1
|
Midekssa FS, Davidson CD, Wieger ME, Kamen JL, Hanna KM, Jayco DKP, Hu MM, Friend NE, Putnam AJ, Helms AS, Shikanov A, Baker BM. Semi-synthetic fibrous fibrin composites promote 3D microvascular assembly, survival, and host integration of endothelial cells without mesenchymal cell support. Bioact Mater 2025; 49:652-669. [PMID: 40235652 PMCID: PMC11999628 DOI: 10.1016/j.bioactmat.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Vasculogenic assembly of 3D capillary networks remains a promising approach to vascularizing tissue-engineered grafts, a significant outstanding challenge in tissue engineering and regenerative medicine. Current approaches for vasculogenic assembly rely on the inclusion of supporting mesenchymal cells alongside endothelial cells, co-encapsulated within vasculo-conducive materials such as low-density fibrin hydrogels. Here, we established a material-based approach to circumvent the need for supporting mesenchymal cells and report that the inclusion of synthetic matrix fibers in dense (>3 mg mL-1) 3D fibrin hydrogels can enhance vasculogenic assembly in endothelial cell monocultures. Surprisingly, we found that the addition of non-cell-adhesive synthetic matrix fibers compared to cell-adhesive synthetic fibers best encouraged vasculogenic assembly, proliferation, lumenogenesis, a vasculogenic transcriptional program, and additionally promoted cell-matrix interactions and intercellular force transmission. Implanting fiber-reinforced prevascularized constructs to assess graft-host vascular integration, we demonstrate additive effects of enhanced vascular network assembly during in vitro pre-culture, fiber-mediated improvements in endothelial cell survival and vascular maintenance post-implantation, and enhanced host cell infiltration that collectively enabled graft vessel integration with host circulation. This work establishes synthetic matrix fibers as an inexpensive alternative to sourcing and expanding secondary supporting cell types for the prevascularization of tissue constructs.
Collapse
Affiliation(s)
- Firaol S. Midekssa
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Christopher D. Davidson
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Megan E. Wieger
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Jordan L. Kamen
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Kaylin M. Hanna
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Danica Kristen P. Jayco
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan Ann Arbor, MI 48109, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| |
Collapse
|
2
|
Hu Z, Herrmann JE, Schwarz EL, Gerosa FM, Emuna N, Humphrey JD, Feinberg AW, Hsia TY, Skylar-Scott MA, Marsden AL. Multiphysics Simulations of a Bioprinted Pulsatile Fontan Conduit. J Biomech Eng 2025; 147:071001. [PMID: 40172060 DOI: 10.1115/1.4068319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
For single ventricle congenital heart patients, Fontan surgery is the final stage in a series of palliative procedures, bypassing the heart to enable passive flow of de-oxygenated blood from the inferior vena cava (IVC) to the pulmonary arteries. This circulation leads to severely elevated central venous pressure, diminished cardiac output, and thus numerous sequelae and premature mortality. To address these issues, we propose a bioprinted pulsatile conduit to provide a secondary power source for the Fontan circulation. A multiphysics computational framework was developed to predict conduit performance and to guide design prior to printing. Physics components included electrophysiology, cardiomyocyte contractility, and fluid-structure interaction coupled to a closed-loop lumped parameter network representing Fontan physiology. A range of myocardial contractility was considered and simulated. The initial conduit design with adult ventricular cardiomyocyte contractility values coupled to a Purkinje network demonstrated potential to reduce liver (IVC) pressure from 16.4 to 9.3 mmHg and increase cardiac output by 29%. After systematically assessing the impacts of contraction duration, fiber direction, and valve placement on conduit performance, we identified a favorable design that successfully reduces liver pressure to 7.3 mmHg and increases cardiac output by 38%, almost normalizing adverse hemodynamics in the lower venous circulation. Valves at the input and output of the conduit are essential to achieve these satisfactory results; without valves, performance is compromised. However, a potential drawback of the design is the elevation of superior vena cava (SVC) pressure, which varies linearly with liver pressure reduction.
Collapse
Affiliation(s)
- Zinan Hu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Jessica E Herrmann
- School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Medicine
| | - Erica L Schwarz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Fannie M Gerosa
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford University
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tain-Yen Hsia
- Arnold Palmer Hospital for Children, Orlando, FL 32806
- Arnold Palmer Hospital for Children
| | - Mark A Skylar-Scott
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Stanford University
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, Stanford, CA 94305; Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
3
|
Janson KD, Parkhideh S, Swain JWR, Weaver JD, Hartgerink JD, Veiseh O. Strategies for the vascular patterning of engineered tissues for organ repair. Nat Biomed Eng 2025:10.1038/s41551-025-01420-w. [PMID: 40542109 DOI: 10.1038/s41551-025-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/07/2025] [Indexed: 06/22/2025]
Abstract
The loss of organ function following traumatic injury is often irreversible and the demand for organ replacements continues to exceed supply. This discrepancy has driven the development of therapies and engineered tissues for the repair or replacement of damaged tissues. However, the survival of engineered tissues is constrained by the challenge of establishing a functional vasculature. Efforts have therefore focused on strategies that induce vascularization in tissue implants or stimulate vascular growth in recipients of the therapies. Here we discuss recent advances in vascular biology, biomaterials chemistry and 3D printing techniques for vascular patterning in engineered tissues. For tissue regeneration to be clinically viable, vascular formation must be guided across scales ranging from micrometres to millimetres through biological, chemical and physical approaches.
Collapse
Affiliation(s)
- Kevin D Janson
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Zhang IW, Choi LS, Friend NE, McCoy AJ, Midekssa FS, Hu MM, Alsberg E, Lesher-Pérez SC, Stegemann JP, Baker BM, Putnam AJ. Clickable PEG-norbornene microgels support suspension bioprinting and microvascular assembly. Acta Biomater 2025:S1742-7061(25)00413-1. [PMID: 40514334 DOI: 10.1016/j.actbio.2025.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 05/27/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025]
Abstract
The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature. The clickable PEGNB microbead slurry exhibited mechanical behavior suitable for suspension bioprinting of sacrificial bioinks, could be UV crosslinked into a granular construct post-print, and withstood evacuation of the bioink and subsequent perfusion of the patterned void space. Endothelial and stromal cells co-embedded within jammed RGD-modified PEGNB microbead slurries assembled into capillary-scale vasculature after secondary crosslinking of the beads into granular constructs, with endothelial tubules forming within the interstitial space between microbeads and supported by the perivascular association of the stromal cells. Microvascular self-assembly was not impacted by printing sacrificial bioinks into the cell-laden microbead support bath before UV crosslinking. Collectively, these results demonstrate that clickable PEGNB microbeads are a versatile substrate for both suspension printing and microvascular culture and may be the foundation for a promising methodology to engineer hierarchical vasculature. STATEMENT OF SIGNIFICANCE: In this study, we leveraged and combined advances in microgel biomaterials, granular hydrogels, suspension bioprinting, and vascular biology to create relatively large volume (>500 mm3) vascularized constructs. We fabricated secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads and demonstrated their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature. To the best of our knowledge, this is the first study that uses PEG microgels as supportive materials for bioprinting, and one of the first papers to document microvascular self-assembly within granular constructs. The combination of top-down and bottom-up approaches within a single construct represents a significant and innovative contribution that we believe will be of broad interest to the biomaterials and regenerative medicine communities.
