1
|
Sarkar S, Liu HY, Yuan F, Malady BT, Wang L, Perez J, Lafer EM, Huibregtse JM, Stachowiak JC. Epsin1 enforces a condensation-dependent checkpoint for ubiquitylated cargo during clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637885. [PMID: 39990390 PMCID: PMC11844442 DOI: 10.1101/2025.02.12.637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Clathrin-mediated endocytosis internalizes proteins and lipids from the cell surface, supporting nutrient uptake, signaling, and membrane trafficking. Recent work has demonstrated that a flexible, liquid-like network of initiator proteins is responsible for catalyzing assembly of clathrin-coated vesicles in diverse organisms including yeast, mammals, and plants. How do cells regulate the assembly of this dynamic network to produce cargo-loaded vesicles? Here we reveal the ability of an endocytic adaptor protein, Epsin1, to conditionally stabilize the initiator protein network, creating a cargo-dependent checkpoint during clathrin-mediated endocytosis. Epsin1 is known to recruit ubiquitylated transmembrane proteins to endocytic sites. Using in vitro assays, we demonstrate that Epsin1 uses competitive binding and steric repulsion to destabilize condensation of initiator proteins in the absence of ubiquitin. However, when polyubiquitin is present, Epsin1 binds to both ubiquitin and initiator proteins, creating attractive interactions that stabilize condensation. Similarly, in mammalian cells, endocytic dynamics and ligand uptake are disrupted by removal of either ubiquitin or Epsin1. Surprisingly, when Epsin1 and ubiquitin are removed simultaneously, endocytic defects are rescued to near wildtype levels, although endocytic sites lose the ability to distinguish between ubiquitylated and non-ubiquitylated cargos. Taken together, these results suggest that Epsin1 tunes protein condensation to ensure the presence of ubiquitylated cargo during assembly of clathrin-coated vesicles. More broadly, these findings illustrate how a balance of attractive and repulsive molecular interactions controls the stability of liquid-like protein networks, providing dynamic control over key cellular events.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Hao-Yang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Brandon T. Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jessica Perez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
2
|
Liu HY, Ashby G, Yuan F, Sarkar S, Hayden CC, Huibregtse JM, Stachowiak JC. Poly-ubiquitylated transmembrane proteins outcompete other cargo for limited space inside clathrin-coated vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628947. [PMID: 39763860 PMCID: PMC11702697 DOI: 10.1101/2024.12.17.628947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups. Here we show that preferential internalization of poly-ubiquitylated transmembrane proteins results in reduced endocytosis of mono-ubiquitylated and non-ubiquitylated proteins. Using a combination of live-cell imaging and ligand uptake assays, we confirmed that increased ubiquitylation correlates with increased internalization by clathrin-coated vesicles. Further, poly-ubiquitylated receptors significantly outcompeted their mono-ubiquitylated and non-ubiquitylated counterparts for localization to endocytic sites and uptake of extracellular ligands. These findings demonstrate the inherent interdependence of transmembrane protein recycling, suggesting that clathrin-coated vesicles act as selective filters, prioritizing highly ubiquitylated transmembrane proteins for uptake while leaving proteins with little or no ubiquitylation behind. Given that poly-ubiquitylation is thought to signal protein aging and damage, our findings suggest a mechanism for selective internalization of high priority cargo proteins, with simultaneously exclusion and protection of functional proteins that lack poly-ubiquitylation. Significance Ubiquitylation is essential for maintaining cellular homeostasis by regulating transmembrane protein trafficking, degradation, and signaling. Traditionally, poly-ubiquitylation has been viewed primarily as a signal for protein degradation, while mono-ubiquitylation is considered sufficient to trigger endocytosis. However, our work reveals a previously unrecognized role for poly-ubiquitylation in clathrin-mediated endocytosis, demonstrating that poly-ubiquitylated transmembrane proteins outcompete their non-ubiquitylated counterparts for incorporation into clathrin-coated vesicles, thereby establishing a competitive framework for endocytic cargo sorting. This mechanism reveals a selective sorting mechanism driven by the extent of ubiquitylation, which could regulate the removal of damaged proteins while protecting functional proteins at the plasma membrane.
Collapse
Affiliation(s)
- Hao-Yang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Susovan Sarkar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Carl C. Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Edgington R, Wilburn DB. Mass Spectral Feature Analysis of Ubiquitylated Peptides Provides Insights into Probing the Dark Ubiquitylome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2849-2858. [PMID: 39332818 PMCID: PMC11623170 DOI: 10.1021/jasms.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024]
Abstract
Ubiquitylation is a structurally and functionally diverse post-translational modification that involves the covalent attachment of the small protein ubiquitin to other protein substrates. Trypsin-based proteomics is the most common approach for globally identifying ubiquitylation sites. However, we estimate that such methods are unable to detect ∼40% of ubiquitylation sites in the human proteome, i.e., "the dark ubiquitylome", including many important for human health and disease. In this meta-analysis of three large ubiquitylomic data sets, we performed a series of bioinformatic analyses to assess experimental features that could aid in uniquely identifying site-specific ubiquitylation events. Spectral predictions from Prosit were compared to experimental spectra of tryptic ubiquitylated peptides, revealing previously uncharacterized fragmentation of the diGly scar. Analysis of the LysC-derived ubiquitylated peptides reveals systematic, multidimensional peptide fragmentation, including diagnostic b-ions from fragmentation of the LysC ubiquitin scar. Comprehensively, these findings provide diagnostic spectral signatures of modification events that could be applied to new analysis methods for nontryptic ubiquitylomics.
