1
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, Leupold JH, Kundu GC. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025. Mol Cancer 2025; 24:167. [PMID: 40483504 PMCID: PMC12144846 DOI: 10.1186/s12943-025-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 06/11/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Nitin S Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Dulet M, Taywade S, Verma V, Kumar R. FDG PET/CT in a Case of Marjolin Ulcer of the Scalp Over a Long-standing Burn Scar. Clin Nucl Med 2025; 50:e374-e375. [PMID: 39919318 DOI: 10.1097/rlu.0000000000005688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 02/09/2025]
Abstract
ABSTRACT Marjolin ulcer is a malignant degeneration of previously injured skin, long-established scars, and wounds. This malignant transformation is most implicated in full-thickness burns; however, it may be associated with vaccination sites, pressure sores, venous stasis, and many other conditions causing chronic scar or wound formation. These lesions are aggressive and carry a poor prognosis. FDG PET/CT is an excellent diagnostic aid to differentiate these lesions from benign inflammation, to evaluate the primary malignant site and its extent and depth, and to evaluate metastasis. SUV max has been noted to be significantly higher in Marjolin ulcer than in benign conditions.
Collapse
Affiliation(s)
| | | | - Vikrant Verma
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | | |
Collapse
|
3
|
Al Azim M, Di Martino JS. ECM, integrins, and DDRs: A nexus of cancer progression, therapy, and future directions. Matrix Biol 2025; 138:27-43. [PMID: 40350240 DOI: 10.1016/j.matbio.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.
Collapse
Affiliation(s)
- Md Al Azim
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla 10595, NY, USA
| | - Julie S Di Martino
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla 10595, NY, USA.
| |
Collapse
|
4
|
Domonkos L, Yusenko M, Kovacs G, Banyai D. Partial regression of conventional renal cell carcinoma displays markers of wound repair. J Clin Pathol 2025; 78:404-408. [PMID: 39433307 DOI: 10.1136/jcp-2024-209459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 10/23/2024]
Abstract
AIMS During detailed analysis of H&E-stained histological slides of 710 unbiased conventional renal cell carcinomas (cRCCs), 141 tumours displayed partial regressive changes showing strong similarity to that of wound healing. We aimed to analyse the molecular processes occurring in regressive tumours. METHODS Immunohistochemistry was applied to analyse the signalling molecules in 12 selected tumours, and statistical analysis was used to estimate the correlation between regression and the outcome of the disease. RESULTS The regressive areas displayed inflammatory granulation tissue expressing transforming growth factor beta-1 (TGFB1), interleukin-1 beta and interleukin-6 (IL1B and IL6), proliferation of alpha smooth muscle actin (αSMA) positive naïve activated fibroblasts and a diffuse fibronectin 1 (FN1) network. In the central areas of regressive tissues, parallel-running myofibroblasts showed FN1, collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1) positive immunoreaction. Partial tumour regression is associated with a better postoperative course of the disease. CONCLUSIONS Partial regression is a frequent event in cRCCs. Recognising complex molecular processes involved in tumour regression might help to find a way towards 'healing' cRCC.
Collapse
Affiliation(s)
| | - Maria Yusenko
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Gyula Kovacs
- University of Pecs Medical School, Pecs, Hungary
| | | |
Collapse
|
5
|
Pentimalli TM, Schallenberg S, León-Periñán D, Legnini I, Theurillat I, Thomas G, Boltengagen A, Fritzsche S, Nimo J, Ruff L, Dernbach G, Jurmeister P, Murphy S, Gregory MT, Liang Y, Cordenonsi M, Piccolo S, Coscia F, Woehler A, Karaiskos N, Klauschen F, Rajewsky N. Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment. Cell Syst 2025; 16:101261. [PMID: 40220761 DOI: 10.1016/j.cels.2025.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/13/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progression, routine molecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics (ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM readouts. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to systematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative analysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Daniel León-Periñán
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ivano Legnini
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Human Technopole, Milan, Italy
| | - Ilan Theurillat
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anastasiya Boltengagen
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonja Fritzsche
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute of Biology, 10099 Berlin, Germany
| | - Jose Nimo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute of Biology, 10099 Berlin, Germany
| | | | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany; Aignostics GmbH, Berlin, Germany; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | | | | | | | - Yan Liang
- NanoString® Technologies, Inc, Seattle, WA, USA
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabian Coscia
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Frederick Klauschen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany; Institute of Pathology, Ludwig Maximilians Universität, Munich, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK), Berlin, Germany; National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Mukherjee S, Warden EA, Zhang J. YAP/TAZ: An epitome of tumorigenesis. Cancer Lett 2025; 625:217806. [PMID: 40381686 DOI: 10.1016/j.canlet.2025.217806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Mounting evidence has demonstrated that the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are the main effectors of the Hippo signal transduction pathway that is involved in multiple layered events in tumorigenesis. The role of YAP/TAZ in cancer development is critical in a context dependent manner. Overexpression of YAP/TAZ induces cell proliferation and is elevated in various cancers and many other malignancies. On the other hand, studies have shown YAP binds p73 to activate PML transcription in response to DNA damage and generate a DNA-damage-induced feedback loop. Intriguingly, at the genomic level, YAP/TAZ genes are rarely mutated in cancer, except in specific tumors. The central role of YAP/TAZ in driving tumorigenesis is attributed through diverse mechanisms, such as regulatory kinases, cellular mechano-transduction, epigenetic modification/alterations, post-translational modifications, protein -protein interaction and nucleo-cytoplasmic export import. The complex interplay among feedback loops and crosstalk between various signaling pathways portrays the dynamic nature of YAP/TAZ. Thus, a comprehensive understanding of how posttranslational modifications and nucleo-cytoplasmic traffic of YAP/TAZ dynamically regulate and control each other holds great promise for selectively targeting YAP/TAZ import and export for drug therapy.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Emily A Warden
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jianmin Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
7
|
Okano Y, Suzuki H, Watanabe Y, Abdelaziz M, Manevich L, Kawanishi K, Ozaki H, Ishii R, Matsumoto S, Goto N, Zheng L, Okita Y, Hwang J, Nakayama M, Shima Y, Sakamoto N, Noguchi M, Tabuchi K, Kato M. THG-1/TSC22D4 Promotes IL-1 Signaling through Stabilization of TRAF6 in Squamous Cell Carcinoma. Mol Cancer Res 2025; 23:463-476. [PMID: 39869046 DOI: 10.1158/1541-7786.mcr-24-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Malignant neoplasms arise within a region of chronic inflammation, which is a key factor in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. IL-1 plays critical functions in tumor development by influencing the tumor microenvironment and promoting cancer progression. However, the mechanism of continuous activation of the IL-1-mediated inflammatory pathway in tumors has not been fully elucidated. This study provides a novel mechanism of the autocrine activation of IL-1 signaling in squamous cell carcinoma (SCC) through a novel oncoprotein, TSC-22 homologous gene-1 (THG-1, also known as TSC22D4). The RNA sequencing analysis revealed that THG-1 overexpression enhances the transcription of NF-κB targets including IL1A, IL1B, TNFA, and IL8. Furthermore, THG-1 knockdown reduced the responsiveness to IL-1 through the suppression of NF-κB nuclear translocation. To elucidate the mechanism, we focused on a THG-1 interacting protein, NRBP1. We found that NRBP1 facilitates the degradation of TNF receptor-associated factor 6 (TRAF6) through its E3 ubiquitin ligase activity. THG-1 bound to NRBP1 and suppressed the degradation of TRAF6. Furthermore, THG-1 knockdown reduced TRAF6 abundance and NF-κB activity in SCC cells. Public database analyses of head and neck SCC revealed that high expression of THG-1 is associated with the activation of the IL-1 and TNF pathways, which share TRAF6 in the signal transductions. Finally, THG-1 abundance in laryngeal SCC specimens is elevated in patients with recurrence. These results indicated that THG-1 drives the self-sufficiency of IL-1-mediated inflammatory pathway, which could contribute to the future diagnosis and immunotherapy of SCCs. Implications: An oncoprotein, THG-1/TSC22D4 activates the IL-1-mediated inflammatory pathway through the suppression of TRAF6 degradation, which mediates the continuous inflammation in tumors.