Collapse
Affiliation(s)
- Irene W Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Lucia S Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Atticus J McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Firaol S Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael M Hu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, United States; Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, United States
| | - Sasha Cai Lesher-Pérez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
5
|
Gong X, Wen Z, Liang Z, Xiao H, Lee S, Rossello-Martinez A, Xing Q, Wright T, Nguyen RY, Mak M. Instant assembly of collagen for tissue engineering and bioprinting. NATURE MATERIALS 2025:10.1038/s41563-025-02241-7. [PMID: 40481243 DOI: 10.1038/s41563-025-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/10/2025] [Indexed: 06/11/2025]
Abstract
Engineering functional cellular tissue components holds great promise in regenerative medicine. Collagen I, a key scaffolding material in bodily tissues, presents challenges in controlling its assembly kinetics in a biocompatible manner in vitro, restricting its use as a primary scaffold or adhesive in cellular biofabrication. Here we report a collagen fabrication method termed as tunable rapid assembly of collagenous elements that leverages macromolecular crowding to achieve the instant assembly of unmodified collagen. By applying an inert crowder to accelerate the liquid-gel transition of collagen, our method enables the high-throughput creation of physiological collagen constructs across length scales-from micro to macro-and facilitates cell self-assembly and morphogenesis through the generation of tunable multiscale architectural cues. With high biocompatibility and rapid gelation kinetics, the tunable rapid assembly of collagenous elements method also offers a versatile bioprinting approach for collagen over a wide concentration range, enabling the direct printing of cellular tissues using pH-neutral, bioactive collagen bioinks and achieving both structural complexity and biofunctionality. This work broadens the scope of controllable multiscale biofabrication for tissues across various organ systems using unmodified collagen.
Collapse
Affiliation(s)
- Xiangyu Gong
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zixie Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hugh Xiao
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sein Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Qinzhe Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Thomas Wright
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Oh S, Jekal J, Won J, Lim KS, Jeon CY, Park J, Yeo HG, Kim YG, Lee YH, Ha LJ, Jung HH, Yea J, Lee H, Ha J, Kim J, Lee D, Song S, Son J, Yu TS, Lee J, Lee S, Lee J, Kim BH, Choi JW, Rah JC, Song YM, Jeong JW, Choi HJ, Xu S, Lee Y, Jang KI. A stealthy neural recorder for the study of behaviour in primates. Nat Biomed Eng 2025; 9:882-895. [PMID: 39516303 PMCID: PMC12176640 DOI: 10.1038/s41551-024-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
By monitoring brain neural signals, neural recorders allow for the study of neurological mechanisms underlying specific behavioural and cognitive states. However, the large brain volumes of non-human primates and their extensive range of uncontrolled movements and inherent wildness make it difficult to carry out covert and long-term recording and analysis of deep-brain neural signals. Here we report the development and performance of a stealthy neural recorder for the study of naturalistic behaviours in non-human primates. The neural recorder includes a fully implantable wireless and battery-free module for the recording of local field potentials and accelerometry data in real time, a flexible 32-electrode neural probe with a resorbable insertion shuttle, and a repeater coil-based wireless-power-transfer system operating at the body scale. We used the device to record neurobehavioural data for over 1 month in a freely moving monkey and leveraged the recorded data to train an artificial intelligence model for the classification of the animals' eating behaviours.
Collapse
Affiliation(s)
- Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Leslie Jaesun Ha
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Hee Jung
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyeokjun Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jinmo Kim
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Doyoung Lee
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soojeong Song
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jieun Son
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Tae Sang Yu
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jungmin Lee
- Hertie Institute for Clinical Brain Research, International Max Planck Research School and University of Tuebingen, Tuebingen, Germany
| | - Sanghoon Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jaehong Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Bong Hoon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Ji-Woong Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jong-Cheol Rah
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
- Artificial Intelligence Major in Department of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Institute of Next-generation Semiconductor Convergence Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Sensorium Institute, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- ENSIDE Corporation, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Shi M, Fischer P, Melde K. Acoustic holographic assembly of cell-dense tissue constructs. Biofabrication 2025; 17:035009. [PMID: 40328276 DOI: 10.1088/1758-5090/add49e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Tissue engineering aims to develop tissue constructs as models or substitutes for native tissues. For organ-level biological studies and regenerative medicine applications, it is essential to fabricate tissue constructs with physiologically relevant cell densities (on the order of 10 million to 1 billion cells·ml-1), large size (centimeter scale and larger), and a controllable geometry to guide tissue maturation. State-of-the-art biofabrication methods, however, struggle to simultaneously meet all of these demands. The recently proposed acoustic holographic assembly (AHA) method shows promise, as it is compatible with culture media and enables the contactless, label-free, and volumetric assembly of biological cells in a predefined geometry within few minutes. Here we present an AHA biofabrication scheme designated for fabricating cell-dense, centimeter-scale, and arbitrarily-shaped tissue constructs using a compact benchtop instrument compatible with a biolab environment. We demonstrate the assembly of C2C12 myoblasts in gelatin methacryloyl (GelMA) into large and asymmetric branch-shaped constructs, which are rapidly formed with an average cell density of 40 million cells·ml-1and a local density of up to 260 million cells·ml-1. Featuring a high viability of 90.5 ± 4.3%, the assembled cell constructs are observed to grow within the GelMA hydrogel under perfusion over five days. Further, we show how AHA can-in a single step-assemble cells into layered and three-dimensional geometries inside standard cell culture labware. It can therefore help obtain engineered tissue constructs with structural and functional characteristics seen in more complex native tissues.
Collapse
Affiliation(s)
- Minghui Shi
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Institute for Basic Science (IBS), Center for Nanomedicine, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Kai Melde
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Liu Q, Ying G, Hu C, Du L, Zhang H, Wang Z, Yue H, Yetisen AK, Wang G, Shen Y, Jiang N. Engineering in vitro vascular microsystems. MICROSYSTEMS & NANOENGINEERING 2025; 11:100. [PMID: 40399285 PMCID: PMC12095634 DOI: 10.1038/s41378-025-00956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/11/2025] [Accepted: 04/07/2025] [Indexed: 05/23/2025]
Abstract
Blood vessels are hierarchical microchannels that transport nutrients and oxygen to different tissues and organs, while also eliminating metabolic waste from the body. Disorders of the vascular system impact both physiological and pathological processes. Conventional animal vascular models are complex, high-cost, time-consuming, and low-validity, which have limited the exploration of effective in vitro vascular microsystems. The morphologies of micro-scaled tubular structures and physiological properties of vascular tissues, including mechanical strength, thrombogenicity, and immunogenicity, can be mimicked in vitro by engineering strategies. This review highlights the state-of-the-art and advanced engineering strategies for in vitro vascular microsystems, covering the domains related to rational designs, manufacturing approaches, supporting materials, and organ-specific cell types. A broad range of biomedical applications of in vitro vascular microsystems are also summarized, including the recent advances in engineered vascularized tissues and organs for physiological and pathological study, drug screening, and personalized medicine. Moreover, the commercialization of in vitro vascular microsystems, the feasibility and limitations of current strategies and commercially available products, as well as perspectives on future directions for exploration, are elaborated. The in vitro modeling of vascular microsystems will facilitate rapid, robust, and efficient analysis in tissue engineering and broader regenerative medicine towards the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Qiao Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- Jinfeng Laboratory, Chongqing, China
- Tianfu Jincheng Laboratory, Chengdu, China
| | - Chenyan Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lingyu Du
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Huaiyi Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenye Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyan Yue
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | | | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
- Jinfeng Laboratory, Chongqing, China.