Collapse
Affiliation(s)
- Regina
M. Edgington
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Damien B. Wilburn
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Luo D, Zheng J, Lv S, Sheng R, Chen M, He X, Zhang X. Wnt specifically induces FZD5/8 endocytosis and degradation and the involvement of RSPO-ZNRF3/RNF43 and DVL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619000. [PMID: 39463927 PMCID: PMC11507892 DOI: 10.1101/2024.10.18.619000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Frizzled (FZD) proteins are the principal receptors of the Wnt signaling pathway. However, whether Wnt ligands induce FZD endocytosis and degradation remains elusive. The transmembrane E3 ubiquitin ligases ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors to inhibit Wnt signaling, and their function is antagonized by R-spondin (RSPO) proteins. However, the dependency of RSPO-ZNRF3/RNF43-mediated FZD endocytosis and degradation on Wnt stimulation, as well as the specificity of this degradation for different FZD, remains unclear. Here, we demonstrated that Wnt specifically induces FZD5/8 endocytosis and degradation in a ZNRF3/RNF43-dependent manner. ZNRF3/RNF43 selectively targets FZD5/8 for degradation upon Wnt stimulation. RSPO1 enhances Wnt signaling by specifically stabilizing FZD5/8. Wnt promotes the interaction between FZD5 and RNF43. We further demonstrated that DVL proteins promote ligand-independent endocytosis of FZD but are dispensable for Wnt-induced FZD5/8 endocytosis and degradation. Our results reveal a novel negative regulatory mechanism of Wnt signaling at the receptor level and illuminate the mechanism by which RSPO-ZNRF3/RNF43 regulates Wnt signaling, which may provide new insights into regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Shuning Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Maorong Chen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
5
|
Wu C, Hu L, Liu B, Zeng X, Ma H, Cao Y, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT in the nucleus is a critical event underlying the desensitization of G protein-coupled receptors. Cell Commun Signal 2024; 22:213. [PMID: 38566235 PMCID: PMC10986131 DOI: 10.1186/s12964-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT. RESULTS AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors. CONCLUSION Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.
Collapse
Affiliation(s)
- Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi, 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Stefani C, Bruchez AM, Rosasco MG, Yoshida AE, Fasano KJ, Levan PF, Lorant A, Hubbard NW, Oberst A, Stuart LM, Lacy-Hulbert A. LITAF protects against pore-forming protein-induced cell death by promoting membrane repair. Sci Immunol 2024; 9:eabq6541. [PMID: 38181093 PMCID: PMC11883904 DOI: 10.1126/sciimmunol.abq6541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.
Collapse
Affiliation(s)
- Caroline Stefani
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Anna M. Bruchez
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Mario G. Rosasco
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Anna E. Yoshida
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Kayla J. Fasano
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Paula F. Levan
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Alina Lorant
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| | | | - Andrew Oberst
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Lynda M. Stuart
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Institute for Protein Design, Department of Biochemistry, University of Washington; Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| |
Collapse
|
7
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective endocytic uptake of targeted liposomes occurs within a narrow range of liposome diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548000. [PMID: 37461728 PMCID: PMC10350051 DOI: 10.1101/2023.07.06.548000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays, rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we have employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes, rather than the density of the ligands on their surfaces, primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin
- Department of Chemical Engineering, The University of Texas at Austin
| |
Collapse
|
8
|
Hayes B, van der Geer P. STS-1 and STS-2, Multi-Enzyme Proteins Equipped to Mediate Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24119214. [PMID: 37298164 DOI: 10.3390/ijms24119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
STS-1 and STS-2 form a small family of proteins that are involved in the regulation of signal transduction by protein-tyrosine kinases. Both proteins are composed of a UBA domain, an esterase domain, an SH3 domain, and a PGM domain. They use their UBA and SH3 domains to modify or rearrange protein-protein interactions and their PGM domain to catalyze protein-tyrosine dephosphorylation. In this manuscript, we discuss the various proteins that have been found to interact with STS-1 or STS-2 and describe the experiments used to uncover their interactions.
Collapse
Affiliation(s)
- Barbara Hayes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| |
Collapse
|
9
|
Sarri N, Papadopoulos N, Lennartsson J, Heldin CH. The E3 Ubiquitin Ligase TRIM21 Regulates Basal Levels of PDGFRβ. Int J Mol Sci 2023; 24:ijms24097782. [PMID: 37175489 PMCID: PMC10178120 DOI: 10.3390/ijms24097782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Activation of platelet-derived growth factor (PDGF) receptors α and β (PDGFRα and PDGFRβ) at the cell surface by binding of PDGF isoforms leads to internalization of receptors, which affects the amplitude and kinetics of signaling. Ubiquitination of PDGF receptors in response to ligand stimulation is mediated by the Casitas b-lineage lymphoma (Cbl) family of ubiquitin ligases, promoting internalization and serving as a sorting signal for vesicular trafficking of receptors. We report here that another E3 ligase, i.e., tripartite motif-containing protein 21 (TRIM21), contributes to the ubiquitination of PDGFRβ in human primary fibroblasts AG1523 and the osteosarcoma cell line U2OS and regulates basal levels of PDGFRβ. We found that siRNA-mediated depletion of TRIM21 led to decreased ubiquitination of PDGFRβ in response to PDGF-BB stimulation, while internalization from the cell surface and the rate of ligand-induced degradation of the receptor were not affected. Moreover, induction of TRIM21 decreased the levels of PDGFRβ in serum-starved cells, and even more in growing cells, in the absence of PDGF stimulation. Consistently, siRNA knockdown of TRIM21 caused accumulation of the total amount of PDGFRβ, both in the cytoplasm and on the cell surface, without affecting mRNA levels of the receptor. We conclude that TRIM21 acts post-translationally and maintains basal levels of PDGFRβ, thus suggesting that ubiquitination of PDGFRβ by TRIM21 may direct a portion of receptor for degradation in growing cells in a ligand-independent manner.
