1
|
Luo C, Liang H, Ji M, Ye C, Lin Y, Guo Y, Zhang Z, Shu Y, Jin X, Lu S, Lu W, Dang Y, Zhang H, Li B, Zhou G, Zhang Z, Chang L. Autophagy induced by mechanical stress sensitizes cells to ferroptosis by NCOA4-FTH1 axis. Autophagy 2025; 21:1263-1282. [PMID: 39988734 DOI: 10.1080/15548627.2025.2469129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death implicated in various diseases, including cancers, with its progression influenced by iron-dependent peroxidation of phospholipids and dysregulation of the redox system. Whereas the extracellular matrix of tumors provides mechanical cues influencing tumor initiation and progression, its impact on ferroptosis and its mechanisms remains largely unexplored. In this study, we reveal that heightened mechanical tension sensitizes cells to ferroptosis, whereas decreased mechanics confers resistance. Mechanistically, reduced mechanical tension reduces intracellular free iron levels by enhancing FTH1 protein expression. Additionally, low mechanics significantly diminishes NCOA4, pivotal in mediating FTH1 phase separation-induced ferritinophagy. Targeting NCOA4 effectively rescues ferroptosis susceptibility under low mechanical tension through modulation of FTH1 phase separation-driven autophagy. In conclusion, our findings demonstrate that mechanics regulates iron metabolism via NCOA4-FTH1 phase separation-mediated autophagy, thereby influencing ferroptosis sensitivity and offering promising therapeutic avenues for future exploration.Abbreviations: ACO1: aconitase 1; ATG5: autophagy related 5; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FER-1: ferrostatin-1; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GPX4: glutathione peroxidase 4; IR: ionizing radiation; IREB2: iron responsive element binding protein 2; NCOA4: nuclear receptor coactivator 4; NFE2L2: NFE2 like bZIP transcription factor 2; NOPP: norepinephrine; PBS: phosphate-buffered saline; PI: propidium iodide; RSL3: (1S,3 R)-RSL3; TCGA: The Cancer Genome Atlas; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Chenyu Luo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Haisheng Liang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yiping Lin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yuhan Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Zhisen Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yinyin Shu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Shuangshuang Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Wanling Lu
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Yazheng Dang
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Zengli Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Zhang X, Zhang X, Wang G, Li X, Xing S, Cao C, Li Y, Han L, Wang S. Histone deacetylase inhibiting nanoprodrugs for enhanced chemodynamic therapy through multistage downregulating glutathione. Int J Biol Macromol 2025; 305:141184. [PMID: 39971061 DOI: 10.1016/j.ijbiomac.2025.141184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The unique redox homeostasis in tumor cells makes chemodynamic therapy (CDT) a promising strategy for cancer treatment. However, high glutathione (GSH) level within tumor cells severely impacts the efficacy of CDT. Therefore, reducing intracellular GSH levels has become an approach to enhance CDT. Here, we propose a HDAC inhibiting nanoprodrug consisting of an amphiphilic reactive oxygen species (ROS)-responsive polyprodrug and a GSH-responsive dimer. The high ROS level in tumor tissues can trigger the release of cinnamaldehyde and ferrocene to upregulate intracellular ROS levels through generation of hydroxyl radicals. Additionally, the dimer can react with intracellular GSH to release histone deacetylase (HDAC) inhibitors for inhibiting HDAC, thereby suppressing GSH synthesis by reducing precursor supply. The multistage depletion of GSH can further enhance oxidative damage of hydroxyl radicals to cancer cells. This study provides a promising HDAC-inhibiting strategy to achieve GSH depletion for enhanced CDT.
Collapse
Affiliation(s)
- Yongxin Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xinlu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Guocheng Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xue Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Suixin Xing
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yuewei Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Sheng Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Kolligundla LP, Sullivan KM, Mukhi D, Andrade-Silva M, Liu H, Guan Y, Gu X, Wu J, Doke T, Hirohama D, Guarnieri P, Hill J, Pullen SS, Kuo J, Inamoto M, Susztak K. Glutathione-specific gamma-glutamylcyclotransferase 1 ( CHAC1) increases kidney disease risk by modulating ferroptosis. Sci Transl Med 2025; 17:eadn3079. [PMID: 40267214 DOI: 10.1126/scitranslmed.adn3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/20/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association studies (GWASs) have identified more than 1000 loci where genetic variants correlate with kidney function. However, the specific genes, cell types, and mechanisms influenced by these genetic variants remain largely uncharted. Here, we identified glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) on chromosome 15 as affected by GWAS variants by analyzing human kidney gene expression and methylation information. Both CHAC1 RNA and protein were expressed in the loop of Henle region in mouse and human kidneys, and CHAC1 expression was higher in patients carrying disease risk variants. Using CRISPR technology, we created mice with a single functional copy of the Chac1 gene (Chac1+/-) that displayed no baseline phenotypic alterations in kidney structure or function. These mice demonstrated resilience to kidney disease in multiple models, including folic acid-induced nephropathy, adenine-induced chronic kidney disease, and uninephrectomy-streptozotocin-induced diabetic nephropathy. We further showed that CHAC1 plays a critical role in degrading the cellular antioxidant glutathione. Tubule cells isolated from Chac1+/- mice showed increased glutathione, decreased lipid peroxidation, improved cell viability, and protection against ferroptosis. Expression of ferroptosis-associated genes was also lower in mice with only one copy of Chac1. Higher CHAC1 protein also correlated with ferroptosis-related protein abundance in kidney biopsies from patients with kidney disease. This study positions CHAC1 as an important mediator of kidney disease that influences glutathione concentrations and ferroptosis, suggesting potential avenues to explore for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Lakshmi P Kolligundla
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Katie M Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Pediatrics, Medical College of Wisconsin Pediatric Nephrology, Milwaukee, WI 53226, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Magaiver Andrade-Silva
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Yuting Guan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Xiangchen Gu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Daigoro Hirohama
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Paolo Guarnieri
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jon Hill
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jay Kuo
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
4
|
Singh M, Arora HL, Naik R, Joshi S, Sonawane K, Sharma NK, Sinha BK. Ferroptosis in Cancer: Mechanism and Therapeutic Potential. Int J Mol Sci 2025; 26:3852. [PMID: 40332483 PMCID: PMC12028135 DOI: 10.3390/ijms26083852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer drug resistance occurs when cancer cells evade cell death following treatment with chemotherapy, radiation therapy, and targeted therapies. This resistance is often linked to the reprogramming of programmed cell death (PCD) pathways, allowing cancer cells to survive drug-induced stress. However, certain anticancer therapies, when combined with specific agents or inhibitors, can induce ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation. Currently, extensive preclinical and clinical research is underway to investigate the molecular, cellular, and tissue-specific mechanisms underlying ferroptosis, with the goal of identifying strategies to overcome drug resistance in cancers unresponsive to conventional PCD pathways. By harnessing ferroptosis, cancer cells can be compelled to undergo lipid peroxidation-induced death, potentially improving therapeutic outcomes in patients with cancer. This short review aims to enhance the understanding of ferroptosis inducers in cancer therapy and stimulate further research into ferroptosis-based approaches for more effective clinical cancer treatment.
