1
|
Liu Y, Wang Q, Li Q, Ren P. Role of ELP6 in tumour progression and impact on ERK1/2 signalling pathway inhibitors in skin cutaneous melanoma. Oncol Lett 2025; 29:250. [PMID: 40177137 PMCID: PMC11962575 DOI: 10.3892/ol.2025.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Elongator acetyltransferase complex subunit 6 (ELP6), a subunit of the elongator complex, can increase the migratory potential of melanoma cells in vitro. However, the clinical relevance of ELP6 in patients with melanoma remains unclear. The present study aimed to investigate the role of ELP6 expression in melanoma progression and association with patient survival rates. Transcriptomic data from patients with melanoma available in The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal databases were analysed to evaluate the associations between ELP6 expression levels and patient survival. In vitro experiments were conducted using short hairpin RNAs to downregulate ELP6, with a focus on cell viability, cell cycle regulation and the ERK1/2 signalling pathway. ELP6 expression levels were significantly elevated in patients with melanoma and were associated with poor survival outcomes. Knockdown of ELP6 resulted in decreased expression levels of p42 MAPK, reduced cell viability, G1 phase cell cycle arrest and led to reduced responsiveness to the MEK1/2 inhibitor U0126. ELP6 promotes melanoma progression via the ERK1/2 signalling pathway. Therefore, assessing ELP6 expression may offer potential therapeutic strategies for patients with melanoma.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Li
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, P.R. China
| |
Collapse
|
2
|
Ma Z, Li M, Li F, Wu K, Wu X, Luo T, Gao N, Luo H, Sui Z, Yu Z, Jiang H, Shang X, Chen C, Yue J, Meng F, Duan X, Xu B. Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification. Gastric Cancer 2025; 28:344-357. [PMID: 39883307 DOI: 10.1007/s10120-025-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment. METHODS We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations. In addition to COSMIC nomenclature, the de novo nomenclature was also utilized to define signatures and investigate their correlation with survival. A novel molecular subtype was developed and validated in other cohorts. RESULTS We found 30 mutated driver genes, 7 novel genomic signatures, 3 copy-number variations, and 2 V-J gene usages related to prognosis that were not identified in previous study. A high frequency of COSMIC-SBS-384-1 and De novo-SV-32-A was associated with more neoantigen generation and a better survival. Using 19 molecular features, we identified three immune-related subtypes (immune inflamed, intermediate, and deserted) with discrete profiles of genomic signatures, immune status, and clinical outcome. The immune deserted subtype (27.2%) was characterized by an earlier KRAS mutation, worse immune reaction, and prognosis than the other two subtypes. The immune inflamed subtypes exhibited the highest levels of neoantigens, TCR/pMHC-binding strength, CD8 + T-cell infiltration, IFN-α/γ response pathways, and survival rate. CONCLUSIONS These results emphasize the immune reaction and prognostic value of novel molecular classifications based on multi-omics data and provide a solid basis for better management of GEJAC.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Mengting Li
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Li
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Kui Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Xianxian Wu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Na Gao
- Department of Pathology, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Huijuan Luo
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Zhilin Sui
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hongjing Jiang
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Chuangui Chen
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jie Yue
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Fianbiao Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaofeng Duan
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, 181 Hanyu Rd., Shapin District, Chongqing, 400030, China.
| |
Collapse
|
3
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Huang C, Qiu Z, Huang H, Xiao X, Du F, Ji J, Xu X, Jiang X, Wang Y, Gao C. Alterations in genomic features and the tumour immune microenvironment predict immunotherapy outcomes in advanced biliary tract cancer patients. Br J Cancer 2025:10.1038/s41416-025-03011-7. [PMID: 40211026 DOI: 10.1038/s41416-025-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND The response to immunotherapy is limited in advanced biliary tract cancer (BTC). Response prediction is a serious challenge in the clinic. METHODS This study included 60 patients with advanced BTC who received anti-PD-1 treatment. Among these patients, 30 were subjected to 520 gene panel sequencing, and 50 were subjected to multiplex circulating cytokine testing. The entropy and mutation features were analysed via the optimized pipeline based on our previous work. The repeated LASSO algorithm was used to identify the optimal features. The associations between sequence features and cell communications were explored by analysing single-cell transcriptome data from BTC (GSE125449). Cox regression was used to develop the integrated model. Time-dependent C-index, Kaplan‒Meier, and receiver operating characteristic (ROC) curves were used to assess the prediction performance. RESULTS TP53, NRAS, FBXW7, and APC were identified as prognosis-related genes. The average C-indices of sequence entropy (0.819) and mutation (0.817) for overall survival (OS) were significantly greater than those of tumour mutation burden (TMB, 0.392) and mutation score (0.638). Single-cell transcriptome data revealed that TP53, KRAS, and NRAS were enriched in plasmacytoid dendritic cells (pDCs) and that the communication between pDCs and macrophages was mediated through the CXCL signalling pathway. The integrated model (EM-CXCL10) showed powerful predictive performance for survival status (AUC: 0.863, 95% CI: 0.643-0.972) and objective response rate (AUC: 0.990, 95% CI: 0.822-1.000). CONCLUSIONS This study constructed a multidimensional strategy that might indicate the prognosis of BTC immunotherapy, enabling the recognition of BTC patients who would benefit from immunotherapy, thereby guiding personalized clinical decision-making.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zhiquan Qiu
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Honglian Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fei Du
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Jun Ji
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| |
Collapse
|
5
|
Koh GCC, Nanda AS, Rinaldi G, Boushaki S, Degasperi A, Badja C, Pregnall AM, Zhao SJ, Chmelova L, Black D, Heskin L, Dias J, Young J, Memari Y, Shooter S, Czarnecki J, Brown MA, Davies HR, Zou X, Nik-Zainal S. A redefined InDel taxonomy provides insights into mutational signatures. Nat Genet 2025:10.1038/s41588-025-02152-y. [PMID: 40210680 DOI: 10.1038/s41588-025-02152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Despite their deleterious effects, small insertions and deletions (InDels) have received far less attention than substitutions. Here we generated isogenic CRISPR-edited human cellular models of postreplicative repair dysfunction (PRRd), including individual and combined gene edits of DNA mismatch repair (MMR) and replicative polymerases (Pol ε and Pol δ). Unique, diverse InDel mutational footprints were revealed. However, the prevailing InDel classification framework was unable to discriminate these InDel signatures from background mutagenesis and from each other. To address this, we developed an alternative InDel classification system that considers flanking sequences and informative motifs (for example, longer homopolymers), enabling unambiguous InDel classification into 89 subtypes. Through focused characterization of seven tumor types from the 100,000 Genomes Project, we uncovered 37 InDel signatures; 27 were new. In addition to unveiling previously hidden biological insights, we also developed PRRDetect-a highly specific classifier of PRRd status in tumors, with potential implications for immunotherapies.
