouzid KAM. Identification of thienopyrimidine derivatives tethered with sulfonamide and other moieties as carbonic anhydrase inhibitors: Design, synthesis and anti-proliferative activity. Bioorg Chem 2024; 144:107089. [PMID: 38237393 DOI: 10.1016/j.bioorg.2023.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Eighteen novel compounds harboring the privileged thienopyrimidine scaffold (5a-q, and 6a),were designed based on molecular hybridization strategy. These compounds were synthesized and tested for their inhibitory activity against four different carbonic anhydrase isoforms: CA I, II, IX, and XII. Microwave and conventional techniques were applied for their synthesis. Compounds 5b, 5g, 5l, and 5p showed the highest inhibition activity against the four CA isoforms. Compound 5p exhibited promising inhibitory activity against CA II, CA IX and CA XII with KI values of8.6, 13.8, and 19 nM, respectively, relative to AAZ, where KIs = 12, 25, and 5.7 nM, respectively. Also, compound 5 l showed significant activity against the tumor-associated isoform CA IX with KI = 16.1 nM. All the newly synthesized compounds were also screened for their anticancer activity against NCI 60 cancer cell lines at a 10 µM concentration. Compound 5n showed 80.38, 83.95, and 87.39 % growth inhibition against the leukemic cell lines CCRF-CEM, HL-60 (TB), and RPMI-8226, respectively. Also, 5 h showed 87.57 % growth inhibition against breast cancer cell line MDA-MB-468; and 66.58 and 60.95 % inhibitionagainst renal cancer cell lines UO-31, and ACHN, respectively. A molecular docking studywas carried out to predict binding modes of our synthesized compounds in the binding pockets of the four carbonic anhydrase isoforms, and results revealed that compounds 5b, 5g, 5l, and 5p succeeded in mimicking the binding mode of AAZ through metal coordination with Zn+2 ion and binding to the amino acids Thr199, His94, and His96 that are critical for activity.
Collapse
Affiliation(s)
| | - Nermin Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Ahmed El-Khouly
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Sadat City, Egypt; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jordan
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Paloma Begines
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | | | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
31
|
Thanh ND, Giang NTK, Hai DS, Toan VN, Van HTK, Tri NM. Sulfonyl thiourea derivatives from 2-aminodiarylpyrimidines: In vitro and in silico evaluation as potential carbonic anhydrase I, II, IX, and XII inhibitors. Chem Biol Drug Des 2024; 103:e14494. [PMID: 38490810 DOI: 10.1111/cbdd.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| |
Collapse
|
32
|
Huang M, Rueda-Garcia M, Harthorn A, Hackel BJ, Van Deventer JA. Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface. ACS Chem Biol 2024; 19:325-335. [PMID: 38230650 PMCID: PMC11146673 DOI: 10.1021/acschembio.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Protein-small molecule hybrids are structures that have the potential to combine the inhibitory properties of small molecules and the specificities of binding proteins. However, achieving such synergies is a substantial engineering challenge with fundamental principles yet to be elucidated. Recent work has demonstrated the power of the yeast display-based discovery of hybrids using a combination of fibronectin-binding domains and thiol-mediated conjugations to introduce small-molecule warheads. Here, we systematically study the effects of expanding the chemical diversity of these hybrids on the yeast surface by investigating a combinatorial set of fibronectins, noncanonical amino acid (ncAA) substitutions, and small-molecule pharmacophores. Our results show that previously discovered thiol-fibronectin hybrids are generally tolerant of a range of ncAA substitutions and retain binding functions to carbonic anhydrases following click chemistry-mediated assembly of hybrids with diverse linker structures. Most surprisingly, we identified several cases where replacement of a potent acetazolamide warhead with a substantially weaker benzenesulfonamide warhead still resulted in the assembly of multiple functional hybrids. In addition to these unexpected findings, we expanded the throughput of our system by validating a 96-well plate-based format to produce yeast-displayed hybrid conjugates in parallel. These efficient explorations of hybrid chemical diversity demonstrate that there are abundant opportunities to expand the functions of protein-small molecule hybrids and elucidate principles that dictate their efficient discovery and design.