Collapse
Affiliation(s)
- Mansaa Singh
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Hasmiq L. Arora
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Rutuja Naik
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Shravani Joshi
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Kaveri Sonawane
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Chen S, Peng W, Yao H, Deng Z, Yue Z, Liu G, Xu J, Lin N, Xu W, Yue J, Zhu G. Reactive Cysteines in Proteins are the Dominant Reductants for Platinum(IV) Prodrug Activation in Live Cells. Angew Chem Int Ed Engl 2025:e202416396. [PMID: 40214085 DOI: 10.1002/anie.202416396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
The intracellular reduction of Pt(IV) prodrugs is crucial for their anticancer efficacy. However, the major components responsible for the reduction of Pt(IV) complexes within live cells remain elusive. Herein, we developed an aminoluciferin-functionalized Pt(IV) complex, Pt-Luc, that can be used as a bioluminescent reporter for real-time monitoring of Pt(IV) reduction in live cancer cells by capturing immediate bioluminescent signals from the released aminoluciferin. Utilizing this powerful reporter, we found that the reduction of Pt(IV) prodrugs in live cancer cells significantly slows down when cysteine levels are reduced, while the levels of glutathione do not impact the reduction rate. Further investigation reveals that reactive cysteines in proteins, rather than small-molecule thiols, play a primary role in reducing the Pt(IV) complex. In vivo studies reveal a substantial 63% decrease in bioluminescence from Pt-Luc in thiol-blocking tumors in mice, reinforcing the pivotal role of reactive cysteines in Pt(IV) reduction. This study provides valuable insights into the activation mechanisms of Pt(IV) prodrugs in live cells and in vivo, enhancing our understanding of prodrug activation beyond buffer systems or fixed cells.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jiaqian Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Naixin Lin
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Weikang Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
6
|
Song W, Sun P, Zhao T, Zang Y, Dong P, Tang Q, Chen W, Chen W, Wang Z, Zhang Q, Wang Y, Yin C, Yu M. Unveiling the therapeutic potential of ferroptosis in lung cancer: a comprehensive bibliometric analysis and future therapeutic insights. Discov Oncol 2025; 16:508. [PMID: 40208519 PMCID: PMC11985706 DOI: 10.1007/s12672-025-02234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related deaths worldwide, with increasing attention being given to novel therapeutic strategies that target the mechanisms underlying tumor growth and drug resistance. Among these, ferroptosis, a regulated cell death driven by iron-dependent lipid peroxidation, has become a key focus in cancer research. Despite extensive research, the exact role of ferroptosis in lung cancer progression and treatment remains unclear, especially regarding its interaction with immune cells and the tumor microenvironment. OBJECTIVE AND METHODS To address these limitations, this study utilizes a comprehensive bibliometric analysis to explore the current landscape of ferroptosis research in lung cancer. We collected data from the Web of Science Core Collection, covering articles published between 2015 and 2025, and analyzed them using advanced tools such as VOSviewer and CiteSpace. RESULTS This study uses a comprehensive bibliometric analysis to uncover key trends and emerging areas related to lung cancer in ferroptosis research. Recently, the focus has shifted from basic mechanisms to clinical applications, particularly in developing GPX4-targeted therapies and combination treatments. With increasing international collaboration, the United States and China have become key players. Interdisciplinary research, especially on ferroptosis and the cancer-immune system, offers new insights into its role in the tumor microenvironment and immunotherapy. Ferroptosis shows excellent promise in overcoming drug resistance by regulating iron-dependent lipid peroxidation and enhancing treatment efficacy. Future research should focus on ferroptosis' clinical translation, particularly in personalized medicine and overcoming resistance, offering broad prospects for lung cancer treatment. CONCLUSION This paper provides valuable insights into the trends, key contributors, and emerging frontiers of ferroptosis research in lung cancer. It identifies important developments that can serve as a foundation for translating ferroptosis-based therapies into clinical practice, particularly to address drug resistance in lung cancer.
Collapse
Affiliation(s)
- Wenhuan Song
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
- Binzhou Medical University, Binzhou, China
| | - Peipei Sun
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
| | - Tongzhen Zhao
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
| | - Yunxue Zang
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
| | - Pengpeng Dong
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
| | - Qi Tang
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China
| | - Wenyu Chen
- Binzhou Medical University, Binzhou, China
| | - Wenyi Chen
- Binzhou Medical University, Binzhou, China
| | | | | | | | - Chunhui Yin
- Shandong Academy of Medical Sciences (SDAMS), Jinan, China
| | - Mingkun Yu
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, China.
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Wang L, ChenLiu Z, Wang D, Tang D. Cross-talks of GSH, mitochondria, RNA m6A modification, NRF2, and p53 between ferroptosis and cuproptosis in HCC: A review. Int J Biol Macromol 2025; 302:140523. [PMID: 39894098 DOI: 10.1016/j.ijbiomac.2025.140523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high morbidity and mortality, as well as poor prognosis. Therefore, it is imperative to explore alternative therapeutic targets for HCC treatment. Ferroptosis and cuproptosis have recently been identified as metal-dependent cell death mechanisms that play significant roles in HCC treatment. This study identified potential cross-talk between ferroptosis and cuproptosis, including the common hub glutathione, common site of occurrence, mitochondria, shared epigenetic modification mode, RNA N6 methyladenosine modification, mutual inhibitor, nuclear factor erythroid 2-related factor 2, and dual regulator, p53. These findings provide a theoretical foundation for the joint induction of HCC cell death and effective inhibition of HCC progression. However, some immune cells are susceptible to ferroptosis or cuproptosis, which may impair or enhance anti-cancer immune function. We propose strategies to target specific targets molecules such as tripartite motif containing 25, ferroptosis suppressor protein 1, and peroxisome proliferator-activated receptor gamma or exploit the unique acidic environment surrounding cancer cells to precisely induce ferroptosis in cancer cells. This approach aims to advance the development of precision medicine for HCC treatment.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China.
| |
Collapse
|
8
|
Bakar-Ates F, Ozkan E. Synergistic ferroptosis in triple-negative breast cancer cells: Paclitaxel in combination with Erastin induced oxidative stress and Ferroportin-1 modulation in MDA-MB-231 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3985-3994. [PMID: 39392483 DOI: 10.1007/s00210-024-03523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ferroptosis is an important regulated cell death mechanism characterized by iron-dependent lipid peroxidation and oxidative stress. In this study, we examined the ferroptosis-inducing effect of the combined use of Paclitaxel, a microtubule-stabilizing agent, and Erastin, a ferroptosis inducer, in breast cancer cells. In this context, the combination of the compounds in question was applied to the cells and the presence of a synergistic effect was determined by calculating the combination index. Glutathione (GSH) levels and glutathione peroxidase (GPX) activity were determined by commercial assay kits, and the effect of the compounds on lipid peroxidation was determined by measurement of malondialdehyde (MDA) levels. Additionally, the effect of combination treatment on ferroptotic protein expression was determined by western blot. Our findings revealed that the combination treatment caused a significant change in mitochondrial function by causing an increase in the depolarized/viable cell population. Additionally, there was a significant increase in intracellular reactive oxygen species (ROS) levels compared to single applications of the compounds. The significant increase observed in malondialdehyde (MDA) levels revealed that the combination treatment increased lipid peroxidation. Moreover, intracellular GSH levels and glutathione peroxidase (GPX) activity significantly decreased by Paclitaxel-Erastin combination. The expression of ferroptosis-regulating proteins was significantly downregulated. The findings showed that the Paclitaxel-Erastin combination synergistically contributed to the accumulation of lipid reactive oxygen species and induced the ferroptotic cell death pathway in breast cancer cells.