Collapse
Affiliation(s)
- Yasuhito Okano
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Otolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mohammed Abdelaziz
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Lev Manevich
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kunio Kawanishi
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Haruka Ozaki
- Department of Bioinformatics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, Japan
| | - Ryota Ishii
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shin Matsumoto
- Department of Otolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nohara Goto
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ling Zheng
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Okita
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jongchan Hwang
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Nakayama
- Department of Otolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihide Shima
- Department of Otolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Noriaki Sakamoto
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Clinical Cancer Research Division, Shonan Research Institute of Innovative Medicine, Kanagawa, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
9
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Chen X, Sun S, Zhao J, Yu S, Chen J, Chen X. Tumor-stroma ratio combined with PD-L1 identifies pancreatic ductal adenocarcinoma patients at risk for lymph node metastases. Br J Cancer 2025:10.1038/s41416-025-03019-z. [PMID: 40246986 DOI: 10.1038/s41416-025-03019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Pathological examination of lymph node metastasis (LNM) is crucial for treating pancreatic ductal adenocarcinoma (PDAC). Although the tumour stroma is correlated with prognosis in multiple solid tumors, its role in detecting LNM in PDAC is unclear. Thus, this study aimed to investigate the relationship of tumor-stroma ratio (TSR) with LNM, survival and mutational profile in PDAC. METHODS In this multicenter retrospective study, we examined molecular and clinicopathologic features of 737 PDAC patients from 5 independent cohorts, including surgically resected and endoscopic ultrasound fine-needle aspiration (EUS-FNA) biopsy specimens. TSR was evaluated on hematoxylin and eosin-stained slides and classified as stroma-low (<50% stroma) or stroma-high (≥50% stroma). RESULTS Compared to TSR-high cases, TSR-low cases were significantly associated with LNM (P < 0.001). TSR could accurately distinguish patients with and without LNM with an area under curve (AUC) of 0.749, with the sensitivity and specificity of 76.5% and 71.6%, respectively. This accuracy of TSR for identifying LNM was further increased by adding other factors including PD-L1 expression or pretreatment serum CA19-9 levels. TSR showed similar levels of accuracy in analysis of resected tumor specimens and EUS-FNA biopsies. Moreover, we found that TSR could also identify residual nodal involvement after neoadjuvant therapy (NAT) using pretreatment EUS-FNA biopsy samples. Heterogeneous genetic alterations were observed between TSR-low and TSR-high subgroups. TSR was identified as an independent predictor of LNM and worse disease-free survival. Major findings were all reproducible in validation, EUS-FNA biopsy, and pre-treatment NAT EUS-FNA biopsy cohorts. CONCLUSIONS TSR served as a robust and reproducible biomarker that identifies patients at risk for LNM. TSR might be used to select treatment and management strategies for PDAC patients.
Collapse
Affiliation(s)
- Xianlong Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanyue Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiapeng Zhao
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xinyuan Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Lan X, Li W, Zhao K, Wang J, Li S, Zhao H. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16:1582532. [PMID: 40313969 PMCID: PMC12043473 DOI: 10.3389/fimmu.2025.1582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are integral components of the tumor microenvironment playing key roles in tumor progression, metastasis, and therapeutic resistance. However, challenges persist in understanding their heterogeneity, origin, and functional diversity. One major obstacle is the lack of standardized naming conventions for CAF subpopulations, with current systems failing to capture their full complexity. Additionally, the identification of CAFs is hindered by the absence of specific biomarkers, limiting the precision of diagnostic and therapeutic strategies. In vitro culture conditions often fail to maintain the in vivo characteristics of CAFs, which complicates their study and the translation of findings to clinical practice. Although current detection methods, such as antibodies, mRNA probes, and single-cell transcriptomics, offer insights into CAF biology, they lack standardization and fail to provide reliable quantitative measures. Furthermore, the dynamic interactions between CAFs, tumor cells, and immune cells within the TME remain insufficiently understood, and the role of CAFs in immune evasion and therapy resistance is an area of ongoing research. Understanding how CAFs influence drug resistance and the immune response is essential for developing more effective cancer therapies. This review aims to provide an in-depth analysis of the challenges in CAF research, propose future research directions, and emphasize the need for improved CAF-targeted therapeutic strategies. By addressing these gaps, it seeks to highlight the potential of CAFs as targets for overcoming therapeutic resistance and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Ackermann J, Bernard C, Sirven P, Salmon H, Fraldi M, Ben Amar MD. Mechanistic insight for T-cell exclusion by cancer-associated fibroblasts in human lung cancer. eLife 2025; 13:RP101885. [PMID: 40208246 PMCID: PMC11984955 DOI: 10.7554/elife.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.
Collapse
Affiliation(s)
- Joseph Ackermann
- Laboratoire Jean Perrin, Sorbonne UniversitéParisFrance
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
| | - Chiara Bernard
- Department of Structures for Engineering and Architecture, University of Naples "Federico II"NaplesItaly
| | | | - Helene Salmon
- Institut Curie, PSL Research University, INSERMParisFrance
| | - Massimiliano Fraldi
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
- Department of Structures for Engineering and Architecture, University of Naples "Federico II"NaplesItaly
| | - Martine D Ben Amar
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
- Institut Universitaire de Cancérologie, Faculté de médecine, Sorbonne UniversitéParisFrance
| |
Collapse
|
13
|
Azizi L, Hausman H, Meyer AK, Wong M, Pajonk F. The Mevalonate Pathway in the Radiation Response of Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00278-0. [PMID: 40194746 DOI: 10.1016/j.ijrobp.2025.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The mevalonate (MVA) pathway plays a critical role in cholesterol biosynthesis, protein prenylation, and metabolic reprogramming, all of which contribute to cancer progression and therapy resistance. Targeting the MVA pathway with statins and other inhibitors has shown promise in preclinical studies; however, clinical outcomes remain controversial, raising concerns about translating these findings into effective treatments. Additionally, the interaction between the MVA pathway and radiation therapy (RT) is not yet fully understood, as RT upregulates the pathway, which can enhance tumor cell survival. This review summarizes the current literature on MVA pathway inhibition in cancer therapy, focusing on its potential to enhance the efficacy of RT. A better understanding of the pathway's role in radiation responses will be essential to translate combination therapies that target this pathway.