Collapse
Affiliation(s)
- Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Marina Rueda-Garcia
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Abbigael Harthorn
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Chemical Engineering and Materials Science Department, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
33
|
Khan SA, Shah Z, Shah SR, Khan M, Halim SA, Khan A, Hussain J, Abdellattif MH, Ahmad B, Al-Harrasi A. Synthesis of new class of non-sulfonamide bis-benzimidazoles as antitumor agents by inhibiting carbonic anhydrase-IX enzyme. Int J Biol Macromol 2024; 255:128259. [PMID: 37984572 DOI: 10.1016/j.ijbiomac.2023.128259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In several types of cancers, the expression of carbonic anhydrase-IX (CA-IX) enzyme is elevated than its normal level which ultimately plays a key role in the tumor growth of epithelial cells in breast and lung cancer by acidifying tumor microenvironment, therefore, inhibition of this target is important in antitumor therapy. We have synthesized bis-benzimidazole derivatives (1-25) by using 3,3'-diaminobenzidine and various aromatic aldehydes and characterized by various spectroscopic methods (UV/Visible, 1HNMR, 13CNMR, and mass spectrometry). Their inhibitory potential for human CA-IX (hCA-IX) was evaluated in-vitro, where several synthesized derivatives showed potent inhibition of hCA-IX (IC50 values in range of 5.23 ± 1.05 to 40.10 ± 1.78 μM) and compounds 3-5, 7-8, 13-16, 21 and 23 showed superior activity than the standard drug "acetazolamide" (IC50 = 18.24 ± 1.43 μM). Furthermore, all these compounds showed no toxicity on human fibroblast cell lines (BJ cell lines). Moreover, molecular docking was carried out to predict their binding modes in the active site of CA-IX and revealed a significant role of imidazole ring of synthesized entities in their effective binding with the specific residues of CA-IX. The obtained results paved the way for further in vivo and other pharmacological studies for the optimization of these molecules as possible anti-cancer agents.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Zarbad Shah
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan.
| | - Syed Raza Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Majid Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman; Department of Biochemistry, University of Malakand, Dir lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Oman.
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Bashir Ahmad
- Vice Chancellor, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhawa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman.
| |
Collapse
|
34
|
Rai D, Mondal D, Taraphder S. pH-Dependent Structure and Dynamics of the Catalytic Domains of Human Carbonic Anhydrase II and IX. J Phys Chem B 2023; 127:10279-10294. [PMID: 37983689 DOI: 10.1021/acs.jpcb.3c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extensive computer simulation studies have been carried out to probe the pH-dependent structure and dynamics of the two most efficient isoenzymes II and IX of human carbonic anhydrase (HCA) that control the pH in the human body. The equilibrium structure and hydration of their catalytic domains are found to be largely unaffected by the variation of pH in the range studied, in close agreement with the known experimental results. In contrast, a significant effect of the change in pH is observed for the first time on the local electrostatic potential of the active site walls and the dynamics of active site water molecules. We also report for the first time the free energy and kinetics of coupled fluctuations of orientation and protonation states of the well-known His-mediated proton shuttle (His-64) in both isozymes at pH 7 and 8. The transitions between different tautomers of in or out conformations of His-64 side chain range between 109 and 106 s-1 depending on pH. Possible implications of these results on conformation-dependent pKa of His-64 side chain and its role in driving the catalysis toward hydration of CO2 or dehydration of HCO3- with varying pH are discussed.
Collapse
Affiliation(s)
- Divya Rai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dulal Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
35
|
Leitans J, Kazaks A, Bogans J, Supuran CT, Akopjana I, Ivanova J, Zalubovskis R, Tars K. Structural Basis of Saccharin Derivative Inhibition of Carbonic Anhydrase IX. ChemMedChem 2023; 18:e202300454. [PMID: 37837260 DOI: 10.1002/cmdc.202300454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
This study explores the binding mechanisms of saccharin derivatives with human carbonic anhydrase IX (hCA IX), an antitumor drug target, with the aim of facilitating the design of potent and selective inhibitors. Through the use of crystallographic analysis, we investigate the structures of hCA IX-saccharin derivative complexes, unveiling their unique binding modes that exhibit both similarities to sulfonamides and distinct orientations of the ligand tail. Our comprehensive structural insights provide information regarding the crucial interactions between the ligands and the protein, shedding light on interactions that dictate inhibitor binding and selectivity. Through a comparative analysis of the binding modes observed in hCA II and hCA IX, isoform-specific interactions are identified, offering promising strategies for the development of isoform-selective inhibitors that specifically target tumor-associated hCA IX. The findings of this study significantly deepen our understanding of the binding mechanisms of hCA inhibitors, laying a solid foundation for the rational design of more effective inhibitors.
