1
|
Fan HL, Chen JL, Liu ST, Lee JT, Huang SM, Wu ZF, Lai HC. Remimazolam induced cytotoxicity mediated through multiple stress pathways and acted synergistically with tyrosine kinase inhibitors in hepatocellular carcinoma. Redox Rep 2025; 30:2475696. [PMID: 40053437 PMCID: PMC11892054 DOI: 10.1080/13510002.2025.2475696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The primary treatment for hepatocellular carcinoma (HCC) involves surgical removal of the primary tumor, but this creates a favorable environment for the proliferation and spread of residual and circulating cancer cells. The development of remimazolam-based balanced anesthesia is crucial for future antitumor applications. It is important to understand the mechanisms of cytotoxicity for HCC in detail. We performed cell viability analysis, western blotting analysis, reverse transcription-polymerase chain reaction analysis, and flow cytometry analysis in two HCC cell lines, HepG2 and Hep3B cells. Our data demonstrated that remimazolam induced cytotoxicity by suppressing cell proliferation, inhibiting G1 phase progression, and affecting mitochondrial reactive oxygen species (ROS) levels, leading to apoptosis, DNA damage, cytosolic ROS elevation, lipid peroxidation, autophagy, mitochondrial depolarization, and endoplasmic reticulum stress. Inhibitors of apoptosis, autophagic cell death, and ferroptosis and a ROS scavenger failed to rescue cell death caused by remimazolam besylate. Our combination index revealed that remimazolam besylate has the potential to act as a sensitizer for targeted tyrosine kinase inhibitor therapy for HCC. Our findings open up new possibilities for combinatory HCC therapy using remimazolam, leveraging its dual functional roles in surgery and drug therapy for liver cancers.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Lin Chen
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Tong Lee
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Zhi-Fu Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Qiu N, Xu C, Zhang Z, Wang R, Wei X, Xie Y, Wang S, Lu D, Wang K, Xu S, Shen C, Su R, Cen B, Liu Y, Shen Y, Xu X. Autologous tumoral esterase-driven therapeutic polymers sequentially orchestrated antigen-induction, STING activation and anti-angiogenesis for systemic cancer immune therapy. Biomaterials 2025; 320:123260. [PMID: 40138966 DOI: 10.1016/j.biomaterials.2025.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Effective cancer immune therapy requires the orchestration of antigen induction, presentation and T-cell activation, further enhanced by anti-angiogenesis treatment; therefore, multiple therapeutics are generally used for such combination therapy. Herein, we report esterase-hydrolysable cationic polymers, N-[3-((4-acetoxy benzyl) oxy)-3-oxopropyl]-N-methyl-quaternized PEI (ERP) and poly{N-[2-(acryloyl-oxy) ethyl]-N-[p-acetyloxyphenyl]-N,N-dimethylammonium chloride} (PQDMA), capable of simultaneously inducing tumor cell immunogenic cell death (ICD) to release antigens, activating the cGAS-STING pathways of tumor macrophages and dendritic cells, and releasing antiangiogenic agent p-hydroxybenzyl alcohol (HBA). Thus, intratumoral injection of ERP or PQDMA systemically boosted the anti-cancer immunities and inhibited tumor angiogenesis in mouse hepatocellular carcinoma and melanoma bilateral tumor models, leading to more effective tumor growth inhibition of both treated and abscopal untreated tumors than ICD alone induced by mitoxantrone and control cationic polymers. Further study using gene knockout mice and transcriptome sequencing analysis confirmed the involvement of cGAS-STING and type I IFN signaling pathways. This work demonstrates ERP and PQDMA as the first examples of inherent therapeutic polymers, accomplishing systemic tumor inhibition without combining other therapeutic agents.
Collapse
Affiliation(s)
- Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Chang Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhen Zhang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Rui Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yangla Xie
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Chenchen Shen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Beini Cen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yanpeng Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Han L, Tian X, Yang X, Li T, Wang S, Bao Y, Meng X. The pathogenesis of hepatocellular carcinoma: ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and Epimedium extract targeted modulation of this pathway to treat hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156666. [PMID: 40121885 DOI: 10.1016/j.phymed.2025.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The pathogenesis of hepatocellular carcinoma (HCC) is characterized by its complexity and diversity, involving processes such as glycolysis, autophagy, and cellular immunity. Notably, the role of ERK/ULK1/NCOA4-mediated inhibition of iron autophagy in HCC pathogenesis has not been previously reported. This study provides a novel elucidation of HCC pathogenesis and identifies the clinical adjuvant therapy drug, Epimedium, as a potential treatment based on this mechanism. The research clarifies the regulatory effects of Epimedium on the ERK/ULK1/NCOA4-mediated inhibition of iron autophagy pathway in the treatment of HCC, thereby offering a scientific foundation for clinical treatment strategies and the development of innovative drugs. PURPOSE The objective of this study is to uncover a new aspect of HCC pathogenesis, ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and to screen for clinical targeted adjuvant therapy drugs based on this mechanism. METHODS A HCC rat model was induced with N-Nitrosodiethylamine (DEN). The physiological status of the HCC rats was assessed through indicators such as body weight and organ index. Liver damage in HCC rats was evaluated using hematoxylin and eosin (HE) staining and biochemical markers. Additionally, untargeted metabolomics was employed to explore the pathogenesis of HCC. UPLC-Q-TOF-MS combined with network pharmacology was employed to elucidate novel mechanisms, predict pathway targets, filtrate active ingredients and analyze the biological processes and signaling pathways modulated by EPME. DEN liver cancer rats were treated with different concentrations of EPME and protein expression levels were assessed by Western blot analysis. Molecular docking techniques were utilized to assess the binding affinity between the core components of EPME and target proteins. A HepG2 liver cancer in vitro model, in combination with inhibitor (SBI-0206965), was employed to verify the modulatory effects of EPME and its active ingredients on the ERK/ULK1/NCOA4 signaling pathway. Microscale thermophoretic (MST) was employed to verify the binding ability of the EPME core components to the ULK1 protein. RESULTS Metabolomics combined with network pharmacology revealed a novel pathogenesis of HCC, which is ERK/ULK1/NCOA4-mediated iron autophagy inhibition. EPME can activate iron autophagy mediated by ERK/ULK1/NCOA4 through active ingredients such as icaritin, astragalin, and emodin, thereby enhancing the survival conditions of HCC-afflicted rats and mitigating liver damage and carcinogenesis, ultimately achieving therapeutic outcomes in HCC treatment. CONCLUSION The ERK/ULK1/NCOA4-mediated iron autophagy inhibition represents a novel therapeutic mechanism for HCC. The clinical adjuvant drug EPME may exert therapeutic effects on HCC by activating ERK/ULK1/NCOA4-mediated iron autophagy.
Collapse
Affiliation(s)
- Liying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xiangmu Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| |
Collapse
|
5
|
He J, Guo J, Liu S, Li H, Ma Y, Ma S, Hu Z, Zhao W, Tan M, Liu W, Liu B. Targeted degradation of GOLM1 by CC-885 via CRL4-CRBN E3 ligase inhibits hepatocellular carcinoma progression. Cell Signal 2025; 130:111665. [PMID: 39986359 DOI: 10.1016/j.cellsig.2025.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, emphasizing the urgent need for novel therapeutic strategies. In this study, we investigate the anti-tumor potential of CC-885, a cereblon (CRBN) modulator known for its efficacy in targeting neoplastic cells through proteasomal degradation pathways. Our findings demonstrate that CC-885 exhibits potent anti-tumor activity against HCC. In vitro assays revealed that CC-885 significantly inhibits the proliferation, migration, and invasion of HCC cells. These effects were corroborated in vivo, where CC-885 markedly suppressed tumor growth and angiogenesis in chick embryos and impeded the progression of orthotopic liver tumors in murine models. Mechanistically, CC-885 selectively reduces GOLM1 protein levels via ubiquitin-mediated proteasomal degradation. Knockdown of GOLM1 recapitulated the anti-proliferative effects of CC-885, while overexpression of GOLM1 conferred resistance to CC-885-induced apoptosis and growth inhibition. Further investigation revealed that CC-885 facilitates the interaction between GOLM1 and the E3 ubiquitin ligase CRBN, promoting the ubiquitination and subsequent degradation of GOLM1. Transcriptomic analyses showed that both CC-885 treatment and GOLM1 knockdown modulate critical pathways involved in apoptosis. These findings position CC-885 as a promising therapeutic candidate for HCC, acting primarily through CRBN-dependent degradation of GOLM1, and support its further development for clinical application.
Collapse
Affiliation(s)
- Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingli Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunfang Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan 430030, China
| | - Hanxue Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongke Hu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wensi Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Affonso JM, D'Amico TP, Horst MA, Moreno FS, Heidor R. Telomeres and Telomerase: Targets for Chemoprevention of Hepatocellular Carcinoma With Bioactive Food Compounds. Mol Nutr Food Res 2025:e70088. [PMID: 40351047 DOI: 10.1002/mnfr.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The maintenance of telomere length by telomerase plays an essential role in senescence, aging, and cancer. Mutations in the TERT promoter, a telomerase subunit, are frequent in human cancers. In hepatocellular carcinoma (HCC), telomere shortening contributes to preneoplastic conditions such as cirrhosis. Telomerase activation during cirrhosis may reduce chromosomal instability, while its suppression in early dysplastic nodules may prevent hepatocarcinogenesis. Evidence suggests that bioactive food compounds (BFCs) can reduce the incidence and/or delay the onset of HCC by modulating telomerase activity. A systematic review was conducted on the role of BFCs in telomerase activity during hepatocarcinogenesis. BFCs were analyzed in isolated form or as part of extracts and categorized into fatty acids, isoprenoids, isothiocyanates, and phenolic compounds. Despite structural diversity, BFCs modulate telomerase through common mechanisms, including inhibition of activating proteins at the TERT promoter, activation of nuclear receptors, or histone H3 hyperacetylation. Indirectly, telomerase can also be modulated via activation of antioxidant defense pathways. Understanding telomerase reactivation and its modulation by BFCs is key to establishing effective HCC chemoprevention strategies targeting telomerase.