- Tianfu Jincheng Laboratory, Chengdu, China.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
- Jinfeng Laboratory, Chongqing, China.
- Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
9
|
Jensen L, Guo Z, Sun X, Jing X, Yang Y, Cao Y. Angiogenesis, signaling pathways, and animal models. Chin Med J (Engl) 2025; 138:1153-1162. [PMID: 40254738 PMCID: PMC12091601 DOI: 10.1097/cm9.0000000000003561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 04/22/2025] Open
Abstract
ABSTRACT The vasculature plays a critical role in homeostasis and health as well as in the development and progression of a wide range of diseases, including cancer, cardiovascular diseases, metabolic diseases (and their complications), chronic inflammatory diseases, ophthalmic diseases, and neurodegenerative diseases. As such, the growth of the vasculature mediates normal development and physiology, as well as disease, when pathologically induced vessels are morphologically and functionally altered owing to an imbalance of angiogenesis-stimulating and angiogenesis-inhibiting factors. This review offers an overview of the angiogenic process and discusses recent findings that provide additional interesting nuances to this process, including the roles of intussusception and angiovasculogenesis, which may hold promise for future therapeutic interventions. In addition, we review the methodology, including those of in vitro and in vivo assays, which has helped build the vast amount of knowledge on angiogenesis available today and identify important remaining knowledge gaps that should be bridged through future research.
Collapse
Affiliation(s)
- Lasse Jensen
- Department of Health, Medical and Caring Sciences, Unit of Diagnostics and Specialist Medicine, Linköping University, Linköping SE-58183, Sweden
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325024, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| |
Collapse
|
10
|
Sampietro M, Cellani M, Scielzo C. B cell mechanobiology in health and disease: emerging techniques and insights into therapeutic responses. FEBS Lett 2025. [PMID: 40387441 DOI: 10.1002/1873-3468.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Cells sense physical cues from their environment and convert them into biochemical responses through mechanotransduction. Unlike solid tumours, the role of such forces in haematological cancers is underexplored. In this context, immune cells experience dynamic mechanical stimuli as they migrate, extravasate and home to specific tissues. Understanding how these forces shape B-cell function and malignancy represents a groundbreaking area of research. This review examines the key mechanosensory pathways and molecules involved in lymphocyte mechanotransduction, beginning with mechanosensory proteins at the plasma membrane, followed by intracellular signal propagation through the cytoskeleton, eventually highlighting the nucleus as a 'signal actuator'. Subsequently, we cover some measurement approaches and advanced systems to investigate tumour biomechanics, highlighting their application in the context of B cells. Finally, we focus on the implications of mechanobiology in leukaemia, identifying molecules involved in B-cell malignancies that could serve as potential 'mechano-targets' for personalised therapies. This review emphasises the need to understand how lymphocytes generate, sense and respond to mechanical stimuli, which could open avenues for future biomedical innovations. Impact statement Our review is particularly valuable in highlighting the underexplored role of mechanobiology in B cell function and malignancies, while also discussing emerging techniques that can advance this research area. It bridges mechanotransduction, immunology, and cancer biology in a way that will be of interest to researchers across these three main fields.
Collapse
Affiliation(s)
- Marta Sampietro
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Cellani
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
11
|
Gao Y, Li X, Ding Y, Wang Y, Du J, Chen Y, Xu J, Liu Y. MiR-451a-Enriched Small Extracellular Vesicles Derived from Mg 2+-Activated DPSCs Induce Vascularized Bone Regeneration through the AKT/eNOS/NO Axis. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40364481 DOI: 10.1021/acsami.5c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Blood vessel formation is a necessary part of bone tissue regeneration. MSCs-sEVs play a vital role in the in vivo bone regeneration strategy. However, natural MSCs-sEVs suffer from limited blood vessel formation potency, which makes it difficult to induce vascularized bone regeneration. Here, sEVs derived from magnesium cation-activated DPSCs (Mg2+-EVs) are purified and found to have superior potential in promoting endothelial cell migration and angiogenesis, as well as BMSC proliferation and osteogenesis. The beneficial effects of Mg2+-EVs could be attributed to the enrichment of miR-451a and the subsequent regulation and activation of AKT/eNOS signaling pathways. On this basis, Mg2+-EVs are delivered on β-TCP-modified GelMA scaffolds for slow release and better bioavailability. The rat cranial defect model verifies that GelMA/β-TCP with Mg2+-EVs has enhanced potential of inducing vascularized bone regeneration. The present study provides a cation-activated strategy to modulate the cargos and contents of MSC-derived sEVs, obtaining desirable vascular promotion and bone regeneration potential. Furthermore, the developed β-TCP-modified delivery scaffolds represent a promising strategy for efficient loading and slow-release delivery of sEVs for clinical translation.
Collapse
Affiliation(s)
- Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yichen Ding
- Department of Endodontics, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| |
Collapse
|
12
|
Liao Z, Liu Y, Chen C, Lei IM, Dong L, Wang C. A Highly Adaptable Hydrogen Bond Re-Orientation (HyBRO) Strategy for Multiscale Vasculature Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417734. [PMID: 40344457 DOI: 10.1002/adma.202417734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Three-dimensional printing of microchannel networks mimicking native vasculature provides essential functions for biomedical applications. However, developing a highly "adaptable" technique - that can adjust to diverse materials choices, high shape accuracy, and broad size ranges - for producing physiologically responsive vasculature remains challenging. Here, an innovative hydrogen bond re-orientation (HyBRO) strategy for microchannel network fabrication is reported. By identifying interfacial instability of sacrificial material (SM) during embedding as a core limitation, this strategy prints the SM into an optimal "nonsolvent" to shape the desirable channel structure. In this process, the nonsolvent instantaneously switches the SM from forming hydrogen bonds with exterior water to forming interior linkages inside it. This transition protects the SM from external solvent "erosion" upon re-exposure to embedding material, inhibiting deformation. Consequently, this approach enables the creation of accurate (>90%), multiscale (10-fold), hierarchical microchannel networks, accommodating accurate printing of a wide range of ink materials - extending from typical hydrophilic polymers into non-typical hydrophobic ones. Further biological tests demonstrate that HyBRO-produced vasculature recapitulates not only essential endothelial barrier function but also delicate ion-channel responses to varying shear stresses, highlighting its potential for engineering physiologically responsive vasculature in broad applications.