Collapse
Affiliation(s)
- Linda Azizi
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| | - Hannah Hausman
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Alexandra K Meyer
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Matthew Wong
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Zhang X, Li P, Ji L, Zhang Y, Zhang Z, Guo Y, Zhang L, Jing S, Dong Z, Tian J, Yang L, Ding H, Yang E, Wang Z. A machine learning-based prognostic signature utilizing MSC proteomics for predicting bladder cancer prognosis and treatment response. Transl Oncol 2025; 54:102349. [PMID: 40073802 PMCID: PMC11950781 DOI: 10.1016/j.tranon.2025.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), due to their tumor-targeting homing properties, are present in the tumor microenvironment (TME) and influence the biological behaviors of tumors. The purpose of this paper is to establish a signature based on the MSC secretome to predict the prognosis and treatment of bladder cancer (BLCA). METHODS The presence of MSCs in BLCA was validated through flow cytometry and multiplex fluorescence immunohistochemistry (mFIHC), and the relationships between MSCs and clinical characteristics were explored. Unsupervised clustering analysis was performed on BLCA according to the differential proteins detected in MSC-conditioned medium (MSCCM) using a cytokine array. Using the TCGA-BLCA, GSE32548, and GSE32894 datasets as background data, a risk signature was constructed according to the differential proteins in MSCCM through machine learning. For the risk groups with high and low prognoses, we calculated Kaplan-Meier (K-M) curves. Additionally, we explored the relationships between the signature and the tumor immune landscape, response to immunotherapy, and chemotherapy drugs. RESULTS Both flow cytometry and mFIHC confirmed the presence of MSCs in bladder tumors, and clinical samples revealed correlations between MSCs and the pathological grade, T stage, and Ki67 in BLCA. Based on differential proteins and unsupervised clustering analysis, BLCA patients were divided into two groups, and significant differences were found between these groups in terms of TME, immune response, and clinical treatments. Using machine learning, a signature was constructed with the combination algorithm Stepcox (both) + plsRcox, revealing significant survival differences between the high- and low-risk MSC groups. Regression analyses, along with ROC curves, further demonstrated that risk score independently predict the prognosis of patients with high predictive performance. Moreover, there were notable differences between the high- and low-risk groups in terms of the TME scores, immune infiltration, and immune checkpoints. For BLCA immunotherapy, the low-risk group suggested better efficacy, while conventional chemotherapy drugs such as gemcitabine and cisplatin might be less effective in the low-risk group. CONCLUSION The signature based on MSC secreted protein profiles could effectively predict the prognosis of BLCA and provided valuable guidance for treatment and drug resistance.
Collapse
Affiliation(s)
- Xinyu Zhang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Luhua Ji
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Yuanfeng Zhang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Ze Zhang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Yufeng Guo
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Zhilong Dong
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Junqiang Tian
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Li Yang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Hui Ding
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China.
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China.
| |
Collapse
|
16
|
Tredicine M, Mucci M, Recchiuti A, Mattoscio D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett 2025; 599:927-951. [PMID: 39973474 PMCID: PMC11995684 DOI: 10.1002/1873-3468.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The arachidonic acid (AA) pathway promotes tumor progression by modulating the complex interactions between cancer and immune cells within the microenvironment. In this Review, we summarize the knowledge acquired thus far concerning the intricate mechanisms through which eicosanoids either promote or suppress the antitumor immune response. In addition, we will discuss the impact of eicosanoids on immune cells and how they affect responsiveness to immunotherapy, as well as potential strategies for manipulating the AA pathway to improve anticancer immunotherapy. Understanding the molecular pathways and mechanisms underlying the role played by AA and its metabolites in tumor progression may contribute to the development of more effective anticancer immunotherapies.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| |
Collapse
|
17
|
Tian L, Piao S, Li X, Guo L, Huang L, Gao W. Functional Materials Targeted Regulation of Gasdermins: From Fundamentals to Functionalities and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500873. [PMID: 40273335 PMCID: PMC12021126 DOI: 10.1002/advs.202500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Indexed: 04/26/2025]
Abstract
Targeted regulation of pyroptosis to modulate the immune landscape has emerged as a novel design strategy for cancer immunotherapy and anti-inflammatory therapy. However, pyroptosis acts as a double-edged sword, making it important to optimize the design strategies of functional materials to appropriately activate pyroptosis for effective disease treatment. This paper summarizes and discusses the structure, pore formation, and molecular mechanisms of "executor" Gasdermins, as well as the events preceding and following these processes. Subsequently, the focus is on reviewing functional materials that directly regulate Gasdermin pore formation to target pyroptosis and those that indirectly regulate the events before and after Gasdermin pore formation to control pyroptosis activity. Finally, the advantages, disadvantages, and future prospects of designing such functional materials are provided, aiming to facilitate the precise design, pharmacological investigation, and clinical translation of pyroptosis-related functional materials.
Collapse
Affiliation(s)
- Luyao Tian
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Shuo Piao
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Xia Li
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Wenyuan Gao
- Key Laboratory of Pharmacology School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
18
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Xia H, He T, Li X, Zhao K, Zhang Z, Zhu G, Yang H, Yan X, Wang Q, Li Z, Jiang Z, Wang K, Yin X. Study on the mechanism of BGN in progression and metastasis of ccRCC. BMC Med Genomics 2025; 18:55. [PMID: 40108593 PMCID: PMC11924620 DOI: 10.1186/s12920-025-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
PURPOSE To investigate the role of Biglycan(BGN) in the progression and metastasis of clear cell renal cell carcinoma(ccRCC). METHODS Based on multiple public databases, we investigated the expression level of BGN in ccRCC, its clinical significance, and its association with immune cells. Real-time fluorescence quantitative polymerase chain reaction(PCR) was employed to validate BGN expression in tumor and adjacent normal tissues from ten patients. We utilized RNA sequencing results for further analysis, including differential gene analysis, GO-KEGG analysis, and GSEA analysis, to identify the signaling pathways through which BGN exerts its effects. BGN knockdown cells(786-0 and Caki-1) were generated through lentiviral transfection to examine the impact of BGN on ccRCC. Cell proliferation, migration, and invasion were assessed using CCK8, colony formation, wound healing, Transwell migration, and invasion assays, respectively. RESULTS Our findings from database analysis and PCR revealed a significant upregulation of BGN expression in kidney cancer tissues compared to normal tissues. Further analysis demonstrated a correlation between high BGN expression and ccRCC progression and immune infiltration. In vitro experiments confirmed that BGN silencing effectively inhibited cell proliferation, migration, and invasion of ccRCC. Mechanistically, these effects may be mediated through the MAPK signaling pathway. CONCLUSION BGN potentially plays a pivotal role in the progression and metastasis of ccRCC, possibly acting through the MAPK signaling pathway. Therefore, BGN holds promise as a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Hanqing Xia
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Qinglei Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zhaofeng Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zaiqing Jiang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China.