Collapse
Affiliation(s)
- Juliana Marques Affonso
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D'Amico
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiânia, Brazil
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Yang R, Wang H, Wu C, Shi Y, Li H, Bao X, Yang Y, Han S, Yang X, Tao J, Sun H, Wu S, Sun L. PAQR5 drives the malignant progression and shapes the immunosuppressive microenvironment of hepatocellular carcinoma by activating the NF-κB signaling. Biomark Res 2025; 13:70. [PMID: 40336138 PMCID: PMC12060467 DOI: 10.1186/s40364-025-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Progesterone and adipose Q receptor 5 (PAQR5), a membrane receptor characterized by seven transmembrane domains, has been indirectly implicated in pro-carcinogenic activities, though its specific role in hepatocellular carcinoma (HCC) remains to be defined. METHODS This study aimed to elucidate the molecular mechanisms by which PAQR5 facilitates HCC progression and contributes to the immunosuppressive microenvironment through an integrative approach combining multi-omics analysis and experimental validation. Utilizing data from bulk, single-cell, and spatial transcriptomics cohorts, this study systematically assessed the expression patterns, immune landscape, and functional characteristics of PAQR5 across different levels of resolution in HCC. RESULTS PAQR5 expression was significantly upregulated in tumor tissues and correlated with poor clinical outcomes. Enrichment analysis revealed that PAQR5 activated the NF-κB signaling pathway in HCC. Single-cell transcriptomics identified PAQR5 as predominantly localized within malignant cell clusters, with significant association with NF-κB pathway activation. Spatial transcriptomics further corroborated the alignment of PAQR5 expression with tumor cell distribution. In vitro assays showed elevated PAQR5 levels in HCC cell lines, and silencing PAQR5 significantly suppressed cell proliferation, invasion, epithelial-mesenchymal transition (EMT), and prevented the formation of immunosuppressive microenvironment. In vivo studies demonstrated that targeting PAQR5 attenuated tumorigenic potential, disrupted the invasion-metastasis cascade and inhibited the tumor immune escape. Mechanistically, PAQR5 was found to activate NF-κB signaling by inducing ERK phosphorylation, thereby driving proliferation, invasion, EMT, and immune escape in HCC through the pathway.
Collapse
Affiliation(s)
- Ruida Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Cong Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yu Shi
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hanqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinyue Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuqian Yang
- Department of Medical Oncology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 711018, Shaanxi, People's Republic of China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hao Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Shaobo Wu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
8
|
Gao S, Fan L, Wang H, Wang A, Hu M, Zhang L, Sun G. NCOA5 induces sorafenib resistance in hepatocellular carcinoma by inhibiting ferroptosis. Cell Death Discov 2025; 11:215. [PMID: 40316542 PMCID: PMC12052255 DOI: 10.1038/s41420-025-02473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025] Open
Abstract
NCOA5 has been identified as a crucial factor in the progression of hepatocellular carcinoma (HCC). This study investigates the expression of NCOA5 in HCC, revealing its significant overexpression in tumor tissues compared to healthy liver tissues, as evidenced by analysis of the TCGA dataset and RT-qPCR in patient samples. Higher NCOA5 levels correlate with poor overall survival, highlighting its role as a prognostic indicator. Furthermore, our findings suggest that elevated NCOA5 is associated with resistance to sorafenib, a common chemotherapeutic agent for HCC, as shown through analysis of publicly available datasets and the establishment of sorafenib-resistant HCC cell lines. Mechanistically, NCOA5 appears to inhibit ferroptosis in HCC cells by modulating glutathione peroxidase 4 (GPX4) levels. Knockdown of NCOA5 sensitizes resistant cell lines to sorafenib and induces ferroptosis by decreasing GPX4 expression. Additionally, NCOA5 regulation of GPX4 is mediated through the transcription factor MYC. In vivo studies further validate that targeting NCOA5 enhances the efficacy of sorafenib in resistant HCC models by promoting ferroptosis. Collectively, these findings underscore the potential of NCOA5 as a therapeutic target to overcome drug resistance in HCC, providing insights into its role in modulating treatment responses and patient prognosis.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lulu Fan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Huiyan Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Anqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengyao Hu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233080, China.
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
9
|
Weiskirchen R, Weiskirchen S, Grassi C, Scaggiante B, Grassi M, Tierno D, Biasin A, Truong NH, Minh TD, Cemazar M, Pastorin G, Tonon F, Grassi G. Recent advances in optimizing siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2025; 22:729-745. [PMID: 40126051 DOI: 10.1080/17425247.2025.2484287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Hepatocellularcarcinoma (HCC), the primary form of liver cancer, is the second leading cause of cancer-related deaths worldwide. Current therapies have limited effectiveness, particularly in advanced stages of the disease, highlighting the need for innovative treatment options. Small-interfering RNA(siRNA) molecules show great promise as a therapeutic solution since they can inhibit the expression of genes promoting HCC growth. Their cost-effective synthesis has further encouraged their potential use as novel drugs. However, siRNAs are vulnerable to degradation in biological environments, necessitating protective delivery systems. Additionally, targeted delivery to HCC is critical for optimal efficacy and minimal undesired side effects. AREACOVERED This review addresses the challenges associated with the delivery of siRNA toHCC, discussing and focusing on delivery systems based on lipid and polymeric nanoparticles in publications from the past five years. EXPERT OPINION Future nano particles will need to effectively cross the vessel wall, migrate through the extracellular matrix and finally cross the HCC cell membrane. This may be achieved by optimizing nanoparticle size, the equipment of nanoparticles withHCC targeting moieties and loading nanoparticles with siRNAs againstHCC-specific oncogenes.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | | | | | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Nhung Hai Truong
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Thanh Dang Minh
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Singapore
| | - Federica Tonon
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| |
Collapse
|
10
|
Yang LL, Chen X, Huang KT, Tang ST, Ye GY, Wang JL. BEND3 promotes hepatocellular carcinoma progression and metastasis by activating the PI3K/AKT/mTOR pathway and inducing epithelial-mesenchymal transition. Clin Res Hepatol Gastroenterol 2025; 49:102582. [PMID: 40158797 DOI: 10.1016/j.clinre.2025.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE This study aimed to investigate the expression of BEND3 in hepatocellular carcinoma (HCC), its correlation with clinical characteristics, and its functional and mechanistic impacts on HCC progression. METHODS Bioinformatics analyses identified BEND3 as highly expressed in HCC and associated with poor clinical prognosis, which was further validated using qRT-PCR, western blotting and immunohistochemistry. Stable BEND3-overexpressing and silenced cell lines were constructed to evaluate its functional effects. CCK-8 and colony formation assays assessed its influence on cell proliferation, while wound healing and Transwell assays evaluated its role in migration and invasion. WB and immunofluorescence were employed to analyze the effects of BEND3 on epithelial-mesenchymal transition (EMT) and the PI3K/AKT/mTOR signaling pathway. RESULTS Public database analysis, alongside qRT-PCR, western blotting, and immunohistochemical, confirmed that BEND3 expression is significantly elevated in HCC tissues compared to normal liver tissues and is closely associated with poor prognosis. Functional assays demonstrated that BEND3 promotes HCC cell proliferation, migration, and invasion. Mechanistic studies revealed that BEND3 drives HCC progression by inducing EMT and activating the PI3K/AKT/mTOR signaling pathway. CONCLUSION BEND3 is highly expressed in HCC and strongly correlates with poor clinical outcomes. Functional and mechanistic analyses indicate that BEND3 enhances HCC progression by promoting proliferation, migration and invasion via EMT induction and PI3K/AKT/mTOR pathway activation.
Collapse
Affiliation(s)
- Liu-Lin Yang
- Department of Hepatological Surgery, Guangxi Medical University First Affiliated Hospital, China
| | - Xing Chen
- Department of Ultrasonography, Guangxi Medical University First Affiliated Hospital, China
| | - Kai-Ting Huang
- Department of Hepatological Surgery, Guangxi Medical University First Affiliated Hospital, China
| | - Shao-Tong Tang
- Department of Hepatological Surgery, Guangxi Medical University First Affiliated Hospital, China
| | - Gui-Yan Ye
- Department of Hepatological Surgery, Guangxi Medical University First Affiliated Hospital, China
| | - Ji-Long Wang
- Department of Hepatological Surgery, Guangxi Medical University First Affiliated Hospital, China.
| |
Collapse
|
11
|
Schulze K, Rose TD, Adlung L, Peschka M, Pagani F, Gorgulho J, Fründt TW, Labgaa I, Haber PK, Zimpel C, Castven D, Weinmann A, Garzia-Lezana T, Waldmann M, Renné T, Voß H, Moritz M, Orlikowski D, Schlüter H, Baumbach J, Schwartz M, Lohse AW, Huber S, Sangro B, Macias RI, Izquierdo-Sanchez L, Banales JM, Wege H, Marquardt JU, Villanueva A, Pauling JK, von Felden J. Metabolomic liquid biopsy dynamics predict early-stage HCC and actionable candidates of human hepatocarcinogenesis. JHEP Rep 2025; 7:101340. [PMID: 40290517 PMCID: PMC12023797 DOI: 10.1016/j.jhepr.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 04/30/2025] Open
Abstract
Background & Aims Actionable candidates of hepatocarcinogenesis remain elusive, and tools for early detection are suboptimal. Our aim was to demonstrate that serum metabolome profiles reflect the initiation of hepatocellular carcinoma (HCC) and enable the identification of biomarkers for early HCC detection and actionable candidates for chemoprevention. Methods This global cohort study included 654 patients and 801 biospecimens. Following serum metabolome profiling across the spectrum of hepatocarcinogenesis, we conducted a phase II biomarker case-control study for early HCC detection. Findings were independently validated through in silico analysis, mRNA sequencing, and proteome profiling of primary HCC and non-tumoral tissue, and in vitro experiments. Results Aspartic acid, glutamic acid, taurine, and hypoxanthine were differentially abundant in the serum across chronic liver disease, cirrhosis, initial HCC, and progressed HCC, independent of sex, age, and etiology. In a phase II biomarker case-control study, a blood-based metabolite signature yielded an AUC of 94% to discriminate between patients with early-stage HCC and controls with cirrhosis, including independent validation. Unsupervised biclustering (MoSBi), lipid network analysis (LINEX2), and pathway enrichment analysis confirmed alterations in amino acid-, lipid-, and nucleotide-related pathways. In tumor tissue, these pathways were significantly deregulated regarding gene and protein expression in two independent datasets, including actionable targets RRM2, GMPS, BCAT1, PYCR2, and NEU1. In vitro knockdown confirmed a functional role in proliferation and migration, as exemplified for PYCR2. Conclusions These findings demonstrate that serum metabolome profiling indicates deregulated metabolites and pathways during hepatocarcinogenesis. Our liquid biopsy approach accurately detects early-stage HCC outperforming currently recommended surveillance tools and facilitates identification of actionable candidates for chemoprevention. Impact and implications Deregulated cellular metabolism is a hallmark of cancer. In smaller studies, circulating metabolite profiles have been associated with HCC, although mainly in the context of fatty liver disease. Translation strategies for primary prevention or early detection are lacking. In this global study, we present an unsupervised landscape of the altered serum metabolome profile during hepatocarcinogenesis, independent of age, sex, and etiology. We provide a blood-based metabolite signature that accurately identifies early-stage HCC in a phase II biomarker study including independent validation. Further RRM2, GMPS, BCAT1, PYCR2, and NEU1 are identified in tumor tissue as actionable candidates for prevention. Our data provide the rationale for clinical trials testing liquid biopsy metabolome-based signatures for early HCC detection and the development of chemoprevention strategies.