Collapse
Affiliation(s)
- Niki Sarri
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
10
|
Maemoto T, Kitai Y, Takahashi R, Shoji H, Yamada S, Takei S, Ito D, Muromoto R, Kashiwakura JI, Handa H, Hashimoto A, Hashimoto S, Ose T, Oritani K, Matsuda T. A peptide derived from adaptor protein STAP-2 inhibits tumor progression by downregulating epidermal growth factor receptor signaling. J Biol Chem 2022; 299:102724. [PMID: 36410436 PMCID: PMC9800302 DOI: 10.1016/j.jbc.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signals. We previously demonstrated that STAP-2 binds to epidermal growth factor receptor (EGFR) and facilitates its stability and activation of EGFR signaling in prostate cancer cells. Inhibition of this interaction may be a promising direction for cancer treatment. Here, we found that 2D5 peptide, a STAP-2-derived peptide, blocked STAP-2-EGFR interactions and suppressed EGFR-mediated proliferation in several cancer cell lines. 2D5 peptide inhibited tumor growth of human prostate cancer cell line DU145 and human lung cancer cell line A549 in murine xenograft models. Additionally, we determined that EGFR signaling and its stability were decreased by 2D5 peptide treatment during EGF stimulation. In conclusion, our study shows that 2D5 peptide is a novel anticancer peptide that inhibits STAP-2-mediated activation of EGFR signaling and suppresses prostate and lung cancer progression.
Collapse
Affiliation(s)
- Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,For correspondence: Yuichi Kitai; Tadashi Matsuda
| | - Runa Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Shoji
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Yamada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daiki Ito
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,For correspondence: Yuichi Kitai; Tadashi Matsuda
| |
Collapse
|
11
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Yeh H, Vo DNK, Lin ZH, Ho HPT, Hua WJ, Qiu WL, Tsai MH, Lin TY. GMI, a protein from Ganoderma microsporum, induces ACE2 degradation to alleviate infection of SARS-CoV-2 Spike-pseudotyped virus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154215. [PMID: 35691077 PMCID: PMC9144848 DOI: 10.1016/j.phymed.2022.154215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) induces a global serious pandemic and is responsible for over 4 million human deaths. Currently, although various vaccines have been developed, humans can still get SARS-CoV-2 infection after being vaccinated. Therefore, the blocking of SARS-CoV-2 infection may be potential therapeutic strategies. Ganoderma microsporum immunomodulatory protein (GMI), a small fungal protein, is cloned from Ganoderma microsporum. It exhibits anti-cancer and immunomodulatory functions. Currently, it is still unclear whether GMI involves in interfering with viral infection. PURPOSE This study aimed to examine the potential functions and mechanisms of GMI on inhibiting SARS-CoV-2 pseudovirus infection. METHODS The effects of GMI were examined in vitro on ACE2 overexpressing HEK293T (HEK293T/ACE2) cells exposed to SARS-CoV-2 Spike lentiviral pseudovirus encoding a green fluorescent protein (GFP) gene. The infection efficacy was determined using fluorescence microscopy and flow cytometry. The protein level of ACE2 was verified by Western blot. The effects of GMI on cell viability of HEK293T/ACE2 and lung epithelial WI38-2RA cells were determined by MTT assay. Mice received GMI via nebulizer. RESULTS GMI did not affect the cell viability of HEK293T/ACE2, WI38-2RA and macrophages. Functional studies showed that GMI inhibited GFP expressing SARS-CoV-2 pseudovirus from infecting HEK293T/ACE2 cells. GMI slightly interfered the interaction between ACE2 and Spike protein. GMI interacted with S2 domain of Spike protein. Specifically, GMI dramatically reduced ACE2 expression in HEK293T/ACE2 and WI38-2RA cells. Mechanistically, GMI induced ACE2 degradation via activating protein degradation system, including proteasome and lysosome. Abolishing proteasome and lysosome by MG132 and bafilomycin A1, respectively, rescued GMI-reduced ACE2 levels. In addition, GMI triggered dynamin and lipid raft-mediated ACE2 endocytosis. ACE2 levels were downregulated in the lung tissue after the mice inhaling GMI. CONCLUSIONS GMI prevents SARS-CoV-2 pseudovirus infection via induction of ACE2 degradation in host cells. Our findings suggest that GMI will be a potential prevention agent to alleviate SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Di Ngoc Kha Vo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ha Phan Thanh Ho
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Lun Qiu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Sarri N, Wang K, Tsioumpekou M, Castillejo-López C, Lennartsson J, Heldin CH, Papadopoulos N. Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFRβ and affect PDGF-BB-induced STAT3 signalling. Cell Mol Life Sci 2022; 79:85. [PMID: 35064336 PMCID: PMC8782881 DOI: 10.1007/s00018-022-04128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Interaction of platelet-derived growth factor (PDGF) isoforms with their receptors results in activation and internalization of receptors, with a concomitant activation of downstream signalling pathways. Ubiquitination of PDGFRs serves as a mark to direct the internalization and sorting of the receptors. By overexpressing a panel of deubiquitinating enzymes (DUBs), we found that USP17 and USP4 efficiently deubiquitinate PDGF receptor β (PDGFRβ) and are able to remove both Lys63 and Lys48-linked polyubiquitin chains from the receptor. Deubiquitination of PDGFRβ did not affect its stability, but regulated the timing of its trafficking, whereby USP17 prolonged the presence of the receptor at the cell surface, while USP4 affected the speed of trafficking towards early endosomes. Induction of each of the DUBs in BJhTERT fibroblasts and U2OS osteosarcoma cells led to prolonged and/or shifted activation of STAT3 in response to PDGF-BB stimulation, which in turn led to increased transcriptional activity of STAT3. Induction of USP17 promoted acute upregulation of the mRNA expression of STAT3-inducible genes STAT3, CSF1, junB and c-myc, while causing long-term changes in the expression of myc and CDKN1A. Deletion of USP17 was lethal to fibroblasts, while deletion of USP4 led to a decreased proliferative response to stimulation by PDGF-BB. Thus, USP17- and USP4-mediated changes in ubiquitination of PDFGRβ lead to dysregulated signalling and transcription downstream of STAT3, resulting in defects in the control of cell proliferation.