| |
Collapse
|
20
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
21
|
Kong J, Zhou C, Qin H, Li C, Wu Z, Zhang L. Identifying key genes, miRNAs, and pathways in keloid formation: A bioinformatics and experimental study. J Plast Reconstr Aesthet Surg 2025; 102:313-322. [PMID: 39952154 DOI: 10.1016/j.bjps.2025.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Keloids represent a challenging clinical problem because of their unpredictable and often refractory nature to treatment. This study aimed to identify the key changes in gene expression in the formation of keloid and provide potential biomarker candidates for clinical treatment and drug target discovery. Keloids and normal skin samples were analyzed for gene expression, and datasets from the Gene Expression Omnibus database were also analyzed. Differentially expressed genes (DEGs) were identified and analyzed using bioinformatics techniques, including gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. A protein-protein interaction network of the DEGs was created using the Search Tool for the Retrieval of Interacting Genes database. The gene set enrichment analysis was performed on keloid and normal skin tissue from clinical samples. The enriched functions and pathways identified included collagen-containing extracellular matrix (ECM), ECM, and external encapsulating structure. Ten hub genes were identified, along with one differentially expressed microRNA, miR-22-5p. miRNA target gene prediction was performed using miRPathDB 2.0 and Targetscan database. Among the hub genes, RUNX2, IGF1, EGF, and PPARGC1A were predicted targets of miR-22-5p. Validation at the tissue level highlighted RUNX2 as a crucial DEG in keloid tissue. These findings shed light on the molecular mechanisms of keloid formation and offer candidate therapeutic targets, suggesting that modulation of the miR-22-5p/RUNX2 axis may be a promising avenue for keloid diagnosis and treatment, thus laying a foundation for improved clinical management of keloid disorders.
Collapse
Affiliation(s)
- Jiao Kong
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China
| | - Changcai Zhou
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China; Beijing Badachu Aesthetic Hospital, No. 54 of Anli Road, Beijing 100020, China
| | - Haiyan Qin
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China
| | - Caihong Li
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China
| | - Zhuoxia Wu
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China
| | - Lianbo Zhang
- China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun 130033, China.
| |
Collapse
|
22
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
23
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
24
|
Zhao F, An R, Ma Y, Yu S, Gao Y, Wang Y, Yu H, Xie X, Zhang J. Integrated spatial multi-omics profiling of Fusobacterium nucleatum in breast cancer unveils its role in tumour microenvironment modulation and cancer progression. Clin Transl Med 2025; 15:e70273. [PMID: 40070022 PMCID: PMC11897063 DOI: 10.1002/ctm2.70273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Tumour-associated microbiota are integral components of the tumour microenvironment (TME). However, previous studies on intratumoral microbiota primarily rely on bulk tissue analysis, which may obscure their spatial distribution and localized effects. In this study, we applied in situ spatial-profiling technology to investigate the spatial distribution of intratumoral microbiota in breast cancer and their interactions with the local TME. Using 5R 16S rRNA gene sequencing and RNAscope FISH/CISH on patients' tissue, we identified significant spatial heterogeneity in intratumoral microbiota, with Fusobacterium nucleatum (F. nucleatum) predominantly localized in tumour cell-rich areas. GeoMx digital spatial profiling (DSP) revealed that regions colonized by F. nucleatum exhibit significant influence on the expression of RNAs and proteins involved in proliferation, migration and invasion. In vitro studies indicated that co-culture with F. nucleatum significantly stimulates the proliferation and migration of breast cancer cells. Integrative spatial multi-omics and co-culture transcriptomic analyses highlighted the MAPK signalling pathways as key altered pathways. By intersecting these datasets, VEGFD and PAK1 emerged as critical upregulated proteins in F. nucleatum-positive regions, showing strong positive correlations with MAPK pathway proteins. Moreover, the upregulation of VEGFD and PAK1 by F. nucleatum was confirmed in co-culture experiments, and their knockdown significantly reduced F. nucleatum-induced proliferation and migration. In conclusion, intratumoral microbiota in breast cancer exhibit significant spatial heterogeneity, with F. nucleatum colonization markedly altering tumour cell protein expression to promote progression and migration. These findings provide novel perspectives on the role of microbiota in breast cancer, identify potential therapeutic targets, and lay the foundation for future cancer treatments. KEY POINTS: Intratumoral Fusobacterium nucleatum exhibits significant spatial heterogeneity within breast cancer tissues. F. nucleatum colonization alters the expression of key proteins involved in tumour progression and migration. The MAPK signalling pathway is a critical mediator of F. nucleatum-induced breast cancer cell proliferation and migration. VEGFD and PAK1 are potential therapeutic targets to mitigate F. nucleatum-induced tumour progression.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Rui An
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yilei Ma
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shaobo Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yanzhong Wang
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haitao Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xinyou Xie
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jun Zhang
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| |
Collapse
|
25
|
Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y, Fang J. Engineered mesenchymal stem/stromal cells against cancer. Cell Death Dis 2025; 16:113. [PMID: 39971901 PMCID: PMC11839947 DOI: 10.1038/s41419-025-07443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem/stromal cells (MSCs) have garnered attention for their potential in cancer therapy due to their ability to home to tumor sites. Engineered MSCs have been developed to deliver therapeutic proteins, microRNAs, prodrugs, chemotherapy drugs, and oncolytic viruses directly to the tumor microenvironment, with the goal of enhancing therapeutic efficacy while minimizing off-target effects. Despite promising results in preclinical studies and clinical trials, challenges such as variability in delivery efficiency and safety concerns persist. Ongoing research aims to optimize MSC-based cancer eradication and immunotherapy, enhancing their specificity and efficacy in cancer treatment. This review focuses on advancements in engineering MSCs for tumor-targeted therapy.
Collapse
Affiliation(s)
- Yuzhu Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Zhang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200025, China.
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
26
|
Heinze CM, Pichon TJ, Wu AY, Baldwin M, Matthaei J, Song K, Sylvestre M, Gustafson J, White NJ, Jensen MC, Pun SH. Spatial Control of CAR T Cell Activation Using Tumor-Homing Polymers. J Am Chem Soc 2025; 147:5149-5161. [PMID: 39902740 PMCID: PMC11995850 DOI: 10.1021/jacs.4c15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
CAR T cell therapies often lack specificity, leading to issues ranging from inadequate antigen targeting to off-tumor toxicities. To counter that lack of specificity, we expanded tumor targeting capabilities with universal CAR and spatially defined CAR T cell engagement with targets through a combination of synthetic biology and biomaterial approaches. We developed a novel framework, called "In situ Mobilization: Polymer Activated Cell Therapies" (IMPACT) for polymer-mediated, anatomical control of IF-THEN gated CAR T cells. With IMPACT, a regulated payload such as a BiTE or tumor-targeting CAR will only be expressed after engineered cells engage a tumor-localizing polymer ("IF" condition). In this first demonstration of IMPACT, we engineered CAR T cells to respond to fluorescein that is displayed by an injectable polymer that binds to and is retained in fibrin deposits in tumor microenvironments. This interaction then drives selective and conditional expression of a protein within tumors ("THEN" condition). Here, we develop the polymer and CAR T cell infrastructure of IMPACT and demonstrate tumor-localized CAR T cell activation in a murine tumor model after the intravenous administration of polymer and engineered T cells.