Collapse
Affiliation(s)
- Kornelius Schulze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), and Center for Biomedical AI (bAIome), Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Peschka
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Newborn Screening and Metabolic Laboratory, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Pagani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- University Cancer Center Hamburg–Hubertus Wald Tumorzentrum, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thorben W. Fründt
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| | - Ismail Labgaa
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp K. Haber
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolin Zimpel
- Department of Medicine I, University Medical Center Schleswig-Holstein-Campus Lübeck, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig-Holstein-Campus Lübeck, Germany
| | - Arndt Weinmann
- I. Department of Medicine, University Medical Center Mainz, Germany
| | - Teresa Garzia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Moritz
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorian Orlikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| | - Myron Schwartz
- Recanati Miller Transplant Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Ansgar W. Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I.R. Macias
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBEREHD, Donostia-San Sebastian, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBEREHD, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Henning Wege
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein-Campus Lübeck, Germany
- I. Department of Medicine, University Medical Center Mainz, Germany
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Johann von Felden
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ERN-RARE-LIVER, Hamburg, Germany
| |
Collapse
|
12
|
Zhang J, Guo J, Qian Y, Yu L, Ma J, Gu B, Tang W, Li Y, Li H, Wu W. Quercetin Induces Apoptosis Through Downregulating P4HA2 and Inhibiting the PI3K/Akt/mTOR Axis in Hepatocellular Carcinoma Cells: An In Vitro Study. Cancer Rep (Hoboken) 2025; 8:e70220. [PMID: 40347062 PMCID: PMC12065022 DOI: 10.1002/cnr2.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/25/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Quercetin is a natural product with multiple activities, which possesses a promising antitumor effect on malignancies. The involvement of proline 4-hydroxylase II (P4HA2) in collagen synthesis is crucial in the growth of tumor cells. Apoptosis is a programmed cell death requisite for the stability of the intracellular environment. However, the relationship between quercetin and cell apoptosis, as well as the impact of P4HA2 in this connection, has not yet been specified in hepatocellular carcinoma(HCC). AIMS The present study used HCC cells to investigate how quercetin regulates P4HA2 and influences cell proliferation and apoptosis. METHODS AND RESULTS The outcomes reveal that quercetin can impede the viability and growth of HCC cells and generate cell apoptosis in a dose-dependent manner. Additionally, quercetin prompts downregulation of P4HA2, leading to cell apoptosis in HCC cells, and knocking down P4HA2 can enhance this effect. Furthermore, we pretreated HCC cells with inhibitors (Z-VAD-FMK, LY294002) or activators (740Y-P) and found that the PI3K/Akt/mTOR pathway was occupied with quercetin-induced cell apoptosis. CONCLUSION This investigation reveals that quercetin compels apoptosis in HCC cells by diminishing P4HA2 and restraining the PI3K/Akt/mTOR axis.
Collapse
Affiliation(s)
- Junli Zhang
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and TreatmentBengbuChina
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Jiayi Guo
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Ying Qian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Lianchen Yu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Junrao Ma
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Biao Gu
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Weichun Tang
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and TreatmentBengbuChina
| | - Yi Li
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Hongwei Li
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Wenjuan Wu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
- Department of Biochemistry and Molecular BiologySchool of Laboratory Medicine, Bengbu Medical UniversityBengbuChina
| |
Collapse
|
13
|
Wang J, Liu ZX, Huang ZH, Wen J, Rao ZZ. Long non-coding RNA in the regulation of cell death in hepatocellular carcinoma. World J Clin Oncol 2025; 16:104061. [PMID: 40290684 PMCID: PMC12019274 DOI: 10.5306/wjco.v16.i4.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for 90% of all cases. Currently, early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection, B-ultrasound, and computed tomography scanning; however, their specificity and sensitivity are suboptimal. Despite significant advancements in HCC biomarker detection, the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis. Therefore, it is crucial to explore more sensitive HCC biomarkers for improved diagnosis, monitoring, and management of the disease. Long non-coding RNA (lncRNA) serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity. Moreover, investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC. We searched the PubMed database for literature, comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells. Furthermore, we prospectively summarize its potential implications in diagnosing and treating HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zi-Xuan Liu
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| |
Collapse
|
14
|
Xie Z, Dai Z, Liu Z, Chen Y, Huang S, Liu S, Li J, Shen J. The impact of an RNA-binding protein group on regulating the RSPO-LGR4/5-ZNRF3/RNF43 module and the immune microenvironment in hepatocellular carcinoma. BMC Cancer 2025; 25:751. [PMID: 40264052 PMCID: PMC12012940 DOI: 10.1186/s12885-025-13874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. RNA-binding proteins (RBPs) are potential therapeutic targets because of their role in tumor progression. This study investigated the interactions between specific HCC progression-associated RBPs (HPARBPs), namely, ILF3, PTBP1, U2AF2, NCBP2, RPS3, and SSB, in HCC and their downstream targets, as well as their impact on the immune microenvironment and their clinical value. METHODS Tissue samples from human HCC, collected from 28 patients who experienced recurrence following postoperative adjuvant therapy were examined. The mRNA levels of RBPs and their prospective targets were quantified through RNA isolation and quantitative real-time PCR. Data from two public datasets were scrutinized for both expression and clinical relevance. Through Student's t test and logistic regression, HPARBPs were identified. Enhanced cross-linking immunoprecipitation (eCLIP) experiments revealed RBP-RNA interactions in HepG2 cells. For functional enrichment, Metascape was used, whereas CIBERSORT was used to characterize the immune microenvironment. RESULTS Public database analysis confirmed widespread RBP expression abnormalities in HCC (false discovery rate < 0.00001 and fold change ≥ 1.15 or ≤ 0.85), leading to the identification of 42 HPARBPs and core modules. eCLIP data analysis revealed the specificity of downstream target genes and binding site features for core HPARBPs (signal value > 3, P value < 0.01). Four core HPARBPs may bind to RNAs of genes in the RSPO-LGR4/5-ZNRF3/RNF43 module, affecting the Wnt pathway and HCC progression. Immunoinfiltration analysis revealed changes in the HCC immune microenvironment due to altered expression of relevant genes. CONCLUSION In our study, we identified core HPARBPs that might contribute to HCC progression by binding to RNAs in the RSPO-LGR4/5-ZNRF3/RNF43 module. Changes in the expression of HPARBPs affect the HCC immune microenvironment. Our findings offer novel insights into the regulatory network of Wnt pathway-related RBPs and their potential clinical value in HCC.
Collapse
Affiliation(s)
- Zhengyao Xie
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Zhiyan Dai
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziyao Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yiqiang Chen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Shuting Huang
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Siyuan Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jingjing Li
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jie Shen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Comprehensive Cancer Centre, Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Ran Y, Li L, Wang Z, Sun T, Wen C, Zhang Y, Wang S, Jiang S, Zheng J, Yin C, Zhang C. Regulator of G-protein signaling 14 (RGS14) promotes cancer growth in hepatocellular carcinoma. Cancer Genet 2025; 294-295:80-89. [PMID: 40245482 DOI: 10.1016/j.cancergen.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths globally. The progression of HCC is influenced by a range of intrinsic and extrinsic factors, necessitating further research into the molecular mechanisms involved. While Regulator of G-protein Signaling 14 (RGS14) has shown emerging roles in cancer biology, its function in HCC remains poorly characterized. MATERIALS AND METHODS RGS14 expression and clinical significance were analyzed using TCGA-LIHC, HCCDB, and GEO datasets. Immunofluorescence (IF) staining was employed to validate protein expression. Functional assays, including cell proliferation, migration, invasion, and in vivo xenograft models, were conducted to assess the oncogenic role of RGS14. Bulk-mRNA sequencing was performed using in situ tumor tissues to identify RGS14-regulated pathways. RESULTS RGS14 was significantly upregulated in HCC tissues and positively associated with poor patient outcomes. In vitro experiments demonstrated that RGS14 enhanced HCC cell proliferation, migration, and invasion, while in vivo studies confirmed its tumor-promoting effects. Mechanistically, RGS14 activated the extracellular matrix (ECM)-receptor interaction pathway to drive HCC progression. CONCLUSION Our findings suggest that RGS14 could serve as a novel prognostic marker and therapeutic target for HCC, contributing to improved treatment strategies.
Collapse
Affiliation(s)
- Yi Ran
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China; Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Liping Li
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Zhihua Wang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Ting Sun
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Cong Wen
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yixin Zhang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Shu Wang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Shishi Jiang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Junjie Zheng
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Changjun Yin
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Chuankai Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China; Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
16
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
17
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2025; 74:840-852. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wang X, Liao Y, Wang R, Lu Y, Wang Y, Xin Y, Kuang D, Lao X, Xu J, Zhou Z, Hu K. Tribbles Pseudokinase 3 Converts Sorafenib Therapy to Neutrophil-Mediated Lung Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413682. [PMID: 39932456 PMCID: PMC11967757 DOI: 10.1002/advs.202413682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Rapid development of resistance to sorafenib and subsequent hyperprogression in patients with advanced hepatocellular carcinoma (HCC) pose significant challenges, with the underlying mechanisms still largely unknown. Herein, sorafenib-induced TRIB3 is identified as a liver-specific determinant driving secondary resistance to sorafenib by facilitating the accumulation of protumorigenic neutrophils within tumors. Mechanistically, TRIB3, triggered by the sorafenib-elicited ROS-ER stress axis, operates in an NF-κB-dependent manner to upregulate CXCR1/2 ligands, subsequently promoting neutrophil recruitment into tumors. These enriched neutrophils enhance epithelial-mesenchymal transition processes in malignant cells through the oncostatin M-STAT3 pathway, thereby repurposing the therapeutic efficacy of sorafenib away from anti-angiogenesis and toward lung metastasis. Clinically, elevated TRIB3 expression indicates inferior survival and unfavorable clinical efficacy of sorafenib in HCC patients. Correspondingly, strategies that either inhibiting TRIB3 upregulation or blocking its downstream signaling successfully augment the therapeutic efficacy of sorafenib and prevent sorafenib-induced hyperprogression in vivo. The study thus identifies a pivotal mechanism of sorafenib resistance in HCC, centered on the TRIB3-mediated recruitment of protumorigenic neutrophils and subsequent disease hyperprogression.