Collapse
Affiliation(s)
- Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chonghao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Iek Man Lei
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
13
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501148. [PMID: 40298902 DOI: 10.1002/advs.202501148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced four-dimensional (4D)- materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lauren G Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alex J Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Asha R Viswanathan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jamison M Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
| | - Serena H Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Thomas P Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ella E Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruby M Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Natalie A Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Jodie C Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ross C Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Cole A DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Tracy E Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
14
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
15
|
Khan SB, Irfan S, Zhang Z, Yuan W. Redefining Medical Applications with Safe and Sustainable 3D Printing. ACS APPLIED BIO MATERIALS 2025. [PMID: 40200689 DOI: 10.1021/acsabm.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Additive manufacturing (AM) has revolutionized biomedical applications by enabling personalized designs, intricate geometries, and cost-effective solutions. This progress stems from interdisciplinary collaborations across medicine, biomaterials, engineering, artificial intelligence, and microelectronics. A pivotal aspect of AM is the development of materials that respond to stimuli such as heat, light, moisture, and chemical changes, paving the way for intelligent systems tailored to specific needs. Among the materials employed in AM, polymers have gained prominence due to their flexibility, synthetic versatility, and broad property spectrum. Their adaptability has made them the most widely used material class in AM processes, offering the potential for diverse applications, including surgical tools, structural composites, photovoltaic devices, and filtration systems. Despite this, integrating multiple polymer systems to achieve multifunctional and dynamic performance remains a significant challenge, highlighting the need for further research. This review explores the foundational principles of AM, emphasizing its application in tissue engineering and medical technologies. It provides an in-depth analysis of polymer systems, besides inorganic oxides and bioinks, and examines their unique properties, advantages, and limitations within the context of AM. Additionally, the review highlights emerging techniques like rapid prototyping and 3D printing, which hold promise for advancing biomedical applications. By addressing the critical factors influencing AM processes and proposing innovative approaches to polymer integration, this review aims to guide future research and development in the field. The insights presented here underscore the transformative potential of AM in creating dynamic, multifunctional systems to meet evolving biomedical and healthcare demands.
Collapse
Affiliation(s)
- Sadaf Bashir Khan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Syed Irfan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengjun Zhang
- The Key laboratory of Advanced materials (MOE), School of Material Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Weifeng Yuan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
16
|
Lu J, Pan X, Zhang W, Han J, Chen J, Song M, Xu C, Li X, Wang J, Wang L. Hydrogel sensing platforms for monitoring contractility in in vitro cardiac models. NANOSCALE 2025; 17:8436-8452. [PMID: 40091817 DOI: 10.1039/d4nr04087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) affects over 64 million people globally, marked by high incidence and mortality rates. Accurate measurements of myocardial contractility are crucial for evaluating cardiac pathomechanisms and monitoring disease progression. Hydrogel sensing devices, known for their flexibility, programmable structures, biocompatibility, and cell adhesion, are ideal for studying cardiac function, minimizing disruption to cardiomyocytes, and supporting long-term culture and monitoring. These platforms, while employing diverse detection principles to accurately measure cell contractility, still face challenges in achieving long-term stability and durability. This review summarizes current methods for monitoring cardiomyocyte contractility, emphasizes the significant impact of substrate mechanical properties on cellular function, and explores recent advances in hydrogel-based platforms for monitoring cell contraction forces. It also discusses the technical challenges and future prospects for measuring cardiac systolic function with these devices.
Collapse
Affiliation(s)
- Junxiu Lu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xiatong Pan
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
17
|
Xia X, Hu M, Zhou W, Jin Y, Yao X. Engineering cardiology with miniature hearts. Mater Today Bio 2025; 31:101505. [PMID: 39911371 PMCID: PMC11795835 DOI: 10.1016/j.mtbio.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of in vitro cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Wenyan Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yunpeng Jin
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xudong Yao
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
18
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multiregional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
19
|
Nie M, Shima A, Yamamoto M, Takeuchi S. Scalable tissue biofabrication via perfusable hollow fiber arrays for cultured meat applications. Trends Biotechnol 2025:S0167-7799(25)00085-X. [PMID: 40246628 DOI: 10.1016/j.tibtech.2025.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 04/19/2025]
Abstract
Creating perfusable channels within engineered tissues is crucial for the development of large-scale tissues. Unfortunately, existing technologies have not achieved uniformly distributed, perfusable networks on a large scale. To overcome this, we developed a method using a hollow fiber bioreactor (HFB) equipped with an array of closely packed semipermeable hollow fibers that function as artificial circulation systems, ensuring uniform nutrient and oxygen distribution throughout the tissue. Furthermore, the HFB includes microfabricated anchors for promoting cell alignment. When using active perfusion, biofabricated centimeter-scale chicken muscle tissue exhibited an elevated level of marker protein expression and sarcomere formation throughout the tissue, along with improved texture and flavor. In addition, a robotic-assisted fiber threading system was developed to achieve efficient assembly of the HFBs. Future full automation of this approach may revolutionize both the cultured meat industry and the tissue engineering field, which aims to create large-scale, tissue-engineered organs.
Collapse
Affiliation(s)
- Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ai Shima
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mikihisa Yamamoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan; Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Becker M, Gomes F, Porsul I, Leijten J. ATPS-enabled single-step printing of chemically and mechanically on-demand tunable perfusable channels in ejectable constructs. Biofabrication 2025; 17:025027. [PMID: 40043365 DOI: 10.1088/1758-5090/adbcdc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
3D bioprinting approaches offer highly versatile solutions to replicate living tissue and organ structures. While current bioprinting approaches can generate desired shapes and spatially determined patterns, the material selection for embedded bioprinting has remained limited, as it has relied on the use of viscous, shear-thinning, or liquid-like solid materials to create shape controlled constructs, which could then be modified downstream via multi-step processes. We here explore aqueous two-phase system stabilized 3D bioprinting of low viscous materials in combination with supramolecular complexation to fabricate intricate, perfusable engineered constructs that are both mechanically and chemically tunable in a single-step manner. To this end, we introduce Dex-TAB as a highly versatile backbone, that allows for mechanical and chemical tuning during as well as after printing. To showcase the printability as well as spatial chemical modification and mechanical tunability of this material, ejectability, and local/gradual or bulk functionalized interconnected tube shaped constructs were generated. Subsequently, we demonstrated that these functionalized channels could be printed directly into a syringe containing crosslinkable polymer solution, which upon ejection forms pre-patterned perfusable constructs. In short, we report that ATPS enabled low viscous 3D bioprinting can produce highly functional and even potentially minimally invasive injectable yet functionalized and perfusable constructs, which offers opportunities to advance various biofabrication applications.