Collapse
Affiliation(s)
- Filiz Bakar-Ates
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Anadolu, Ankara, 06560, Turkey.
| | - Erva Ozkan
- Faculty of Pharmacy, Department of Biochemistry, Ankara Medipol University, Altindag, Ankara, 06050, Turkey
| |
Collapse
|
9
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
11
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
12
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
13
|
Yu X, Yao X, Song F, Zhu X. T-Box Transcription Factor 2 Mediates Chemoresistance of Endometrial Cancer via Regulating FSP1-involved Ferroptosis. Cell Biochem Biophys 2025; 83:1313-1320. [PMID: 39325362 DOI: 10.1007/s12013-024-01518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Chemotherapy is increasingly being used in the first-line treatment of endometrial cancer (EC) patients. However, chemoresistance seriously affects its efficacy. Understanding the underlying molecular mechanisms is critical for EC treatment. We explored the regulatory role of T-Box transcription factor 2 (TBX2)-ferroptosis suppressor protein 1 (FSP1) axis in ferroptosis and chemoresistance of EC. Cisplatin-resistant cell line Ishikawa/DDP cells were utilized to generate TBX2 and FSP1 overexpression and knockdown stable cell lines by using lentivirus infection and puromycin selection. Cell viability and ferroptosis status were evaluated in EC cells with or without Cisplatin and/or FSP1 inhibitor (iFSP1) using CKK-8, lipid peroxidation, malondialdehyde, and lactate dehydrogenase release assays. Endometrial carcinoma xenograft mouse model was established to further explore the function of TBX2-FSP1 axis on ferroptosis and tumor progression in EC. TBX2 suppressed Cisplatin-induced ferroptosis through up-regulating FSP1 expression level in EC cells. On the contrary, knockdown of TBX2 reduced FSP1 expression and significantly promoted Cisplatin-induced ferroptosis. TBX2 or FSP1 overexpression and knockdown promote and inhibit EC tumor growth under Cisplatin treatment, respectively. Interestingly, silence FSP1 could reverse TBX2-mediated ferroptosis inhibition and tumor-promoting effect. TBX2-FSP1 axis inhibits ferroptosis and enhances the Cisplatin resistance, which will provide an important theoretical basis and potential solution for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Gynecology, Zibo Central Hospital, Gongqingtuan Road, Zhangdian District, Zibo, 255000, Shandong, China
| | - Xuemei Yao
- Department of Gastroenterology, Zibo Central Hospital, Gongqingtuan Road, Zhangdian District, Zibo, 255000, Shandong, China
| | - Fangfang Song
- Department of Cardiovascular Medicine, Zibo Central Hospital, Gongqingtuan Road, Zhangdian District, Zibo, 255000, Shandong, China
| | - Xiaolin Zhu
- Center for Reproductive Medicine, Zibo Central Hospital, Gongqingtuan Road, Zhangdian District, Zibo, 255000, Shandong, China.
| |
Collapse
|
14
|
Jin J, Chen Y, Chen X, Zhang Z, Wu Y, Tian N, Wu A, Wang X, Shao Z, Zhou Y, Zhang X, Wu Y. Beyond a ferroptosis inducer: erastin can suppress nutrient deprivation induced cell death in the intervertebral disc. Spine J 2025; 25:597-608. [PMID: 39522771 DOI: 10.1016/j.spinee.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Erastin has been found to induce ferroptosis; however, whether erastin may have roles other than ferroptosis inducer in cells is unknown. Nutrient deficiency is one of the major causes of many diseases including intervertebral disc (IVD) degeneration. PURPOSE The current study investigates the effect of erastin in nucleus pulposus cells under nutrient deprivation condition. STUDY DESIGN Experiment in vitro and ex vivo. METHODS The effect of erastin on the cell survival of nucleus pulposus cells was evaluated in fetal bovine serum (FBS) and glucose deprivation condition. RSL3 and ferrostatin-1 were applied to illustrate whether the effect of erastin is ferroptosis dependent. The involvement of solute carrier family 7, membrane 11(SLC7A11), autophagy as well as mechanistic target of rapamycin kinase complex 1(mTORC1) and transcription factor EB (TFEB) were assessed to demonstrate the working mechanism of erastin. RESULTS Erastin may induce cell death at the concentration of ≥ 5μM; however, it may protect nucleus pulposus cells against nutrient deprivation induced cell death at lower concentration (0.25-1μM) and the effect of erastin is ferroptosis independent. The mechanism study showed that the effect of erastin may relate to its SCL7A11 regulation, as SCL7A11 knock-down may have the similar effect as erastin. Furthermore, it was also demonstrated that mTORC1-TFEB mediated autophagy was involved in protective effect of erastin. CONCLUSIONS Low dose erastin may promote cell survival under nutrient deprivation condition, and its effect is ferroptosis independent; erastin may exert its protective effect through mTORC1-TFEB mediated autophagy regulation. CLINICAL SIGNIFICANCE Nutrient deprivation is a major contributor to intervertebral disc degeneration. Our in vitro and ex vivo study showed that low dose of erastin may suppress nutrient deprivation induced cell death in IVD degeneration. Although it was not validated in vivo model due to lack of in vivo nutrient deprivation induced IVD degeneration model currently, this study may still provide a potential therapeutic option for IVD degeneration, which of cause need further validation.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Cixi Biomedical Research Institute,Wenzhou Medical University,Zhejiang,China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
15
|
Li X, Li Y, Xu J, Lu X, Ma S, Sun L, Chang C, Min L, Fan C. Terahertz Wave Desensitizes Ferroptosis by Inhibiting the Binding of Ferric Ions to the Transferrin. ACS NANO 2025; 19:6876-6889. [PMID: 39752147 DOI: 10.1021/acsnano.4c13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe3+ binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis. Here, we reported a nonpharmaceutical, noninvasive, and Tf-targeted electromagnetic intervention technique capable of desensitizing ferroptosis with directivity. First, we revealed that the THz radiation had the ability to significantly decrease binding affinity between the Fe3+ and Tf via molecular dynamics simulations, and the modulation was strongly wavelength-dependent. This result provides theoretical feasibility for the THz modulation-based ferroptosis intervention. Subsequent extracellular and cellular chromogenic activity assays indicated that the THz field at 8.7 μm (i.e., 34.5 THz) inhibited the most Fe3+ bound to the Tf, and the wavelength was in good agreement with the simulated one. Then, functional assays demonstrated that levels of intracellular Fe2+, lipid peroxidation, malondialdehyde (MDA) and cell death were all significantly reduced in cells treated with this 34.5 THz wave. Furthermore, the iron deposition, lipid peroxidation, and MDA in the ferroptosis disease model induced by ischemia-reperfusion injury could be nearly eliminated by the same radiation, validating THz wave-induced desensitization of ferroptosis in vivo. Together, this work provides a preclinical exemplar for electromagnetic irradiation-stimulated desensitization of ferroptosis and predicts an innovative, THz wave-based therapeutic method for ferroptosis-associated diseases in the future.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
| | - Junxuan Xu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Xinlian Lu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, P. R. China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing 102206, P. R. China
| | - Lan Sun
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Li Min
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
16
|
D’Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian N, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood 2025; 145:765-783. [PMID: 39541586 PMCID: PMC11863713 DOI: 10.1182/blood.2024026109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. On the basis of the breeding of 8 founder strains with extreme genetic diversity, the Jackson Laboratory diversity outbred population can capture the impact of genetic heterogeneity in like manner to population-based studies. RBCs from 350 outbred mice, either fresh or stored for 7 days, were tested for posttransfusion recovery, as well as metabolomics and lipidomics analyses. Metabolite and lipid quantitative trait loci (QTL) mapped >400 gene-metabolite associations, which we collated into an online interactive portal. Relevant to RBC storage, we identified a QTL hotspot on chromosome 1, mapping on the region coding for the ferrireductase 6-transmembrane epithelial antigen of the prostate 3 (Steap3), a transcriptional target to p53. Steap3 regulated posttransfusion recovery, contributing to a ferroptosis-like process of lipid peroxidation, as validated via genetic manipulation in mice. Translational validation of murine findings in humans, STEAP3 polymorphisms were associated with RBC iron content, lipid peroxidation, and in vitro hemolysis in 13 091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. QTL analyses in humans identified a network of gene products (fatty acid desaturases 1 and 2, epoxide hydrolase 2, lysophosphatidylcholine acetyl-transferase 3, solute carrier family 22 member 16, glucose 6-phosphate dehydrogenase, very long chain fatty acid elongase, and phospholipase A2 group VI) associated with altered levels of oxylipins. These polymorphisms were prevalent in donors of African descent and were linked to allele frequency of hemolysis-linked polymorphisms for Steap3 or p53. These genetic variants were also associated with lower hemoglobin increments in thousands of single-unit transfusion recipients from the vein-to-vein database.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, ME
- RTI International, Research Triangle Park, NC
| | - Ariel Hay
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | | | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Steven Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, BC, Canada
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Brent R. Stockwell
- Department of Biological Sciences, Department of Chemistry, and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | | | - James C. Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
17
|