Collapse
Affiliation(s)
- Xu‐Yan Wang
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment (No. 2021B1212040004)Zhuhai Institute of Translational MedicineZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yuan Liao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Rui‐Qi Wang
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yi‐Tong Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Ying‐Zhe Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Yu‐Qi Xin
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Dong‐Ming Kuang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiang‐Ming Lao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Junying Xu
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxi214023China
| | - Zhi‐Ling Zhou
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
19
|
Akarca FG, Grenert JP, Kakar S. Role of genomic analysis in the classification of well differentiated hepatocellular lesions. Hum Pathol 2025; 158:105794. [PMID: 40374146 DOI: 10.1016/j.humpath.2025.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND The distinction of focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA) from well-differentiated hepatocellular carcinoma (WD-HCC) in noncirrhotic liver can be challenging. High-grade dysplastic nodule (HGDN) in cirrhosis can have overlapping features with WD-HCC. In some cases, HCA diagnosis is evident but glutamine synthetase (GS) staining is indeterminate for β-catenin activation, which does not allow reliable risk assessment. This study examines the role of genomic analysis in better categorization of WD hepatocellular lesions (WDHL). DESIGN Genomic analysis using capture-based NGS assay was done in 23 WDHLs that could not be definitely classified based on morphology, reticulin stain and IHC, and were designated as 'atypical hepatocellular neoplasms' (AHNs). GS staining was classified as diffuse homogeneous (moderate to strong staining in >90 % of tumor cells), diffuse heterogeneous (50-90 %), not diffuse (<50 %) and borderline (not clear if more or less than 50 %). RESULTS The genomic profile provided additional information for the diagnosis and/or risk assessment enabling a benign diagnosis in 15/23 cases (66 %) and HCC in 4/23 cases (17 %), while the diagnosis remained as atypical in the remaining 4 cases. Of the 4 cases with final HCC diagnosis, findings were suspicious but not diagnostic based on morphology/IHC; additional changes like TERT promoter mutation (n = 2), AXIN mutation (n = 1), CDKN2A loss (n = 2) and copy number alterations (n = 3) helped to support HCC. Of the 15 cases with a final benign diagnosis, the status of β-catenin activation was unclear based on GS stain in 8 cases, 2 of which showed CTNNB1 exon 7 mutation, 1 showed CTNNB1 exon 8 mutation, while genomic changes in 5 cases did not show any evidence of Wnt activation. FNH-like features were seen in 2 cases, but the genomic changes excluded FNH (CTNNB1 and ARID1A mutation). The final diagnosis was unchanged from the initial diagnosis of AHN in 4/23 cases (17 %) as the molecular findings did not favor HCC. CONCLUSION Genomic changes were helpful in characterization of WDHLs, supporting HCC in 17 % of cases and clarifying β-catenin activation status in all 7 cases with borderline GS staining. Genomic changes are not specific but can provide diagnostic clues in selected challenging cases that cannot be classified on morphology and IHC. Given the significant treatment implications of distinguishing between HCC and benign/premalignant entities, routine use of genomic analysis in diagnostically challenging settings should be considered.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/classification
- Liver Neoplasms/diagnosis
- Liver Neoplasms/chemistry
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/classification
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/diagnosis
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/pathology
- Adenoma, Liver Cell/classification
- Adenoma, Liver Cell/diagnosis
- Adenoma, Liver Cell/chemistry
- Male
- Middle Aged
- Female
- Aged
- Focal Nodular Hyperplasia/genetics
- Focal Nodular Hyperplasia/pathology
- Focal Nodular Hyperplasia/diagnosis
- Focal Nodular Hyperplasia/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Adult
- Genomics/methods
- Diagnosis, Differential
- Glutamate-Ammonia Ligase/analysis
- beta Catenin/genetics
- Mutation
- High-Throughput Nucleotide Sequencing
- Predictive Value of Tests
- Cell Differentiation
Collapse
|
20
|
Lim J, Goh MJ, Song BG, Sinn DH, Kang W, Gwak GY, Choi MS, Lee JH, Cha DI, Gu K, Ha SY, Hwang I, Park WY, Paik YH. Unraveling the immune-activated tumor microenvironment correlated with clinical response to atezolizumab plus bevacizumab in advanced HCC. JHEP Rep 2025; 7:101304. [PMID: 40124166 PMCID: PMC11929055 DOI: 10.1016/j.jhepr.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Despite atezolizumab plus bevacizumab being a standard treatment for advanced hepatocellular carcinoma (HCC), a significant proportion of patients do not achieve durable benefit. This study aimed to identify predictive biomarkers for this therapy by investigating the role of immune activation within the tumor microenvironment (TME). Methods We characterized the intratumoral TME of patients with advanced HCC treated with atezolizumab plus bevacizumab using single cell transcriptomics on pretreatment tumor biopsies from 12 patients. To complement and support these findings, we integrated our single cell data with publicly available bulk RNA-sequencing data from independent clinical trial cohorts. Results Patients who responded to combination therapy with atezolizumab plus bevacizumab demonstrated an immune-activated TME, marked by enhanced cytotoxicity and a tumor-specific T cell response. These patients also exhibited an increased proportion of inflammatory cytokine-enriched tumor-associated macrophage clusters with stronger interactions with T cells, an increased population of conventional dendritic cells, and activated antigen-presenting function in tumor endothelial cells. When publicly available bulk RNA-sequencing data from independent clinical trial cohorts were analyzed, these immune activation features were associated with improved progression-free survival (median 10.8 months, 95% CI: 7.3-not reached versus 5.5 months, 95% CI: 4.0-6.7; p <0.001). Conclusions These findings suggest that the existence of an activated immune TME before treatment is crucial for a favorable clinical response in patients with HCC treated with atezolizumab plus bevacizumab. Impact and implications Only a subset of patients with HCC benefit from combination therapy with atezolizumab plus bevacizumab, limiting its clinical utility. In this study, we used single cell RNA analysis to identify TME features associated with a clinical response to this therapy. Our findings suggest that a pre-existing immune-activated TME is crucial for predicting the response to atezolizumab plus bevacizumab. Specifically, features such as enhanced T cell cytotoxicity, inflammatory cytokine-enriched macrophage clusters, active antigen presentation in endothelial cells, and an increased presence of dendritic cells may aid patient selection and inform therapeutic strategies.
Collapse
Affiliation(s)
- Jinyeong Lim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Myung Ji Goh
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong Geun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inwoo Hwang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
22
|
Chen J, Wei C, Huang W, Huang T, Zhou L, Xu Y, Qin Y, Lin Q, Liu F, Pan X, Tang Z, Yang W, Fang M. Clonorchis sinensis-infected hepatocellular carcinoma exhibits distinct tumor microenvironment and molecular features. Front Immunol 2025; 16:1526699. [PMID: 40165955 PMCID: PMC11955701 DOI: 10.3389/fimmu.2025.1526699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives Clonorchis sinensis (Cs)-infected hepatocellular carcinoma (HCC) patients have a poorer prognosis than non-Cs-infected HCCs. However, the molecular mechanisms of Cs-infected HCC remain unclear. To address this, this study aims to uncover the tumor microenvironment and molecular features that may contribute to these poor outcomes. Methods The research involved bulk RNA sequencing of paired tumor and adjacent tissue samples from 10 Cs + HCC and 10 Cs - HCC patients. Differentially expressed genes were identified, followed by enrichment analyses to reveal functional changes. Survival analysis of the top 10 up- and down-regulated genes in Cs + HCC tumors was performed using TCGA database. Additionally, clinical data from 1,461 HCC patients were retrospectively analyzed to assess the impact of Cs infection on microvascular invasion and metastasis rates. In vitro assays were also conducted using Cs excretory/secretory products (CsESPs) to examine their effect on HCC cells and HUVECs. Results We identified 785 up-regulated and 675 down-regulated genes in Cs + HCC tumors compared to Cs - HCC tumors, enriched in pathways related to extracellular matrix remodeling and immunosuppression. Survival analysis revealed that the top 10 up-regulated genes are associated with HCC poor prognosis. Clinical data from 1,461 HCC patients showed Cs infection increased microvascular invasion and metastasis rates. In vitro, CsESPs products enhanced migration and invasion in HCC cells and promoted tube formation in human umbilical vein endothelial cells. Conclusions This study provides novel insights into the molecular landscape of Cs-infected HCC and underscores the Cs infection's role in enhancing tumor migration, invasion and angiogenesis. The findings contribute to the understanding of parasitic infections in cancer progression and suggest potential prognostic markers for Cs + HCC.
Collapse
Affiliation(s)
- Junxian Chen
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wencheng Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Taijun Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lingling Zhou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yulong Xu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Weilong Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
- Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
23
|
Liu P, Zhang Q, Liu F. Biological roles and clinical applications of EpCAM in HCC. Discov Oncol 2025; 16:319. [PMID: 40087210 PMCID: PMC11909382 DOI: 10.1007/s12672-025-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is an important biomarker in tumors. In hepatocellular carcinoma (HCC), EpCAM + cells exhibit high invasiveness, tumorigenic ability, therapeutic resistance, and self-renewal ability, often identified as liver cancer stem cells (CSCs). Detecting EpCAM + cells in tumor lesions and circulation is valuable for predicting patient prognosis and monitoring therapeutic outcomes, emphasizing its clinical significance. Given its broad expression in HCC, especially in CSCs and circulating tumor cells (CTCs), EpCAM-targeting agents have garnered substantial research interest. However, the role of EpCAM in HCC progression and its regulatory mechanisms remains poorly understood. Furthermore, clinical applications of EpCAM, such as liquid biopsy and targeted therapies, are still controversial. This review summarizes the biological properties of EpCAM + HCC cells, explores the regulatory mechanisms governing EpCAM expression, and discusses its clinical significance of using EpCAM as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Peng Liu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Tang Y, Hu H, Chen S, Hao B, Xu X, Zhu H, Zhan W, Zhang T, Hu H, Chen G. Multi-omics analysis revealed the novel role of NQO1 in microenvironment, prognosis and immunotherapy of hepatocellular carcinoma. Sci Rep 2025; 15:8591. [PMID: 40074806 PMCID: PMC11903666 DOI: 10.1038/s41598-025-92700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
NAD(P)H dehydrogenase quinone 1 (NQO1) is overexpressed in various cancers and is strongly associated with an immunosuppressive microenvironment and poor prognosis. In this study, we explored the role of NQO1 in the microenvironment, prognosis and immunotherapy of Hepatocellular carcinoma (HCC) using multi-omics analysis and machine learning. The results revealed that NQO1 was significantly overexpressed in HCC cells. NQO1+HCC cells were correlated with poor prognosis and facilitated tumor-associated macrophages (TAMs) polarization to M2 macrophages. We identified core NQO1-related genes (NRGs) and developed the NRGs-related risk-scores in hepatocellular carcinoma (NRSHC). The comprehensive nomogram integrating NRSHC, age, and pathological tumor-node-metastasis (pTNM) Stage achieved an area under the curve (AUC) above 0.7, demonstrating its accuracy in predicting survival outcomes and immunotherapy responses of HCC patients. High-risk patients exhibited worse prognoses but greater sensitivity to immunotherapy. Additionally, a web-based prediction tool was designed to enhance clinical utility. In conclusion, NQO1 may play a critical role in M2 polarization and accelerates HCC progression. The NRSHC model and accompanying tools offer valuable insights for personalized HCC treatment.