Collapse
Affiliation(s)
- Malin Becker
- Leijten Laboratory, Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede 7522 NB, The Netherlands
| | - Francisca Gomes
- Leijten Laboratory, Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede 7522 NB, The Netherlands
| | - Isa Porsul
- Leijten Laboratory, Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede 7522 NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
22
|
Shi J, Wan Y, Jia H, Skeldon G, Jan Cornelissen D, Wesencraft K, Wu J, McConnell G, Chen Q, Liu D, Shu W. Printing Cell Embedded Sacrificial Strategy for Microvasculature using Degradable DNA Biolubricant. Angew Chem Int Ed Engl 2025; 64:e202417510. [PMID: 39460720 PMCID: PMC11914955 DOI: 10.1002/anie.202417510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024]
Abstract
Microvasculature is essential for the continued function of cells in tissue and is fundamental in the fields of tissue engineering, organ repair and drug screening. However, the fabrication of microvasculature is still challenging using existing strategies. Here, we developed a general PRINting Cell Embedded Sacrificial Strategy (PRINCESS) and successfully fabricated microvasculatures using degradable DNA biolubricant. This is the first demonstration of direct cell printing to fabricate microvasculature, which eliminates the need for a subsequent cell seeding process and the associated deficiencies. Utilizing the shear-thinning property of DNA hydrogels as a novel sacrificial, cell-laden biolubricant, we can print a 70 μm endothelialized microvasculature, breaking the limit of 100 μm. To our best knowledge, this is the smallest endothelialized microvasculature that has ever been bioprinted so far. In addition, the self-healing property of DNA hydrogels allows the creation of continuous branched structures. This strategy provides a new platform for constructing complex hierarchical vascular networks and offers new opportunity towards engineering thick tissues. The extremely low volume of sacrificial biolubricant paves the way for DNA hydrogels to be used in practical tissue engineering applications. The high-resolution bioprinting technique also exhibits great potential for printing lymphatics, retinas and neural networks in the future.
Collapse
Affiliation(s)
- Jiezhong Shi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of Chemistry Tsinghua UniversityBeijing100084China
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic MaterialsSINOPEC Beijing Research Institute of Chemical Industry Co., Ltd.Beijing, 100013China
| | - Yifei Wan
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
| | - Haoyang Jia
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of Chemistry Tsinghua UniversityBeijing100084China
| | - Gregor Skeldon
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
| | - Dirk Jan Cornelissen
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
| | - Katrina Wesencraft
- Department of Physics, SUPAUniversity of StrathclydeGlasgowG4 0NGUnited Kingdom
| | - Junxi Wu
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
| | - Gail McConnell
- Department of Physics, SUPAUniversity of StrathclydeGlasgowG4 0NGUnited Kingdom
| | - Quan Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of Chemistry Tsinghua UniversityBeijing100084China
| | - Wenmiao Shu
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowG4 0NWUnited Kingdom
| |
Collapse
|
23
|
Zhang G, Moya A, Scherberich A, Martin I. Challenges of engineering a functional growth plate in vitro. Front Bioeng Biotechnol 2025; 13:1550713. [PMID: 40104770 PMCID: PMC11913844 DOI: 10.3389/fbioe.2025.1550713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Several cartilage and bone organoids have been developed in vitro and in vivo using adult mesenchymal stromal/stem cells (MSCs) or pluripotent stem cells (PSCs) to mimic different phases of endochondral ossification (ECO), as one of the main processes driving skeletal development and growth. While cellular and molecular features of growth plate-like structures have been observed through the generation and in vivo implantation of hypertrophic cartilage tissues, no functional analogue or model of the growth plate has yet been engineered. Herein, after a brief introduction about the growth plate architecture and function, we summarize the recent progress in dissecting the biology of the growth plate and indicate the knowledge gaps to better understand the mechanisms of its development and maintenance. We then discuss how this knowledge could be integrated with state-of-art bioengineering approaches to generate a functional in vitro growth plate model.
Collapse
Affiliation(s)
- Gangyu Zhang
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
24
|
Orr A, Kalantarnia F, Nazir S, Bolandi B, Alderson D, O'Grady K, Hoorfar M, Julian LM, Willerth SM. Recent advances in 3D bioprinted neural models: A systematic review on the applications to drug discovery. Adv Drug Deliv Rev 2025; 218:115524. [PMID: 39900293 DOI: 10.1016/j.addr.2025.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/12/2024] [Accepted: 01/26/2025] [Indexed: 02/05/2025]
Abstract
The design of neural tissue models with architectural and biochemical relevance to native tissues opens the way for the fundamental study and development of therapies for many disorders with limited treatment options. Here, we systematically review the most recent literature on 3D bioprinted neural models, including their potential for use in drug screening. Neural tissues that model the central nervous system (CNS) from the relevant literature are reviewed with comprehensive summaries of each study, and discussion of the model types, bioinks and additives, cell types used, bioprinted construct shapes and culture time, and the characterization methods used. In this review, we accentuate the lack of standardization among characterization methods to analyze the functionality (including chemical, metabolic and other pathways) and mechanical relevance of the 3D bioprinted constructs, and discuss this as a critical area for future exploration. These gaps must be addressed for this technology to be applied for effective drug screening applications, despite its enormous potential for rapid and efficient drug screening. The future of biomimetic, 3D printed neural tissues is promising and evaluation of the in vivo relevance on multiple levels should be sought to adequately compare model performance and develop viable treatment options for neurodegenerative diseases, or other conditions that affect the CNS.
Collapse
Affiliation(s)
- Amanda Orr
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Shama Nazir
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Behzad Bolandi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dominic Alderson
- Newcastle University Biosciences Institute, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Mina Hoorfar
- Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; Centre for Advanced Materials and Technology, University of Victoria, Victoria, BC V8W 2Y2, Canada; School of Biomedical Engineering, University of British Columbia, Victoria, BC V6T 1Z4, Canada.
| |
Collapse
|
25
|
Cai B, Kilian D, Ghorbani S, Roth JG, Seymour AJ, Brunel LG, Mejia DR, Rios RJ, Szabo IM, Iranzo SC, Perez A, Rao RR, Shin S, Heilshorn SC. One-step bioprinting of endothelialized, self-supporting arterial and venous networks. Biofabrication 2025; 17:025012. [PMID: 39819775 DOI: 10.1088/1758-5090/adab26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial-venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Sadegh Ghorbani
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Daniel Ramos Mejia
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Ricardo J Rios
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Isabella M Szabo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Sean Chryz Iranzo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Andy Perez
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Rameshwar R Rao
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapies, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, United States of America
| | - Sungchul Shin
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
26
|
Donzanti MJ, Ferrick BJ, Mhatre O, Chernokal B, Renteria DC, Gleghorn JP. Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds. ACS Biomater Sci Eng 2025; 11:239-248. [PMID: 39606830 DOI: 10.1021/acsbiomaterials.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Generation of in vitro tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network fully embedded within an acellular hydrogel, where flow through the capillary bed is required prior to fluid exit. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using a simple acrylic cassette and fluorescently labeled microspheres, the multiscale network was demonstrated to be perfusable. Directed flow from inlet to outlet mandated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.
Collapse
Affiliation(s)
- Michael J Donzanti
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Omkar Mhatre
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Diana C Renteria
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| |
Collapse
|
27
|
Malkani S, Prado O, Stevens KR. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. ACS Biomater Sci Eng 2025; 11:1-12. [PMID: 39701582 PMCID: PMC11733865 DOI: 10.1021/acsbiomaterials.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge. Here, we explore and evaluate various strategies and materials that have been used for sacrificial templating. First, we emphasize fabrication approaches that use highly biocompatible sacrificial reagents and minimize the duration that cells spend in fabrication conditions without oxygen and nutrients. We then discuss strategies to create continuous, hierarchical vascular networks, both using biofabrication alone and using hybrid methods that integrate biologically driven vascular self-assembly into sacrificial templating workflows. Finally, we address the importance of structurally reinforcing engineered vessel walls to achieve stable blood flow in vivo, so that engineered organs remain perfused and functional long after implantation. Together, these sacrificial templating strategies have the potential to overcome many current limitations in biofabrication and accelerate clinical translation of transplantable, fully functional engineered organs to rescue patients from organ failure.