Zhang X, Li H, Zhao Y, Zhao T, Wang Z, Tang Q. Neuronal Injury after Ischemic Stroke: Mechanisms of Crosstalk Involving Necroptosis. J Mol Neurosci 2025; 75:15. [PMID: 39903429 DOI: 10.1007/s12031-025-02313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide, largely due to its increasing incidence associated with an aging population. This condition results from arterial obstruction, significantly affecting patients' quality of life and imposing a substantial economic burden on healthcare systems. While current treatments primarily focus on the rapid restoration of blood flow through thrombolytic therapy or surgical interventions, a limited understanding of neuronal injury mechanisms hampers the development of more effective treatments.This article explores the interplay among various cell death pathways-necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis-in the context of ischemic stroke to identify novel therapeutic targets. Each mode of cell death displays unique characteristics and roles post-stroke, and the activation of these pathways may vary across different animal models, complicating the translation of therapeutic strategies to clinical settings. Notably, the interaction between apoptosis and necroptosis is highlighted; inhibiting apoptosis might heighten the risk of necroptosis. Therefore, a balanced regulation of these pathways could promote enhanced neuronal survival.Additionally, we introduce PANoptosis, a form of cell death that encompasses pyroptosis, apoptosis, and necroptosis, emphasizing the complexity and potential therapeutic implications of these interactions. In summary, understanding the relationships among these cell death mechanisms in ischemic stroke is vital for developing new neuroprotective agents. Future research should aim for combinatorial interventions targeting multiple pathways to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Xuanning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Tingting Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Zhihao Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
18
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Wang J, Chen J, Fan K, Wang M, Gao M, Ren Y, Wu S, He Q, Tu K, Xu Q, Zhang Y. Inhibition of Endoplasmic Reticulum Stress Cooperates with SLC7A11 to Promote Disulfidptosis and Suppress Tumor Growth upon Glucose Limitation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408789. [PMID: 39739602 PMCID: PMC11831432 DOI: 10.1002/advs.202408789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Indexed: 01/02/2025]
Abstract
Disulfidptosis is a newly discovered type of regulated cell death triggered by disulfide bond accumulation and NADPH (nicotinamide adenine dinucleotide phosphate) depletion due to glucose deprivation. However, the regulatory mechanisms involving additional cellular circuits remain unclear. Excessive disulfide bond accumulation can impair endoplasmic reticulum (ER) homeostasis and activate the ER stress response. In this study, we found that SLC7A11-mediated disulfidptosis upon glucose deprivation is accompanied by ER stress induction. Pharmacological inhibition of SLC7A11-mediated cystine uptake or cystine withdrawal not only blocks disulfidptosis under glucose starvation but also suppresses the ER stress response, indicating a close link between these processes. Moreover, inhibitors targeting the ER stress response promote disulfidptosis, while ER stress inducers suppress glucose starvation-induced disulfidptosis in SLC7A11-high-expressing cells, suggesting a protective role for ER stress during disulfidptosis. Similar effects are observed in cells treated with glucose transporter inhibitors (GLUTi). Finally, combined treatment with ER stress inhibitors and GLUTi significantly suppresses tumor growth both in vitro and in vivo by inducing disulfide stress and subsequent disulfidptosis. In summary, these findings reveal a novel role for ER stress in regulating disulfidptosis and provide theoretical insights into the potential application of GLUTi and ER stress inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineHangzhou Medical CollegeHangzhouZhejiang311300China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang311300China
| | - Jing Chen
- Shaanxi Stem Cell Engineering Application Research CenterShaanxi Jiuzhou Biomedical Science and Technology GroupXi'anShaanxi710065China
| | - Kexin Fan
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Minglin Wang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Min Gao
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yakun Ren
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Shaobo Wu
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Qian He
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineHangzhou Medical CollegeHangzhouZhejiang311300China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang311300China
| | - Yilei Zhang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
20
|
Jin S, Wang H, Zhang Z, Yan M. Targeting Ferroptosis: Small-molecule Inducers as Novel Anticancer Agents. Anticancer Agents Med Chem 2025; 25:517-532. [PMID: 39411969 DOI: 10.2174/0118715206342278241008081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 05/14/2025]
Abstract
Ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, is increasingly recognized for its role in cancer development and as a potential therapeutic target. This review consolidates insights into the molecular mechanisms underpinning ferroptosis and evaluates the therapeutic potential of small-molecule inducers, such as erastin, RSL3, sulfasalazine, and sorafenib, which selectively trigger ferroptosis in cancer cells. It highlights the distinct morphological and molecular signatures of ferroptosis, its complex interplay with iron, lipid, and amino acid metabolic pathways, and the resultant implications for cancer treatment strategies. Strategic manipulation of the ferroptosis pathway offers a groundbreaking approach to cancer treatment, potentially circumventing the resistance that cancers develop against traditional apoptosis-inducing agents. Furthermore, it also emphasizes the necessity of refining these small molecules for clinical application and exploring their synergistic potential when combined with current therapies to augment overall treatment efficacy and improve patient outcomes. Ferroptosis thus emerges as a promising avenue in the realm of cancer therapy. Moving forward, research endeavors should focus on a more nuanced understanding of the interconnections between ferroptosis and other cell death modalities. Additionally, comprehensive evaluations of the long-term safety and therapeutic indices of the involved compounds are imperative. Such investigations are poised to herald a transformative shift in the paradigm of oncology, paving the way for innovative and targeted interventions.
Collapse
Affiliation(s)
- Shihao Jin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao Road, Jinan, 250000, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| |
Collapse
|
21
|
Lu CL, Liu J, Yang JF. LncRNA-XIST Promotes Lung Adenocarcinoma Growth and Inhibits Ferroptosis by Regulating GPX4. Mol Biotechnol 2025; 67:187-195. [PMID: 38153663 DOI: 10.1007/s12033-023-00993-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/13/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to explore the regulatory effects and molecular mechanisms of long non-coding RNA X-inactive-specific transcript (LncRNA-XIST) in lung adenocarcinoma. si-XIST or glutathione peroxidase 4 (GPX4) plasmids were transfected in PC-9 cells to suppress LncRNA-XIST expression or over-express GPX4, respectively. The mRNA expression levels of LncRNA-XIST and GPX4 in lung adenocarcinoma tissues or cells were assessed using RT-qPCR. CCK-8 assay was performed to examine cell activity, and corresponding biochemical kits were used to measure the levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA) in cells. Western blot is used to examine relative protein expression of FANCD2, SLC7A11, and GPX4 in lung adenocarcinoma cells. The mRNA and protein expression levels of LncRNA-XIST in clinical tissues and cells of lung adenocarcinoma were significantly higher than those in adjacent tissues and normal cells. Functional analysis showed that knockdown of LncRNA-XIST notably weakened the viability of lung adenocarcinoma cells and promoted ferroptosis (manifested by significantly up-regulated levels of ROS, MDA, and Fe2+ and down-regulated the expression of SLC7A11 and FANCD2, P < 0.05). Further mechanism analysis revealed that knockdown of LncRNA-XIST markedly inhibited the expression of GPX4 in lung adenocarcinoma cells and that GPX4 was significantly over-expressed in clinical tissues and cells of lung adenocarcinoma. Notably, the expression of GPX4 was positively correlated with that of LncRNA-XIST. Over-expression of GPX4 remarkably promoted cell proliferation and inhibited ferroptosis in lung adenocarcinoma. Besides, the GPX4 over-expression reversed the LncRNA-XIST knockdown-induced ferroptosis and decrease in lung adenocarcinoma cell viability. LncRNA-XIST increases the activity of lung adenocarcinoma cells and inhibits ferroptosis by up-regulating GPX4. Knocking down LncRNA-XIST may be an effective treatment for lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen-Lin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Jie Liu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Jun-Fa Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
22
|
Giarrizzo M, LaComb JF, Patel HR, Reddy RG, Haley JD, Graves LM, Iwanowicz EJ, Bialkowska AB. TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells. Mol Cancer Ther 2024; 23:1761-1778. [PMID: 39233476 PMCID: PMC11614700 DOI: 10.1158/1535-7163.mct-24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Oxidative phosphorylation is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates nonspecific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound TR-107 has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multitargeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer cells. TR-107 inhibited colorectal cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response and mitochondrial DNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of oxidative phosphorylation and a reduction in total cellular respiration. Multiomics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by colorectal cancer cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Hetvi R Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Rohan G Reddy
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Developmental Therapeutics at SBU Cancer Center, Stony Brook University, Stony Brook, New York
- SBU Proteomics Center, Stony Brook University, Stony Brook, New York
| | - Lee M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
23
|
Liu D, Zhu Y. Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion. Cells 2024; 13:1969. [PMID: 39682718 PMCID: PMC11639856 DOI: 10.3390/cells13231969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen-Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2's potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target.