Collapse
Affiliation(s)
- Gene Ching Chiek Koh
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Arjun Scott Nanda
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Giuseppe Rinaldi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Soraya Boushaki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Cherif Badja
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrew Marcel Pregnall
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Salome Jingchen Zhao
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lucia Chmelova
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniella Black
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Laura Heskin
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - João Dias
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jamie Young
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yasin Memari
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Scott Shooter
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jan Czarnecki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthew Arthur Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, UK
| | - Helen Ruth Davies
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
7
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
8
|
Lee M, Lee A, Yoo TK, Chae BJ, Ahn SG, Choi BO, Park WC, Kim SH, Lee J, Kang J. APOBEC Driven Hypermutation in the Lymphocyte-Predominant Group of Triple-Negative Breast Cancer. J Transl Med 2025:104165. [PMID: 40199422 DOI: 10.1016/j.labinv.2025.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025] Open
Abstract
This study aimed to evaluate the clinicopathologic and genomic characteristics of triple-negative breast cancer (TNBC) subclassification. TNBC was classified into the luminal androgen receptor (LAR) subtype and the tumor-infiltrating lymphocytes (TILs) groups of the non-LAR subtype-lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD)-based on androgen receptor immunohistochemistry and TILs. Clinicopathologic and genomic characteristics were evaluated for these TNBC subclasses. The LP group was associated with a histologic type of carcinoma with medullary features, a higher tumor mutation burden, and increased APOBEC activity, indicative of APOBEC-driven hypermutation. The LAR subtype was characterized by a higher prevalence of PIK3CA mutations, lower homologous recombination deficiency scores, and associations with histologic types of invasive lobular carcinoma, and carcinoma with apocrine differentiation. This study demonstrates the distinct clinicopathologic and genomic characteristics of TNBC subclassifications. APOBEC activity-related hypermutation is a defining characteristic of the LP group.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Hun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Kou Z, Zhu S, Zhu J, Wang S, Zheng Y, Zhou S, Si Z, Zhu H. Multi-omics analysis identifies DLX4 as a novel biomarker for diagnosis, prognosis, and immune infiltration: from pan-cancer to renal cancer. Discov Oncol 2025; 16:467. [PMID: 40186710 PMCID: PMC11972278 DOI: 10.1007/s12672-025-02258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND DLX4 is involved in the regulation of embryonic development, but its function in cancer remains unclear. Here, we conducted a pan-cancer analysis to investigate the molecular mechanisms of DLX4, with a particular emphasis on its role in renal cancer. METHODS A comprehensive analysis of DLX4 was performed, focusing on differences in expression, prognostic value, somatic mutations, methylation modifications, and immune landscapes across various cancer types using multiple databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were utilized to explore the potential biological functions. Additionally, we evaluated the expression profile, prognostic significance, and immune infiltration of DLX4 in Kidney Renal Clear Cell Carcinoma (KIRC). The effect of DLX4 on KIRC was further validated by Spatial Transcriptomics, Real-time PCR (RT-PCR), and Immunohistochemistry experiments. RESULTS DLX4 was found to be upregulated in 26 cancer types and associated with poor prognosis. It was also correlated with tumor mutational burden (TMB), microsatellite instability, mismatch repair, and methylation, and was significantly enriched in pathways related to cell proliferation. In KIRC, DLX4 expression increased along with TMB and immune scores, likely due to the infiltration of regulatory T cells (Tregs) and T-helper 2 (Th2) cells. Spatial transcriptomics revealed a strong correlation between DLX4 localization and tumor cells. Experimental validation confirmed that DLX4 expression is significantly upregulated in renal cancer tissues. CONCLUSION Our study explored the mechanisms of DLX4 in pan-cancer, especially in renal clear cell carcinoma, identifying it as a promising biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zengshun Kou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuaizhi Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao West Coast New Area District Hospital, Qingdao, China
| | - Jiaxi Zhu
- Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Canada
| | - Shufei Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Zheng
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shengjie Zhou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zi'ang Si
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
10
|
de Siqueira Santos S, Yang H, Galeano A, Paccanaro A. Host centric drug repurposing for viral diseases. PLoS Comput Biol 2025; 21:e1012876. [PMID: 40173200 DOI: 10.1371/journal.pcbi.1012876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
Computational approaches for drug repurposing for viral diseases have mainly focused on a small number of antivirals that directly target pathogens (virus centric therapies). In this work, we combine ideas from collaborative filtering and network medicine for making predictions on a much larger set of drugs that could be repurposed for host centric therapies, that are aimed at interfering with host cell factors required by a pathogen. Our idea is to create matrices quantifying the perturbation that drugs and viruses induce on human protein interaction networks. Then, we decompose these matrices to learn embeddings of drugs, viruses, and proteins in a low dimensional space. Predictions of host-centric antivirals are obtained by taking the dot product between the corresponding drug and virus representations. Our approach is general and can be applied systematically to any compound with known targets and any virus whose host proteins are known. We show that our predictions have high accuracy and that the embeddings contain meaningful biological information that may provide insights into the underlying biology of viral infections. Our approach can integrate different types of information, does not rely on known drug-virus associations and can be applied to new viral diseases and drugs.
Collapse
Affiliation(s)
| | - Haixuan Yang
- School of Mathematical & Statistical Sciences, University of Galway, Galway, Ireland
| | - Aldo Galeano
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - Alberto Paccanaro
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
- Department of Computer Science, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham, United Kingdom
| |
Collapse
|
11
|
Draper E, Li YY, Mahadevan NR, Laga AC, Hanna J, Russell-Goldman E. Clinicopathologic and Molecular Characterization of Basal Cell Carcinoma Arising at Sun-protected Sites. Am J Surg Pathol 2025; 49:328-335. [PMID: 39807820 DOI: 10.1097/pas.0000000000002366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Basal cell carcinomas (BCC) are driven primarily by cumulative ultraviolet (UV) radiation exposure resulting in activation of the Hedgehog (Hh) signaling pathway, often as a result of UV-mediated Patched-1 ( PTCH1) gene inactivation. Accordingly, BCCs most commonly arise at sun-exposed sites such as the head and neck. Very rarely, BCCs can arise at sun-protected sites such as the genital skin and perianal area. This can pose significant diagnostic challenges not only due to the rarity of BCC at these sites but also due to the potential morphologic overlap with other entities such as basaloid squamous cell carcinoma, trichoblastic carcinoma, and even benign neoplasms such as trichoblastomas. Hh pathway alterations have not yet been described in BCCs arising at genital and perianal sites, and the role of UV radiation is uncertain at these anatomic locations. To address this ambiguity, we report the clinicopathologic features of a cohort of 14 BCCs arising at sun-protected sites (perianal n=7, vulva n=4, scrotum n=3). Furthermore, we use a next-generation DNA sequencing platform to investigate their pathogenesis and compare it to that of a cohort of 8 BCCs arising on sun-exposed skin. We find that BCCs arising on sun-protected sites display a spectrum of morphologic patterns, rarely recur, and do not metastasize. Both sun-protected and sun-exposed BCCs are characterized by recurrent PTCH1 alterations (93% and 100% of cases, respectively), supporting the classification of the tumors arising at sun-protected sites as bona fide BCCs. Notably, in contrast to conventional BCCs, none of the sun-protected BCCs harbored a UV mutation signature, suggesting an alternative mechanism of mutagenesis. Furthermore, the presence of upstream Hh pathway alterations in sun-protected BCCs supports their susceptibility to Hh pathway inhibitors such as vismodegib and sonidegib.
Collapse
Affiliation(s)
| | - Yvonne Y Li
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alvaro C Laga
- Department of Pathology, Brigham and Women's Hospital
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital
| | | |
Collapse
|
12
|
Motyer A, Jackson S, Yang B, Harliwong I, Tian W, Shiu WIA, Shao Y, Wang B, McLean C, Barnett M, Kilpatrick TJ, Leslie S, Rubio JP. Neuronal somatic mutations are increased in multiple sclerosis lesions. Nat Neurosci 2025; 28:757-765. [PMID: 40038527 DOI: 10.1038/s41593-025-01895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Neuroinflammation underpins neurodegeneration and clinical progression in multiple sclerosis (MS), but knowledge of processes linking these disease mechanisms remains incomplete. Here we investigated somatic single-nucleotide variants (sSNVs) in the genomes of 106 single neurons from post-mortem brain tissue of ten MS cases and 16 controls to determine whether somatic mutagenesis is involved. We observed an increase of 43.9 sSNVs per year in neurons from chronic MS lesions, a 2.5 times faster rate than in neurons from normal-appearing MS and control tissues. This difference was equivalent to 1,291 excess sSNVs in lesion neurons at 70 years of age compared to controls. We performed mutational signature analysis to investigate mechanisms underlying neuronal sSNVs and identified a signature characteristic of lesions with a strong, age-associated contribution to sSNV counts. This research suggests that neuroinflammation is mutagenic in the MS brain, potentially contributing to disease progression.
Collapse
Affiliation(s)
- Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Wei Tian
- BGI-Australia, Herston, Queensland, Australia
| | | | | | - Bo Wang
- China National GeneBank, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Hoang TT, Herceg Z, Coulter DW, de Smith A, Arora M, Funk WE, Haynes D, Linder SH, Nogueira LM, Hughes AE, Williams LA, Schraw JM, Scheurer ME, Lupo PJ. Environmental health disparities in pediatric cancer: a report from the Fourth Symposium on Childhood Cancer Health Disparities. Pediatr Hematol Oncol 2025; 42:186-203. [PMID: 40110606 DOI: 10.1080/08880018.2025.2479479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
The 4th Symposium on Childhood Cancer Health Disparities was held at Texas Children's Hospital in Houston, Texas, on September 26, 2023. The symposium registered 94 attendees from different backgrounds (e.g. clinicians, epidemiologists, exposure assessment scientists, geospatial experts) with an interest in environmental health disparities of pediatric cancer susceptibility and treatment outcomes. The focus of the symposium was to provide an overview of the role of environmental risk factors in studies of pediatric cancer, introduce novel exposure assessment tools that can be applied to the field, and highlight opportunities to study the impact of environmental health disparities in pediatric cancer susceptibility and outcomes. This report summarizes the scientific content of the symposium and highlights priorities to advance the field.