Collapse
Affiliation(s)
- Ya Tang
- School of Public Health, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Haihong Hu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyuan Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuefeng Xu
- Department of Function, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Zhu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
| | - Wendi Zhan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China.
- Research Center for Clinical Trial, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Hongjuan Hu
- Department of Public Health Service, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Guodong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of General Surgery, Turpan City People's Hospital, Turpan, 838000, China.
| |
Collapse
|
25
|
Li S, Wang X, Xiao J, Yi J. SLC7A11, a disulfidptosis-related gene, correlates with multi-omics prognostic analysis in hepatocellular carcinoma. Eur J Med Res 2025; 30:161. [PMID: 40069889 PMCID: PMC11900568 DOI: 10.1186/s40001-025-02411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study sought to establish a risk score signature based on disulfidptosis-related genes (DRGs) to predict the prognosis of hepatocellular carcinoma (HCC) patients. METHODS The expression data of DRGs from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) was analyzed to develop and validate a DRG prognostic signature (DRGPS). In vitro, experiments were conducted to explore DRG expressions and roles in HCC tissues and cell lines. HCC tissue microarrays were employed to analyze SLC7A11 expression and its association with clinicopathological characteristics. RESULTS The DRGPS consisted of 5 DRGs (SLC7A11, MATN3, CLEC3B, CCNJL, and PON1). The survival rate of HCC patients in high-risk group was significantly lower than that in low-risk group. The DRGPS was also associated with the modulation of tumor microenvironment (TME), tumor mutation burden (TMB), stemness and chemosensitivity. Furthermore, pan-cancer analysis suggested that the DRGPS risk score was associated with immune infiltration and stemness in multiple cancers. Moreover, our DRGPS had potential for predicting treatment efficacy in HCC patients. Finally, we confirmed that downregulation of SLC7A11, a DRG, inhibited the proliferation and migration of HCC cells, while its high expression correlated with advanced TNM clinical stage and larger tumor size. CONCLUSIONS This study systematically describes a novel DRGPS constructed for predicting HCC prognosis, providing a new approach to risk stratification and treatment options. It also investigates the expression and function of SLC7A11, contributing to further exploration of the molecular mechanism underlying disulfidptosis in HCC, as well as its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Yang WL, Yang C, Pang N, Yu RH, Tong KY, Jiang F. The distinct characteristic of two peritoneal macrophage subsets in a mouse model of hepatocellular carcinoma presents a novel therapeutic strategy. Cell Immunol 2025; 409-410:104917. [PMID: 39824005 DOI: 10.1016/j.cellimm.2025.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
The peritoneal cavity (PerC) is a discrete anatomical compartment housing diverse peritoneal macrophage subpopulations. Nonetheless, there exists a paucity of knowledge concerning the distinct functions of these subpopulations in the context of hepatocellular carcinoma (HCC) and their evolution throughout tumor advancement. This investigation seeks to analyze the characteristics of two principal peritoneal macrophage subpopulations, specifically large peritoneal macrophage (LPM) and small peritoneal macrophage (SPM), in the context of HCC. The results of our research indicate a significant decrease in the proportion of LPM during the progression of HCC, accompanied by an increase in the quantity of SPM. Furthermore, SPM found in ascites exhibited a macrophage phenotype that supports tumor growth in HCC. Importantly, the dynamic decrease of LPM in murine models following lipopolysaccharide (LPS) stimulation led to a decrease in survival rate, highlighting the critical role of the altered LPM to SPM ratio in HCC survival. By employing clodronate liposomes (CL) to deplete peritoneal macrophage in murine models, followed by the adoptive transfer of LPM, we effectively prolonged the survival of HCC and attenuated tumor progression. Our results suggest that a decrease in the LPM to SPM ratio correlates with increased mortality in the HCC model. On the contrary, the maintenance of a high ratio of LPM to SPM has shown a positive effect on HCC survival. These findings have enhanced our understanding of the complex interaction between different subpopulations of peritoneal macrophage in the development of HCC. Furthermore, these results have important implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wan-Li Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Chao Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Nan Pang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Rui-Hua Yu
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Kui-Yuan Tong
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
| | - Feng Jiang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China.
| |
Collapse
|
27
|
Choi YH, Kim HY, Park JO, Choi E. Enhanced Anti-Tumor Effects of Natural Killer Cell-Derived Exosomes Through Doxorubicin Delivery to Hepatocellular Carcinoma Cells: Cytotoxicity and Apoptosis Study. Int J Mol Sci 2025; 26:2234. [PMID: 40076856 PMCID: PMC11900065 DOI: 10.3390/ijms26052234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Exosomes are nanosized extracellular vesicles secreted by various cells, including natural killer (NK) cells, and are known for their low toxicity, high permeability, biocompatibility, and strong targeting ability. NK cell-derived exosomes (NK-exos) contain cytotoxic proteins that enhance tumor-targeting efficiency, making them suitable for treating solid tumors such as hepatocellular carcinoma (HCC). Despite their potential in drug delivery, the mechanisms of drug-loaded NK-exos, particularly those loaded with doxorubicin (NK-exos-Dox), remain unclear in HCC. This study explored the anti-tumor effects of NK-exos-Dox against Hep3B cells in vitro. NK-exos-Dox expressed exosome markers (CD9 and CD63) and cytotoxic proteins (granzyme B and perforin) and measured 170-220 nm in size. Compared to NK-exos, NK-exos-Dox enhanced cytotoxicity and apoptosis in Hep3B cells by upregulating pro-apoptotic proteins (Bax, cytochrome c, cleaved caspase 3, and cleaved PARP) and inhibiting the anti-apoptotic protein (Bcl-2). These findings suggest that NK-exos-Dox significantly boost anti-tumor effects by activating specific cytotoxic molecules, offering promising therapeutic opportunities for solid tumor treatment, including HCC.
Collapse
Affiliation(s)
- You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
28
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Ma L, Liao S, Zhang X, Zhou F, Geng Z, Hu J, Zhang Y, Zhang C, Meng T, Wang S, Xie C. Application of Intravoxel Incoherent Motion in the Prediction of Intra-Tumoral Tertiary Lymphoid Structures in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:383-398. [PMID: 40012763 PMCID: PMC11863790 DOI: 10.2147/jhc.s508357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To explore the value of intravoxel incoherent motion (IVIM) sequences in predicting intra-tumoral tertiary lymphoid structures (TLSs). Materials and Methods This prospective study pre-operatively enrolled hepatocellular carcinoma (HCC) patients who underwent magnetic resonance imaging including IVIM sequences, between January 2019 and April 2021. Intra-tumoral TLSs presence was assessed on pathological slide images. Clinical and radiological characteristics were collected. IVIM quantitative parameters and radiomics features were obtained based on the whole delineated tumor volume. By using feature selection techniques, 22 radiomics features, clinical-radiological features (lymphocyte count and satellite nodules), and IVIM parameters (apparent diffusion coefficient (ADC_90Percentile), perfusion fraction (f_Maximum)) were selected. The logistic regression algorithm was used to construct the prediction model based on the combination of these features. The diagnostic performance was assessed using the area under the receiver operating characteristic (AUC). The recurrence-free survival (RFS) was evaluated with Kaplan-Meier curves. Results A total of 168 patients were divided into training (n=128) and testing (n=40) cohorts (mean age: 56.83±14.43 years; 149 [88.69%] males; 130 TLSs+). In testing cohort, the model combining multimodal features demonstrated a good performance (AUC: 0.86) and significantly outperformed models based on single-modality features. The model based on radiomics features (AUC: 0.80) had better performance than other features, including IVIM parameter maps (ADC_90Percentile and f_Maximum, AUC: 0.72) and clinical-radiological characteristics (satellite nodules and lymphocyte counts, AUC: 0.59). TLSs+ patients had higher RFS than TSLs- patients (all p <0.05). Conclusion The nomogram based on the proposed model can be used as a pre-operative predictive biomarker of TLSs. Critical Relevance Statement The nomogram incorporating IVIM sequences may serve as a pre-operative predictive biomarker of intra-tumoral tertiary lymphoid structure (TLS) status.
Collapse
Affiliation(s)
- Lidi Ma
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Shuting Liao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolan Zhang
- Shukun Technology Co., Ltd, Beijing, People’s Republic of China
| | - Fan Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Zhijun Geng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Jing Hu
- Shukun Technology Co., Ltd, Beijing, People’s Republic of China
| | - Yunfei Zhang
- Central Research Institute, United Imaging Healthcare, Shanghai, People’s Republic of China
| | - Cheng Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Tiebao Meng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Shutong Wang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Chuanmiao Xie
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| |
Collapse
|
30
|
Xu K, Zhang H, Dai H, Mao W. Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC. Gene 2025; 938:149178. [PMID: 39681148 DOI: 10.1016/j.gene.2024.149178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse clustering algorithms to identify three HCC subtypes (HSs) with distinct prognostic characteristics. Among these, HS1 emerged as an immune-compromised subtype associated with the poorest prognosis. Additionally, we developed a novel, robust, and highly accurate machine learning-guided prognostic signature (MLPS) by integrating multiple machine learning algorithms and their combinations. Our study also identified SLC2A1, the core gene of MLPS, as being highly expressed during advanced stages of tumor progression. Knockdown experiments demonstrated that reducing SLC2A1 expression significantly suppressed the malignant behavior of HCC cells. Furthermore, SLC2A1 expression was linked to responsiveness to dasatinib and vincristine, suggesting potential therapeutic relevance. MLPS and SLC2A1 offer promising tools for individualized prognosis prediction and targeted therapy in HCC, providing new opportunities to improve patient outcomes.