Collapse
Affiliation(s)
- Sherina Malkani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Prado
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Kelly R. Stevens
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195, United States
- Brotman
Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
28
|
Zhu H, Kuang H, Huang X, Li X, Zhao R, Shang G, Wang Z, Liao Y, He J, Li D. 3D printing of drug delivery systems enhanced with micro/nano-technology. Adv Drug Deliv Rev 2025; 216:115479. [PMID: 39603388 DOI: 10.1016/j.addr.2024.115479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huijuan Kuang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruosen Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziyu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yucheng Liao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
29
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Claxton N, Luse MA, Isakson BE, Highley CB. Engineering Granular Hydrogels without Interparticle Cross-Linking to Support Multicellular Organization. ACS Biomater Sci Eng 2024; 10:7594-7605. [PMID: 39585331 PMCID: PMC11632665 DOI: 10.1021/acsbiomaterials.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Advancing three-dimensional (3D) tissue constructs is central to creating in vitro models and engineered tissues that recapitulate biology. Materials that are permissive to cellular behaviors, including proliferation, morphogenesis of multicellular structures, and motility, will support the emergence of tissue structures. Granular hydrogels in which there is no interparticle cross-linking exhibit dynamic properties that may be permissive to such cellular behaviors. However, designing granular hydrogels that lack interparticle cross-linking but support cellular self-organization remains underexplored relative to granular systems stabilized by interparticle cross-linking. In this study, we developed a polyethylene glycol-based granular hydrogel system, with average particle diameters under 40 μm. This granular hydrogel exhibited bulk stress-relaxing behaviors and compatibility with custom microdevices to sustain cell cultures without degradation. The system was studied in conjunction with cocultures of endothelial cells and fibroblasts, known for their spontaneous network formation. Cross-linking, porosity, and cell-adhesive ligands (such as RGD) were manipulated to control system properties. Toward supporting cellular activity, increased porosity was found to enhance the formation of cellular networks, whereas RGD reduced network formation in the system studied. This research highlights the potential of un-cross-linked granular systems to support morphogenetic processes, like vasculogenesis and tissue maturation, offering insights into material design for 3D cell culture systems.
Collapse
Affiliation(s)
- Natasha
L. Claxton
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22903, United States
| | - Melissa A. Luse
- Department
of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Brant E. Isakson
- Department
of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
- Robert
M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Christopher B. Highley
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22903, United States
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
31
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
32
|
Sundaram S, Lee JH, Bjørge IM, Michas C, Kim S, Lammers A, Mano JF, Eyckmans J, White AE, Chen CS. Sacrificial capillary pumps to engineer multiscalar biological forms. Nature 2024; 636:361-367. [PMID: 39663490 DOI: 10.1038/s41586-024-08175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Abstract
Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales-from subcellular lengths1 (micrometre) to the organ scale2 (centimetre)-regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography3 and nozzle-based bioprinting4,5, and subcellular resolution through subtractive photoablation6-8. However, additive bioprinting struggles with sub-nozzle/voxel features9 and photoablation is restricted to small volumes by prohibitive heat generation and time10. Building across several length scales with temperature-sensitive, water-based soft biological matter has emerged as a critical challenge, leaving large classes of biological motifs-such as multiscalar vascular trees with varying calibres-inaccessible with present technologies11,12. Here we use gallium-based engineered sacrificial capillary pumps for evacuation (ESCAPE) during moulding to generate multiscalar structures in soft natural hydrogels, achieving both cellular-scale (<10 µm) and millimetre-scale features. Decoupling the biomaterial of interest from the process of constructing the geometry allows non-biocompatible tools to create the initial geometry. As an exemplar, we fabricated branched, cell-laden vascular trees in collagen, spanning approximately 300-µm arterioles down to the microvasculature (roughly ten times smaller). The same approach can micropattern the inner surface of vascular walls with topographical cues to orient cells in 3D and engineer fine structures such as vascular malformations. ESCAPE moulding enables the fabrication of multiscalar forms in soft biomaterials, paving the way for a wide range of tissue architectures that were previously inaccessible in vitro.
Collapse
Affiliation(s)
- Subramanian Sundaram
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - Joshua H Lee
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Isabel M Bjørge
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Christos Michas
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Sudong Kim
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alex Lammers
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Jeroen Eyckmans
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alice E White
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Material Science and Engineering, Boston University, Boston, MA, USA
| | - Christopher S Chen
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
33
|
McCormack A, Porcza LM, Leslie NR, Melchels FPW. Gellan gum-based granular gels as suspension media for biofabrication. PLoS One 2024; 19:e0312726. [PMID: 39602414 PMCID: PMC11602023 DOI: 10.1371/journal.pone.0312726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/13/2024] [Indexed: 11/29/2024] Open
Abstract
Engineering 3D tissue-like constructs for applications such as regenerative medicine remains a major challenge in biomedical research. Recently, self-healing, viscoplastic fluids have been introduced as suspension media to allow lower viscosity, water-rich bioinks to be printed within them for the fabrication of more biomimetic structures. Here, we present gellan gum granular gels produced through the application of shear during gelation, as a candidate suspension medium. We demonstrate that these granular gels exhibit viscoplasticity over a wide range of temperatures, permitting their use for 3D bioprinting of filaments and droplets at low (4°C) as well as physiological temperatures. These granular gels exhibit very low yield stresses (down to 0.4 Pa) which facilitated printing at print speeds up to 60 mm.s-1. Furthermore, we demonstrate the printing of cell-laden droplets maintained over 7 days to show the potential for multiple days of cell culture, as well as the fabrication of hydrogel features within a crosslinkable version of the suspension medium containing granular gellan gum and gelatine-methacryloyl. The combination of ease of preparation, high printing speed, wide temperature tolerance, and crosslinkability makes this gellan gum sheared through cooling-induced gelation an attractive candidate for suspended biofabrication.
Collapse
Affiliation(s)
- Andrew McCormack
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Laura M. Porcza
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Nicholas R. Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Ferry P. W. Melchels
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Future Industries Institute, University of South Australia Mawson Lakes, Adelaide, Australia
| |
Collapse
|
34
|
Rector Iv JA, McBride L, Weber CM, Grossman K, Sorets A, Ventura-Antunes L, Holtz I, Young K, Schrag M, Lippmann ES, Bellan LM. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Biofabrication 2024; 17:015023. [PMID: 39401530 PMCID: PMC11575475 DOI: 10.1088/1758-5090/ad867d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
In the body, capillary beds fulfill the metabolic needs of cells by acting as the sites of diffusive transport for vital gasses and nutrients. In artificial tissues, replicating the scale and complexity of capillaries has proved challenging, especially in a three-dimensional context. In order to better develop thick artificial tissues, it will be necessary to recreate both the form and function of capillaries. Here we demonstrate a top-down method of patterning hydrogels using sacrificial templates formed from thermoresponsive microfibers whose size and architecture approach those of natural capillaries. Within the resulting microchannels, we cultured endothelial monolayers that remain viable for over three weeks and exhibited functional barrier properties. Additionally, we cultured endothelialized microchannels within hydrogels containing fibroblasts and characterized the viability of the co-cultures to demonstrate this approach's potential when applied to cell-laden hydrogels. This method represents a step forward in the evolution of artificial tissues and a path towards producing viable capillary-scale microvasculature for engineered organs.