Collapse
Affiliation(s)
- Daohang Liu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
| | - Yizhun Zhu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
24
|
Li C, Wang X, Zhu X, Liu J, Ye Y. A novel NIR fluorescent probe to image HNO during ferroptosis. Anal Chim Acta 2024; 1330:343265. [PMID: 39489948 DOI: 10.1016/j.aca.2024.343265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As an important reactive nitrogen species (RNS), HNO has been identified as an essential signaling molecule in many physiological processes. Ferroptosis produces a large amount of reactive oxygen species and reactive nitrogen species. However, the detailed mechanism of HNO during process of ferroptosis is rarely reported, especially in the near-infrared range. So, we designed a new near-infrared (NIR) HNO fluorescent probe X-1 based on a tricyanofuran (TCF) derivative and then applied it in ferroptosis imaging. The TCF derivative was chosen as the NIR fluorophore and 2-(diphenylphosphino)benzoate was used as the recognition group. RESULTS In this paper, a novel NIR HNO fluorescent probe X-1 based on tricyanofuran (TCF) derivatives was synthesized using the Staudinger linkage reaction. X-1 exhibited high selectivity for HNO in the near-infrared region (λem = 660 nm). When the recognition group undergoes the Staudinger linkage reaction with HNO, the NIR fluorescence emission increased significantly with the enhancement of the ICT effect. The response mechanism of X-1 to HNO was verified by high-resolution mass spectrometry (HRMS). Probe X-1 has the advantages of fast response (5 min), low detection limit, a large Stokes shift (120 nm) and strong anti-interference ability for HNO recognition. CCK-8 staining result indicates that the probe X-1 has good biocompatibility and little toxic effect on the cells. The probe was successfully applied to imaging the exogenous and endogenous HNO in living cells. SIGNIFICANCE In the near-infrared range, HNO was discovered as a mediator of cellular signaling molecules, increasing in concentration during the process of ferroptosis. Furthermore, using this probe, it was further verified that sorafenib, a commonly used drug for cancer treatment, exerts its therapeutic effect by inducing ferroptosis in cancer cells, leading to cell death.
Collapse
Affiliation(s)
- Changyi Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaokai Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Szukalska M, Grześkowiak BF, Bigaj-Józefowska MJ, Witkowska M, Cicha E, Sujka-Kordowska P, Miechowicz I, Nowicki M, Mrówczyński R, Florek E. Toxicity and Oxidative Stress Biomarkers in the Organs of Mice Treated with Mesoporous Polydopamine Nanoparticles Modified with Iron and Coated with Cancer Cell Membrane. Int J Nanomedicine 2024; 19:12053-12078. [PMID: 39583321 PMCID: PMC11585271 DOI: 10.2147/ijn.s481120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Polydopamine nanoparticles (PDA NPs) have great potential in medicine. Their applications being widely investigated in cancer therapy, imaging, chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and tissue repair. The aim of our study was to assess the in vivo toxicity and changes in oxidative stress biomarkers in organs of animals treated with mesoporous PDA NPs modified with iron (MPDAFe NPs), coated with the cancer cell membrane and loaded with doxorubicin (DOX), and subsequently subjected to PTT. Methods Liver and kidney homogenates were obtained from BALB/c nude mice with xenograft HepG2 human hepatoma cells, treated with iron modified mesoporous PDA nanoparticles, coated with the cancer cell membrane and loaded with doxorubicin (MPDAFe@DOX@Mem NPs), and subjected to PTT. These samples were used for histological evaluation and measurement of oxidative stress biomarkers, including total protein (TP), reduced glutathione (GSH), nitric oxide (NO), S-nitrosothiols (RSNO), thiobarbituric acid reactive substances (TBARS), trolox equivalent antioxidant capacity (TEAC), catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD). Results In the kidney, MPDAFe@DOX@Mem NPs in combination with PTT increased GSH (43%), TBARS (32%), and CAT (27%), while SOD decreased by 20% compared to the control group. Additionally, CAT activity in the liver increased by 79%. Conclusion Significant differences in oxidative stress parameters and histological changes after administration with MPDAFe@DOX@Mem NPs and PTT were observed in the kidneys, showing more pronounced changes than the liver, indicating potential kidney toxicity. Our research provides insights into oxidative stress and possible toxic effects after in vivo administration of mesoporous PDA NPs combined with chemotherapy-photothermal therapy (CT-PTT), which is extremely important for their future applications in anticancer therapies.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Emilia Cicha
- Laboratory of Experimental Animals, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
26
|
Zhang C, Zhan S, He Y, Pan Z, You Z, Zhu X, Lin Q. Inhibition of CISD2 enhances sensitivity to doxorubicin in diffuse large B-cell lymphoma by regulating ferroptosis and ferritinophagy. Front Pharmacol 2024; 15:1482354. [PMID: 39605902 PMCID: PMC11598492 DOI: 10.3389/fphar.2024.1482354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background CDGSH iron-sulfur domain 2 (CISD2), an iron-sulfur protein with a [2Fe-2S] cluster, plays a pivotal role in the progression of various cancers, including Diffuse Large B-cell Lymphoma (DLBCL). However, the mechanisms by which CISD2 regulates the occurrence and development of DLBCL remain to be fully elucidated. Methods The potential role of CISD2 as a predictive marker in DLBCL patients treated with the R-CHOP regimen was investigated through bioinformatics analysis and clinical cohort studies. DLBCL cell lines (SUDHL-4 and HBL-1) were employed in this research. Adenoviral (AV) plasmids were used to either silence or overexpress CISD2 in these DLBCL cell lines. Additionally, the induction of ferroptosis in DLBCL cell lines was assessed. Various parameters, including cell proliferation, intracellular free iron levels, lipid peroxides, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), were measured. Furthermore, the expression of proteins associated with ferroptosis and ferritinophagy was analyzed. Drug-resistant DLBCL cell lines were developed by gradually increasing doxorubicin (DOX) concentration over 6 months. The biological role of CISD2 in these drug-resistant DLBCL cell lines was subsequently assessed. Results Elevated CISD2 levels were found to be associated with decreased sensitivity of DLBCL patients to the R-CHOP regimen, as indicated by bioinformatics and clinical cohort analysis. Silencing CISD2 significantly reduced cell proliferation, increased iron accumulation, depleted glutathione (GSH), and elevated malondialdehyde (MDA) levels, alongside the accumulation of ROS and increased MMP. Additionally, BECN1 and NCOA4 expressions were upregulated, while p62, FTH1, and GPX4 expressions were downregulated. Conversely, overexpression of CISD2 reversed these effects. Treatment of DLBCL cell lines with Erastin led to decreased CISD2 levels. Notably, in drug-resistant DLBCL cell lines, CISD2 knockdown promoted ferroptosis and ferritinophagy, restoring sensitivity to DOX and enhancing the efficacy of Erastin treatment. Conclusion Our findings suggest that CISD2 may play a role in the drug resistance observed in DLBCL patients. Inhibition of CISD2 could enhance ferroptosis and ferritinophagy, potentially improving the sensitivity of DLBCL cells to DOX treatment.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Siting Zhan
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Yanjun He
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhiqun Pan
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhongyi You
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| |
Collapse
|
27
|