Collapse
Affiliation(s)
- Clinton M Heinze
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Trey J Pichon
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Abe Y Wu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Michael Baldwin
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - James Matthaei
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Kefan Song
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Meilyn Sylvestre
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Joshua Gustafson
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Nathan J White
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington 98105, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| |
Collapse
|
27
|
Singh A, Hu Y, Lopes RF, Lane L, Woldemichael H, Xu C, Udeshi ND, Carr SA, Perrimon N. Cell-death induced immune response and coagulopathy promote cachexia in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631515. [PMID: 39829769 PMCID: PMC11741341 DOI: 10.1101/2025.01.07.631515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tumors can exert a far-reaching influence on the body, triggering systemic responses that contribute to debilitating conditions like cancer cachexia. To characterize the mechanisms underlying tumor-host interactions, we utilized a BioID-based proximity labeling method to identify proteins secreted by Ykiact adult Drosophila gut tumors into the bloodstream/hemolymph. Among the major proteins identified are coagulation and immune-responsive factors that contribute to the systemic wasting phenotypes associated with Ykiact tumors. The effect of innate immunity factors is mediated by NFκB transcription factors Relish, dorsal, and Dif, which in turn upregulate the expression of the cachectic factors Pvf1, Impl2, and Upd3. In addition, Ykiact tumors secrete Eiger, a TNF-alpha homolog, which activates the JNK signaling pathway in neighboring non-tumor cells, leading to cell death. The release of damage-associated molecular patterns (DAMPs) from these dying cells presumably amplifies the inflammatory response, exacerbating systemic wasting. Targeting the inflammatory response, the JNK pathway, or the production of cachectic factors could potentially alleviate the debilitating effects of cancer cachexia.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Raphael Fragoso Lopes
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Liz Lane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | | | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
- HHMI, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Shimura M, Matsuo J, Pang S, Jangphattananont N, Hussain A, Rahmat MB, Lee JW, Douchi D, Tong JJL, Myint K, Srivastava S, Teh M, Koh V, Yong WP, So JBY, Tan P, Yeoh KG, Unno M, Chuang LSH, Ito Y. IQGAP3 signalling mediates intratumoral functional heterogeneity to enhance malignant growth. Gut 2025; 74:364-386. [PMID: 39438124 PMCID: PMC11874294 DOI: 10.1136/gutjnl-2023-330390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The elevation of IQGAP3 expression in diverse cancers indicates a key role for IQGAP3 in carcinogenesis. Although IQGAP3 was established as a proliferating stomach stem cell factor and a regulator of the RAS-ERK pathway, how it drives cancer growth remains unclear. OBJECTIVE We define the function of IQGAP3 in gastric cancer (GC) development and progression. DESIGN We studied the phenotypic changes caused by IQGAP3 knockdown in three molecularly diverse GC cell lines by RNA-sequencing. In vivo tumorigenesis and lung metastasis assays corroborated IQGAP3 as a mediator of oncogenic signalling. Spatial analysis was performed to evaluate the intratumoral transcriptional and functional differences between control tumours and IQGAP3 knockdown tumours. RESULTS Transcriptomic profiling showed that IQGAP3 inhibition attenuates signal transduction networks, such as KRAS signalling, via phosphorylation blockade. IQGAP3 knockdown was associated with significant inhibition of MEK/ERK signalling-associated growth factors, including TGFβ1, concomitant with gene signatures predictive of impaired tumour microenvironment formation and reduced metastatic potential. Xenografts involving IQGAP3 knockdown cells showed attenuated tumorigenesis and lung metastasis in immunodeficient mice. Accordingly, immunofluorescence staining revealed significant reductions of TGFβ/SMAD signalling and αSMA-positive stromal cells; digital spatial analysis indicated that IQGAP3 is indispensable for the formation of two phenotypically diverse cell subpopulations, which played crucial but distinct roles in promoting oncogenic functions. CONCLUSION IQGAP3 knockdown suppressed the RAS-TGFβ signalling crosstalk, leading to a significant reduction of the tumour microenvironment. In particular, IQGAP3 maintains functional heterogeneity of cancer cells to enhance malignant growth. IQGAP3 is thus a highly relevant therapy target in GC.
Collapse
Affiliation(s)
- Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Aashiq Hussain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Jung-Won Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jasmine Jie Lin Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ming Teh
- Department of Medicine, National University of Singapore, Singapore
| | - Vivien Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Genome Institute of Singapore, Singapore
| | - Khay-Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
29
|
Feng ZK, Wu WB, Zou RC, Zhang JZ, Huang HQ, Zhang XR, Wang YQ, Chen SY, Ding X, You R, Liu YP, Chen MY. Postradiotherapy nasopharyngeal necrosis with granulation mass: Insights from a multicentre study. Oral Oncol 2025; 161:107170. [PMID: 39787980 DOI: 10.1016/j.oraloncology.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Postradiotherapy nasopharyngeal necrosis with granulation mass (PRNN-GM) is a rare subtype of postradiotherapy nasopharyngeal necrosis (PRNN). It is characterized by the formation of isolated granulomatous tissue masses or masses combined with PRNN. However, the relationship between clinical features and survival outcomes in PRNN-GM remains unclear. METHODS This retrospective study systematically evaluated 33 pathologically diagnosed PRNN-GM patients treated at three medical centres from January 2010 to May 2024. The clinical features, endoscopic and imaging characteristics, treatment methods, and survival outcomes of the patients were analysed. RESULTS Among the 33 patients, 27 were male and 6 were female, with a mean age of 52 years (±10.9 years). Internal carotid artery exposure was observed in 5 patients. Nineteen patients underwent surgical treatment, whereas 14 received conservative management. Internal carotid artery exposure (OR = 6.863, 95 % CI: 1.196-39.385) and surgical treatment (OR = 0.130, 95 % CI: 0.026-0.659) were identified as independent prognostic factors influencing survival outcomes (P < 0.05). CONCLUSIONS Patients with PRNN-GM who have internal carotid artery exposure and do not undergo surgical treatment tend to have a poorer prognosis.