Collapse
Affiliation(s)
- Kangjie Xu
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China; Binhai County People's Hospital, Jiangsu Province, Yancheng 224000, PR China
| | - Houliang Zhang
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China
| | - Hua Dai
- Yangzhou University Clinical Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Jiangsu Province, Yangzhou 225009, PR China.
| | - Weipu Mao
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1433-1446. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
32
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2025; 68:257-270. [PMID: 38402949 PMCID: PMC11785583 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
33
|
Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, Singal AG, Yang JD. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol 2025; 31:S228-S254. [PMID: 39722614 PMCID: PMC11925437 DOI: 10.3350/cmh.2024.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global burden, ranking as the third leading cause of cancer-related mortality. HCC due to chronic hepatitis B virus (HBV) or C virus (HCV) infection has decreased due to universal vaccination for HBV and effective antiviral therapy for both HBV and HCV, but HCC related to metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease is increasing. Biannual liver ultrasonography and serum α-fetoprotein are the primary surveillance tools for early HCC detection among high-risk patients (e.g., cirrhosis, chronic HBV). Alternative surveillance tools such as blood-based biomarker panels and abbreviated magnetic resonance imaging (MRI) are being investigated. Multiphasic computed tomography or MRI is the standard for HCC diagnosis, but histological confirmation should be considered, especially when inconclusive findings are seen on cross-sectional imaging. Staging and treatment decisions are complex and should be made in multidisciplinary settings, incorporating multiple factors including tumor burden, degree of liver dysfunction, patient performance status, available expertise, and patient preferences. Early-stage HCC is best treated with curative options such as resection, ablation, or transplantation. For intermediate-stage disease, locoregional therapies are primarily recommended although systemic therapies may be preferred for patients with large intrahepatic tumor burden. In advanced-stage disease, immune checkpoint inhibitor-based therapy is the preferred treatment regimen. In this review article, we discuss the recent global epidemiology, risk factors, and HCC care continuum encompassing surveillance, diagnosis, staging, and treatments.
Collapse
Affiliation(s)
- Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, Maryland, USA
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vatche Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Neil Mehta
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Neehar D. Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, USA
- Trinity College Dublin, Dublin, Ireland
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
34
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025; 39:e25155. [PMID: 39829207 PMCID: PMC11848214 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal‐Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xin Lei
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Xiao
- Department of PathologyThe Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zheng Xu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhouhong Xiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhicheng Lu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiudi Jiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
35
|
Cai H, Chen S, Tang S, Xiao Y, Shi F, Wu Z, Ma P, Chen H, Zhuang W, Guo W. Lenvatinib and tislelizumab versus atezolizumab and bevacizumab in combination with TAE-HAIC for unresectable hepatocellular carcinoma with high tumor burden: a multicenter retrospective cohort study. Cancer Immunol Immunother 2025; 74:88. [PMID: 39891746 PMCID: PMC11787109 DOI: 10.1007/s00262-025-03942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Systemic and locoregional combination therapy has demonstrated promising outcomes for unresectable hepatocellular carcinoma (HCC); However, the best combination option remains unknown. This study compared the efficacy and safety of lenvatinib and tislelizumab versus atezolizumab and bevacizumab in combination with transarterial embolization (TAE) plus hepatic artery infusion chemotherapy (HAIC) for unresectable HCC with high tumor burden. METHODS This multicenter retrospective cohort study enrolled treatment-naive patients with unresectable HCC treated with TAE-HAIC plus lenvatinib and tislelizumab (THLP group) or TAE-HAIC plus atezolizumab and bevacizumab (THTA group). The primary endpoint was overall survival (OS). Secondary endpoints included progression-free survival (PFS), tumor response, and adverse events (AEs). Propensity score matching (PSM) was performed to reduce bias. RESULTS Of the 240 patients enrolled, 153 and 51 patients were assigned to the THLP and THTA groups, respectively after PSM (3:1). The THLP group showed a longer median OS (22 months vs. 18.2 months; P = 0.412), whereas the median PFS was longer in the THTA group (8.1 months vs. 7 months; P = 0.723), with statistically insignificant intergroup differences. No statistical differences were observed in objective response rate (RECIST 1.1: 33.9 vs. 31.4%; mRECIST: 77.1% vs. 74.5%; P = 0.635), disease control rate (RECIST 1.1: 88.9% vs. 92.2; mRECIST: 92.2% vs. 94.1%; P = 0.716), and in grade 3/4 AEs. Gastrointestinal hemorrhage rate was significantly higher in the THTA group (9.1% vs. 1.6%; P = 0.007). All AEs were controllable and no treatment-related grade 5 AEs occurred. CONCLUSIONS TAE-HAIC plus lenvatinib and tislelizumab or TAE-HAIC plus atezolizumab and bevacizumab showed similar outcomes for unresectable HCC with high tumor burden, and manageable safety. The results need further validation.
Collapse
MESH Headings
- Humans
- Male
- Female
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/mortality
- Liver Neoplasms/drug therapy
- Retrospective Studies
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/drug therapy
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Middle Aged
- Quinolines/therapeutic use
- Quinolines/administration & dosage
- Quinolines/pharmacology
- Phenylurea Compounds/therapeutic use
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/pharmacology
- Bevacizumab/therapeutic use
- Bevacizumab/administration & dosage
- Bevacizumab/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aged
- Tumor Burden
- Adult
Collapse
Affiliation(s)
- Hongjie Cai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Song Chen
- Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shuangyan Tang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yi Xiao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangzhou, 519041, China
| | - Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Ping Ma
- Department of Oncology, The Twelfth People's Hospital of Guangzhou, Guangzhou, 510620, China
| | - Huanwei Chen
- Department of Hepatopancreatic Surgery, The First People's Hospital of Foshan, Foshan, 528010, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Wenbo Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China.
| |
Collapse
|
36
|
Li J, Bai L, Xin Z, Song J, Chen H, Song X, Zhou J. TERT-TP53 mutations: a novel biomarker pair for hepatocellular carcinoma recurrence and prognosis. Sci Rep 2025; 15:3620. [PMID: 39880909 PMCID: PMC11779956 DOI: 10.1038/s41598-025-87545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined. In this study, we investigated the clinical implications of TERTpm, TP53m, and their co-occurrence in 50 HCC tissue samples using the next-generation sequencing (NGS) technology. We identified TERTpm (C228T) and TP53m in 16 (32%) and 24 (48%) samples, respectively. Our findings indicate that these mutations are more prevalent in male patients (100% for TERTpm, 83.33% for TP53m), in those with solitary tumors (87.5% for both), in individuals with G2-G3 hepatitis (100% / 83.3%), and in cases of moderately differentiated tumors (75.0% / 83.3%). Furthermore, patients with both TERTpm and TP53m exhibited a significantly higher risk of tumor relapse (P < 0.05) and shorter progression-free survival (P < 0.05). Collectively, our results suggest that presence of both TERTpm and TP53m may serve as a robust predictor of tumor recurrence and a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| |
Collapse
|
37
|
Xing Y, Jia D, Zhu X, Yang J, Gao Z, Meng N, Xu H, Wang M, Chang S, Zhao M, Zhang S, Mu Z, Tang Q, Zhao W. Inotodiol induces hepatocellular carcinoma apoptosis by activation of MAPK/ERK pathway. PLoS One 2025; 20:e0318450. [PMID: 39879230 PMCID: PMC11778785 DOI: 10.1371/journal.pone.0318450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC. Several studies have reported anticancer effects of inotodiol. This study focuses on the anticancer effect of inotodiol in HCC cells and its molecular mechanism, aiming to explore its anticancer effect in depth. The CCK8 assay was utilized to assess cell viability, the scratch assay was utilized to detect migration ability, the clone formation assay was utilized to detect clonogenic ability, and flow cytometry was utilized to analyze apoptosis and cell cycle. Animal experiments was utilized to verify the inhibitory effect of inotodiol on HCC. Meanwhile, western blotting was utilized to detect proteins associated with apoptosis, cell cycle and MAPK/ERK pathway. These results showed that inotodiol has the ability to promote apoptosis, as well as inhibit the ability of cell proliferation, migration, and clonogenic ability. The cell cycle was arrested in G1 phase, when the expression of CDK2, CDK4, CDK6 and Cyclin D were inhibited. In addition, inotodiol showed to induce apoptosis, characterized by an increase in Bax expression, a decrease in Bcl-2, Bcl-XL and MCL1 expression, the initiation of cleaved PARP1 and cleaved caspase 3, and inhibition of the MAPK/ERK pathway. Animal studies demonstrated that inotodiol possessed the ability to suppress tumor growth in nude mice models, at the same time, there was no significant impact on the body weight and organs of the mice. In conclusion, the findings presented herein compellingly suggest that inotodiol may serve as a promising candidate for the treatment of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Yushuang Xing
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- Graduate Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Di Jia
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinping Zhu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Jialu Yang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhipeng Gao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Nana Meng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haohao Xu
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Mengxiao Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Shijun Chang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Mingqian Zhao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shanbo Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zichen Mu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiming Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Ye W, Zhao Y, Wang Y, Wang Y, Zhang H, Wang F, Chen W. Farnesoid X Receptor Attenuates the Tumorigenicity of Liver Cancer Stem Cells by Inhibiting STAT3 Phosphorylation. Int J Mol Sci 2025; 26:1122. [PMID: 39940889 PMCID: PMC11817294 DOI: 10.3390/ijms26031122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The Farnesoid X receptor (FXR) has recently been identified as being closely associated with the progression of primary hepatocellular carcinoma. Cancer stem cells (CSCs) play a crucial role in tumor initiation, progression, invasion, metastasis, recurrence, and drug resistance. The elucidation of the role and regulatory mechanism of FXR in CSCs is therefore deemed significant. Here, bioinformatics analysis has revealed a downregulation of FXR in hepatocellular carcinoma (HCC), which showed a negative correlation with HCC malignancy. This result was further confirmed through clinical sample analysis. Subsequently, CSCs were isolated from HCC cell lines and exhibited a significant decrease in the expression of FXR. The activation of FXR resulted in a remarkable inhibition of the proliferation, invasion, and tumorigenicity of CSCs. Furthermore, activated FXR prominently upregulated the expression of SOCS3 while suppressing STAT3 phosphorylation in CSCs. To further investigate this discovery, we established a DEN-induced HCC model in mice and observed that FXR-deficient mice exhibited heightened susceptibility to HCC. This was accompanied by decreased expression levels of SOCS3 and elevated expression and phosphorylation levels of STAT3, as well as significantly enhanced HCC CSCs markers and stemness-related genes expression in DEN-induced HCC tissues of FXR-deficient mice. Additionally, we also found a significant upregulation of CSCs markers and stemness-related genes within HCC clinical samples. Based on these findings, we postulated that targeted regulation of SOCS3 by FXR inhibits STAT3 phosphorylation, thereby exerting an inhibitory effect on CSCs.