Collapse
Affiliation(s)
- Thanh T Hoang
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon Cedex 07, France
| | - Don W Coulter
- Division of Hematology/Oncology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Manish Arora
- The Senator Frank R. Lautenberg Environmental Health Science Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William E Funk
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen H Linder
- Department of Management, Policy and Community Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Leticia M Nogueira
- Surveillance & Health Equity Science, American Cancer Society, Kennesaw, Georgia, USA
| | - Amy E Hughes
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Michael E Scheurer
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
14
|
Torrens L, Moody S, de Carvalho AC, Kazachkova M, Abedi-Ardekani B, Cheema S, Senkin S, Cattiaux T, Cortez Cardoso Penha R, Atkins JR, Gaborieau V, Chopard P, Carreira C, Abbasi A, Bergstrom EN, Vangara R, Wang J, Fitzgerald S, Latimer C, Diaz-Gay M, Jones D, Teague J, Ribeiro Pinto F, Kowalski LP, Polesel J, Giudici F, de Oliveira JC, Lagiou P, Lagiou A, Vilensky M, Mates D, Mates IN, Arantes LM, Reis R, Podesta JRV, von Zeidler SV, Holcatova I, Curado MP, Canova C, Fabianova E, Rodríguez-Urrego PA, Humphreys L, Alexandrov LB, Brennan P, Stratton MR, Perdomo S. The complexity of tobacco smoke-induced mutagenesis in head and neck cancer. Nat Genet 2025; 57:884-896. [PMID: 40164736 DOI: 10.1038/s41588-025-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
Tobacco smoke, alone or combined with alcohol, is the predominant cause of head and neck cancer (HNC). We explore how tobacco exposure contributes to cancer development by mutational signature analysis of 265 whole-genome sequenced HNC samples from eight countries. Six tobacco-associated mutational signatures were detected, including some not previously reported. Differences in HNC incidence between countries corresponded with differences in mutation burdens of tobacco-associated signatures, consistent with the dominant role of tobacco in HNC causation. Differences were found in the burden of tobacco-associated signatures between anatomical subsites, suggesting that tissue-specific factors modulate mutagenesis. We identified an association between tobacco smoking and alcohol-related signatures, indicating a combined effect of these exposures. Tobacco smoking was associated with differences in the mutational spectra, repertoire of driver mutations in cancer genes and patterns of copy number change. Our results demonstrate the multiple pathways by which tobacco smoke can influence the evolution of cancer cell clones.
Collapse
Affiliation(s)
- Laura Torrens
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Joshua R Atkins
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Marcos Diaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Fabiola Giudici
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Pagona Lagiou
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Lagiou
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marta Vilensky
- Instituto de Oncología 'Angel Roffo', Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Ioan N Mates
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Saint Mary Clinic of General and Esophageal Surgery, Bucharest, Romania
| | | | - Rui Reis
- Barretos Cancer Hospital, Barretos, Brazil
| | - Jose Roberto V Podesta
- Hospital Santa Rita de Cássia-Associação Feminina de Educação e Combate ao Câncer (AFECC), Vitória, Brazil
| | | | - Ivana Holcatova
- Charles University in Prague, 2nd Faculty of Medicine, IPHPM, Prague, Czech Republic
| | | | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Elenora Fabianova
- Regional Authority of Public Health, Banská Bystrica, Slovak Republic
| | | | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
15
|
Esmaeli B, Ogden T, Nichols M, Lu T, Debnam JM, Dimitriou F, McQuade J, Oliva ICG. Rate of response to immune checkpoint inhibitor therapy in patients with conjunctival melanoma. Melanoma Res 2025; 35:130-144. [PMID: 39656585 DOI: 10.1097/cmr.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Our primary objective was to estimate the overall response rate to immune checkpoint inhibitors (ICIs) in patients with locally advanced, multiply recurrent, or metastatic conjunctival melanoma treated with ICIs. A retrospective review of all consecutive conjunctival melanoma patients who were treated with ICI between October 2017 and January 2024 was carried out. The study included 16 patients with a median age of 66 years. The indications for ICI were locally extensive conjunctival melanoma in the eye/orbital area without nodal or distant metastasis in 10 patients, local recurrence of conjunctival melanoma and simultaneous nodal or distant metastasis in four patients, and metastatic conjunctival melanoma without local recurrence in two patients. Five patients received PD-1 inhibitor monotherapy with nivolumab or pembrolizumab; the other 11 received ipilimumab (CTLA-4 inhibitor) and nivolumab for several cycles and were then continued on nivolumab monotherapy ( n = 6) or not given additional ICI therapy ( n = 3). The number of cycles of ICI ranged from 2 to 25 (median, 13). Eight patients achieved a complete response. Six patients had progressive disease. The overall rate of objective response to ICI therapy was 63% (10 of 16), and for the subset of patients with local disease only, the objective response rate was 70% (7 of 10). In 14 patients (88%), orbital exenteration or additional extensive surgery was avoided; two patients had progression despite ICI and eventually needed an orbital exenteration. Future studies should aim to correlate biomarker data with response to ICI therapy in patients with conjunctival melanoma.
Collapse
Affiliation(s)
- Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Tyler Ogden
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio
| | - Matthew Nichols
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio
| | - Tracy Lu
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Florentia Dimitriou
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Haroon M, Sultana S, Najibi SA, Wang ET, Michaelson A, Al Muied PSM, Nielsen AE, Mancini RJ. Efflux-Enhanced Imidazoquinolines To Exploit Chemoresistance. ACS OMEGA 2025; 10:12319-12333. [PMID: 40191321 PMCID: PMC11966297 DOI: 10.1021/acsomega.4c11297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The imidazoquinoline family of toll-like receptor (TLR) immune cell agonists has long demonstrated moderate anticancer immunogenic effects by activating tumoricidal immune cells and depleting immunosuppressive cells within the tumor microenvironment. At a molecular level, we have also established that several imidazoquinolines traffic from within cancer cells to the extracellular space via P-glycoprotein (P-gp)-mediated efflux, a process commonly upregulated as multidrug-resistant (MDR) cancers acquire chemoresistance. However, imidazoquinoline P-gp efflux has never been deliberately enhanced to exploit this process. This study pioneers efforts to optimize imidazoquinoline efflux, ultimately balancing immunogenic potency alongside functional efflux susceptibility. Starting from an established imidazoquinoline scaffold previously optimized for potency, efflux was significantly enhanced by elaborating the N1 benzylic position with amide- and sulfonamide-linked P-gp affinity fragments consisting of empirically established P-gp substrates as well as computationally predicted P-gp binders. Lead compounds were identified from this series that exhibited enhanced P-gp efflux with functional retention of TLR agonism. Similar to the parent imidazoquinoline scaffold, leads had limited direct cytotoxicity in both treatment-naive and MDR B16 melanoma models and did not significantly affect the efficacy or trafficking of the chemotherapeutic doxorubicin. Efflux-enhanced imidazoquinolines were preferentially expelled from MDR-B16 cells relative to treatment-naive cells, resulting in immunogenicity that was enhanced as a consequence of the acquired MDR phenotype. Because enhanced P-gp-mediated efflux is common to most MDR cancer types, we envision that these results could inspire the design of immunotherapeutic drugs with mechanisms of action that are broadly enhanced in MDR cancers that have failed treatment or acquired resistance to chemotherapeutics.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Sharmin Sultana
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Seyedeh A. Najibi
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Emily T. Wang
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Abbey Michaelson
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Pranto S. M. Al Muied
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Amy E. Nielsen
- Astante
Therapeutics Inc., 201
E. Fifth Street, Cincinnati, Ohio 45202, United States
| | - Rock J. Mancini
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
- Astante
Therapeutics Inc., 201
E. Fifth Street, Cincinnati, Ohio 45202, United States
| |
Collapse
|
17
|
Wu CS, Li HP, Hsieh CH, Lin YT, Yi-Feng Chang I, Chung AK, Huang Y, Ueng SH, Hsiao YC, Chien KY, Luo JD, Chen CH, Liao WC, Hung JL, Yuan SN, OuYang CN, Chiang WF, Chien CY, Chuang HC, Chu LJ, Liu H, Yang CY, Robles AI, Rodriguez H, Lin HH, Yang HY, Hsueh C, Chang KP, Yu JS, Chang YS. Integrated multi-omics analyses of oral squamous cell carcinoma reveal precision patient stratification and personalized treatment strategies. Cancer Lett 2025; 614:217482. [PMID: 39842500 DOI: 10.1016/j.canlet.2025.217482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Oral cavity squamous cell carcinoma (OSCC), a leading subtype of head and neck cancer, exhibits high global incidence and mortality rates. Despite advancements in surgery and radiochemotherapy, approximately one-third of patients experience relapse. To improve current targeted and immunotherapy strategies for recurrent OSCC, we conducted multi-omics analyses on pretreatment OSCC samples (cohorts 1 and 2, n = 137) and identified A3A and EGFR, both at the RNA and protein levels, as inversely expressed markers for patient stratification and response prediction. Survival analysis demonstrated that elevated A3A or PD-L1 expression levels correlated to improved responses to anti-PD-1 therapy in patients (cohort 3a, n = 50, IHC). In contrast, high RRAS expression (cohort 4, n = 252, qRT-PCR) was significantly associated with OSCC recurrence. Cell-based experiments revealed that RRAS was involved in radiotherapy and cisplatin resistance through the EGFR/RRAS/AKT/ERK signaling pathway. In OSCC patient-derived xenograft (PDX) mouse models, treatments with cisplatin and cetuximab (anti-EGFR) effectively reduced tumor size in EGFR-high-derived (#34) but not A3A-high-derived (#22) PDX tumors. Our study demonstrated that A3A-high tumors were immune-hot and responsive to anti-PD-1 therapy, whereas EGFR-high tumors exhibited chr.7p11.2 gains and DNA repair alterations. Additionally, RRAS-high tumors were associated with OSCC recurrence via AKT and ERK phosphorylation and demonstrate improved clinical outcomes with cetuximab therapy (cohort 3b, n = 49, IHC). This study emphasizes the significance of A3A and EGFR expression levels in OSCC patient stratification and precision therapy, suggesting the use of anti-PD-1 or anti-EGFR treatments, respectively based on these biomarkers. Furthermore, RRAS emerges as a novel prognostic marker for local recurrence.