Collapse
Affiliation(s)
- Zheng-Kai Feng
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Wen-Bin Wu
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Rui-Chao Zou
- Department of Otolaryngology-Head and Neck Surgery The Fifth Affiliated Hospital of the Medical University of Guangzhou Guangzhou China
| | - Jian-Zhong Zhang
- Department of Otolaryngology-Head and Neck Surgery The Fifth Affiliated Hospital of the Medical University of Guangzhou Guangzhou China
| | - Hai-Qiong Huang
- Department of Otolaryngology-Head and Neck Surgery The Fifth Affiliated Hospital of the Medical University of Guangzhou Guangzhou China
| | - Xin-Rui Zhang
- Department of Otolaryngology-Head and Neck Surgery The Fifth Affiliated Hospital of the Medical University of Guangzhou Guangzhou China
| | - Ying-Qi Wang
- Department of Otolaryngology-Head and Neck Surgery The Fifth Affiliated Hospital of the Medical University of Guangzhou Guangzhou China
| | - Si-Yuan Chen
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Xi Ding
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Rui You
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China.
| | - You-Ping Liu
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China.
| | - Ming-Yuan Chen
- Nasopharyngeal Cancer Center The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai China; Department of Nasopharyngeal Carcinoma Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China China; Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China.
| |
Collapse
|
30
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells. Clin Cancer Res 2025; 31:414-429. [PMID: 39540841 PMCID: PMC11739783 DOI: 10.1158/1078-0432.ccr-24-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell RNA sequencing, we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multiparameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics were used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and nontumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. Single-cell RNA sequencing demonstrated that the surrounding lung stroma adopts a chronic, nonresolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, the metastasis-associated lung demonstrated marked fibrosis, likely because of the accumulation of pathogenic, profibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a prometastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the antifibrotic tyrosine kinase inhibitor (TKI) nintedanib. Our data shed light on the non-cell-autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
Affiliation(s)
- James B. Reinecke
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
| | - Leyre Jimenez Garcia
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Amy C. Gross
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew J. Gust
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Jeffrey P. Sheridan
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
31
|
Deutsch-Williams R, Schleyer KA, Das R, Carrothers JE, Kohler RH, Vinegoni C, Weissleder R. FAP-Targeted Fluorescent Imaging Agents to Study Cancer-Associated Fibroblasts In Vivo. Bioconjug Chem 2025; 36:44-53. [PMID: 39667730 PMCID: PMC11740949 DOI: 10.1021/acs.bioconjchem.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Cancer-associated fibroblasts (CAFs) expressing fibroblast activation protein alpha (FAP) are abundant in tumor microenvironments and represent an emerging target for PET cancer imaging. While different quinolone-based small molecule agents have been developed for whole-body imaging, there is a scarcity of well-validated fluorescent small molecule imaging agents to better study these cells in vivo. Here, we report the synthesis and characterization of a series of fluorescent FAP imaging agents based on the common quinolone azide inhibitor. Our data show excellent performance of some synthesized FAP Targeting Fluorescent probes (FTFs) for both topical application and intravenous delivery to label CAF populations in solid tumors. These results suggest that FTF can be used to study CAF biology and therapeutic targeting in vivo.
Collapse
Affiliation(s)
- Riley
J. Deutsch-Williams
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Kelton A. Schleyer
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Riddha Das
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Jasmine E. Carrothers
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Rainer H. Kohler
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Claudio Vinegoni
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Loberg MA, Xu GJ, Chen SC, Chen HC, Wahoski CC, Caroland KP, Tigue ML, Hartmann HA, Gallant JN, Phifer CJ, Ocampo A, Wang DK, Fankhauser RG, Karunakaran KA, Wu CC, Tarabichi M, Shaddy SM, Netterville JL, Rohde SL, Solorzano CC, Bischoff LA, Baregamian N, Murphy BA, Choe JH, Wang JR, Huang EC, Sheng Q, Kagohara LT, Jaffee EM, Belcher RH, Lau KS, Ye F, Lee E, Weiss VL. An integrated single-cell and spatial transcriptomic atlas of thyroid cancer progression identifies prognostic fibroblast subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631962. [PMID: 39829764 PMCID: PMC11741347 DOI: 10.1101/2025.01.08.631962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thyroid cancer progression from curable well-differentiated thyroid carcinoma to highly lethal anaplastic thyroid carcinoma is distinguished by tumor cell de-differentiation and recruitment of a robust stromal infiltrate. Combining an integrated thyroid cancer single-cell sequencing atlas with spatial transcriptomics and bulk RNA-sequencing, we define stromal cell subpopulations and tumor-stromal cross-talk occurring across the histologic and mutational spectrum of thyroid cancer. We identify distinct inflammatory and myofibroblastic cancer-associated fibroblast (iCAF and myCAF) populations and perivascular-like populations. The myCAF population is only found in malignant samples and is associated with tumor cell invasion, BRAF V600E mutation, lymph node metastasis, and disease progression. Tumor-adjacent myCAFs abut invasive tumor cells with a partial epithelial-to-mesenchymal phenotype. Tumor-distant iCAFs infiltrate inflammatory autoimmune thyroid lesions and anaplastic tumors. In summary, our study provides an integrated atlas of thyroid cancer fibroblast subtypes and spatial characterization at sites of tumor invasion and de-differentiation, defining the stromal reorganization central to disease progression.
Collapse
|
33
|
Bogusławska J, Grzanka M, Popławski P, Zarychta-Wiśniewska W, Burdzinska A, Hanusek K, Kossowska H, Iwanicka-Nowicka R, Białas A, Rybicka B, Adamiok-Ostrowska A, Życka-Krzesińska J, Koblowska M, Pączek L, Piekiełko-Witkowska A. Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells. Cell Commun Signal 2025; 23:3. [PMID: 39754169 PMCID: PMC11697636 DOI: 10.1186/s12964-024-02001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored. Here, we comprehensively analysed the composition of exosomal sncRNAs secreted by RCC cells to identify those that influence MSCs. METHODS Exosomal sncRNAs secreted by RCC cells and normal kidney cells were analyzed using RNAseq, followed by qPCR validation. MSCs were treated by conditioned media (CM) derived from RCC cells and transfected with piRNA, followed by the analysis of proliferation, viability, migration and immunocytochemical detection of piRNA. Expression of MSCs genes was evaluated using microarray and qPCR. TCGA data were analyzed to explore the expression of sncRNAs in RCC tumors. RESULTS RNAseq revealed 40 miRNAs, 71 tRNAs and four piRNAs that were consistently secreted by RCC cells. qPCR validation using five independent RCC cell lines confirmed that expressions of miR-10b-3p and miR-125a-5p were suppressed, while miR-365b-3p was upregulated in exosomes from RCC cells when compared with normal kidney proximal tubules. The expression of miR-10b-3p and miR-125a-5p was decreased, whereas the expression of miR-365b-3p was increased in RCC tumors and correlated with poor survival of patients. Expressions of tRNA-Glu, tRNA-Gly, and tRNA-Val were the most increased, while tRNA-Gln, tRNA-Leu, and tRNA-Lys were top decreased in RCC exosomes when compared with normal kidney cells. Moreover, hsa_piR_004153, hsa_piR_016735, hsa_piR_019521, and hsa_piR_020365 were consistently upregulated in RCC exosomes. piR_004153 (DQ575660.1; aliases: hsa_piRNA_18299, piR-43772, piR-hsa-5938) was the most highly expressed in exosomes from RCC cells when compared with normal kidney cells. Treatment of MSCs with RCC CM resulted in upregulation of piR_004153 expression. Transfection of MSCs with piR_004153 stimulated their migration and viability, and altered expression of 35 genes, including downregulation of FGF2, SLC7A5, and WISP1. Immunocytochemistry confirmed the nuclear localization of piR_004153 transfected in MSCs. CONCLUSION RCC cells secrete multiple sncRNAs, including piR_004153 which targets MSCs, alters expression of FGF2, SLC7A5, and WISP1, and stimulates their motility and viability. To our knowledge, this is the first study showing that cancer-derived piRNA can enhance MSC migration.