Collapse
Affiliation(s)
- Niki Sarri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kehuan Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Maria Tsioumpekou
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| |
Collapse
|
14
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Tang R, Langdon WY, Zhang J. Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne) 2022; 13:971162. [PMID: 35966060 PMCID: PMC9365936 DOI: 10.3389/fendo.2022.971162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that participate in a broad spectrum of cellular processes including cellular growth, motility, differentiation, proliferation, and metabolism. Hence, elucidating the regulatory mechanisms of RTKs involved in an assortment of diseases such as cancers attracts increasing interest from researchers. Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in mammals) have emerged as negative regulators of activated RTKs. Upon activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase binding (TKB) domain and targets them for ubiquitination, thus facilitating their degradation and negative regulation of RTK signaling. RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF), fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (HGFR) undergo ubiquitination upon interaction with Cbl family members. In this review, we summarize the current knowledge related to the negative regulation of RTKs by Cbl family proteins.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wallace Y. Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Jian Zhang,
| |
Collapse
|
16
|
Oliveira ID, Nicolau-Neto P, Fernandes P, Lavigne T, Neves P, Tobar J, Soares-Lima S, Simão T, Pinto LR. The potential of mRNA expression evaluation in predicting HER2 positivity in gastroesophageal cancer. Braz J Med Biol Res 2022; 55:e12428. [DOI: 10.1590/1414-431x2022e12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - T.A. Simão
- Universidade do Estado do Rio de Janeiro, Brasil
| | - L.F. Ribeiro Pinto
- Instituto Nacional de Câncer, Brasil; Universidade do Estado do Rio de Janeiro, Brasil
| |
Collapse
|
17
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Zhang Y, Zhang Y, Liang H, Zhuo Z, Fan P, Chen Y, Zhang Z, Zhang W. Serum N-terminal DDR1: A Novel Diagnostic Marker of Liver Fibrosis Severity. J Clin Transl Hepatol 2021; 9:702-710. [PMID: 34722185 PMCID: PMC8516844 DOI: 10.14218/jcth.2021.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS The expression of discoidin domain receptor 1 (DDR1) is commonly up-regulated and undergoes collagen-induced ectodomain (N-terminal) shedding during the progression of liver fibrosis. This study aimed to evaluate the clinical utility of N-terminal DDR1 as a diagnostic biomarker for liver fibrosis. METHODS N-terminal DDR1 shedding was evaluated using cell lines, liver fibrosis mouse models, clinical data of 298 patients collected from February 2019 to June 2020. The clinical data were divided into test and validation cohorts to evaluate the diagnostic performance of serum N-terminal DDR1. RESULTS Time- and dosage-dependent N-terminal DDR1 shedding stimulated by collagen I was observed in a hepatocyte cell line model. The type I collagen deposition and serum N-terminal DDR1 levels concurrently increased in the development of liver fibrosis in mouse models. Clinical data demonstrated a significant diagnostic power of serum N-terminal DDR1 levels as an accurate biomarker of liver fibrosis and cirrhosis. The diagnostic performance was further increased when applying N-DDR1/albumin ratio, achieving area under the curve of 0.790, 0.802, 0.879, and 0.865 for detecting histological fibrosis stages F ≥2, F ≥3, F 4 with liver biopsy as a reference method, and cirrhosis according to imaging techniques, respectively. With a cut-off of 55.6, a sensitivity, specificity, positive predictive value, and negative predictive value of 82.7%,76.6%, 67.4%, and 88.3% were achieved for the detection of cirrhosis. CONCLUSIONS Serum N-terminal DDR1 appears to be a novel diagnostic marker for liver fibrosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeng Zhuo
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pan Fan
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yifa Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| |
Collapse
|
19
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Wybenga-Groot LE, Tench AJ, Simpson CD, Germain JS, Raught B, Moran MF, McGlade CJ. SLAP2 Adaptor Binding Disrupts c-CBL Autoinhibition to Activate Ubiquitin Ligase Function. J Mol Biol 2021; 433:166880. [PMID: 33617900 DOI: 10.1016/j.jmb.2021.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andrea J Tench
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Craig D Simpson
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Jonathan St Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
21
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
22
|
Zhu L, Cheng H, Peng G, Wang S, Zhang Z, Ni E, Fu X, Zhuang C, Liu Z, Zhou H. Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:305-320. [PMID: 33147495 PMCID: PMC7801245 DOI: 10.1016/j.gpb.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
Ubiquitination, an essential post-transcriptional modification (PTM), plays a vital role in nearly every biological process, including development and growth. Despite its functions in plant reproductive development, its targets in rice panicles remain unclear. In this study, we used proteome-wide profiling of lysine ubiquitination in rice (O. sativa ssp. indica) young panicles. We created the largest ubiquitinome dataset in rice to date, identifying 1638 lysine ubiquitination sites on 916 unique proteins. We detected three conserved ubiquitination motifs, noting that acidic glutamic acid (E) and aspartic acid (D) were most frequently present around ubiquitinated lysine. Enrichment analysis of Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these ubiquitinated proteins revealed that ubiquitination plays an important role in fundamental cellular processes in rice young panicles. Interestingly, enrichment analysis of protein domains indicated that ubiquitination was enriched on a variety of receptor-like kinases and cytoplasmic tyrosine and serine-threonine kinases. Furthermore, we analyzed the crosstalk between ubiquitination, acetylation, and succinylation, and constructed a potential protein interaction network within our rice ubiquitinome. Moreover, we identified ubiquitinated proteins related to pollen and grain development, indicating that ubiquitination may play a critical role in the physiological functions in young panicles. Taken together, we reported the most comprehensive lysine ubiquitinome in rice so far, and used it to reveal the functional role of lysine ubiquitination in rice young panicles.
