1
|
Zhang HL, Wang N, Shi XL, Wang MM, Zhu QM, Chang J, Feng YL, Zhang J, Qiu F, Sun CP. Sesquiterpenoids from Inula britannica and their potential mechanism for immunomodulation. PHYTOCHEMISTRY 2025; 231:114343. [PMID: 39613278 DOI: 10.1016/j.phytochem.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The immune system serves as a role of diseases, such as Parkinson's disease, and acute lung injury. An immunoregulatory activity-directed separation depended on phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Ion)-mediated Jurkat leukemic T cells was used for studying chemical constituents from Inula britannica L. in depth. Five previously undescribed aromatic sesquiterpenoid dimers inulabritanoids J-N (1-5) and a previously undescribed germacrane-type sesquiterpenoid britanicafanin F (6) were afforded from I. britannica as well as eight known sesquiterpenoids (7-14). Their structures were elucidated through 1D and 2D NMR, HRMS, and ECD spectra along with quantum chemical calculations. Immunomodulatory effects of compounds 1-14 were assayed in PMA plus Ion-mediated Jurkat cells, and indicated that compounds 8, 9, and 13 displayed significantly inhibitory effects toward IL-2 and IFN-γ. Further investigation of mechanism of action revealed that compound 13 inhibited phosphorylations of p38, ERK, and JNK to suppress c-Jun and c-Fos expressions, resulting in blocking the nuclear translocation of AP-1 (a complex of c-Jun and c-Fos) to regulate mRNA expressions of IL-2 and IFN-γ. Molecular docking analysis demonstrated that compound 13 could enter into the cavity of p38, ERK, and JNK, and from hydrogen bond interactions with Gly33, Lys53 Ser154, and Asp168 for p38, Lys54, Glu71, Ser153, and Asp167 for ERK, and Met149 and Asn152 for JNK, which supported the abovementioned results. These findings suggested that sesquiterpenoids from the genus Inula served as immunomodulators for treating diseases involved in immune and inflammatory responses.
Collapse
Affiliation(s)
- Hui-Lin Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Na Wang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xu-Liu Shi
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Miao-Miao Wang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Chang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yan-Li Feng
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Juan Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
2
|
Xiong C, Shang J, Yu Z, Zhang J, Miao K, Yu C, Huang Y, Weng Y, Zhou X. Britanin alleviates chondrocyte ferroptosis in osteoarthritis by regulating the Nrf2-GPX4 axis. ARAB J CHEM 2024; 17:105918. [DOI: 10.1016/j.arabjc.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
3
|
Kajdanek A, Kołat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż. Britanin - a beacon of hope against gastrointestinal tumors? World J Clin Oncol 2024; 15:523-530. [PMID: 38689621 PMCID: PMC11056858 DOI: 10.5306/wjco.v15.i4.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc-HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Agnieszka Kajdanek
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
4
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
5
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Lu H, Xiao H, Dai M, Xue Y, Zhao R. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. PHARMACEUTICAL BIOLOGY 2022; 60:38-45. [PMID: 34860639 PMCID: PMC8648013 DOI: 10.1080/13880209.2021.2007269] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/28/2023]
Abstract
CONTEXT Ferroptosis was described as an important contributor to the myocardial ischaemia/reperfusion (MIR) injury, and britanin (Bri) was reported to exert antitumor and anti-inflammatory activities. OBJECTIVE Our study explores the effect and mechanism of Bri on MIR damage. MATERIALS AND METHODS The rat model of MIR was established by ligation of the left anterior descending coronary artery. Male Sprague-Dawley (SD) rats were divided into three groups: sham group (n = 6), MIR group (n = 6) and MIR + Bri group (n = 6; 50 mg/kg). Rats were intragastrically pre-treated with Bri or normal saline once daily for 3 days. To further verify the role and mechanism of Bri, H9C2 cells were subjected to hypoxia plus reoxygenation (H/R) to induce the in vitro model of MIR. RESULTS Compared with MIR rats, Bri significantly decreased infarct area (22.50% vs. 38.67%), myocardial apoptosis (23.00% vs. 41.5%), creatine phosphokinase (0.57 U/mL vs. 0.76 U/mL), and lactate dehydrogenase levels (3.18 U/mL vs. 5.17 U/mL), concomitant with alleviation of ferroptosis. Mechanistically, Bri treatment induced the activation of the adenosine monophosphate activated protein kinase (AMPK)/glycogen synthase kinase 3β (GSK3β)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in vivo. In addition, the AMPK/GSK3β/Nrf2 pathway participated in the regulation of glutathione peroxidase 4 (GPX4) expression, and silencing of Nrf2 attenuated the effect of Bri on H/R-induced cell injury. DISCUSSION AND CONCLUSIONS Bri protected against ferroptosis-mediated MIR damage by upregulating GPX4 through activation of the AMPK/GSK3β/Nrf2 signalling, suggesting that Bri might become a novel therapeutic agent for MIR.