Chen J, He Z, Xu W, Kang Y, Zhu F, Tang H, Wang J, Zhong F. Human umbilical cord mesenchymal stem cells restore chemotherapy-induced premature ovarian failure by inhibiting ferroptosis in vitro ovarian culture system. Reprod Biol Endocrinol 2024; 22:137. [PMID: 39511578 PMCID: PMC11542367 DOI: 10.1186/s12958-024-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential in repairing chemotherapy-induced premature ovarian failure (POF). However, challenges such as stem cell loss and immune phagocytosis post-transplantation hinder their application. Due to easy and safe handling, in vitro ovarian culture is widely available for drug screening, pathophysiological research, and in vitro fertilization. MSCs could exhibit therapeutic capacity for ovarian injury, and avoid stem cell loss and immune phagocytosis in vitro tissue culture system. Therefore, this study utilizes an in vitro ovarian culture system to investigate the reparative potential of human umbilical cord mesenchymal stem cells (hUCMSCs) and their mechanism. METHODS In this study, a chemotherapy-induced POF model was established by introducing cisplatin in vitro ovarian culture system. The reparative effects of hUCMSCs on damaged ovarian tissue were validated through Transwell chambers. Tissue histology examination, immunohistochemical staining, Western blotting, and RT-PCR were employed to evaluate the expression effects of hUCMSCs on ferroptosis and fibrosis-related genes during the process of repairing cisplatin-induced POF. RESULTS Cisplatin was found to activate ovarian follicles in vitro POF model. Transcriptomic sequencing analysis revealed that cisplatin could activate genes associated with ferroptosis. hUCMSCs alleviated cisplatin-induced POF by suppressing the expression of ferroptosis. Moreover, inhibiting ferroptosis by hUCMSCs also ameliorated ovarian hormone levels and reduced the expression of fibrosis-related factors α-SMA and COL-I in the ovaries. CONCLUSIONS This study confirms that cisplatin-induced ovarian damage via ferroptosis in vitro POF model, and hUCMSCs repair ovarian injury by inhibiting the ferroptosis pathway and suppressing fibrosis. This research contributes to evaluating the effectiveness of hUCMSCs in treating chemotherapy-induced POF by inhibiting ferroptosis in an in vitro ovarian culture system and provides a potential therapeutic strategy for chemotherapy-induced POF.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjuan Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yumiao Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fengyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui Province, 234011, China.
| | - Jianye Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
28
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Wang S, Liu X, Wei D, Zhou H, Zhu J, Yu Q, Luo L, Dai X, Jiang Y, Yu L, Yang Y, Tan W. Polyvalent Aptamer Nanodrug Conjugates Enable Efficient Tumor Cuproptosis Therapy Through Copper Overload and Glutathione Depletion. J Am Chem Soc 2024; 146:30033-30045. [PMID: 39463177 DOI: 10.1021/jacs.4c06338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion. Polyvalent aptamer (PApt), comprising polyvalent epithelial cell adhesion molecule aptamers for tumor targeting and repetitive PolyT sequences for copper chelation, facilitates efficient loading and targeted delivery of copper peroxide-Elesclomol nanodots (CuPEs). Upon internalization by tumor cells, Elesclomol released from CuPEs@PApt accumulates copper ions in mitochondria to initiate cuproptosis, while lysosomal degradation of CuP nanodots generates exogenous Cu2+ and H2O2, triggering a Fenton-like reaction for GSH depletion to enhance cuproptosis. In vitro and in vivo experiments confirm the efficacy of this strategy in inducing tumor cell cuproptosis and immunogenic cell death, the latter contributing to the activation of the antitumor immune response for synergistic tumor growth inhibition.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dali Wei
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinfeng Dai
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yiting Jiang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
30
|
Esquea EM, Young RG, Ciraku L, Merzy J, Ahmed NN, Talarico AN, Karuppiah M, Gocal W, Simone NL, Dick A, Reginato MJ. ACSS2 regulates ferroptosis in an E2F1-dependent manner in breast cancer brain metastatic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619082. [PMID: 39484430 PMCID: PMC11526985 DOI: 10.1101/2024.10.18.619082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Brain metastasis diagnosis in breast cancer patients is considered an end-stage event. The median survival after diagnosis is measured in months, thus there is an urgent need to develop novel treatment strategies. Breast cancers that metastasize to the brain must adapt to the unique brain environment and are highly dependent on acetate metabolism for growth and survival. However, the signaling pathways that regulate survival in breast cancer brain metastatic (BCBM) tumors are not known. Primary brain tumor cells can convert acetate to acetyl-CoA via phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by the cyclin-dependent kinase-5 (CDK5) regulated by the nutrient sensor O-GlcNAc transferase (OGT). Here, we show that breast cancer cells selected to metastasize to the brain contain increased levels of O-GlcNAc, OGT and ACSS2-Ser267 phosphorylation compared to parental breast cancer cells. Moreover, OGT and CDK5 are required for breast cancer cell growth in the brain parenchyma in vivo. Importantly, ACSS2 and ACSS2-S267D phospho-mimetic mutant are critical for in vivo breast cancer growth in the brain but not in the mammary fat pad. Mechanistically, we show that ACSS2 regulates BCBM cell survival by suppressing ferroptosis via regulation of E2F1-mediated expression of anti-ferroptotic proteins SLC7A11 and GPX4. Lastly, we show treatment with a novel brain-permeable small molecule ACSS2 inhibitor induced ferroptosis and reduced BCBM growth ex vivo and in vivo. These results suggest a crucial role for ACSS2 in protecting from ferroptosis in breast cancer brain metastatic cells and suggests that breast cancer brain metastatic cells may be susceptible to ferroptotic inducers.
Collapse
Affiliation(s)
- Emily M. Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
- These authors contributed equally
| | - Riley G. Young
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
- These authors contributed equally
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
- These authors contributed equally
| | - Jessica Merzy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Nusaiba N. Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Alexandra N. Talarico
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mangalam Karuppiah
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Wiktoria Gocal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Cancer Risk and Control Program
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mauricio J. Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
- Translational and Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
32
|
Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024; 22:587. [PMID: 39342211 PMCID: PMC11438196 DOI: 10.1186/s12951-024-02859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Spatiotemporally controlled cargo release is a key advantage of nanocarriers in anti-tumor therapy. Various external or internal stimuli-responsive nanomedicines have been reported for their ability to increase drug levels at the diseased site and enhance therapeutic efficacy through a triggered release mechanism. Redox-manipulating nanocarriers, by exploiting the redox imbalances in tumor tissues, can achieve precise drug release, enhancing therapeutic efficacy while minimizing damage to healthy cells. As a typical redox-sensitive bond, the disulfide bond is considered a promising tool for designing tumor-specific, stimulus-responsive drug delivery systems (DDS). The intracellular redox imbalance caused by tumor microenvironment (TME) regulation has emerged as an appealing therapeutic target for cancer treatment. Sustained glutathione (GSH) depletion in the TME by redox-manipulating nanocarriers can exacerbate oxidative stress through the exchange of disulfide-thiol bonds, thereby enhancing the efficacy of ROS-based cancer therapy. Intriguingly, GSH depletion is simultaneously associated with glutathione peroxidase 4 (GPX4) inhibition and dihydrolipoamide S-acetyltransferase (DLAT) oligomerization, triggering mechanisms such as ferroptosis and cuproptosis, which increase the sensitivity of tumor cells. Hence, in this review, we present a comprehensive summary of the advances in disulfide based redox-manipulating nanocarriers for anticancer drug delivery and provide an overview of some representative achievements for combinational therapy and theragnostic. The high concentration of GSH in the TME enables the engineering of redox-responsive nanocarriers for GSH-triggered on-demand drug delivery, which relies on the thiol-disulfide exchange reaction between GSH and disulfide-containing vehicles. Conversely, redox-manipulating nanocarriers can deplete GSH, thereby enhancing the efficacy of ROS-based treatment nanoplatforms. In brief, we summarize the up-to-date developments of the redox-manipulating nanocarriers for cancer therapy based on DDS and provide viewpoints for the establishment of more stringent anti-tumor nanoplatform.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China.