Collapse
Affiliation(s)
- Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Han Cheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Zhiguo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
24
|
Johnson SL, Ranxhi B, Libohova K, Tsou WL, Todi SV. Ubiquitin-interacting motifs of ataxin-3 regulate its polyglutamine toxicity through Hsc70-4-dependent aggregation. eLife 2020; 9:60742. [PMID: 32955441 PMCID: PMC7505662 DOI: 10.7554/elife.60742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3’s non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.
Collapse
Affiliation(s)
- Sean L Johnson
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, United States.,Department of Neurology, Wayne State University, Detroit, United States
| |
Collapse
|
25
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
26
|
Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep 2020; 47:4553-4568. [PMID: 32383136 DOI: 10.1007/s11033-020-05494-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most common disorders in females all around the world. Similar to other types of cancer, several signaling pathways are demonstrated to be involved in the progression of this cancer including ERK/MAPK, PI3K/AKT, apoptotic signaling pathways, Wnt, and epidermal growth factor receptor (EGFR). Various microRNAs (miRNAs) and their target genes involved in cervical cancer have been extracted from the kinds of literature of Scopus, Pubmed and Google scholar databases. Regarding the targets, some of them were found to belong in EGFR signaling pathways. The regulation patterns of these miRNA are different in cervical cancer; however, their main aim is to trigger EGFR signaling to proceed with cancer. Moreover, several predicted miRNAs were found to have some interactions with the differentially expressed genes of cervical cancer which are the members of the EGFR signaling pathway by using miRWalk 3.0 (https://mirwalk.umm.uni-heidelberg.de/) and TargetScan 7.1 (https://www.targetscan.org/vert_71/). Also, the microarray data were obtained from the NCBI-Gene Expression Omnibus (GEO) datasets of cervical cancer. In the present review, we highlight the miRNAs involved in cervical cancer and the role of their targets in the EGFR signaling pathway. Furthermore, some predicted miRNAs were the candidate to target EGFR signaling pathway members differentially expressed in cervical cancer samples compared to normal samples.
Collapse
|
27
|
Zou Z, Fan X, Liu Y, Sun Y, Zhang X, Sun G, Li X, Xu S. Endogenous thrombopoietin promotes non-small-cell lung carcinoma cell proliferation and migration by regulating EGFR signalling. J Cell Mol Med 2020; 24:6644-6657. [PMID: 32337844 PMCID: PMC7299695 DOI: 10.1111/jcmm.15314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Thrombopoietin (TPO) is a haematopoietic cytokine mainly produced by the liver and kidneys, which stimulates the production and maturation of megakaryocytes. In the past decade, numerous studies have investigated the effects of TPO outside the haematopoietic system; however, the role of TPO in the progression of solid cancer, particularly lung cancer, has not been well studied. Exogenous TPO does not affect non-small-cell lung cancer (NSCLC) cells as these cells show no or extremely low TPO receptor expression; therefore, in this study, we focused on endogenous TPO produced by NSCLC cells. Immunohistochemical analysis of 150 paired NSCLC and adjacent normal tissues indicated that TPO was highly expressed in NSCLC tissues and correlated with clinicopathological parameters including differentiation, P-TNM stage, lymph node metastasis and tumour size. Suppressing endogenous TPO by small interfering RNA inhibited the proliferation and migration of NSCLC cells. Moreover, TPO interacted with the EGFR protein and delayed ligand-induced EGFR degradation, thus enhancing EGFR signalling. Notably, overexpressing TPO in EGF-stimulated NSCLC cells facilitated cell proliferation and migration, whereas no obvious changes were observed without EGF stimulation. Our results suggest that endogenous TPO promotes tumorigenicity of NSCLC via regulating EGFR signalling and thus could be a therapeutic target for treating NSCLC.
Collapse
Affiliation(s)
- Zifang Zou
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoxi Fan
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guanghao Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuehao Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Chun Y, Fang J, Zafar SA, Shang J, Zhao J, Yuan S, Li X. MINI SEED 2 (MIS2) Encodes a Receptor-like Kinase that Controls Grain Size and Shape in Rice. RICE (NEW YORK, N.Y.) 2020; 13:7. [PMID: 32006119 PMCID: PMC6994593 DOI: 10.1186/s12284-020-0368-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Grain size is a key agronomic trait that is directly associated with grain yield in rice. Although several genes related to grain size in rice have been identified, our understanding of the mechanism of grain development is still limited. RESULTS In this study, we reported the characterization of a novel seed size mutant mini seed 2 (mis2), in which the grain showed reduced length, width and thickness along with wrinkled surface. Microscopic analysis revealed that the spikelet epidermal cell size was reduced but the cell number was increased in the mis2 mutant, suggesting that MIS2 controls grain size by coordinately regulating epidermal cell size and cell number. Map-based cloning revealed that MIS2 encodes a receptor-like kinase CRINKLY4 (CR4) which showed the highest expression in developing panicles. The MIS2 protein is localized primarily on the plasma membrane along with the endosome. However, the Arg258Gln mutation located in extracellular domain in the mis2 mutant disturbed its subcellular localization. Additionally, three major haplotypes of MIS2 were identified in the japonica, indica and aus rice cultivars. The 18-bp InDel (insertion and deletion) in the 5'-UTR (untranslated region) caused different expression level of MIS2 in haplotypes. CONCLUSIONS We reported a key role of OsCR4 in controlling grain size and shape by coordinately regulating epidermal cell size and cell number. The Arg258 in the extracellular seven-repeat domain is essential for the correct subcellular behavior and function of the OsCR4 protein.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jiangyuan Shang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
29
|
Sirois AR, Deny DA, Li Y, Fall YD, Moore SJ. Engineered Fn3 protein has targeted therapeutic effect on mesothelin-expressing cancer cells and increases tumor cell sensitivity to chemotherapy. Biotechnol Bioeng 2019; 117:330-341. [PMID: 31631324 DOI: 10.1002/bit.27204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with increased invasion and metastasis, and resistance to traditional chemotherapies, through mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and interrupt its contribution to tumor progression have significant potential for targeted therapy and targeted drug delivery applications. A number of mesothelin-targeting therapies are in preclinical and clinical development, although none are currently approved for routine clinical use. In this work, we report the development of a mesothelin-targeting protein based on the fibronectin type-III non-antibody protein scaffold, which offers opportunities for applications where antibodies have limitations. We engineered protein variants that bind mesothelin with high affinity and selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not occur through a caspase-mediated pathway and does not require downregulation of cell-surface mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells compared to either molecule alone, underscoring the potential for combination therapy including biologics targeting mesothelin.