Collapse
Affiliation(s)
- Janis Leitans
- Latvian Biomedical Research and Study Center, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Center, Ratsupites 1, 1067, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Center, Ratsupites 1, 1067, Riga, Latvia
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Inara Akopjana
- Latvian Biomedical Research and Study Center, Ratsupites 1, 1067, Riga, Latvia
| | - Jekaterina Ivanova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Ratsupites 1, 1067, Riga, Latvia
- Faculty of Biology, University of Latvia, Jelgavas 1, Riga, 1004, Riga, Latvia
| |
Collapse
|
36
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Geronikaki A, Supuran CT. Substituted furan sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological and in silico studies. Bioorg Chem 2023; 138:106621. [PMID: 37257407 DOI: 10.1016/j.bioorg.2023.106621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several of biological processes, such as respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show wide diversity in tissue distribution and in their subcellular localization. Fifteen novel furyl sulfonamides were designed, synthesized and evaluated against four human isoforms: hCA I, hCA II, hCA IV and hCA IX. Compounds appeared to be very active mostly against hCAI (8) and hCA IV (11) isoforms being more potent than reference drug acetazolamide (AAZ). It should be mentioned that four compounds were more active than AAZ against hCA IX isoform, with compound 13d to be selective against hCA I (SI 70), hCA II (SI 13.5) and hCA IV (SI 20). Furthermore, docking was performed for some of these compounds on all isoforms I order to understand the possible interactions with the active site. The most active compounds showed good bioavailability and drug likeness scores.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania.
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Claudiu T Supuran
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
37
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
38
|
Zheng N, Jiang W, Zhang P, Ma L, Chen J, Zhang H. Repurposing of World-Approved Drugs for Potential Inhibition against Human Carbonic Anhydrase I: A Computational Study. Int J Mol Sci 2023; 24:12619. [PMID: 37628799 PMCID: PMC10454238 DOI: 10.3390/ijms241612619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Human carbonic anhydrases (hCAs) have enzymatic activities for reversible hydration of CO2 and are acknowledged as promising targets for the treatment of various diseases. Using molecular docking and molecular dynamics simulation approaches, we hit three compounds of methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate (84Z for short), cyclothiazide, and 2,3,5,6-tetrafluoro-4-piperidin-1-ylbenzenesulfonamide (3UG for short) from the existing hCA I inhibitors and word-approved drugs. As a Zn2+-dependent metallo-enzyme, the influence of Zn2+ ion models on the stability of metal-binding sites during MD simulations was addressed as well. MM-PBSA analysis predicted a strong binding affinity of -18, -16, and -14 kcal/mol, respectively, for these compounds, and identified key protein residues for binding. The sulfonamide moiety bound to the Zn2+ ion appeared as an essential component of hCA I inhibitors. Vina software predicted a relatively large (unreasonable) Zn2+-sulfonamide distance, although the relative binding strength was reproduced with good accuracy. The selected compounds displayed potent inhibition against other hCA isoforms of II, XIII, and XIV. This work is valuable for molecular modeling of hCAs and further design of potent inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
39
|
Bondock S, Albarqi T, Abboud M, Nasr T, Mohamed NM, Abdou MM. Tail-approach based design, synthesis, and cytotoxic evaluation of novel disubstituted and trisubstituted 1,3-thiazole benzenesulfonamide derivatives with suggested carbonic anhydrase IX inhibition mechanism. RSC Adv 2023; 13:24003-24022. [PMID: 37577088 PMCID: PMC10413337 DOI: 10.1039/d3ra02528d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
A novel series of 2,4,5- and 2,3,4-trisubstituted thiazole hybrids with 1,3,4-thiadiazolylbenzenesulfonamide was designed following the tail approach as possible hCAIX inhibitors. The key intermediate 1 was condensed with thiosemicarbazide 2a to give 1,3,4-thiadiazolylthiosemicarbazone 3, which upon hetero-cyclization with substituted α-haloketones and esters afforded 2,4,5-trisubstituted thiazole-1,3,4-thiadiazole conjugates 4-8. Furthermore, the trisubstituted thiazole-1,3,4-thiadiazole hybrids 12a-d were synthesized via the regioselective cyclization of 4-substituted-1,3,4-thiadiazolylthiosemicarbazones with phenacyl bromide. The cyclized 2,4-disubstituted thiazole 4 enhanced cytotoxicity by nine, four and two times against HepG-2, Caco2, and MCF-7, respectively. Moreover, the simple methyl substitution on the thiosemicarbazone terminus 9a improved the parent derivative 3 cytotoxicity by nine, fourteen, and six times against HepG-2, Caco2, and MCF-7, respectively. This astonishing cytotoxicity was elaborated with hCAIX molecular docking simulation of 4, 9a, and 12d demonstrating binding to zinc and its catalytic His94. Furthermore, molecular dynamic simulation 9a revealed stable hydrogen bonding with hCAIX with interaction energy of -61.07 kcal mol-1 and ΔGbinding MM-PBSA of -9.6 kcal mol-1.