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Xinlei Lu
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
33
|
Zhao H, Dong Q, Hua H, Wu H, Ao L. Contemporary insights and prospects on ferroptosis in rheumatoid arthritis management. Front Immunol 2024; 15:1455607. [PMID: 39381004 PMCID: PMC11458427 DOI: 10.3389/fimmu.2024.1455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized primarily by persistent synovial inflammation and joint destruction. In recent years, ferroptosis, as a novel form of cell death, has garnered widespread attention due to its critical role in various diseases. This review explores the potential mechanisms of ferroptosis in RA and its relationship with the pathogenesis of RA, systematically analyzing the regulatory role of ferroptosis in synovial cells, chondrocytes, and immune cells. We emphasize the evaluation of ferroptosis-related pathways and their potential as therapeutic targets, including the development and application of inhibitors and activators. Although ferroptosis shows some promise in RA treatment, its dual role and safety issues in clinical application still require in-depth study. Future research should focus on elucidating the specific mechanisms of ferroptosis in RA pathology and developing more effective and safer therapeutic strategies to provide new treatment options for RA patients.
Collapse
Affiliation(s)
| | | | | | | | - Limei Ao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| |
Collapse
|
34
|
Katz JL, Geng Y, Billingham LK, Sadagopan NS, DeLay SL, Subbiah J, Chia TY, McManus G, Wei C, Wang H, Lin H, Silvers C, Boland LK, Wang S, Wan H, Hou D, Vázquez-Cervantes GI, Arjmandi T, Shaikh ZH, Zhang P, Ahmed AU, Tiek DM, Lee-Chang C, Chouchani ET, Miska J. A covalent creatine kinase inhibitor ablates glioblastoma migration and sensitizes tumors to oxidative stress. Sci Rep 2024; 14:21959. [PMID: 39304717 PMCID: PMC11415369 DOI: 10.1038/s41598-024-73051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Glioblastoma is a Grade 4 primary brain tumor defined by therapy resistance, diffuse infiltration, and near-uniform lethality. The underlying mechanisms are unknown, and no treatment has been curative. Using a recently developed creatine kinase inhibitor (CKi), we explored the role of this inhibitor on GBM biology in vitro. While CKi minimally impacted GBM cell proliferation and viability, it significantly affected migration. In established GBM cell lines and patient-derived xenografts, CKi ablated both the migration and invasion of GBM cells. CKi also hindered radiation-induced migration. RNA-seq revealed a decrease in invasion-related genes, with an unexpected increase in glutathione metabolism and ferroptosis protection genes post-CKi treatment. The effects of CKi could be reversed by the addition of cell-permeable glutathione. Carbon-13 metabolite tracing indicated heightened glutathione biosynthesis post-CKi treatment. Combinatorial CKi blockade and glutathione inhibition or ferroptosis activation abrogated cell survival. Our data demonstrated that CKi perturbs promigratory and anti-ferroptotic roles in GBM, identifying the creatine kinase axis as a druggable target for GBM treatment.
Collapse
Affiliation(s)
- Joshua L Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Nishanth S Sadagopan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Susan L DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Jay Subbiah
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Chao Wei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Lauren K Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Gustavo Ignacio Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Tarlan Arjmandi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Zainab H Shaikh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deanna M Tiek
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA.
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
35
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
36
|
Nolt M, Connor J. Implications of Iron in Ferroptosis, Necroptosis, and Pyroptosis as Potential Players in TBI Morbidity and Mortality. ASN Neuro 2024; 16:2394352. [PMID: 39249102 PMCID: PMC11529200 DOI: 10.1080/17590914.2024.2394352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.
Collapse
Affiliation(s)
- Makenzie Nolt
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
37
|
Wang XW, Yang ZY, Li T, Zhao XR, Li XZ, Wang XX. Verteporfin Exerts Anticancer Effects and Reverses Resistance to Paclitaxel via Inducing Ferroptosis in Esophageal Squamous Cell Cancer Cells. Mol Biotechnol 2024; 66:2558-2568. [PMID: 37751128 DOI: 10.1007/s12033-023-00891-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Ferroptosis is a new form of regulated cell death and targeting ferroptosis provides a novel therapeutic approach for human cancers. Verteporfin (VP) has been identified as a Yes-associated protein (YAP) inhibitor for treatment of several human cancers. However, it remains unclear whether VP exerts anticancer activity by inducing ferroptosis in ESCC cells. In the current study, we found that VP reduced cell viability and led to cell death in ESCC cell lines (KYSE150 and KYSE30) by inhibiting YAP expression. Subsequently, the findings revealed that VP treatment triggered significant ferroptosis events, including accumulation of Fe2+, reactive oxygen species (ROS) and malondialdehyde (MDA), reduction of mitochondrial membrane potential (MMP), glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. Further study showed that the effects of ESCC cell proliferation and death caused by VP could be reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Moreover, VP enhanced the chemosensitivity of ESCC resistant cells to paclitaxel (PTX). And VP combined with PTX can synergistically inhibit cell proliferation and induce cell death by triggering ferroptosis of PTX-resistant cells. All these data suggested that VP suppressed ESCC cell survival and reversed resistance to PTX through inducing ferroptosis, which may provide a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xue-Wei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Zi-Yi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin-Ran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Zhong Li
- Department of Infectious Diseases, Shanxi Provincial People's Hospital, Affiliated People's Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| | - Xiao-Xia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
38
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
39
|
Su D, Ding C, Wang R, Qiu J, Liu Y, Tao J, Luo W, Weng G, Yang G, Zhang T. E3 ubiquitin ligase RBCK1 confers ferroptosis resistance in pancreatic cancer by facilitating MFN2 degradation. Free Radic Biol Med 2024; 221:136-154. [PMID: 38763208 DOI: 10.1016/j.freeradbiomed.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Ferroptosis, a novel form of iron-dependent non-apoptotic cell death, plays an active role in the pathogenesis of diverse diseases, including cancer. However, the mechanism through which ferroptosis is regulated in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, our study, via combining bioinformatic analysis with experimental validation, showed that ferroptosis is inhibited in PDAC. Genome-wide sequencing further revealed that the ferroptosis activator imidazole ketone erastin (IKE) induced upregulation of the E3 ubiquitin ligase RBCK1 in PDAC cells at the transcriptional or translational level. RBCK1 depletion or knockdown rendered PDAC cells more vulnerable to IKE-induced ferroptotic death in vitro. In a mouse xenograft model, genetic depletion of RBCK1 increased the killing effects of ferroptosis inducer on PDAC cells. Mechanistically, RBCK1 interacts with and polyubiquitylates mitofusin 2 (MFN2), a key regulator of mitochondrial dynamics, to facilitate its proteasomal degradation under ferroptotic stress, leading to decreased mitochondrial reactive oxygen species (ROS) production and lipid peroxidation. These findings not only provide new insights into the defense mechanisms of PDAC cells against ferroptotic death but also indicate that targeting the RBCK1-MFN2 axis may be a promising option for treating patients with PDAC.