Collapse
Affiliation(s)
- Allison R Sirois
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Daniela A Deny
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Yanxuan Li
- Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Yacine D Fall
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Sarah J Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
30
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Memarzadeh K, Savage DJ, Bean AJ. Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol Ther 2019; 20:1416-1429. [PMID: 31475882 PMCID: PMC6804809 DOI: 10.1080/15384047.2019.1647049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common malignancy in infants. Overexpression of the epidermal growth factor receptor (EGFR) in neuroblastoma tumors underlies resistance to chemotherapeutics. UBE4B, an E3/E4 ubiquitin ligase involved in EGFR degradation, is located on chromosome 1p36, a region in which loss of heterozygosity is observed in approximately one-third of neuroblastoma tumors and is correlated with poor prognosis. In chemoresistant neuroblastoma cells, depletion of UBE4B yielded significantly reduced cell proliferation and migration, and enhanced apoptosis in response to EGFR inhibitor, Cetuximab. We have previously shown that UBE4B levels are inversely correlated with EGFR levels in neuroblastoma tumors. We searched for additional targets of UBE4B that mediate cellular alterations associated with tumorogenesis in chemoresistant neuroblastoma cells depleted of UBE4B using reverse phase protein arrays. The expression of STAT5a, an effector protein downstream of EGFR, doubled in the absence of UBE4B, and verified by quantitative immunoblotting. Chemoresistant neuroblastoma cells were treated with SH-4-54, a STAT5 inhibitor, and observed insignificant effects on cell proliferation, migration, and apoptosis. However, SH-4-54 significantly enhanced the anti-proliferative and anti-migratory effects of Cetuximab in naïve SK-N-AS neuroblastoma cells. Interestingly, in UBE4B depleted SK-N-AS cells, SH-4-54 significantly potentiated the effect of Cetuximab rendering cells increasingly sensitive an otherwise minimally effective Cetuximab concentration. Thus, neuroblastoma cells with low UBE4B levels were significantly more sensitive to combined EGFR and STAT5 inhibition than parental cells. These findings may have potential therapeutic implications for patients with 1p36 chromosome LOH and low tumor UBE4B expression.
Collapse
Affiliation(s)
- Kimiya Memarzadeh
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David J. Savage
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew J. Bean
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Program in Neuroscience, Cell Biology and Biochemistry, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
33
|
Li J, Halfter K, Zhang M, Saad C, Xu K, Bauer B, Huang Y, Shi L, Mansmann UR. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures. BMC Cancer 2019; 19:600. [PMID: 31208363 PMCID: PMC6580552 DOI: 10.1186/s12885-019-5804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have been mixed, some of these small molecule drugs are highly successful while others show a more modest response. A high number of studies have been conducted to investigate the signaling mechanisms and corresponding therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However, most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated with drug efficacy and adverse effects during treatment. METHODS In order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479 cell lines from The Cancer Cell Line Encyclopedia were used. RESULTS The potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with results from different independent studies, thereby providing indirect verification of the obtained results. CONCLUSIONS Our study demonstrates the potential of using a computational approach on signature-based-analysis over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-based analysis on a single cancer type.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Kai Xu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU, Munich, Germany
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ulrich R. Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
34
|
Zhu T, An S, Choy MT, Zhou J, Wu S, Liu S, Liu B, Yao Z, Zhu X, Wu J, He Z. LncRNA DUXAP9-206 directly binds with Cbl-b to augment EGFR signaling and promotes non-small cell lung cancer progression. J Cell Mol Med 2018; 23:1852-1864. [PMID: 30515972 PMCID: PMC6378200 DOI: 10.1111/jcmm.14085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Ting Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu An
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Man-Ting Choy
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhao Zhou
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Shanshan Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Shihua Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Bangdong Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Zhu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
35
|
Vieceli FM, Bronner ME. Leukocyte receptor tyrosine kinase interacts with secreted midkine to promote survival of migrating neural crest cells. Development 2018; 145:dev.164046. [PMID: 30228102 DOI: 10.1242/dev.164046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Neural crest cells migrate long distances throughout the embryo and rely on extracellular signals that attract, repel and/or stimulate survival to ensure proper contribution to target derivatives. Here, we show that leukocyte receptor tyrosine kinase (LTK), an ALK-type receptor tyrosine kinase, is expressed by neural crest cells during early migratory stages in chicken embryos. Loss of LTK in the cranial neural crest impairs migration and results in increased levels of apoptosis. Conversely, midkine, previously proposed as a ligand for ALK, is secreted by the non-neural ectoderm during early neural crest migratory stages and internalized by neural crest cells in vivo Similar to loss of LTK, loss of midkine reduces survival of the migratory neural crest. Moreover, we show by proximity ligation and co-immunoprecipitation assays that midkine binds to LTK. Taken together, these results suggest that LTK in neural crest cells interacts with midkine emanating from the non-neural ectoderm to promote cell survival, revealing a new signaling pathway that is essential for neural crest development.