Collapse
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Mohamed Abboud
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tamer Nasr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University 11795 Helwan Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Nada M Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City 11727 Cairo Egypt
| |
Collapse
|
40
|
Torng W, Biancofiore I, Oehler S, Xu J, Xu J, Watson I, Masina B, Prati L, Favalli N, Bassi G, Neri D, Cazzamalli S, Feng JA. Deep Learning Approach for the Discovery of Tumor-Targeting Small Organic Ligands from DNA-Encoded Chemical Libraries. ACS OMEGA 2023; 8:25090-25100. [PMID: 37483198 PMCID: PMC10357458 DOI: 10.1021/acsomega.3c01775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
DNA-Encoded Chemical Libraries (DELs) have emerged as efficient and cost-effective ligand discovery tools, which enable the generation of protein-ligand interaction data of unprecedented size. In this article, we present an approach that combines DEL screening and instance-level deep learning modeling to identify tumor-targeting ligands against carbonic anhydrase IX (CAIX), a clinically validated marker of hypoxia and clear cell renal cell carcinoma. We present a new ligand identification and hit-to-lead strategy driven by machine learning models trained on DELs, which expand the scope of DEL-derived chemical motifs. CAIX-screening datasets obtained from three different DELs were used to train machine learning models for generating novel hits, dissimilar to elements present in the original DELs. Out of the 152 novel potential hits that were identified with our approach and screened in an in vitro enzymatic inhibition assay, 70% displayed submicromolar activities (IC50 < 1 μM). To generate lead compounds that are functionalized with anticancer payloads, analogues of top hits were prioritized for synthesis based on the predicted CAIX affinity and synthetic feasibility. Three lead candidates showed accumulation on the surface of CAIX-expressing tumor cells in cellular binding assays. The best compound displayed an in vitro KD of 5.7 nM and selectively targeted tumors in mice bearing human renal cell carcinoma lesions. Our results demonstrate the synergy between DEL and machine learning for the identification of novel hits and for the successful translation of lead candidates for in vivo targeting applications.
Collapse
Affiliation(s)
- Wen Torng
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | | | - Sebastian Oehler
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Jin Xu
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Jessica Xu
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Ian Watson
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Brenno Masina
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Luca Prati
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Nicholas Favalli
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Gabriele Bassi
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Dario Neri
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
- Philogen
S.p.A., Siena 53100, Italy
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | | | - Jianwen A. Feng
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| |
Collapse
|
41
|
Marcelo GA, Montpeyó D, Galhano J, Martínez-Máñez R, Capelo-Martínez JL, Lorenzo J, Lodeiro C, Oliveira E. Development of New Targeted Nanotherapy Combined with Magneto-Fluorescent Nanoparticles against Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24076612. [PMID: 37047582 PMCID: PMC10095016 DOI: 10.3390/ijms24076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The need for non-invasive therapies capable of conserving drug efficiency and stability while having specific targetability against colorectal cancer (CRC), has made nanoparticles preferable vehicles and principal building blocks for the development of complex and multi-action anti-tumoral approaches. For that purpose, we herein report the production of a combinatory anti-tumoral nanotherapy using the production of a new targeting towards CRC lines. To do so, Magneto-fluorescent NANO3 nanoparticles were used as nanocarriers for a combination of the drugs doxorubicin (DOX) and ofloxacin (OFLO). NANO3 nanoparticles’ surface was modified with two different targeting agents, a newly synthesized (anti-CA IX acetazolamide derivative (AZM-SH)) and a commercially available (anti-epidermal growth factor receptor (EGFR), Cetuximab). The cytotoxicity revealed that only DOX-containing nanosystems showed significant and even competitive cytotoxicity when compared to that of free DOX. Interestingly, surface modification with AZM-SH promoted an increased cellular uptake in the HCT116 cell line, surpassing even those functionalized with Cetuximab. The results show that the new target has high potential to be used as a nanotherapy agent for CRC cells, surpassing commercial targets. As a proof-of-concept, an oral administration form of NANO3 systems was successfully combined with Eudragit® enteric coating and studied under extreme conditions.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Joana Galhano
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
42
|
Nerella SG, Singh P, Thacker PS, Arifuddin M, Supuran CT. PET radiotracers and fluorescent probes for imaging human carbonic anhydrase IX and XII in hypoxic tumors. Bioorg Chem 2023; 133:106399. [PMID: 36731297 DOI: 10.1016/j.bioorg.2023.106399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) and fluorescent imaging play a pivotal role in medical diagnosis, biomedical oncologic research, and drug development process, which include identification of target location, target engagement, but also prove on mechanism of action or pharmacokinetics of new drug candidates. PET estimates physiological changes at the molecular level using specific radiotracers containing a short-lived positron emitting radionuclide such as fluorine-18 or carbon-11, whereas fluorescent imaging techniques use fluorescent probes labeled with suitable drug candidates for detection at the molecular level. The human carbonic anhydrase (hCA) isoforms IX and XII are overexpressed in hypoxic cancer cells, promoting tumor growth by regulating extra/intracellular pH, ferroptosis, and metabolism, being recognized as promising targets for anticancer theranostic agents. In this review, we have focused on PET radiotracers as well as fluorescent probes for diagnosis and treatment of tumors expressing hCA IX and hCA XII.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India.