Collapse
Affiliation(s)
- Haoyang Lu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Xiao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Dai
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangcheng Xue
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ren Zhao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Lu H, Wu Z, Wang Y, Zhao D, Zhang B, Hong M. Study on inhibition of Britannin on triple-negative breast carcinoma through degrading ZEB1 proteins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154291. [PMID: 35839735 DOI: 10.1016/j.phymed.2022.154291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triple-negative breast carcinomas (TNBCs) are a breast carcinoma with the most aggressive form, which is demonstrated as enhanced invasion and recurrence. Britannin is extracted mainly from the traditional Chinese herb Inula japonica Thunb, and few studies have focused on its effect on TNBC. Moreover, there is still no report concerning the role of Britannin in degrading the transcripts of Zinc finger E-box-binding homeobox 1 (ZEB1) proteins. PURPOSE To explore the potential effect of Britannin on invasion and stemness of TNBCs and its underlying mechanism. METHODS Cellular activity was measured using MTT, and cell cycle was measured using flow cytometry (FCM). The effect of Britannin on the migrating and invading abilities of MDA-MB-231 and 4T1 cells were measured using the wound healing and transwell assays. The sizes and number of breast carcinoma cells were measured by tumor formation assay and in vitro limiting-dilution assay. CD44 expression in tumor spheroids was tested by immunofluorescence assay. Nextly, the expressions of epithelial-mesenchymal transition (EMT) markers and ZEB1 protein expressional level were detected by western blot . ZEB1 mRNA expressional level was analyzed using RT-qPCR. Drug affinity-responsive target stability (DARTS) method was used to detect the binding activity between Britannin and ZEB1. Co-immunoprecipitation (Co-IP) analysis was applied to test the ubiquitination of ZEB1. The mouse models for experimental lung metastasis of 4T1 cells were established to detect the anti-metastasis effect of Britannin in vivo, and the expressional levels of EMT markers in lung metastases were detected by immunohistochemistry. RESULTS Britannin could inhibit cell growth and G2/M arrest in TNBC cells. Britannin could inhibit the migrating and invading ability without inducing severe apoptosis of MDA-MB-231 and 4T1 cells. Meanwhile, Britannin reduced the size and number of spheroids formed in these two cells, and decreased the expressional level of stem cells biomarker CD44 in tumor spheroids. Mechanism research showed that Britannin specifically bound to ZEB1 and induced its ubiquitination in MDA-MB-231 cells. Afterwards, Britannin disturbed protein stability and promoted ZEB1 protein degradation. Importantly, Britannin could not inhibit cell invasion and spheroid formation after ZEB1 expression was knocked down. Finally, Britannin inhibition of 4T1 cell metastasis was confirmed through establishing mouse models for the experimental lung metastasis. It was proved that both Britannin and paclitaxel could decrease the lung metastases, and Britannin could also down-regulate the protein expressional levels of ZEB1, MMP9 and CD44. CONCLUSION This study reveals that Britannin suppresses the invasion and metastasis of TNBC cells through degrading ZEB1, which suggests that Britannin can be used to prevent tumor metastasis and recurrence via degrading ZEB1proteins.
Collapse
Affiliation(s)
- Hong Lu
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhengyu Wu
- Department of Geriatrics, Huashan Hospital, Fudan University, 12, Wulumuqi middle Road, Shanghai 200040, China
| | - Yijun Wang
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Di Zhao
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Biyun Zhang
- Department of Nuclear medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Mei Hong
- Department of Radiation Oncology, Nanjing Chest Hospital, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|