Collapse
Affiliation(s)
- Felipe Monteleone Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
36
|
Zhou X, Xie S, Wu S, Qi Y, Wang Z, Zhang H, Lu D, Wang X, Dong Y, Liu G, Yang D, Shi Q, Bian W, Yu R. Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro Oncol 2018; 19:1628-1639. [PMID: 28575494 DOI: 10.1093/neuonc/nox104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) is associated with worse prognosis of gliomas, but its role and mechanism in glioma progression remain largely unknown. This study aimed to explore the role and mechanism of GOLPH3 in glioma progression. Methods The expression of GOLPH3 in glioma tissues was detected by quantitative PCR, immunoblotting, and immunohistochemistry. GOLPH3's effect on glioma progression was examined using cell growth assays and an intracranial glioma model. The effect of GOLPH3 on epidermal growth factor receptor (EGFR) stability, endocytosis, and degradation was examined by immunoblotting and immunofluorescence. The activity of Rab5 was checked by glutathione S-transferase pulldown assay. Results GOLPH3 was upregulated in gliomas, and its downregulation inhibited glioma cell proliferation both in vitro and in vivo. Furthermore, GOLPH3 depletion dampened EGFR signaling by enhancing EGFR endocytosis, driving EGFR into late endosome and promoting lysosome-mediated degradation. Interestingly, GOLPH3 bound to Rab5 and GOLPH3 downregulation promoted the activation of Rab5. In addition, Rab5 depletion abolished the effect of GOLPH3 on EGFR endocytosis and degradation. Conclusion Our results imply that GOLPH3 promotes glioma cell proliferation via inhibiting Rab5-mediated endocytosis and degradation of EGFR, thereby activating the phosphatidylinositol-3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway. We find a new mechanism by which GOLPH3 promotes tumor progression through regulating cell surface receptor trafficking. Extensive and intensive understanding of the role of GOLPH3 in glioma progression may provide an opportunity to develop a novel molecular therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shao Xie
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shishuang Wu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhua Qi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Dong
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanzheng Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxu Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenbin Bian
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
37
|
Kol A, Terwisscha van Scheltinga A, Pool M, Gerdes C, de Vries E, de Jong S. ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells. Oncotarget 2018; 8:45432-45446. [PMID: 28467975 PMCID: PMC5542198 DOI: 10.18632/oncotarget.17139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Imgatuzumab is a novel glycoengineered anti-epidermal growth factor receptor (EGFR) monoclonal antibody optimized to induce both antibody-dependent cellular cytotoxicity (ADCC) and EGFR signal transduction inhibition. We investigated anti-EGFR monoclonal antibodies imgatuzumab and cetuximab–induced internalization and membranous turnover of EGFR, and whether this affected imgatuzumab–mediated ADCC responses and growth inhibition of non-small cell lung cancer (NSCLC) cells. In a panel of wild-type EGFR expressing human NSCLC cell lines, membranous and total EGFR levels were downregulated more effectively by imgatuzumab when compared with cetuximab. Imgatuzumab plus cetuximab enhanced EGFR internalization and reduced membranous turnover of EGFR, resulting in an even stronger downregulation of EGFR. Immunofluorescent analysis showed that combined treatment increased clustering of receptor-antibody complexes and directed internalized EGFR to lysosomes. The antibody combination potently inhibited intracellular signaling and epidermal growth factor (EGF)-dependent cell proliferation. More importantly, robust EGFR downregulation after 72 hours with the antibody combination did not impair ADCC responses. In conclusion, imgatuzumab plus cetuximab leads to a strong downregulation of EGFR and superior cell growth inhibition in vitro without affecting antibody-induced ADCC responses. These findings support further clinical exploration of the antibody combination in EGFR wild-type NSCLC.
Collapse
Affiliation(s)
- Arjan Kol
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anton Terwisscha van Scheltinga
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Gerdes
- Roche Pharma Research & Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Elisabeth de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Zhang X, Liu K, Zhang T, Wang Z, Qin X, Jing X, Wu H, Ji X, He Y, Zhao R. Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway. Oncotarget 2018; 8:1541-1554. [PMID: 27903975 PMCID: PMC5352075 DOI: 10.18632/oncotarget.13652] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
Cortactin (CTTN) is overexpressed in various tumors, including head and neck squamous cell carcinoma and colorectal cancer (CRC), and can serve as a biomarker of cancer metastasis. We observed that CTTN promotes cancer cell proliferation in vitro and increases CRC tumor xenograft growth in vivo. CTTN expression increases EGFR protein levels and enhances the activation of the MAPK signaling pathway. CTTN expression also inhibits the ubiquitin-mediated degradation of EGFR by suppressing the coupling of c-Cbl with EGFR. CoIP experiments indicate CTTN can interact with c-Cbl in CRC cells. These results demonstrate that CTTN promotes the proliferation of CRC cells and suppresses the degradation of EGFR.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Kun Liu
- Department of Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhenlei Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Department of Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xuan Qin
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Xiaoqian Jing
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Haoxuan Wu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Xiaopin Ji
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yonggang He
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ren Zhao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Wang W, Qu M, Wang J, Zhang X, Zhang H, Wu J, Yu B, Wu H, Kong W, Yu X. Autoubiquitination of feline E3 ubiquitin ligase BCA2. Gene 2018; 638:1-6. [DOI: 10.1016/j.gene.2017.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
|
40
|
Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 2017; 36:617-633. [PMID: 29071526 DOI: 10.1007/s10555-017-9700-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors-bortezomib, carfilzomib, and ixazomib -for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Collapse
Affiliation(s)
- Wafik Zaky
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Christa Manton
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia P Miller
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Soumen Khatua
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Joya Chandra
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Abstract
Trophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs). While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.