Collapse
Affiliation(s)
- Dan Su
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Chen Ding
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Ruobing Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Wenhao Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Guihu Weng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China.
| |
Collapse
|
40
|
Le J, Meng Y, Wang Y, Li D, Zeng F, Xiong Y, Chen X, Deng G. Molecular and therapeutic landscape of ferroptosis in skin diseases. Chin Med J (Engl) 2024; 137:1777-1789. [PMID: 38973265 PMCID: PMC12077552 DOI: 10.1097/cm9.0000000000003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Regulated cell death (RCD) is a critical physiological process essential in maintaining skin homeostasis. Among the various forms of RCD, ferroptosis stands out due to its distinct features of iron accumulation, lipid peroxidation, and involvement of various inhibitory antioxidant systems. In recent years, an expanding body of research has solidly linked ferroptosis to the emergence of skin disorders. Therefore, understanding the mechanisms underlying ferroptosis in skin diseases is crucial for advancing therapy and prevention strategies. This review commences with a succinct elucidation of the mechanisms that underpin ferroptosis, embarks on a thorough exploration of ferroptosis's role across a spectrum of skin conditions, encompassing melanoma, psoriasis, systemic lupus erythematosus (SLE), vitiligo, and dermatological ailments precipitated by ultraviolet (UV) exposure, and scrutinizes the potential therapeutic benefits of pharmacological interventions aimed at modulating ferroptosis for the amelioration of skin diseases.
Collapse
Affiliation(s)
- Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yixiao Xiong
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
41
|
Hu Y, Wu X, Tan X, Zhang J. Hsa_circRNA_007630 knockdown delays colon cancer progression by modulation of ferroptosis via miR-506-3p/AURKA axis. J Biochem Mol Toxicol 2024; 38:e23771. [PMID: 39015057 DOI: 10.1002/jbt.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiongjian Wu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiaobin Tan
- Department of Clinical Laboratory, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Jingzhi Zhang
- Department of Gastroenterology, Ganzhou People's Hospital (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou City, China
| |
Collapse
|
42
|
Chen L, Wang C, Chen X, Wu Y, Chen M, Deng X, Qiu C. GOLPH3 inhibits erastin-induced ferroptosis in colorectal cancer cells. Cell Biol Int 2024; 48:1198-1211. [PMID: 38825780 DOI: 10.1002/cbin.12190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.
Collapse
Affiliation(s)
- Lihua Chen
- Department of General Surgery, The 2nd Clinical College of Fujian Medical University, Quanzhou, China
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
43
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity. Immunology 2024; 172:547-565. [PMID: 38566448 DOI: 10.1111/imm.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| |
Collapse
|
44
|
Huang CY, Chung YH, Wu SY, Wang HY, Lin CY, Yang TJ, Fang JM, Hu CM, Chang ZF. Glutathione determines chronic myeloid leukemia vulnerability to an inhibitor of CMPK and TMPK. Commun Biol 2024; 7:843. [PMID: 38987326 PMCID: PMC11237035 DOI: 10.1038/s42003-024-06547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Bcr-Abl transformation leads to chronic myeloid leukemia (CML). The acquirement of T315I mutation causes tyrosine kinase inhibitors (TKI) resistance. This study develops a compound, JMF4073, inhibiting thymidylate (TMP) and cytidylate (CMP) kinases, aiming for a new therapy against TKI-resistant CML. In vitro and in vivo treatment of JMF4073 eliminates WT-Bcr-Abl-32D CML cells. However, T315I-Bcr-Abl-32D cells are less vulnerable to JMF4073. Evidence is presented that ATF4-mediated upregulation of GSH causes T315I-Bcr-Abl-32D cells to be less sensitive to JMF4073. Reducing GSH biosynthesis generates replication stress in T315I-Bcr-Abl-32D cells that require dTTP/dCTP synthesis for survival, thus enabling JMF4073 susceptibility. It further shows that the levels of ATF4 and GSH in several human CML blast-crisis cell lines are inversely correlated with JMF4073 sensitivity, and the combinatory treatment of JMF4073 with GSH reducing agent leads to synthetic lethality in these CML blast-crisis lines. Altogether, the investigation indicates an alternative option in CML therapy.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Glutathione/metabolism
- Humans
- Animals
- Mice
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
Collapse
Affiliation(s)
- Chang-Yu Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsuan Chung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Yang Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yen Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsung-Jung Yang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jim-Min Fang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Wang J, Li Y, Li L, Liang H, Ye H, Kang P, Li Z, Yu Y, Gao Q. Effect of NLRP3 gene knockdown on pyroptosis and ferroptosis in diabetic cardiomyopathy injury. BMC Cardiovasc Disord 2024; 24:351. [PMID: 38987672 PMCID: PMC11234732 DOI: 10.1186/s12872-024-04010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Anatomy, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Yuping Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Lu Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Huan Liang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Department of Graduate Studies, Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, P.R. China
| | - Hongwei Ye
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Pinfang Kang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, P.R. China
| | - Zhenghong Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Ying Yu
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Qin Gao
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China.
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China.
| |
Collapse
|
46
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, Zhan F, Ganguly S, Zu Y, Qian J, Yi Q. Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun 2024; 15:5767. [PMID: 38982045 PMCID: PMC11233649 DOI: 10.1038/s41467-024-50073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Collapse
Affiliation(s)
- Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
48
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
49
|
Zhou C, Zhao Y, Yang M, Yin W, Li Y, Xiao Y, Liu Y, Lang M. Diselenide-Containing Polymer Based on New Antitumor Mechanism as Efficient GSH Depletion Agent for Ferroptosis Therapy. Adv Healthc Mater 2024; 13:e2303896. [PMID: 38551494 DOI: 10.1002/adhm.202303896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/24/2024] [Indexed: 04/07/2024]
Abstract
Glutathione (GSH) depletion-induced ferroptosis has emerged as a promising treatment for malignant cancer. It works by inactivating glutathione peroxidase 4 (GPX4) and facilitating lipid peroxidation. However, effectively delivering inducers and depleting intracellular GSH remains challenging due to the short half-lives and high hydrophobicity of small-molecule ferroptosis inducers. These inducers often require additional carriers. Herein, diselenide-containing polymers can consume GSH to induce ferroptosis for pancreatic cancer therapy. The diselenide bonds are controllably built into the backbone of the polycarbonate with a targeting peptide CRGD (Cys-Arg-Gly-Asp), which allows for self-assembly into stable nanoparticles (denoted CRNSe) for self-delivery. Significantly, at a concentration of 12 µg mL-1, CRNSe binds to the active site cysteine of GSH resulting in a thorough depletion of GSH. In contrast, the disulfide-containing analog only causes a slight decrease in GSH level. Moreover, the depletion of GSH inactivates GPX4, ultimately inducing ferroptosis due to the accumulation of lipid peroxide in BxPC-3 cells. Both in vitro and in vivo studies have demonstrated that CRNSe exhibits potent tumor suppressive ability with few side effects on normal tissue. This study validates the anti-tumor mechanism of diselenide-containing polymers in addition to apoptosis and also provides a new strategy for inherently inducing ferroptosis in cancer therapy.
Collapse
Affiliation(s)
- Chen Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200030, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200030, China
| | - Wang Yin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200030, China
| | - Yan Xiao
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200030, China
| | - Meidong Lang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
50
|
Jacquemyn J, Ralhan I, Ioannou MS. Driving factors of neuronal ferroptosis. Trends Cell Biol 2024; 34:535-546. [PMID: 38395733 DOI: 10.1016/j.tcb.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an oxidative form of iron-dependent cell death characterized by the accumulation of lipid peroxides on membranes. Iron and lipids containing polyunsaturated fatty acids are essential for this process. Ferroptosis is central to several neurological diseases and underlies the importance of balanced iron and polyunsaturated fatty acid metabolism in the brain, particularly in neurons. Here, we reflect on the potential links between neuronal physiology and the accumulation of iron and peroxidated lipids, the mechanisms neurons use to protect themselves from ferroptosis, and the relationship between pathogenic protein deposition and ferroptosis in neurodegenerative disease. We propose that the unique physiology of neurons makes them especially vulnerable to ferroptosis.
Collapse
Affiliation(s)
- Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|