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
43
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int J Biol Macromol 2023; 239:124232. [PMID: 37001773 DOI: 10.1016/j.ijbiomac.2023.124232] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.
Collapse
|
44
|
Berrino E, Micheli L, Carradori S, di Cesare Mannelli L, Guglielmi P, De Luca A, Carta F, Ghelardini C, Secci D, Supuran CT. Novel Insights on CAI-CORM Hybrids: Evaluation of the CO Releasing Properties and Pain-Relieving Activity of Differently Substituted Coumarins for the Treatment of Rheumatoid Arthritis. J Med Chem 2023; 66:1892-1908. [PMID: 36701258 DOI: 10.1021/acs.jmedchem.2c01706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pain control is among the most important healthcare services in patients affected by rheumatoid arthritis (RA), but the current therapeutic options (i.e., disease-modifying anti-rheumatic drugs) are limited by the risk of the side effects. In this context, we proposed an innovative approach based on the hybridization between carbonic anhydrase inhibitors (CAIs) and CO releasing molecules (CORMs). The resulting CAI-CORM hybrids were revealed to possess strong anti-inflammatory effects in in vitro models of diseases and to relieve ache symptoms in an in vivo RA rat model. In this work, we have deepened the study of these promising hybrids, designing a library of coumarin-based compounds, also including internal dicobalt hexacarbonyl systems. The results obtained from the CO releasing study, the CA inhibitory activity, and the in vivo pain-relief efficacy evaluation in the RA rat model confirmed the success of this strategy, allowing us to consider CAI-CORM hybrids promising anti-nociceptive agents against arthritis.
Collapse
Affiliation(s)
- Emanuela Berrino
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy.,Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenzo di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro De Luca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| |
Collapse
|
45
|
Angeli A, Petrou A, Kartsev V, Lichitsky B, Komogortsev A, Capasso C, Geronikaki A, Supuran CT. Synthesis, Biological and In Silico Studies of Griseofulvin and Usnic Acid Sulfonamide Derivatives as Fungal, Bacterial and Human Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24032802. [PMID: 36769114 PMCID: PMC9917406 DOI: 10.3390/ijms24032802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of griseofulvin and usnic acid sulfonamides were synthesized and tested as possible CA inhibitors. Since β- and γ- classes are expressed in microorganisms in addition to the α- class, showing substantial structural differences to the human isoforms they are also interesting as new antiinfective targets with a different mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Griseofulvin and usnic acid sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX as well as β- and γ-CAs from different bacterial and fungal strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the three γ-CAs and Malassezia globosa (MgCA) enzyme. Six compounds (1b-1d, 1h, 1i and 1j) were more potent than AAZ against hCA I while five (1d, 1h, 1i, 1j and 4a) showed better activity than AAZ against the hCA II isoform. Moreover, all compounds appeared to be very potent against MgCA with a Ki lower than that of the reference drug. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of human CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (A.G.); (C.T.S.)
| | - Claudiu T. Supuran
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Correspondence: (A.G.); (C.T.S.)