Collapse
Affiliation(s)
- John A Rector Iv
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lucas McBride
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Kira Grossman
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Alexander Sorets
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lissa Ventura-Antunes
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Isabella Holtz
- Department of Cognitive Studies, Vanderbilt University, Nashville, TN, United States of America
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States of America
| | - Katherine Young
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Matthew Schrag
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
35
|
Zhang IW, Choi LS, Friend NE, McCoy AJ, Midekssa FS, Alsberg E, Lesher-Pérez SC, Stegemann JP, Baker BM, Putnam AJ. Clickable PEG-norbornene microgels support suspension bioprinting and microvascular assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623424. [PMID: 39605682 PMCID: PMC11601470 DOI: 10.1101/2024.11.15.623424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature. The clickable PEGNB microbead slurry exhibited mechanical behavior suitable for suspension bioprinting of sacrificial bioinks, could be UV crosslinked into a granular construct post-print, and withstood evacuation of the bioink and subsequent perfusion of the patterned void space. Endothelial and stromal cells co-embedded within jammed RGD-modified PEGNB microbead slurries assembled into capillary-scale vasculature after secondary crosslinking of the beads into granular constructs, with endothelial tubules forming within the interstitial space between microbeads and supported by the perivascular association of the stromal cells. Microvascular self-assembly was not impacted by printing sacrificial bioinks into the cell-laden microbead support bath before UV crosslinking. Collectively, these results demonstrate that clickable PEGNB microbeads are a versatile substrate for both suspension printing and microvascular culture and may be the foundation for a promising methodology to engineer hierarchical vasculature.
Collapse
|
36
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
37
|
Iqbal MZ, Riaz M, Biedermann T, Klar AS. Breathing new life into tissue engineering: exploring cutting-edge vascularization strategies for skin substitutes. Angiogenesis 2024; 27:587-621. [PMID: 38842751 PMCID: PMC11564345 DOI: 10.1007/s10456-024-09928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.
Collapse
Affiliation(s)
- M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Agarwal SS, Cortes-Medina M, Holter JC, Avendano A, Tinapple JW, Barlage JM, Menyhert MM, Onua LM, Song JW. Rapid low-cost assembly of modular microvessel-on-a-chip with benchtop xurography. LAB ON A CHIP 2024; 24:5065-5076. [PMID: 39397763 PMCID: PMC11472271 DOI: 10.1039/d4lc00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Blood and lymphatic vessels in the body are central to molecular and cellular transport, tissue repair, and pathophysiology. Several approaches have been employed for engineering microfabricated blood and lymphatic vessels in vitro, yet traditionally these approaches require specialized equipment, facilities, and research training beyond the capabilities of many biomedical laboratories. Here we present xurography as an inexpensive, accessible, and versatile rapid prototyping technique for engineering cylindrical and lumenized microvessels. Using a benchtop xurographer, or a cutting plotter, we fabricated modular multi-layer poly(dimethylsiloxane) (PDMS)-based microphysiological systems (MPS) that house endothelial-lined microvessels approximately 260 μm in diameter embedded within a user-defined 3-D extracellular matrix (ECM). We validated the vascularized MPS (or vessel-on-a-chip) by quantifying changes in blood vessel permeability due to the pro-angiogenic chemokine CXCL12. Moreover, we demonstrated the reconfigurable versatility of this approach by engineering a total of four distinct vessel-ECM arrangements, which were obtained by only minor adjustments to a few steps of the fabrication process. Several of these arrangements, such as ones that incorporate close-ended vessel structures and spatially distinct ECM compartments along the same microvessel, have not been widely achieved with other microfabrication strategies. Therefore, we anticipate that our low-cost and easy-to-implement fabrication approach will facilitate broader adoption of MPS with customizable vascular architectures and ECM components while reducing the turnaround time required for iterative designs.
Collapse
Affiliation(s)
- Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jacob C Holter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph W Tinapple
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph M Barlage
- Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lotanna M Onua
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Arslan H, Davuluri A, Nguyen HH, So BR, Lee J, Jeon J, Yum K. 3D Bioprinting Using Universal Fugitive Network Bioinks. ACS APPLIED BIO MATERIALS 2024; 7:7040-7050. [PMID: 39291381 DOI: 10.1021/acsabm.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Three-dimensional (3D) bioprinting has emerged with potential for creating functional 3D tissues with customized geometries. However, the limited availability of bioinks capable of printing 3D structures with both high-shape fidelity and desired biological environments for encapsulated cells remains a key challenge. Here, we present a 3D bioprinting approach that uses universal fugitive network bioinks prepared by loading cells and hydrogel precursors (bioink base materials) into a 3D printable fugitive carrier. This approach constructs 3D structures of cell-encapsulated hydrogels by printing 3D structures using fugitive network bioinks, followed by cross-linking printed structures and removing the carrier from them. The use of the fugitive carrier decouples the 3D printability of bioinks from the material properties of bioink base materials, making this approach readily applicable to a range of hydrogel systems. The decoupling also enables the design of bioinks for the biological functionality of the final printed constructs without compromising the 3D printability. We demonstrate the generalizable 3D printability by printing self-supporting 3D structures of various hydrogels, including conventionally non-3D printable hydrogels and those with a low polymer content. We conduct preprinting screening of bioink base materials through 3D cell culture to select bioinks with high cell compatibility. The selected bioinks produce 3D constructs of cell-encapsulated hydrogels with both high-shape fidelity and high cell viability and proliferation. The universal fugitive network bioink platform could significantly expand 3D printable bioinks with customizable biological functionalities and the adoption of 3D bioprinting in diverse research and applied settings.
Collapse
Affiliation(s)
- Hakan Arslan
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aneela Davuluri
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Hiep H Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Byung Ran So
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Junha Jeon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kyungsuk Yum
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
40
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
41
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
42
|
Luo Y, Xu R, Hu Z, Ni R, Zhu T, Zhang H, Zhu Y. Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels 2024; 10:644. [PMID: 39451297 PMCID: PMC11507232 DOI: 10.3390/gels10100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Constructing tissue/organ analogs with natural structures and cell types in vitro offers a valuable strategy for the in situ repair of damaged tissues/organs. Three-dimensional (3D) bioprinting is a flexible method for fabricating these analogs. However, extrusion-based 3D bioprinting faces the challenge of balancing the use of soft bioinks with the need for high-fidelity geometric shapes. To address these challenges, recent advancements have introduced various suspension mediums based on gelatin, agarose, and gellan gum microgels. The emergence of these gel-based suspension mediums has significantly advanced the fabrication of tissue/organ constructs using 3D bioprinting. They effectively stabilize and support soft bioinks, enabling the formation of complex spatial geometries. Moreover, they provide a stable, cell-friendly environment that maximizes cell viability during the printing process. This minireview will summarize the properties, preparation methods, and potential applications of gel-based suspension mediums in constructing tissue/organ analogs, while also addressing current challenges and providing an outlook on the future of 3D bioprinting.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
43
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
44
|
Portone A, Ganzerli F, Petrachi T, Resca E, Bergamini V, Accorsi L, Ferrari A, Sbardelatti S, Rovati L, Mari G, Dominici M, Veronesi E. Hybrid biofabricated blood vessel for medical devices testing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2404382. [PMID: 39328923 PMCID: PMC11425690 DOI: 10.1080/14686996.2024.2404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current in vitro and in vivo tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness. Cell viability, Von Willebrand factor, and CD31 expression were evaluated on biofabricated tissues, showing how bioprinting and Fast Diffusion-induced Gelation can replicate human vessels architecture and complexity. We then applied biofabricated tissue to study the cytotoxicity of a carbothane catheter under static condition, and to better recapitulate the effect of blood flow, a novel bioreactor named CuBiBox (Customized Biological Box) was developed and introduced in a dynamic modality. Collectively, we propose a novel bioprinted platform for human in vitro biocompatibility testing, predicting the impact of medical devices and their materials on vascular systems, reducing animal experimentation and, ultimately, accelerating time to market.