Collapse
Affiliation(s)
- Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan.
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal City TuCheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Yu-Tsun Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan
| | - An-Ko Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; School of Medicine, National Tsing-Hua University, Hsinchu, 300044, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan
| | - Shir-Hwa Ueng
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Bioinformatics Resource Center, The Rockefeller University, 1230 York Avenue, New York City, NY, USA, 10065
| | - Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Anatomy, School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Jui-Lung Hung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Wei-Fan Chiang
- Department of Dentistry, Chi-Mei Medical Center, Liouying, Taiwan; School of Dentistry, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung, 20401, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
18
|
Liang Y, Maeda O, Nishida K, Chretien B, Ando Y. Genomic profiles of patients with skin melanoma in the era of immune checkpoint inhibitors. Cancer Sci 2025; 116:1107-1114. [PMID: 39888082 PMCID: PMC11967263 DOI: 10.1111/cas.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 02/01/2025] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) for treating melanoma has dramatically improved patient prognosis. The genomic profiles of patients receiving ICI therapy would provide valuable information for disease management and treatment. We investigated the genomic profiles of patients with melanoma who had received ICI therapy and explored associations with clinical features and outcomes via a large-scale nationwide database in Japan (the C-CAT database). We identified 339 patients eligible for this study. The most frequent genetic mutations were found in the BRAF (27%), TERT (24%), and NRAS (19%) genes, and the most common copy number variations (CNVs) were in the CDKN2A (36%), CDKN2B (26%), and MTAP (19%) genes. Associations with high tumor mutational burden (TMB-high) status were significant for TERT (p < 0.001), NF1 (p < 0.001), ROS1 (p = 0.015), POLE (p = 0.045), and POLD1 (p = 0.008) mutations, along with older age (≥65 years, p = 0.036). Patients with multiple metastases (two or more) were more likely to have NOTCH3 mutations (p = 0.017) and be younger than 65 years (p = 0.024). In particular, as well as younger age, patients with brain metastases were more likely to harbor BRAF mutations (p < 0.001), while those with liver metastases were more likely to harbor NOTCH3 mutations (p < 0.001) but not CDKN2B CNVs (p = 0.041). Patients with NRAS mutations were less likely to respond to ICI therapy (p = 0.014) and exhibited shorter overall survival (p = 0.006). In this population, the frequency of BRAF mutations was lower than that in fair-skinned populations, but the associations between genomic profiles, clinical features, and outcomes were similar to those previously reported in fair-skinned populations.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Osamu Maeda
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Kazuki Nishida
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Basile Chretien
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Yuichi Ando
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| |
Collapse
|
19
|
Woolley CE, Domingo E, Fernandez-Tajes J, Pennel KA, Roxburgh P, Edwards J, Richman SD, Maughan TS, Kerr DJ, Soriano I, Tomlinson IP. Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis. Mol Cancer Res 2025; 23:300-312. [PMID: 39751654 PMCID: PMC7617415 DOI: 10.1158/1541-7786.mcr-24-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.
Collapse
Affiliation(s)
- Connor E. Woolley
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Kathryn A.F. Pennel
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Roxburgh
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Susan D. Richman
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Tim S. Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David J. Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ignacio Soriano
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Shilkin ES, Petrova DV, Kruchinin AA, Zharkov DO, Makarova AV. The effect of methylation and hydroxymethylation of cytosine on activity and fidelity of Pol λ and Pol β. DNA Repair (Amst) 2025; 148:103815. [PMID: 40031118 DOI: 10.1016/j.dnarep.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Сytosine methylation in CpG dinucleotides is the most common epigenetic mark in human cells. Under active demethylation process 5-methylcytosine (mC) can be converted to 5-hydroxymethylcytosine (hmC). Cytosine methylation increases the risk of adjacent nucleotide damage, including the oxidation of guanine. DNA polymerases might encounter mC and hmC during DNA repair or translesion synthesis. Here, we analyze the activity of X-family polymerases Pol β and Pol λ opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that hmC has no pronounced effect on Pol β and Pol λ activity while cytosine methylation moderately suppresses the efficiency of dGMP incorporation by Pol β but not Pol λ. Pol λ was not affected by + 2 cytosine methylation when synthesizing across 8-oxoG. In contrast, cytosine methylation slightly increased incorporation of dCMP opposite 8-oxoG adjacent to mC but reduced the extension of the 8-oxoG:C pair by Pol β.
Collapse
Affiliation(s)
- Evgeniy S Shilkin
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria V Petrova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia
| | - Alexander A Kruchinin
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia.
| | - Alena V Makarova
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
21
|
Zhang F, Wu X, Jiao T, Du H, Guo Q, Cui C, Chi Z, Sheng X, Jiang D, Zhang Y, Wu J, Kong Y, Si L. Genomic characterization reveals distinct mutational landscape of acral melanoma in East Asian. J Genet Genomics 2025; 52:525-538. [PMID: 39798666 DOI: 10.1016/j.jgg.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Acral melanoma, the most common melanoma subtype in East Asia, is associated with a poor prognosis. This study aims to comprehensively analyze the genomic characteristics of acral melanoma in East Asians. We conduct whole-genome sequencing of 55 acral melanoma tumors and perform data mining with relevant clinical data. Our findings reveal a unique mutational profile in East Asian acral melanoma, characterized by fewer point mutations and structural variations, a higher prevalence of NRAS mutations, and a lower frequency of BRAF mutations compared to patients of European descent. Notably, we identify previously underestimated ultraviolet radiation signatures and their significant association with BRAF and NRAS mutations. Structural rearrangement signatures indicate distinct mutational processes in BRAF-driven versus NRAS-driven tumors. We also find that homologous recombination deficiency with MAPK pathway mutations correlated with poor prognosis. The structural variations and amplifications in EP300, TERT, RAC1, and LZTR1 point to potential therapeutic targets tailored to East Asian populations. The high prevalence of whole-genome duplication events in BRAF/NRAS-mutated tumors suggests a synergistic carcinogenic effect that warrants further investigation. In summary, our study provides important insights into the genetic underpinnings of acral melanoma in East Asians, creating opportunities for targeted therapies.
Collapse
Affiliation(s)
- Fenghao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Tao Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Haizhen Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Dezhi Jiang
- Beijing Kanghui Biotechnology Co. LTD, Beijing 100101, China
| | - Yuhong Zhang
- Clinical Research Division of Berry Oncology Corporation, Beijing 102206, China
| | - Jiayan Wu
- Beijing Kanghui Biotechnology Co. LTD, Beijing 100101, China; Clinical Research Division of Berry Oncology Corporation, Beijing 102206, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian 350020, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China.
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China.
| |
Collapse
|
22
|
Furtado LV, Ikemura K, Benkli CY, Moncur JT, Huang RSP, Zehir A, Stellato K, Vasalos P, Sadri N, Suarez CJ. General Applicability of Existing College of American Pathologists Accreditation Requirements to Clinical Implementation of Machine Learning-Based Methods in Molecular Oncology Testing. Arch Pathol Lab Med 2025; 149:319-327. [PMID: 38871357 DOI: 10.5858/arpa.2024-0037-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
CONTEXT.— The College of American Pathologists (CAP) accreditation requirements for clinical laboratory testing help ensure laboratories implement and maintain systems and processes that are associated with quality. Machine learning (ML)-based models share some features of conventional laboratory testing methods. Accreditation requirements that specifically address clinical laboratories' use of ML remain in the early stages of development. OBJECTIVE.— To identify relevant CAP accreditation requirements that may be applied to the clinical adoption of ML-based molecular oncology assays, and to provide examples of current and emerging ML applications in molecular oncology testing. DESIGN.— CAP accreditation checklists related to molecular pathology and general laboratory practices (Molecular Pathology, All Common and Laboratory General) were reviewed. Examples of checklist requirements that are generally applicable to validation, revalidation, quality management, infrastructure, and analytical procedures of ML-based molecular oncology assays were summarized. Instances of ML use in molecular oncology testing were assessed from literature review. RESULTS.— Components of the general CAP accreditation framework that exist for traditional molecular oncology assay validation and maintenance are also relevant for implementing ML-based tests in a clinical laboratory. Current and emerging applications of ML in molecular oncology testing include DNA methylation profiling for central nervous system tumor classification, variant calling, microsatellite instability testing, mutational signature analysis, and variant prediction from histopathology images. CONCLUSIONS.— Currently, much of the ML activity in molecular oncology is within early clinical implementation. Despite specific considerations that apply to the adoption of ML-based methods, existing CAP requirements can serve as general guidelines for the clinical implementation of ML-based assays in molecular oncology testing.