Collapse
Affiliation(s)
- Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yibo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yahan Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Huan Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Fengling Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Weidong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
39
|
Yin L, Liu R, Li W, Li S, Hou X. Deep learning-based CT radiomics predicts prognosis of unresectable hepatocellular carcinoma treated with TACE-HAIC combined with PD-1 inhibitors and tyrosine kinase inhibitors. BMC Gastroenterol 2025; 25:24. [PMID: 39838292 PMCID: PMC11748841 DOI: 10.1186/s12876-024-03555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE To develop and validate a computed tomography (CT)-based deep learning radiomics model to predict treatment response and progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) treated with transarterial chemoembolization (TACE)-hepatic arterial infusion chemotherapy (HAIC) combined with PD-1 inhibitors and tyrosine kinase inhibitors (TKIs). METHODS This retrospective study included 172 patients with uHCC who underwent combination therapy of TACE-HAIC with TKIs and PD-1 inhibitors. Among them, 122 were from the Interventional Department of the Harbin Medical University Cancer Hospital, with 92 randomly assigned to the training cohort and 30 cases randomly assigned to the testing cohort. The remaining 50 cases were from the Interventional Department of the Affiliated Fourth Hospital of Harbin Medical University and were used for external validation. All patients underwent liver enhanced CT examination before treatment. Residual convolutional neural network (ResNet) technology was used to extract image features. A predictive model for treatment response of combination therapy and PFS was established based on image features and clinical features. Model effectiveness was evaluated using metrics such as the area under the receiver operating characteristic (ROC) curve (AUC), concordance index (C-index), accuracy, precision, and F1-score. RESULTS All patients had a median follow-up of 25.2 months (95% CI 24.4-26.0), with a median PFS of 14.0 months (95% CI 8.5-19.4) and a median overall survival (OS) of 26.2 months (95% CI 15.9-36.4) achieved. Objective response rate (ORR) and disease control rate (DCR) was 41.0% and 55.7%, respectively. In the treatment response prediction model, the AUC for the training cohort reached 0.96, with an accuracy of 89.5%, precision of 85.6%, and F1-score of 0.896; the AUC for the testing cohort was 0.87, with an accuracy of 80.4%, precision of 74.5%, and F1-score of 0.802. The AUC of the external validation cohort was 0.85, with accuracy of 79.1%, precision of 73.6%, and f1-score of 0.784. In the PFS prediction model, the predicted AUC for 12 months, 18 months, and 24 months-PFS in the training cohort were 0.874, 0.809, 0.801, respectively. The AUC of testing cohort were 0.762, 0.804, 0.792. The AUC of external validation cohort were 0.764, 0.796, 0.773. The C-index of the combination model, radiomics model, and clinical model were 0.75, 0.591, and 0.655, respectively. The calibration curve demonstrated that the combination model was significantly superior to both the radiomics and clinical models. CONCLUSIONS The study provides a CT-based radiomics model that can predict PFS for patients with uHCC treated with TACE-HAIC combined with PD-1 and TKIs.
Collapse
Affiliation(s)
- Linan Yin
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Ruibao Liu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China.
| | - Wei Li
- Department of Interventional Radiology, Affiliated Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Shijie Li
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Xunbo Hou
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
40
|
Chen L, Elizalde M, Alvarez-Sola G. The Role of Sulfatides in Liver Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:25077. [PMID: 39862071 DOI: 10.31083/fbl25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells. These cells are involved in alcohol-related liver disease (ArLD) and ischemic liver injury and exert anti-inflammatory effects by regulating the activity of pro-inflammatory type I NKT cells. Loss of sulfatides has been implicated in the chronic inflammatory disorder of the liver known as primary sclerosing cholangitis (PSC); bile ducts deficient in sulfatides increase their permeability, resulting in the spread of bile into the liver parenchyma. Previous studies have shown elevated levels of sulfatides in hepatocellular carcinoma (HCC), where sulfatides could act as adhesive molecules that contribute to cancer metastasis. We have recently demonstrated how loss of function of GAL3ST1, a limiting enzyme involved in sulfatide synthesis, reduces tumorigenic capacity in cholangiocarcinoma (CCA) cells. The biological function of sulfatides in the liver is still unclear; however, this review aims to summarize the existing findings on the topic.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Montserrat Elizalde
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Gloria Alvarez-Sola
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
41
|
Li B, Zeng T, Chen C, Wu Y, Huang S, Deng J, Pang J, Cai X, Lin Y, Sun Y, Chong Y, Li X, Gong J, Tang G. Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data. Funct Integr Genomics 2025; 25:11. [PMID: 39798003 DOI: 10.1007/s10142-024-01521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming. This study aimed to construct a model based on PPP-related Genes for risk assessment and prognosis prediction in HCC patients. We integrated RNA-seq and microarray data from TCGA, GEO, and ICGC databases, along with single-cell RNA sequencing (scRNA-seq) data obtained from HCC patients via GEO. Based on the "Seurat" R package, we identified distinct gene clusters related to the PPP within the scRNA-seq data. Using a penalized Cox regression model with least absolute shrinkage and selection operator (LASSO) penalties, we constructed a risk prognosis model. The validity of our risk prognosis model was further confirmed in external cohorts. Additionally, we developed a nomogram capable of accurately predicting overall survival in HCC patients. Furthermore, we explored the predictive potential of our risk model within the immune microenvironment and assessed its relevance to biological function, particularly in the context of immunotherapy. Subsequently, we performed in vitro functional validation of the key genes (ATAD2 and SPP1) in our model. A ten-gene signature associated with the PPP was formulated to enhance the prediction of HCC prognosis and anti-tumor treatment response. Following this, the ROC curve, nomogram, and calibration curve outcomes corroborated the model's robust clinical predictive capability. Functional enrichment analysis unveiled the engagement of the immune system and notable variances in the immune infiltration landscape across the high and low-risk groups. Additionally, tumor mutation frequencies were observed to be elevated in the high-risk group. Based on our analyses, the IC50 values of most identified anticancer agents demonstrated a correlation with the RiskScore. Additionally, the high-risk and low-risk groups exhibited differential sensitivity to various drugs. Cytological experiments revealed that silencing ATAD2 or SPP1 suppresses malignant phenotypes, including viability and migration, in liver cancer cells. In this study, a novel gene signature related to the PPP was developed, demonstrating favorable predictive performance. This signature holds significant guiding value for assessing the prognosis of HCC patients and directing individualized treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Zeng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cui Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuankai Wu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuying Huang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jing Deng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiahui Pang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Cai
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuxi Lin
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yina Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Guofang Tang
- Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
| |
Collapse
|
42
|
Momeny M, AghaAmiri S, Hernandez Vargas S, Acidi B, Ghosh SC, Bateman TM, Adams JT, Khalaj V, Kaseb AO, Tran Cao HS, Azhdarinia A. SSTR2-Targeted Theranostics in Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:162. [PMID: 39857944 PMCID: PMC11763341 DOI: 10.3390/cancers17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND While the clinical use of radiolabeled somatostatin analogs is well established in neuroendocrine tumors, there is growing interest in expanding their application to other somatostatin receptor 2 (SSTR2)-expressing cancers. This study investigates the potential utility of SSTR2-targeted theranostics in hepatocellular carcinoma (HCC). METHODS SSTR2 expression in HCC cell lines and clinical samples was evaluated using qRT-PCR, Western blot analysis, and a public dataset. 67Ga-DOTATATE uptake was measured, 177Lu-DOTATATE cytotoxicity was assessed, and 68Ga-DOTATATE tumor targeting was evaluated in HCC animal models and a patient via PET/CT imaging. RESULTS SSTR2 expression was confirmed in HCC cell lines and clinical samples. Radioligand uptake studies demonstrated SSTR2-mediated 67Ga-DOTATATE uptake. 177Lu-DOTATATE treatment reduced cell proliferation and enhanced the anti-tumor efficacy of the multikinase inhibitor sorafenib. 68Ga-DOTATATE PET/CT scans successfully identified tumors in HCC animal models and spinal metastases in a patient with HCC. CONCLUSION These findings provide evidence that SSTR2-based theranostics could have significant implications for the detection and treatment of HCC.
Collapse
Affiliation(s)
- Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Belkacem Acidi
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.S.T.C.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Tyler M. Bateman
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Jack T. Adams
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Vahid Khalaj
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Hop S. Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.S.T.C.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| |
Collapse
|
43
|
Li YT, Zeng XZ. Establishment and Validation of the Novel Necroptosis-related Genes for Predicting Stemness and Immunity of Hepatocellular Carcinoma via Machine-learning Algorithm. Comb Chem High Throughput Screen 2025; 28:146-165. [PMID: 39641162 DOI: 10.2174/0113862073271292231108113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2024]
Abstract
BACKGROUND Necroptosis, a recently identified mechanism of programmed cell death, exerts significant influence on various aspects of cancer biology, including tumor cell proliferation, stemness, metastasis, and immunosuppression. However, the role of necroptosis-related genes (NRGs) in Hepatocellular Carcinoma (HCC) remains elusive. METHODS In this study, we assessed the mutation signature, copy number variation, and expression of 37 NRGs in HCC using the TCGA-LIHC dataset. We further validated our results using the ICGC-LIRI-JP dataset. To construct our prognostic model, we utilized the least absolute shrinkage and selection operator (LASSO), and evaluated the predictive efficacy of the NRGs-score using various machine learning algorithms, including K-M curves, time-ROC curves, univariate and multivariate Cox regression, and nomogram. In addition, we analyzed immune infiltration using the CIBERSOFT and ssGSEA algorithms, calculated the stemness index through the one-class logistic regression (OCLR) algorithm, and performed anti-cancer stem cells (CSCs) drug sensitivity analysis using oncoPredict. Finally, we validated the expression of the prognostic NRGs through qPCR both in vitro and in vivo. RESULTS About 18 out of 37 NRGs were found to be differentially expressed in HCC and correlated with clinical outcomes. To construct a prognostic model, six signature genes (ALDH2, EZH2, PGAM5, PLK1, SQSTM1, and TARDBP) were selected using LASSO analysis. These genes were then employed to categorize HCC patients into two subgroups based on NRGs-score (low vs. high). A high NRGs score was associated with a worse prognosis. Furthermore, univariate and multivariate Cox regression analyses were performed to confirm the NRGs-score as an independent risk factor. These analyses revealed strong associations between NRGs-score and critical factors, such as AFP, disease stage, and tumor grade in the HCC cohort. NRGs-score effectively predicted the 1-, 3-, and 5-year survival of HCC patients. Immune infiltration analysis further revealed that the expression of immune checkpoint molecules was significantly enhanced in the high NRGs-score group. Stemness analysis in the HCC cohort showed that NRGs-score was positively correlated with mRNA stemness index, and patients with high NRGs-score were sensitive to CSCs inhibitors. The findings from the external validation cohort provided confirmation that the NRGs-score presented a trait with universal applicability in accurately predicting the survival of HCC. Additionally, the six prognostic genes were consistently differentially expressed in both the HCC cell line and the mouse HCC model. CONCLUSION Our study demonstrated the pivotal role of NRGs in promoting stemness and immune suppression in HCC and established a robust model which could successfully predict HCC prognosis.