Collapse
Affiliation(s)
- Joanna Bogusławska
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
| | - Małgorzata Grzanka
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Piotr Popławski
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | | | - Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Hanusek
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Helena Kossowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Alex Białas
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Beata Rybicka
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Anna Adamiok-Ostrowska
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Joanna Życka-Krzesińska
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Leszek Pączek
- Department of Clinical Immunology, Medical University of Warsaw, ul. Nowogrodzka 59, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
| |
Collapse
|
34
|
Stagg J, Gutkind JS. Targeting G Protein-Coupled Receptors in Immuno-Oncological Therapies. Annu Rev Pharmacol Toxicol 2025; 65:315-331. [PMID: 39270681 DOI: 10.1146/annurev-pharmtox-061724-080852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The advent of cancer immunotherapy based on PD-1 and CTLA-4 immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, many cancers do not respond to ICB, highlighting the urgent need for additional approaches to achieve durable cancer remission. The large family of G protein-coupled receptors (GPCRs) is the target of more than 30% of all approved drugs, but GPCRs have been underexploited in cancer immunotherapy. In this review, we discuss the central role of GPCRs in immune cell migration and function and describe how single-cell transcriptomic studies are illuminating the complexity of the human tumor immune GPCRome. These receptors include multiple GPCRs expressed in CD8 T cells that are activated by inflammatory mediators, protons, neurotransmitters, and metabolites that accumulate in the tumor microenvironment, thereby promoting T cell dysfunction. We also discuss new opportunities to target GPCRs as a multimodal approach to enhance the response to ICB for a myriad of human malignancies.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada;
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
35
|
Lichtenstein AV. Rethinking the Evolutionary Origin, Function, and Treatment of Cancer. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:19-31. [PMID: 40058971 DOI: 10.1134/s0006297924603575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
Despite remarkable progress in basic oncology, practical results remain unsatisfactory. This discrepancy is partly due to the exclusive focus on processes within the cancer cell, which results in a lack of recognition of cancer as a systemic disease. It is evident that a wise balance is needed between two alternative methodological approaches: reductionism, which would break down complex phenomena into smaller units to be studied separately, and holism, which emphasizes the study of complex systems as integrated wholes. A consistent holistic approach has so far led to the notion of cancer as a special organ, stimulating debate about its function and evolutionary significance. This article discusses the role of cancer as a mechanism of purifying selection of the gene pool, the correlation between hereditary and sporadic cancer, the cancer interactome, and the role of metastasis in a lethal outcome. It is also proposed that neutralizing the cancer interactome may be a novel treatment strategy.
Collapse
Affiliation(s)
- Anatoly V Lichtenstein
- N. N. Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
36
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
37
|
Wicher G, Roy A, Vaccaro A, Vemuri K, Ramachandran M, Olofsson T, Imbria RN, Belting M, Nilsson G, Dimberg A, Forsberg-Nilsson K. Lack of ST2 aggravates glioma invasiveness, vascular abnormality, and immune suppression. Neurooncol Adv 2025; 7:vdaf010. [PMID: 39931535 PMCID: PMC11808570 DOI: 10.1093/noajnl/vdaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, characterized by aggressive growth and a dismal prognosis. Interleukin-33 (IL-33) and its receptor ST2 have emerged as regulators of glioma growth, but their exact function in tumorigenesis has not been deciphered. Indeed, previous studies on IL-33 in cancer have yielded somewhat opposing results as to whether it is pro- or anti-tumorigenic. Methods IL-33 expression was assessed in a GBM tissue microarray and public databases. As in vivo models we used orthotopic xenografts of patient-derived GBM cells, and syngenic models with grafted mouse glioma cells. Results We analyzed the role of IL-33 and its receptor ST2 in nonmalignant cells of the glioma microenvironment and found that IL-33 levels are increased in cells surrounding the tumor. Protein complexes of IL-33 and ST2 are mainly found outside of the tumor core. The IL-33-producing cells consist primarily of oligodendrocytes. To determine the function of IL-33 in the tumor microenvironment, we used mice lacking the ST2 receptor. When glioma cells were grafted to ST2-deficient mouse brains, the resulting tumors exhibited a more invasive growth pattern, and are associated with poorer survival, compared to wild-type mice. Tumors in ST2-deficient hosts are more invasive, with increased expression of extracellular matrix remodeling enzymes and enhanced tumor angiogenesis. Furthermore, the absence of ST2 leads to a more immunosuppressive environment. Conclusions Our findings reveal that glia-derived IL-33 and its receptor ST2 participate in modulating tumor invasiveness, tumor vasculature, and immunosuppression in glioma.
Collapse
Affiliation(s)
- Grzegorz Wicher
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ananya Roy
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kalyani Vemuri
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tommie Olofsson
- Academic Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Rebeca-Noemi Imbria
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Belting
- Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnar Nilsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, and Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna Dimberg
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
39
|
Paredes-Moscosso SR, Nathwani AC. 10 years of BiTE immunotherapy: an overview with a focus on pancreatic cancer. Front Oncol 2024; 14:1429330. [PMID: 39759138 PMCID: PMC11696039 DOI: 10.3389/fonc.2024.1429330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Various therapeutic strategies have been developed to treat Pancreatic Cancer (PaCa). Unfortunately, most efforts have proved unfruitful, as the poor prognosis observed in this disease has only attained little improvement in the past 40 years. Recently, deeper understanding of the immune system and its interaction with malignant tumors have allowed significant advances in immunotherapy. Consistent with this, some of the most promising approaches are those that involve T-cell redirection to the tumor site, such as bispecific T-cell engagers (BiTEs). These recombinant antibodies bridge cytotoxic T-cells to tumor cells, inducing target cell-dependent polyclonal T-cell activation/proliferation, which in turn results in elimination of bound tumor cells. Blinatumomab, an anti-CD19 BiTE, received FDA approval in 2014 for Precursor B-cell Acute Lymphoblastic Leukemia. In the past decade, it has demonstrated impressive clinical benefit in patients with B-cell leukemias; and other T-cell engagers have been FDA-approved for hematological malignancies and other diseases, yet limited effect has been observed with other BiTEs against solid cancers, including PaCa. Nevertheless, on May 2024, Tarlatamab, an anti-DLL3 BiTE was approved by the FDA for extensive small cell lung cancer, becoming the first BiTE for solid tumors. In this review, the generation of BiTEs, therapeutic features, manufacturing issues as well as the remaining challenges and novel strategies of BiTE therapy in the context of PaCa, including the lessons we can learn from the use of BiTEs on other types of cancer will be explored.