Collapse
Affiliation(s)
- Larissa V Furtado
- From the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (Furtado)
| | - Kenji Ikemura
- the Department of Pathology, Mass General Brigham, Boston, Massachusetts (Ikemura)
| | - Cagla Y Benkli
- the Department of Pathology, Baylor College of Medicine, Houston, Texas (Benkli)
| | - Joel T Moncur
- Office of the Director, The Joint Pathology Center, Silver Spring, Maryland (Moncur)
| | - Richard S P Huang
- Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts (Huang)
| | - Ahmet Zehir
- Precision Medicine & Biosamples, AstraZeneca, New York, New York (Zehir)
| | - Katherine Stellato
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Stellato, Vasalos)
| | - Patricia Vasalos
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Stellato, Vasalos)
| | - Navid Sadri
- the Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Sadri)
| | - Carlos J Suarez
- the Department of Pathology, Stanford University School of Medicine, Palo Alto, California (Suarez)
| |
Collapse
|
23
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
24
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025:S1535-6108(25)00107-2. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
25
|
Peng HY, Huang YL, Wu PH, Li LJ, Peng BY, Wu CY, Lin YL, Hsiao M, Chang JY, Mu-Hsin Chang P, Lee HL, Chang WM. The miR-876-5p/SOCS4/STAT3 pathway induced the expression of PD-L1 and suppressed antitumor immune responses. Cancer Cell Int 2025; 25:114. [PMID: 40140827 PMCID: PMC11938556 DOI: 10.1186/s12935-025-03704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) remains a formidable challenge due to its high recurrence rates and poor prognosis. This study focuses on miR-876, a microRNA significantly associated with OSCC recurrence and clinical outcomes. Analysis of miRNA expression profiles from recurrent OSCC patients revealed that miR-876-5p is markedly upregulated in recurrent tumor tissues and the high expression of miR-876-5p correlates with reduced disease-free and overall survival. Functional assays demonstrated that miR-876 enhances OSCC cell growth, migration, and stemness, contributing to chemoresistance. Mechanistically, miR-876-5p directly targets SOCS4, leading to increased STAT3 activation and subsequent upregulation of PD-L1, which facilitates immune evasion. Additionally, exposure to the tobacco-specific carcinogen NNK was found to induce miR-876 expression and STAT3 activation, implicating environmental factors in miR-876 regulation and promote cancer recurrent. These findings identify the miR-876-5p-SOCS4-STAT3 axis as a critical pathway in OSCC progression, highlighting miR-876-5p as a potential biomarker and therapeutic target to improve treatment outcomes in OSCC patients.
Collapse
Affiliation(s)
- Hsuan-Yu Peng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Oral Translational Medicine, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Li Huang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ping-Hsiu Wu
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Proton Center, Taipei Medical University, Taipei, Taiwan
| | - Li-Jie Li
- Program of School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Bou-Yue Peng
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yu Wu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lung Lin
- Program for Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jang-Yang Chang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Proton Center, Taipei Medical University, Taipei, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
- Research Center of Oral Translational Medicine, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Basak U, Mukherjee S, Chakraborty S, Sa G, Dastidar SG, Das T. In-silico analysis unveiling the role of cancer stem cells in immunotherapy resistance of immune checkpoint-high pancreatic adenocarcinoma. Sci Rep 2025; 15:10355. [PMID: 40133473 PMCID: PMC11937529 DOI: 10.1038/s41598-025-93924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Although immune checkpoint (IC) inhibition is a major treatment modality in cancer-immunotherapy, multiple cancers show low response. Our in-silico exploration by mining cancer datasets using R2, available clinical trial data, and Kaplan-Meier analysis from GEPIA depicted that unlike low-responder (LR) cancers, high-responder (HR) cancers furnish higher IC expression, that upon lowering may provide better prognosis. Contrastingly, pancreatic adenocarcinoma (PAAD) demonstrated high IC expression but low immunotherapy-response. Infiltration scores from TIMER2.0 revealed higher pro-tumor immune subsets and cancer-associated fibroblasts (CAFs) while depicting lower anti-tumor immune subsets in PAAD as compared to HR lung adenocarcinoma (LUAD). Additionally, bioinformatic tool cBioportal showed lesser tumor mutational burden, mismatch repair deficiency and greater percent of driver mutations in TP53, KRAS and CDKN2A in PAAD, supporting its higher immunotherapy-resistance than LUAD. Our search for the 'key' immunotherapy response-deciding factor(s) revealed cancer stem cells (CSCs), the known contributors of therapy-resistance and immuno-evasion, to be positively correlated with above-mentioned driver mutations, pro-tumor immune and CAF subsets; and that PAAD furnished higher expression of CSC genes than LUAD. UMAP/tSNE analyses revealed that high CSC signature is positively correlated with immunotherapy-resistance genes and pro-cancer immune cells, while negatively with cytotoxic-T cells in PAAD. Our in-silico study explains the low immunotherapy-response in high IC-expressing PAAD, wherein CSC plays a pivotal role. Further exploration portrayed correlation of CSCs with immunotherapy-resistance in other LR and HR cancers too, substantiating the need for personalized CSC evaluation and targeting for successful immunotherapy outcomes.
Collapse
Affiliation(s)
- Udit Basak
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumon Mukherjee
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Gaurisankar Sa
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Shubhra Ghosh Dastidar
- Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhannagar, Kolkata, 700091, India.
| | - Tanya Das
- Bose Institute, Centenary Campus, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
27
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
28
|
Zhou Y, Wang R, Zeng M, Liu S. Circulating tumor DNA: a revolutionary approach for early detection and personalized treatment of bladder cancer. Front Pharmacol 2025; 16:1551219. [PMID: 40191434 PMCID: PMC11968738 DOI: 10.3389/fphar.2025.1551219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
Bladder cancer is a malignant tumor with a high global incidence and recurrence rate. Traditional diagnostic methods, such as cystoscopy and urine cytology, have limitations in sensitivity and specificity, particularly in detecting low-grade bladder cancer. Circulating tumor DNA (ctDNA) offers a non-invasive alternative, reflecting tumor genetic characteristics through blood samples. It demonstrates high sensitivity and repeatability, making it a promising tool for early detection, recurrence monitoring, and treatment evaluation. Clinical studies have shown that ctDNA not only detects tumor burden but also captures dynamic tumor mutations, aiding in personalized treatment strategies. Despite its potential, clinical implementation of ctDNA faces challenges, including optimization of detection techniques, standardization, and the cost of testing. This paper explores the role of ctDNA in advancing bladder cancer diagnosis and treatment, with a focus on refining its clinical application and guiding future research toward improved patient outcomes.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Vis DJ, Palit SAL, Corradi M, Cuppen E, Mehra N, Lolkema MP, Wessels LFA, van der Heijden MS, Zwart W, Bergman AM. Whole genome sequencing of 378 prostate cancer metastases reveals tissue selectivity for mismatch deficiency with potential therapeutic implications. Genome Med 2025; 17:24. [PMID: 40114169 PMCID: PMC11927350 DOI: 10.1186/s13073-025-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Survival of patients with metastatic castration-resistant prostate cancer (mCRPC) depends on the site of metastatic dissemination. METHODS Patients with mCRPC were prospectively included in the CPCT-02 metastatic site biopsy study. We evaluated whole genome sequencing (WGS) of 378 mCRPC metastases to understand the genetic traits that affect metastatic site distribution. RESULTS Our findings revealed that RB1, PIK3CA, JAK1, RNF43, and TP53 mutations are the most frequent genetic determinants associated with site selectivity for metastatic outgrowth. Furthermore, we explored mutations in the non-coding genome and found that androgen receptor (AR) chromatin binding sites implicated in metastatic prostate cancer differ in mutation frequencies between metastatic sites, converging on pathways that impact DNA repair. Notably, liver and visceral metastases have a higher tumor mutational load (TML) than bone and lymph node metastases, independent of genetic traits associated with neuroendocrine differentiation. We found that TML is strongly associated with DNA mismatch repair (MMR)-deficiency features in these organs. CONCLUSIONS Our results revealed gene mutations that are significantly associated with metastatic site selectivity and that frequencies of non-coding mutations at AR chromatin binding sites differ between metastatic sites. Immunotherapeutics are thus far unsuccessful in unselected mCRPC patients. We found a higher TML in liver and visceral metastases compared to bone and lymph node metastases. As immunotherapeutics response is associated with mutational burden, these findings may assist in selecting mCRPC patients for immunotherapy treatment based on organs affected by metastatic disease. TRIAL REGISTRATION NUMBER NCT01855477.