Collapse
Affiliation(s)
- Yao-Ting Li
- Department of Forensic Science, Guangdong Police College, 500 Binjiang East Road, Guangzhou 510230, Guangdong, China
| | - Xue-Zhen Zeng
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
44
|
Fan Q, Wei P, Ma D, Cheng Q, Gao J, Zhu J, Li Z. Therapeutic efficacy and prognostic indicators in re-resection for recurrent hepatocellular carcinoma: Insights from a retrospective study. Surg Open Sci 2025; 23:16-23. [PMID: 39816698 PMCID: PMC11733202 DOI: 10.1016/j.sopen.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Aims To evaluate the efficacy of re-resection in recurrent hepatocellular carcinoma (rHCC), identify prognostic factors, and provide clinical guidance. Methods A retrospective analysis was conducted on 130 rHCC patients undergoing re-resection and 60 primary HCC patients undergoing initial hepatectomy at Peking University People's Hospital (2014-2022). Disease-free survival (DFS) and overall survival (OS) were compared. Prognostic factors were identified using univariate and multivariate COX regression analyses. Results Baseline characteristics were comparable between groups (P > 0.05). DFS was similar between groups (30.8 vs. 32.2 months, P = 0.612). The 1-year, 2-year, and 3-year DFS rates for the re-resection group were 88.5 %, 64.9 %, and 56.7 %, respectively, versus 88.3 %, 65.0 %, and 53.3 % for the primary resection group. OS was lower in the re-resection group (36.1 vs. 47.2 months, P = 0.041) with 1-year, 2-year, and 3-year OS rates of 90.8 %, 73.1 %, and 60.0 %, compared to 95.0 %, 80.0 %, and 68.3 % for the primary resection group. Significant factors affecting DFS were Child-Pugh classification (P = 0.044), time to recurrence (P = 0.002), tumor differentiation (P = 0.044), and satellite nodules (P = 0.019). Factors influencing OS included Child-Pugh classification (P = 0.040), time to recurrence (P = 0.002), and tumor differentiation (P = 0.032). Conclusions Re-resection is an effective treatment option for rHCC, with favorable outcomes as measured by DFS and OS, though OS is lower compared to initial hepatectomy. Key prognostic factors include Child-Pugh classification, time to recurrence, tumor differentiation, and satellite nodules.
Collapse
Affiliation(s)
- Qi Fan
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| |
Collapse
|
45
|
Fan F, Dong G, Han C, Luo Y, Li X, Dong X, Wang Z, Liang P, Yu J. Circulating Immune Features Synergizing Neutrophil-to-Lymphocyte Ratio in Prediction of Poor Survival of Early-Stage Hepatocellular Carcinoma After Thermal Ablation. Technol Cancer Res Treat 2025; 24:15330338241309402. [PMID: 40079761 PMCID: PMC11907606 DOI: 10.1177/15330338241309402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Background and AimPredictors of neutrophil-to-lymphocyte ratio (NLR) and traditional clinical variables for hepatocellular carcinoma (HCC) prognosis after locoregional therapies were useful while exhibited modest prognostic performances. We dig out the potential of circulating immune features for HCC prognosis prediction.Methods244 patients with early-stage HCC who were treated with thermal ablation and performed the peripheral blood mononuclear cells (PBMCs) tests were included. Patients were randomly assigned in 3:1 ratio to discovery (n = 183) and validation (n = 62) sets. Three models, including clinical (Clin-model), NLR-Clin-model and Immune-NLR-Clin-model were constructed using Cox regression model. Concordance index (c-index), integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were used for performance evaluation.ResultsThe Immune-NLR-Clin-model exhibited the best performance of 0.706 (95% CI:0.644-0.768) and 0.702 (95% CI:0.566-0.837) in discovery and validation sets, respectively. At 36-month prediction, the IDI and continuous-NRI show trend of improvement, with the IDI was 0.050 (95%CI: -0.5%-12.5%) (P < .0270) and the continuous-NRI was 0.147 (95%CI: -0.5%-36.6%) (P = .060) in discovery cohort. Treg, CD8+ and NLR from the immune-related combined model were selected to build TREND score. The median overall survival in TREND-low risk and high risk were 98.08 and 62.00 months, respectively (P < .0001). The discrimination ability approached significantly in validation set (P = .3200).ConclusionsCirculating immune features may be helpful components aiding NLR for HCC predictive models.
Collapse
Affiliation(s)
- Fangying Fan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoping Dong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanchun Luo
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuanjuan Dong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhen Wang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Jie Yu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| |
Collapse
|
46
|
Roy N, Lodh R, Mandal S, Kumar Jolly M, Sarma A, Bhattacharyya DK, Barah P. Comparative transcriptomic analysis uncovers molecular heterogeneity in hepatobiliary cancers. Transl Oncol 2025; 51:102192. [PMID: 39546955 PMCID: PMC11613176 DOI: 10.1016/j.tranon.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatobiliary cancers (HBCs) pose a major global health challenge, with a lack of effective targeted biomarkers. Due to their complex anatomical locations, shared risk factors, and the limitations of targeted therapies, generalized treatment strategies are often used for gallbladder cancer (GBC), hepatocellular carcinoma (HCC), and intrahepatic cholangiocarcinoma (ICC). This study aimed to identify specific transcriptomic signatures in GBC, HCC, and ICC. The transcriptomic data analysis revealed distinct expression profiles, highlighting complex molecular heterogeneity within these cancers, even within the same organ system. Functional annotation revealed distinct biological pathways associated with each type of HBCs. GBC was linked to cell cycle regulation, HCC was associated with immune system modulation, and ICC was involved in metabolic dysregulation, particularly lipid metabolism. Gene co-expression network (GCN) and protein-protein interaction (PPI) network analyses identified potential key genes, such as MAPK3 and ERBB2 in GBC, AC069287.1 and ACTN2 in HCC, and TRPC1 and BACE1 in ICC. The FOX family of transcription factors (TFs) was conserved across all three cancer types. To further explore the relationship between Epithelial-Mesenchymal Transition (EMT) and the identified hub genes and TFs, an EMT score analysis was conducted. This analysis revealed distinct phenotypic characteristics in each cancer type, with TFs identified in GBC and ICC showing a stronger correlation with EMT compared to those in HCC. External validation using The Cancer Genome Atlas (TCGA) databases confirmed the expression of candidate genes, underscoring their potential as therapeutic targets. These findings provide valuable insights into the molecular heterogeneity and complexity of HBCs, opening new avenues for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Nabanita Roy
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Ria Lodh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Sarma
- Department of Onco-pathology, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Dhruba Kumar Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India.
| |
Collapse
|
47
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
48
|
Sun R, Liu K, Pan S, Ye Y, Li N, Chen S, Cui X, Zhang Y, Chen L, Pan J, Hu Z, Luo C, Fan J, Zhou Z, Zhou S, Zhou J. LRP4 mutations promote tumor progression and resistance to anti-PD-1 therapy in recurrent hepatocellular carcinoma. Hepatology 2024:01515467-990000000-01125. [PMID: 39723987 DOI: 10.1097/hep.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND AIMS HCC recurrence is a major factor limiting long-term survival and the cause of most deaths in patients with HCC. However, molecular characterization and potential therapeutic targets of recurrent HCC remain mostly unknown. APPROACH AND RESULTS We performed whole-exome sequencing in 63 matched primary and recurrent HCC tumors and combined the data with whole-genome sequencing results in 43 paired samples from our previous study. Sanger sequencing was used to identify all low-density lipoprotein receptor-related protein 4 ( LRP4 ) coding exons in 203 additional patients with recurrent HCC. We identified LRP4 somatic mutations in 7.8% (24/309) of recurrent tumors and only 0.97% (3/309) of primary tumors ( p <0.001). Prognosis after the second liver resection was poorer in patients with an LRP4 mutation. Biofunctional investigations demonstrated that inactivating LRP4 mutations promoted tumor progression and immunosuppression. Mechanistically, mutated LRP4 reduced intratumoral conventional type 1 dendritic cell and CD8 + T cell infiltration by repressing C-C motif chemokine ligand 4 expression and secretion through activation of β-catenin signaling, resulting in resistance to anti-programmed cell death protein-1 therapy. Patients with recurrent HCC carrying an LRP4 mutation did not benefit from anti-programmed cell death protein-1 treatment after their second resection surgery. A β-catenin inhibitor-reversed LRP4-induced resistance to anti-programmed cell death protein-1 therapy in humanized tumor-bearing mice. CONCLUSIONS Our results identified novel LRP4 mutations important in recurrent HCC. Inactivating LRP4 mutations were associated with resistance to anti-programmed cell death protein-1 therapy and could be useful biomarkers for precision therapy in patients with recurrent HCC.
Collapse
Affiliation(s)
- Rongqi Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kaixuan Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Siyuan Pan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yuhang Ye
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ning Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Shuangyi Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xinyi Cui
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yuxi Zhang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Long Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jingyue Pan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhiqiang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chubin Luo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhengjun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Shaolai Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Fudan University, Guangzhou, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Fudan University, Guangzhou, China
| |
Collapse
|
49
|
Yin CQ, Song CQ. Tumor Intrinsic Immunogenicity Suppressor SETDB1 Worsens the Prognosis of Patients with Hepatocellular Carcinoma. Cells 2024; 13:2102. [PMID: 39768193 PMCID: PMC11675013 DOI: 10.3390/cells13242102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is clinically distinguished by its covert onset, rapid progression, high recurrence rate, and poor prognosis. Studies have revealed that SETDB1 (SET Domain Bifurcated 1) is a histone H3 methyltransferase located on chromosome 1 and plays a crucial role in carcinogenesis. Therefore, we aimed to evaluate the clinical significance of SETDB1 expression in HCC. In patients with HCC, elevated levels of SETDB1 correlated with a poorer overall survival (OS) rate, marking it as an independent prognostic factor for HCC, as revealed by both univariate and multivariate Cox analyses. Furthermore, we utilized the SangerBox and TISIDB databases to profile the tumor immune microenvironment in HCC, including scoring the tumor microenvironment and assessing immune cell infiltration. The TIDE algorithm was employed to examine the association between SETDB1 expression and immune responses. Our findings indicated that SETDB1 expression negatively correlated with the majority of immune cells, a wide range of immune cell marker genes, and numerous immune pathways, thereby leading to the reduced effectiveness of immune checkpoint inhibitors. Lastly, both in vivo and ex vivo experiments were conducted to substantiate the role of SETDB1 in HCC tumorigenesis. In conclusion, the upregulation of SETDB1 is associated with a poorer prognosis in HCC patients and inversely correlates with immune cell infiltration, potentially serving as a predictive marker for immunotherapy response.
Collapse
Affiliation(s)
- Chang-Qing Yin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Gene Therapeutic Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chun-Qing Song
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Gene Therapeutic Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
50
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|