Collapse
Affiliation(s)
| | | | | | - Elisa Resca
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Valentina Bergamini
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Accorsi
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Alberto Ferrari
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Luigi Rovati
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Mari
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Massimo Dominici
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
45
|
Du S, Huynh T, Lu YZ, Parker BJ, Tham SK, Thissen H, Martino MM, Cameron NR. Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization. Acta Biomater 2024; 186:260-274. [PMID: 39089351 DOI: 10.1016/j.actbio.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.
Collapse
Affiliation(s)
- Shengrong Du
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Tony Huynh
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Stephen K Tham
- Department of Surgery, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia; Victorian Heart Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, UK; Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Koga T, Nakashima S, Tsumori F. Replicating biological 3D root and hyphal networks in transparent glass chips. Sci Rep 2024; 14:21128. [PMID: 39256469 PMCID: PMC11387748 DOI: 10.1038/s41598-024-72333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Replicating the complex 3D microvascular architectures found in biological systems is a critical challenge in tissue engineering and other fields requiring efficient mass transport. Conventional microfabrication techniques often face limitations in creating extensive hierarchical networks, especially within bulk materials. Here, we report a versatile bioinspired approach to generate optimized 3D microvascular networks within transparent glass matrix by transcribing the natural growth patterns of plants and fungi. Plant seeds or fungal spores are first cultivated on nanoparticle-based culture media. Subsequent heat treatment removes the biological species while sintering the surrounding compound into a solidified chip with replica root/hyphal architectures as open microchannels. A diverse range of architectures, including the hierarchical branching of plant roots and the intricate networks formed by fungal hyphae, can be faithfully replicated. The resultant glass microvascular networks exhibit high chemical and thermal stability, enabling applications under harsh conditions. Fluid flow experiments validate the functionalities of the fabricated channels. By co-cultivating plants and fungi, hierarchical multi-scale architectures mimicking natural vascular systems are achieved. This bioinspired manufacturing technique leverages autonomous biological growth for architectural optimization, offering a complementary approach to existing microfabrication methods. The transparent nature of the glass chips allows for direct optical inspection, potentially facilitating integration with imaging components. This versatile platform holds promise for various engineering applications, such as microreactors, heat exchangers, and advanced filtration systems.
Collapse
Affiliation(s)
- Tetsuro Koga
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shota Nakashima
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fujio Tsumori
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
47
|
Vellalapalayam Manoharan G, Munuswamy NB, Johnpeter JH, Veeramani S, Balasubramanian H. Advances in 3D bioprinting for environmental remediation and hazardous materials treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55984-55995. [PMID: 39251533 DOI: 10.1007/s11356-024-34921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
The high-throughput method based on the micron-level structure that 3D bioprinting technology offers for various environmental microbiological engineering applications is made possible by its several printing paths and precision programming control. This versatility makes it an on-demand manufacturing technology. A novel 3D manufacturing technique called 3D bioprinting may be used to precisely uptake and disperse bacteria to create microbial active substances with a variety of intricate functionalities for environmental applications. The technological challenges that the current 3D bioprinting technology must face include the mechanical properties of materials, the creation of specific bioinks to adapt to different strains, and the exploration of 4D bioprinting for intelligent applications. Therefore, this analysis delves deeply into the core technological ideas of 3D bioprinting, bioink materials, and their environmental applications. It also offers recommendations about the challenges and opportunities associated with 3D bioprinting. Combined with the present advancements in microbe enhancement technology, 3D bioprinting will provide an enabling platform for multifunctional microorganisms and facilitate the management of in situ directional responses in the environmental domain. This review highlights the applications of 3D bioprinting in the environmental monitoring and bioremediation. 3D printing in solid waste management is also discussed in detail.
Collapse
Affiliation(s)
| | - Naresh Babu Munuswamy
- Department of Mechanical Engineering, Easwari Engineering College, Chennai, 600 089, India
| | - Jasmine Hephzipah Johnpeter
- Department of Electronics and Communication Engineering, R.M.K. Engineering College, Chennai, 601 206, India
| | - Sathya Veeramani
- Department of Computer Science Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Hemalatha Balasubramanian
- Department of Civil Engineering, St. Peter's Institute of Higher Education and Research, Chennai, 600 054, India
| |
Collapse
|
48
|
Stankey PP, Kroll KT, Ainscough AJ, Reynolds DS, Elamine A, Fichtenkort BT, Uzel SGM, Lewis JA. Embedding Biomimetic Vascular Networks via Coaxial Sacrificial Writing into Functional Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401528. [PMID: 39092638 DOI: 10.1002/adma.202401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Printing human tissues and organs replete with biomimetic vascular networks is of growing interest. While it is possible to embed perfusable channels within acellular and densely cellular matrices, they do not currently possess the biomimetic architectures found in native vessels. Here, coaxial sacrificial writing into functional tissues (co-SWIFT) is developed, an embedded bioprinting method capable of generating hierarchically branching, multilayered vascular networks within both granular hydrogel and densely cellular matrices. Coaxial printheads are designed with an extended core-shell configuration to facilitate robust core-core and shell-shell interconnections between printed branching vessels during embedded bioprinting. Using optimized core-shell ink combinations, biomimetic vessels composed of a smooth muscle cell-laden shell that surrounds perfusable lumens are coaxially printed into granular matrices composed of: 1) transparent alginate microparticles, 2) sacrificial microparticle-laden collagen, or 3) cardiac spheroids derived from human induced pluripotent stem cells. Biomimetic blood vessels that exhibit good barrier function are produced by seeding these interconnected lumens with a confluent layer of endothelial cells. Importantly, it is found that co-SWIFT cardiac tissues mature under perfusion, beat synchronously, and exhibit a cardio-effective drug response in vitro. This advance opens new avenues for the scalable biomanufacturing of vascularized organ-specific tissues for drug testing, disease modeling, and therapeutic use.
Collapse
Affiliation(s)
- Paul P Stankey
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Katharina T Kroll
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander Elamine
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ben T Fichtenkort
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
49
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
50
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|