Collapse
Affiliation(s)
- Daniel J Vis
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Computational Cancer Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sander A L Palit
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marie Corradi
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Computational Cancer Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Michiel S van der Heijden
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Andries M Bergman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Li M, Gao X, Lin X, Zhang Y, Peng W, Sun T, Shu W, Shi Y, Guan Y, Xia X, Yi X, Li Y, Jia J. Analysis of germline-somatic mutational connections in colorectal cancer reveals differential tumorigenic patterns and a novel predictive marker for germline mutation carriers. Cancer Lett 2025:217637. [PMID: 40118241 DOI: 10.1016/j.canlet.2025.217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) genetic testing of regions beyond clinical guidelines has revealed a substantial number of likely pathogenic germline mutations (GMs). It remains largely undetermined whether and how these GMs, typically located in non-mismatch repair (non-MMR) genes, are associated with the tumorigenesis of CRC. This study aimed to identify CRC-predisposing GMs among 93 cancer susceptibility genes and investigate their potential influences on CRC somatic mutational features. We secondarily aimed to investigate whether somatic ERBB2 amplification contributes to identifying GM carriers. This study incorporated a total of 3,240 Chinese CRC patients and 10,588 control individuals. CRC patients were subjected to paired tumor-normal sequencing with a 1,021-gene panel. A case-control analysis was conducted to profile the GM-associated CRC risk. A comprehensive germline-somatic association analysis was performed among 2,405 patients, with key findings subsequently validated in an independent 835-patient cohort and the TCGA CRC cohort. The case-control results supported CRC-predisposing effects of GMs in certain homologous recombination repair (HRR) and DNA damage checkpoint factor (CPF) genes, such as BRCA1/2, RecQ helicase genes, ATM, and CHEK2. HRR GMs were associated with an increased copy number alteration burden, more TP53 clonal mutations, and a higher probability of carrying somatic ERBB2 amplification. CPF GMs were inferred to have synergistic effects with ARID1A and KDM6A somatic mutations in CRC tumorigenesis. Among patients with onset age ≥ 55 years, stable microsatellites, and no cancer family history, ERBB2 amplification was significantly predictive of GM carriers. Our findings elucidate different germline tumorigenic patterns not driven by deficient MMR. Somatic ERBB2 amplification in CRC can serve as an indicator for germline genetic testing when traditional risk features are absent.
Collapse
Affiliation(s)
- Mintao Li
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuan Gao
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
| | - Xiangchun Lin
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Tao Sun
- General Surgery Department, Peking University Third Hospital, Beijing, China
| | - Weiyang Shu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China.
| | - Yuan Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China; Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| |
Collapse
|
31
|
Pang Y, Prieto T, Gonzalez-Pena V, Aragon A, Xia Y, Kao S, Rajagopalan S, Zinno J, Quentin J, Laval J, Yuan D, Omans N, Klein D, MacKay M, De Vlaminck I, Easton J, Evans W, Landau DA, Gawad C. Measuring Longitudinal Genome-wide Clonal Evolution of Pediatric Acute Lymphoblastic Leukemia at Single-Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644196. [PMID: 40166290 PMCID: PMC11957134 DOI: 10.1101/2025.03.19.644196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Over 80% of children with acute lymphoblastic leukemia (pALL) can be cured by treating them with multiple chemotherapeutic agents administered over several years, whereas pALL is incurable with 1-3 medications, suggesting significant variation in drug susceptibility across clonal populations. While bulk sequencing studies indicate that pALL cells contain relatively few genetic variants compared to other cancers, the true extent of genetic diversity at the single-cell level remains unknown. Here, we used three complementary approaches to investigate pALL genetic heterogeneity: error-corrected bulk sequencing, single-cell exome sequencing, and primary template-directed amplification (PTA)-enabled single-cell genome sequencing. We discovered that some ETV6-RUNX1 samples harbor multiple independent ras clones and that individual pALL cells harbor substantially more mutations (mean 3,553 per cell) than detected in bulk samples (mean 965 mutations), with variant signatures suggesting both early and late APOBEC-driven mutagenesis in ETV6-RUNX1 patients. Using PTA-based phylogenetic analysis of over 150 single-cell genomes from four pALL patients, we identified heritable phenotypes associated with specific genetic alterations, including some low-frequency clones that are preferentially selected for during chemotherapy treatment. Our findings reveal previously undetected genetic diversity in pALL and suggest that pre-existing mutations influence treatment response, with implications for future therapeutic strategies. This study provides a high-resolution framework for understanding cancer clonal evolution during treatment, yielding important new insights for developing more effective therapeutic approaches for pALL. Key Points Increasing the accuracy and resolution of sequencing from bulk to error-corrected bulk to single clone to single-cell sequencing reveals increasing levels of genetic diversity in pALL, including the presence of clone-specific driver and treatment resistance-associated mutations.Using PTA-enabled scWGS, single pALL cells contain several fold more mutations per cell than detected in bulk sequencing, which, when multiplied across billions of cells, reveal hidden population-scale genetic complexity.Some phenotypes in pALL are heritable, including treatment resistance, where we identify pre-existing rare clones with relapse-associated mutations that preferentially survive four weeks of standard treatment in patients.
Collapse
Affiliation(s)
- Yakun Pang
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Tamara Prieto
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Athena Aragon
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Yuntao Xia
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Kao
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Sri Rajagopalan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - John Zinno
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Jean Quentin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Julien Laval
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Dennis Yuan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Nathaniel Omans
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Matthew MacKay
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - William Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Dan A. Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Gupta S, Climent Duran MA, Sridhar SS, Powles T, Bellmunt J, Park SH, Gurney H, Tsuchiya N, Petrylak DP, Tomita Y, di Pietro A, Manitz J, Tyroller K, Hoffman J, Jacob N, Grivas P. Avelumab first-line maintenance for advanced urothelial carcinoma: long-term outcomes from the JAVELIN Bladder 100 trial in older patients. ESMO Open 2025; 10:104506. [PMID: 40107155 PMCID: PMC11964637 DOI: 10.1016/j.esmoop.2025.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND In the JAVELIN Bladder 100 phase III trial, avelumab first-line (1L) maintenance plus best supportive care (BSC) significantly prolonged overall survival (OS) versus BSC alone in patients with locally advanced or metastatic urothelial carcinoma (la/mUC) without progression following platinum-based chemotherapy. Older age (≥65 years) is a known risk factor for bladder cancer with a median age at diagnosis of 73.0 years. We report exploratory analyses in subgroups based on older age (≥65 years). MATERIALS AND METHODS Eligible patients with la/mUC without progression after 1L platinum-based chemotherapy were randomized to receive avelumab plus BSC (n = 350) or BSC alone (n = 350). This exploratory analysis included subgroups aged ≥65 years, ≥65-<75 years, ≥75 years, and the subset aged ≥80 years. OS (primary endpoint) and progression-free survival (PFS) from randomization were analyzed using the Kaplan-Meier method. RESULTS Of 700 patients, 464 (66.3%) were aged ≥65 years. Median OS with avelumab plus BSC versus BSC alone was 26.1 versus 15.5 months (hazard ratio 0.70, 95% confidence interval 0.56-0.89) in all patients aged ≥65 years and 28.7 versus 17.1, 24.0 versus 13.5, and 24.9 versus 10.0 months, respectively, in patients aged ≥65-<75, ≥75, and ≥80 years. PFS analyses favored avelumab plus BSC versus BSC alone in all subgroups. No new safety concerns were identified in patients aged ≥65 years, including those treated for ≥12 months. Quality-adjusted time without symptoms or toxicity was 4.57 months longer with avelumab plus BSC versus BSC alone (a 30.35% relative improvement). Limitations include small sample size for the ≥80-year age subgroup and the exploratory design. CONCLUSIONS These exploratory analyses support the efficacy and tolerability of avelumab 1L maintenance in patients aged ≥65 years with la/mUC that has not progressed following chemotherapy, suggesting that older age should not solely prevent a patient from receiving avelumab 1L maintenance.
Collapse
Affiliation(s)
- S Gupta
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, USA.