| |
Collapse
|
46
|
Kakakhan C, Türkeş C, Güleç Ö, Demir Y, Arslan M, Özkemahlı G, Beydemir Ş. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg Med Chem 2023; 77:117111. [PMID: 36463726 DOI: 10.1016/j.bmc.2022.117111] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
A novel series of 1,2,3-triazole benzenesulfonamide substituted 1,3-dioxoisoindolin-5-carboxylate (7a-l) inhibitors of human α-carbonic anhydrase (hCA) was designed using a tail approach. The design method relies on the hybridization of a benzenesulfonamide moiety with a tail of 1,3-dioxoisoindoline-5-carboxylate and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized analogues, 2‑iodophenyl (7f, KI of 105.00 nM and SI of 2.98) and 2‑naphthyl (7h, KI of 32.11 nM and SI of 3.48) analogues (over off-target hCA I) and phenyl (7a, KI of 50.13 nM and SI of 2.74) and 2,6‑dimethylphenyl (7d, KI of 50.60 nM and SI of 3.35) analogues (over off-target hCA II) exhibited a remarkable selectivity for tumor isoforms hCA IX and XII, respectively. Meanwhile, analogue 7a displayed a potent inhibitory effect against the tumor-associated isoform hCA IX (KI of 18.29 nM) compared with the reference drug acetazolamide (AAZ, KI of 437.20 nM), and analogue 7h showed higher potency (KI of 9.22 nM) than AAZ (KI of 338.90 nM) against another tumor-associated isoform hCA XII. However, adding the lipophilic large naphthyl tail to the 1,3-dioxoisoindolin-5-carboxylate analogues increased both the hCA inhibitory and selective activities against the target isoform, hCA XII. Additionally, these analogues (7a-l) showed IC50 values against the human lung (A549) adenocarcinoma cancer cell line ranging from 129.71 to 352.26 μM. The results of the molecular docking study suggested that the sulfonamide moiety fits snugly into the hCAs active sites and interacts with the Zn2+ ion. At the same time, the tail extension engages in various hydrophilic and hydrophobic interactions with the nearby amino acids, which affects the potency and selectivity of the hybrids.
Collapse
Affiliation(s)
- Chnar Kakakhan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187 Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey.
| | - Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187 Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187 Sakarya, Turkey.
| | - Gizem Özkemahlı
- Department of Toxicology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; The Rectorate of Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
47
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
48
|
Koba Y, Nakamoto M, Matsusaki M. Fabrication of a Polymeric Inhibitor of Proximal Metabolic Enzymes in Hypoxia for Synergistic Inhibition of Cancer Cell Proliferation, Survival, and Migration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51790-51797. [PMID: 36375210 DOI: 10.1021/acsami.2c16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-l-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
49
|
Agamennone M, Fantacuzzi M, Carradori S, Petzer A, Petzer JP, Angeli A, Supuran CT, Luisi G. Coumarin-Based Dual Inhibitors of Human Carbonic Anhydrases and Monoamine Oxidases Featuring Amino Acyl and ( Pseudo)-Dipeptidyl Appendages: In Vitro and Computational Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227884. [PMID: 36431985 PMCID: PMC9692511 DOI: 10.3390/molecules27227884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Grazia Luisi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
50
|
Corbo T, Kalajdzic A, Delic D, Suleiman S, Pojskic N. In silico prediction suggests inhibitory effect of halogenated boroxine on human catalase and carbonic anhydrase. J Genet Eng Biotechnol 2022; 20:153. [DOI: 10.1186/s43141-022-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Background
This research work included bioinformatics modeling of the dipotassium-trioxohydroxytetrafluorotriborate-halogenated boroxine molecule, as well as simulation and prediction of structural interactions between the halogenated boroxine molecule, human carbonic anhydrase, and human catalase structures. Using computational methods, we tried to confirm the inhibitory effect of halogenated boroxine on the active sites of these previously mentioned enzymes. The three-dimensional crystal structures of human catalase (PDB ID: 1DGB) and human carbonic anhydrase (PDB ID: 6FE2) were retrieved from RCSB Protein Data Bank and the protein preparation was performed using AutoDock Tools. ACD/ChemSketch and ChemDoodle were used for creating the three-dimensional structure of halogenated boroxine. Molecular docking was performed using AutoDock Vina, while the results were visualized using PyMOL.
Results
Results obtained in this research are showing evidence that there are interactions between the halogenated boroxine molecule and both previously mentioned proteins (human carbonic anhydrase and human catalase) in their active sites, which led us to the conclusion that the inhibitory function of halogenated boroxine has been confirmed.
Conclusion
These findings could be an important step in determining the exact mechanisms of inhibitory activity and will hopefully serve in further research purposes of complex pharmacogenomics studies.
Collapse
|