Collapse
|
42
|
Zhang N, Zhang L, Shi C, Tian Q, Lv G, Wang Y, Cui D, Chen F. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat. Sci Rep 2017; 7:13601. [PMID: 29051560 PMCID: PMC5648756 DOI: 10.1038/s41598-017-13992-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/04/2017] [Indexed: 11/27/2022] Open
Abstract
Protein ubiquitination, which is a major post-translational modifications that occurs in eukaryotic cells, is involved in diverse biological processes. To date, large-scale profiling of the ubiquitome in common wheat has not been reported, despite its status as the major cereal crop in the world. Here, we performed the first ubiquitome analysis of the common wheat (Triticum aestivum L.) variety, Aikang 58. Overall, 433 lysine modification sites were identified in 285 proteins in wheat seedlings, and four putative ubiquitination motifs were revealed. In particular, 83 of the 285 ubiquitinated proteins had ubiquitination orthologs in Oryza sativa L., and Arabidopsis thaliana. Ubiquitylated lysines were found to have a significantly different preference for secondary structures when compared with the all lysines. In accordance with previous studies, proteins related to binding and catalytic activity were predicted to be the preferential targets of lysine ubiquitination. Besides, protein interaction network analysis reveals that diverse interactions are modulated by protein ubiquitination. Bioinformatics analysis revealed that the ubiquitinated proteins were involved in diverse biological processes. Our data provides a global view of the ubiquitome in common wheat for the first time and lays a foundation for exploring the physiological role of lysine ubiquitination in wheat and other plants.
Collapse
Affiliation(s)
- Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingran Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaonan Shi
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiuzhen Tian
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guoguo Lv
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
43
|
Kitai Y, Iwakami M, Saitoh K, Togi S, Isayama S, Sekine Y, Muromoto R, Kashiwakura JI, Yoshimura A, Oritani K, Matsuda T. STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization. J Biol Chem 2017; 292:19392-19399. [PMID: 28986450 DOI: 10.1074/jbc.m117.802884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/03/2017] [Indexed: 11/06/2022] Open
Abstract
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signaling pathways and promotes tumorigenesis in melanoma and breast cancer cells. However, the contribution of STAP-2 to the behavior of other types of cancer cells is unclear. Here, we show that STAP-2 promotes tumorigenesis of prostate cancer cells through up-regulation of EGF receptor (EGFR) signaling. Tumor growth of a prostate cancer cell line, DU145, was strongly decreased by STAP-2 knockdown. EGF-induced gene expression and phosphorylation of AKT, ERK, and STAT3 were significantly decreased in STAP-2-knockdown DU145 cells. Mechanistically, we found that STAP-2 interacted with EGFR and enhanced its stability by inhibiting c-CBL-mediated EGFR ubiquitination. Our results indicate that STAP-2 promotes prostate cancer progression via facilitating EGFR activation.
Collapse
Affiliation(s)
- Yuichi Kitai
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Masashi Iwakami
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Kodai Saitoh
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Sumihito Togi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Serina Isayama
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Yuichi Sekine
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Jun-Ichi Kashiwakura
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Akihiko Yoshimura
- the the Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, and
| | - Kenji Oritani
- the Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba 286-8686, Japan
| | - Tadashi Matsuda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812,
| |
Collapse
|
44
|
Pae J, Cinalli RM, Marzio A, Pagano M, Lehmann R. GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Dev Cell 2017; 42:130-142.e7. [PMID: 28743001 DOI: 10.1016/j.devcel.2017.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
The separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3GCL). We show that CRL3GCL promotes PGC fate by mediating degradation of Torso, a receptor tyrosine kinase (RTK) and major determinant of somatic cell fate. This mode of RTK degradation does not depend upon receptor activation but is prompted by release of GCL from the nuclear envelope during mitosis. The cell-cycle-dependent change in GCL localization provides spatiotemporal specificity for RTK degradation and sequesters CRL3GCL to prevent it from participating in excessive activities. This precisely orchestrated mechanism of CRL3GCL function and regulation defines cell fate at the single-cell level.
Collapse
Affiliation(s)
- Juhee Pae
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Ryan M Cinalli
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio Marzio
- HHMI, Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- HHMI, Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Koustas E, Karamouzis MV, Mihailidou C, Schizas D, Papavassiliou AG. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett 2017; 396:94-102. [PMID: 28323034 DOI: 10.1016/j.canlet.2017.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
46
|
Abstract
Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Ning Zheng
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| | - Nitzan Shabek
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| |
Collapse
|
47
|
von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 2017; 14:323-341. [PMID: 28436486 DOI: 10.1038/nrcardio.2017.51] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β2-adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Marcelo R Dos Santos
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.,Heart Institute (InCor), University of Sao Paulo Medical School, Dr. Arnaldo Avenue, 455 Cerqueira César, 01246903 Sao Paulo, Brazil
| | - Jochen Springer
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Stefan D Anker
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.,Division of Cardiology and Metabolism: Heart Failure, Cachexia and Sarcopenia, Department of Internal Medicine and Cardiology, Berlin-Brandenburg Centre for Regenerative Therapies, Charité Medical School, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
48
|
Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016. Int J Cardiol 2017; 238:5-11. [PMID: 28427849 DOI: 10.1016/j.ijcard.2017.03.155] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia.
Collapse
Affiliation(s)
- Masakazu Saitoh
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Junichi Ishida
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | - Stephan von Haehling
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus S Anker
- Charité - Campus Benjamin Franklin (CBF), Department of Cardiology, Berlin, Germany Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | | | - Stefan D Anker
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
49
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
50
|
Hrgovic I, Doll M, Pinter A, Kaufmann R, Kippenberger S, Meissner M. Histone deacetylase inhibitors interfere with angiogenesis by decreasing endothelial VEGFR-2 protein half-life in part via a VE-cadherin-dependent mechanism. Exp Dermatol 2017; 26:194-201. [DOI: 10.1111/exd.13159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| | - Andreas Pinter
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology; Johann Wolfgang Goethe-University; Frankfurt/Main Germany
| |
Collapse
|