| | | | - S S Sridhar
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - T Powles
- Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, UK
| | - J Bellmunt
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - S H Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - H Gurney
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - N Tsuchiya
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | | | - Y Tomita
- Niigata University Graduate School of Medicine, Niigata, Japan
| | | | - J Manitz
- EMD Serono Research & Development Institute, Inc., Billerica, USA, an affiliate of Merck KGaA
| | - K Tyroller
- EMD Serono Research & Development Institute, Inc., Billerica, USA, an affiliate of Merck KGaA
| | - J Hoffman
- EMD Serono Research & Development Institute, Inc., Billerica, USA, an affiliate of Merck KGaA
| | - N Jacob
- Merck Healthcare KGaA, Darmstadt, Germany
| | - P Grivas
- University of Washington, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
33
|
Veas Rodriguez J, Piñol M, Sorolla MA, Parisi E, Sorolla A, Santacana M, Ruiz M, Parra G, Bernabeu M, Iglesias M, Aracil C, Escartin A, Vilardell F, Matias-Guiu X, Salud A, Montal R. Comprehensive immunophenotyping of gastric adenocarcinoma identifies an inflamed class of tumors amenable to immunotherapies. J Immunother Cancer 2025; 13:e010024. [PMID: 40102027 PMCID: PMC11927434 DOI: 10.1136/jitc-2024-010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) imposes a considerable global health burden. Molecular profiling of GAC from the tumor microenvironment perspective through a multi-omics approach is eagerly awaited in order to allow a more precise application of novel therapies in the near future. METHODS To better understand the tumor-immune interface of GAC, we identified an internal cohort of 82 patients that allowed an integrative molecular analysis including mutational profiling by whole-exome sequencing, RNA gene expression of 770 genes associated with immune response, and multiplex protein expression at spatial resolution of 34 immuno-oncology targets at different compartments (tumorous cells and immune cells). Molecular findings were validated in 595 GAC from the TCGA and ACRG external cohorts with available multiomics data. Prediction of response to immunotherapies of the discovered immunophenotypes was assessed in 1039 patients with cancer from external cohorts with available transcriptome data. RESULTS Unsupervised clustering by gene expression identified a subgroup of GAC that includes 52% of the tumors, the so-called Inflamed class, characterized by high tumor immunogenicity and cytotoxicity, particularly in the tumor center at protein level, with enrichment of PIK3CA and ARID1A mutations and increased presence of exhausted CD8+ T cells as well as co-inhibitory receptors such as PD1, CTLA4, LAG3, and TIGIT. The remaining 48% of tumors were called non-inflamed based on the observed exclusion of T cell infiltration, with an overexpression of VEGFA and higher presence of TP53 mutations, resulting in a worse clinical outcome. A 10-gene RNA signature was developed for the identification of tumors belonging to these classes, demonstrating in evaluated datasets comparable clinical utility in predicting response to current immunotherapies when tested against other published gene signatures. CONCLUSIONS Comprehensive immunophenotyping of GAC identifies an inflamed class of tumors that complements previously proposed tumor-based molecular clusters. Such findings may provide the rationale for exploring novel immunotherapeutic approaches for biomarker-enriched populations in order to improve GAC patient's survival.
Collapse
Affiliation(s)
- Joel Veas Rodriguez
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Miquel Piñol
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Alba Sorolla
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Eva Parisi
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Anabel Sorolla
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Santacana
- Scientific and Technical Service of Immunohistochemistry, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Ruiz
- Scientific and Technical Service of Biobank, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Genís Parra
- CNAG-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mario Bernabeu
- CNAG-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Hospital del Mar, University Pompeu Fabra, Hospital del Mar Research Institute, CIBERONC, Barcelona, Spain
| | - Carles Aracil
- Department of Gastroenterology, Clinical and Experimental Research in Digestive and Hematological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Alfredo Escartin
- Department of Surgery, Experimental Surgery Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Felip Vilardell
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Antonieta Salud
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Robert Montal
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| |
Collapse
|
34
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
35
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
36
|
Flynn A, Pattison AD, Balachander S, Boehm E, Bowen B, Dwight T, Rossello FJ, Hofmann O, Martelotto L, Zethoven M, Kirschner LS, Else T, Fishbein L, Gill AJ, Tischler AS, Giordano T, Prodanov T, Noble JR, Reddel RR, Trainer AH, Ghayee HK, Bourdeau I, Elston M, Ishak D, Ngeow Yuen Yie J, Hicks RJ, Crona J, Åkerström T, Stålberg P, Dahia P, Grimmond S, Clifton-Bligh R, Pacak K, Tothill RW. Multi-omic analysis of SDHB-deficient pheochromocytomas and paragangliomas identifies metastasis and treatment-related molecular profiles. Nat Commun 2025; 16:2632. [PMID: 40097403 PMCID: PMC11914184 DOI: 10.1038/s41467-025-57595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Hereditary SDHB-mutant pheochromocytomas (PC) and paragangliomas (PG) are rare tumours with a high propensity to metastasize although their clinical behaviour is unpredictable. To characterize the genomic landscape of these tumours and identify metastasis biomarkers, we perform multi-omic analysis on 94 tumours from 79 patients using seven molecular methods. Sympathetic (chromaffin cell) and parasympathetic (non-chromaffin cell) PCPG have distinct molecular profiles reflecting their cell-of-origin and biochemical profile. TERT and ATRX-alterations are associated with metastatic PCPG and these tumours have an increased mutation load, and distinct transcriptional and telomeric features. Most PCPG have quiet genomes with some rare co-operative driver events, including EPAS1/HIF-2α mutations. Two mechanisms of acquired resistance to DNA alkylating chemotherapies are identifiable; MGMT overexpression and mismatch repair-deficiency causing hypermutation. Our comprehensive multi-omic analysis of SDHB-mutant PCPG therefore identifies features of metastatic disease and treatment response, expanding our understanding of these rare neuroendocrine tumours.
Collapse
Affiliation(s)
- Aidan Flynn
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Andrew D Pattison
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Shiva Balachander
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Blake Bowen
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Trisha Dwight
- Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, Melbourne, Australia
| | - Fernando J Rossello
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Oliver Hofmann
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Luciano Martelotto
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | | | - Lawrence S Kirschner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, University of Colorado, Aurora, CO, USA
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, Sydney, Australia
| | | | | | - Tamara Prodanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jane R Noble
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Roger R Reddel
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Alison H Trainer
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Hans Kumar Ghayee
- University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Isabelle Bourdeau
- Division of endocrinology and Research Center, Center hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marianne Elston
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Diana Ishak
- Cancer Genetics Service, National Cancer Center Singapore, Singapore, Singapore
| | - Joanne Ngeow Yuen Yie
- Cancer Genetics Service, National Cancer Center Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Rodney J Hicks
- St Vincent's Dept of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Patricia Dahia
- Div. Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Sean Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, Melbourne, Australia.
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Oman M, Ness RW. Comparing the predictors of mutability among healthy human tissues inferred from mutations in single-cell genome data. Genetics 2025; 229:iyae215. [PMID: 39950507 DOI: 10.1093/genetics/iyae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Studying mutation in healthy somatic tissues is the key for understanding the genesis of cancer and other genetic diseases. Mutation rate varies from site to site in the human genome by up to 100-fold and is influenced by numerous epigenetic and genetic factors including GC content, trinucleotide sequence context, and DNAse accessibility. These factors influence mutation at both local and regional scales and are often interrelated with one another, meaning that predicting mutability or uncovering its drivers requires modelling multiple factors and scales simultaneously. Historically, most investigations have focused either on analyzing the local sequence scale through triplet signatures or on examining the impact of epigenetic processes at larger scales, but not both concurrently. Additionally, sequencing technology limitations have restricted analyses of healthy mutations to coding regions (RNA-seq) or to those that have been influenced by selection (e.g. bulk samples from cancer tissue). Here, we leverage single-cell mutations and present a comprehensive analysis of epigenetic and genetic factors at multiple scales in the germline and 3 healthy somatic tissues. We create models that predict mutability with on average 2% error and find up to 63-fold variation among sites within the same tissue. We observe varying degrees of similarity between tissues: the mutability of genomic positions was 93.4% similar between liver and germline tissues, but sites in germline and skin were only 85.9% similar. We observe both universal and tissue-specific mutagenic processes in healthy tissues, with implications for understanding the maintenance of germline vs soma and the mechanisms underlying early tumorigenesis.
Collapse
Affiliation(s)
- Madeleine Oman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
| | - Rob W Ness
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 1A1, Canada
| |
Collapse
|
38
|
Moretti S, Mandarano M, Menicali E, Guzzetti M, Morelli S, Talpacci E, Colella R, Bini V, Giannini R, Ugolini C, Sidoni A, Basolo F, Puxeddu E. Wnt/B-catenin Activation and TP53 Mutations Associate With Distinct Immune Profiles in Advanced Thyroid Cancer. J Clin Endocrinol Metab 2025; 110:1003-1014. [PMID: 39328078 DOI: 10.1210/clinem/dgae667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/21/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
CONTEXT Anaplastic thyroid carcinomas (ATCs) and poorly differentiated thyroid carcinomas (PDTCs) exhibit distinct immune-related gene expression profiles. Most ATCs are characterized by active immune interactions (hot or altered immunosuppressed immunophenotypes), while PDTCs are largely immunologically inert (cold immunophenotypes). OBJECTIVE This study aimed to elucidate the mechanisms driving these divergent immunological fates, focusing on the Wnt/β-catenin pathway and TP53 mutations. RESULTS Our data reveal that ATCs frequently harbor TP53 mutations (83.3%), which correlate with a hot immunophenotype, characterized by high expression of β-catenin-regulated cytokine CCL4 and recruitment of CD103 + dendritic cells. Conversely, PDTCs, with a lower incidence of TP53 mutations (12.5%), often exhibit a cold immunophenotype. In cold cancers and PDTCs, β-catenin is overexpressed, suggesting that Wnt/β-catenin pathway activation drives immune exclusion through CCL4 downregulation.Further analysis indicated that loss of p53 function is inversely correlated with β-catenin expression. P53-mutated cancers showed significantly higher expression of CCL4 and densities of CD103 + dendritic cells compared to their p53-wild-type counterparts. Additionally, p53-mutated ATCs expressed a higher number of immune-related genes, supporting the role of p53 loss in activating immune responses in cancer. CONCLUSION Our study indicates a potential correlation between the activation of the Wnt/β-catenin pathway and the development of cold thyroid cancers, which may be mediated by the suppression of CCL4 expression. Concurrently, mutations in the p53 gene appear to be linked with the occurrence of hot thyroid cancers. While these associations are compelling, they are based on observational data. Experimental research is necessary to determine the causal relationships underlying these findings.