Collapse
Affiliation(s)
- Solange R. Paredes-Moscosso
- Centro de Genética y Biología Molecular, Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Amit C. Nathwani
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
40
|
Hostler AC, Hahn WW, Hu MS, Rennert R, Fischer KS, Barrera JA, Duscher D, Januszyk M, Henn D, Sivaraj D, Yasmeh JP, Kussie HC, Granoski MB, Padmanabhan J, Vial IN, Riegler J, Wu JC, Longaker MT, Chen K, Maan ZN, Gurtner GC. Endothelial-specific CXCL12 regulates neovascularization during tissue repair and tumor progression. FASEB J 2024; 38:e70210. [PMID: 39698751 DOI: 10.1096/fj.202401307r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; Stromal Cell-Derived Factor 1 [SDF-1]), most notably known for its role in embryogenesis and hematopoiesis, has been implicated in tumor pathophysiology and neovascularization. However, its cell-specific role and mechanism of action have not been well characterized. Previous work by our group has demonstrated that hypoxia-inducible factor (HIF)-1 modulates downstream CXCL12 expression following ischemic tissue injury. By utilizing a conditional CXCL12 knockout murine model, we demonstrate that endothelial-specific deletion of CXCL12 (eKO) modulates ischemic tissue survival, altering tissue repair and tumor progression without affecting embryogenesis and morphogenesis. Loss of endothelial-specific CXCL12 disrupts critical endothelial-fibroblast crosstalk necessary for stromal growth and vascularization. Using murine parabiosis with novel transcriptomic technologies, we demonstrate that endothelial-specific CXCL12 signaling results in downstream recruitment of non-inflammatory circulating cells, defined by neovascularization modulating genes. These findings indicate an essential role for endothelial-specific CXCL12 expression during the neovascular response in tissue injury and tumor progression.
Collapse
Affiliation(s)
- Andrew C Hostler
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - William W Hahn
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Michael S Hu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert Rennert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Katharina S Fischer
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominik Duscher
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dharshan Sivaraj
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jonathan P Yasmeh
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hudson C Kussie
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Maia B Granoski
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ivan N Vial
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kellen Chen
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
41
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
42
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
43
|
Longmate WM. The epidermal integrin-mediated secretome regulates the skin microenvironment during tumorigenesis and repair. Matrix Biol 2024; 134:175-183. [PMID: 39491760 PMCID: PMC11585437 DOI: 10.1016/j.matbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Integrins are cellular transmembrane receptors that physically connect the cytoskeleton with the extracellular matrix. As such, they are positioned to mediate cellular responses to microenvironmental cues. Importantly, integrins also regulate their own microenvironment through secreted factors, also known as the integrin-mediated secretome. Epidermal integrins, or integrins expressed by keratinocytes of the skin epidermis, regulate the cutaneous microenvironment through the contribution of matrix components, via proteolytic matrix remodeling, or by mediating factors like cytokines and growth factors that can promote support for nearby but distinct cells of the stroma, such as immune cells, endothelial cells, and fibroblasts. This role for integrins is enhanced during both pathological and repair tissue remodeling processes, such as tumor growth and progression and wound healing. This review will discuss examples of how the epithelial integrin-mediated secretome can regulate the tissue microenvironment. Although different epithelial integrins in various contexts will be explored, emphasis will be given to epidermal integrins that regulate the secretome during wound healing and cutaneous tumor progression. Epidermal integrin α3β1 is of particular focus as well, since this integrin has been revealed as a key regulator of the keratinocyte secretome.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
44
|
Jia Z, Maishi N, Takekawa H, Matsuda AY, Nakade T, Nakamura T, Harashima H, Hida Y, Hida K. Targeting Tumor Endothelial Cells by EGCG Using Specific Liposome Delivery System Inhibits Vascular Inflammation and Thrombosis. Cancer Med 2024; 13:e70462. [PMID: 39629553 PMCID: PMC11615514 DOI: 10.1002/cam4.70462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Inflammation is one of the hallmarks of cancer and is associated with tumor growth. Tumor endothelial cells (TECs) demonstrate inflamed phenotypes. Endothelial inflammation initiates thrombus formation, which is the second cause of cancer-related deaths. Epigallocatechin-3-O-gallate (EGCG), a natural compound in green tea, has demonstrated an anti-inflammatory effect. However, the tumor progression inhibition effect of EGCG by targeting TEC inflammation remains unclear. This study addresses the anti-tumor effect of EGCG, especially its anti-inflammatory role in TECs. METHODS In vitro, the effect of EGCG on TECs were studied using real-time quantitative PCR and immunofluoresence to analyza gene and protein expression. In vivo, a cyclic RGD liposome delivery system (MEND) was employed to efficiently deliver EGCG to TECs in tumor-bearing mice. RESULTS In vitro, EGCG significantly reduces inflammatory cytokine expression, including tumor necrosis factor-α, interleukin-6, IL-8, and IL-1β through NF-κB signaling inhibition. Additionally, von Willebrand factor reduction in TECs, which is involved in platelet adhesion and thrombosis formation, was analyzed. Our results revealed that EGCG-MEND significantly inhibited TEC inflammation and thrombus formation in tumors. Additionally, EGCG-MEND improved tumor immunity by reducing programmed death-ligand 1 expression and promoting high endothelial venule formation by recruiting CD8+ T cells. CONCLUSION Our results indicate the anti-tumor potential of EGCG-MEND in normalizing the inflammatory immune microenvironment and inhibiting thrombosis by targeting TEC.
Collapse
Affiliation(s)
- Zi Jia
- Vascular Biology and Molecular PathologyHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Nako Maishi
- Vascular Biology and Molecular PathologyHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Hideki Takekawa
- Vascular Biology and Molecular PathologyHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Aya Yanagawa Matsuda
- Vascular Biology and Molecular PathologyHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Taisei Nakade
- Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Takashi Nakamura
- Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | | | - Yasuhiro Hida
- Advanced Robotic and Endoscopic SurgerySchool of Medicine, Fujita Health UniversityToyoakeJapan
| | - Kyoko Hida
- Vascular Biology and Molecular PathologyHokkaido University Graduate School of Dental MedicineSapporoJapan
| |
Collapse
|
45
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024; 257:281-305. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
47
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 PMCID: PMC12098012 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
48
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
49
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
50
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. The Clinical Significance of Cancer-Associated Fibroblasts Classification in Non-Small Cell Lung Cancer. Cells 2024; 13:1909. [PMID: 39594657 PMCID: PMC11592919 DOI: 10.3390/cells13221909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Malignant cells flourish within a specialized environment known as the tumor microenvironment (TME) [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|