Collapse
Affiliation(s)
- Sonia Moretti
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Elisa Menicali
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Martina Guzzetti
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Silvia Morelli
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Edoardo Talpacci
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Renato Colella
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Vittorio Bini
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56126, Italy
| | - Clara Ugolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56126, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56126, Italy
| | - Efisio Puxeddu
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
39
|
Andarawi S, Vodickova L, Uttarilli A, Hanak P, Vodicka P. Defective DNA repair: a putative nexus linking immunological diseases, neurodegenerative disorders, and cancer. Mutagenesis 2025; 40:4-19. [PMID: 39937585 DOI: 10.1093/mutage/geae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
Collapse
Affiliation(s)
- Safaa Andarawi
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anusha Uttarilli
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Petr Hanak
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| |
Collapse
|
40
|
Lan H, Zhu J, Hou H, Zhang C, Huo X, Zhang Y, Yang F, Zhou N, Zhang X. Combination therapy with Chicoric acid and PD-1/PD-L1 blockade improves the immunotherapy response in patient-derived ovarian cancer xenograft model. Cell Commun Signal 2025; 23:137. [PMID: 40087780 PMCID: PMC11909847 DOI: 10.1186/s12964-025-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE Limited treatment options exist for refractory ovarian cancer (OC) due to its poor response to immune therapies. Therefore, there is an urgent need to develop new effective treatment strategies. Chicoric acid (CA) is reported to have immune-enhancing properties, but its efficacy in cancer treatment is not well understood. We hypothesize that CA might improve the efficacy of PD-1/PD-L1 blockade immunotherapy in refractory OC patients. METHODS Patient-derived xenograft (PDX) models were constructed from chemoresistant advanced high-grade serous ovarian cancer patients. These models were treated with CA, aPD-1/aPD-L1 antibodies, or a combination of both. Single-cell RNA sequencing was performed to analyze the cellular composition of the tumor microenvironment (TME), evaluate treatment efficacy, and explore therapeutic mechanisms. Variations in peripheral blood lymphocytes were analyzed via fluorescence-activated cell sorting. Immunohistochemistry confirmed the variations in tumor-infiltrating lymphocytes and tumor cells. RESULTS Immunocompetent peripheral blood mononuclear cell (PBMC)-PDX models were successfully constructed using malignant ascites fluid and PBMCs. After treatment, 158,734 cells from 15 samples were categorized into epithelial cells, T lymphocytes, myeloid cells, fibroblasts, and endothelial cells. CA enhanced the antitumor ability of immune cells against OC cells. Notably, CA stimulated the proliferation of CD45 + and CD3 + cells and promoted the migration of CD8 + and CD4 + T cells from peripheral blood to infiltrate the TME. Additionally, CA enhanced the response of OCs to aPD-L1/aPD-1 treatment, strengthened the interaction between tumor and nontumor cells, and identified APP/CD74 as a critical ligand‒receptor pair. CHI3L1 was also found to be a potential marker for predicting immunotherapy efficacy in OC. CONCLUSION This study demonstrated that combination therapy with CA and aPD-1/aPD-L1 might be a promising strategy for treating OC effectively.
Collapse
Affiliation(s)
- Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Jingjuan Zhu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xingfa Huo
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
41
|
Chen X, Luo T, Zhang W, Wang S, Zhu M, He H, Liu J, Lu J, Qiang W, Jia Y, Hou N, Zhao X, Zhang S, Li J, Du J. Genomic characteristics and prognostic correlations in Chinese multiple myeloma patients. BMC Med Genomics 2025; 18:50. [PMID: 40087669 PMCID: PMC11907858 DOI: 10.1186/s12920-025-02116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of abnormal clonal plasma cells in the bone marrow. The heterogeneity in Chinese MM populations remains underexplored. METHODS We conducted whole-exome sequencing (WES) on 241 tumor samples, complemented by RNA sequencing (RNA-seq) on 131 samples from 212 Chinese MM patients. RESULTS We identified a novel mutational signature and analyzed molecular differences between newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM) patients. NFKBIA mutations were notably more frequent in NDMM patients compared to the MMRF-COMMPASS cohort (4/50 vs 22/937, p = 0.048), with additional recurrent mutations in several genes like TTN, IGLL5 and SYNE1. In RRMM patients, UBR5 mutations were more prevalent (4/24 vs 0/50, p = 0.01), alongside frequent mutations in OBSCN, CACNA1H, and HSPG2. Clonal evolution was assessed through multiple time points and locations, identifying genes potentially linked to circulating plasma cell formation. Cox regression analysis revealed that age and mutations in OBSCN and RB1 were significant predictors of progression-free survival (PFS) in NDMM patients. Additionally, albumin, β2-microglobulin, and RB1 mutations were correlated with overall survival (OS). CONCLUSIONS In summary, we characterized the genomic landscape of MM in diverse Chinese populations, confirmed clonal evolution, and identified prognostic genes.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Tianchen Luo
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wenhui Zhang
- Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Sheng Wang
- Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Mengxuan Zhu
- Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Haiyan He
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jin Liu
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jing Lu
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wanting Qiang
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yanchun Jia
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Nan Hou
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Xuenan Zhao
- Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Shan Zhang
- Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jing Li
- Department of Precision Medicine, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China.
| |
Collapse
|
42
|
van der Lee DI, Argiro EM, Laan SNJ, Honders MW, de Jong RCM, Struckman NE, Falkenburg JHF, Griffioen M. Mutated DNMT3A creates a public HLADQ- binding neoantigen on acute myeloid leukemia. Front Immunol 2025; 16:1556121. [PMID: 40151616 PMCID: PMC11947668 DOI: 10.3389/fimmu.2025.1556121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction Patients with acute myeloid leukemia (AML) often carry the same gene mutations. Neoantigens encoded by these mutations are attractive targets for immunotherapy. Methods We searched for public human leukocyte antigen (HLA) class II-restricted neoantigens on AML using an in vitro T cell stimulation method. Peptides from 26 recurrent genetic aberrations were assessed for predicted HLA class II binding, and 24 long neopeptides encoded by 10 recurrent mutations were synthesized. Naive CD4 T cells from healthy individuals were cocultured with autologous dendritic cells pulsed with neopeptides. Results Multiple CD4 T cell clones were isolated that recognized neopeptides encoded by 5 different genetic aberrations. Two of these peptides, one from the well-known DNMT3A-R882H hotspot mutation and one from a long alternative reading frame created by frameshift mutations in RUNX1, were recognized by CD4 T cell clones after endogenous processing and presentation on cell lines transduced or CRISPR-Cas9-edited with the mutation of interest. The T cell clone for DNMT3A-R882H was also activated upon stimulation with primary AML samples from HLA-DQB1*06:02 or -DQB1*06:03 positive patients with the mutation. Conclusion We here identified a public HLA class II-restricted neoantigen encoded by a driver mutation occurring in 10% of patients with AML that could become an important target for immunotherapy to treat patients with DNMT3A-R882H-mutated AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center,
Leiden, Netherlands
| |
Collapse
|
43
|
Möhrmann L, Rostock L, Werner M, Oleś M, Arnold JS, Paramasivam N, Jöhrens K, Rupp L, Schmitz M, Richter D, Uhrig S, Fröhlich M, Hutter B, Hüllein J, Jahn A, Arlt M, Möhrmann EE, Hanf D, Gieldon L, Kreutzfeldt S, Heilig CE, Teleanu MV, Lipka DB, Beck K, Baude-Müller A, Mock A, Jelas I, Rieke DT, Wiesweg M, Brandts C, Boerries M, Illert AL, Desuki A, Kindler T, Krackhardt AM, Westphalen CB, Christopoulos P, Apostolidis L, Stenzinger A, Allgäuer M, Neumann O, Kerle IA, Horak P, Heining C, Grosch H, Schröck E, Hübschmann D, Fröhling S, Glimm H. Genomic landscape and molecularly informed therapy in thymic carcinoma and other advanced thymic epithelial tumors. MED 2025:100612. [PMID: 40107270 DOI: 10.1016/j.medj.2025.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Thymic epithelial tumors (TETs) are rare malignancies with limited treatment options and underexplored molecular features. METHODS We examined the genomic landscape and therapeutic outcomes in 81 patients with advanced TETs, including thymic carcinomas (TCs), thymomas, and thymic neuroendocrine neoplasms (TNENs), who were enrolled in the MASTER trial, a prospective observational precision oncology trial. FINDINGS Using whole-genome-sequencing and whole-exome-sequencing analysis, transcriptome analysis, and methylome analysis, we identified distinct molecular features across TET subtypes, including a higher tumor mutational burden in TC and pathogenic germline variants in 18% of cases. We performed transcriptome- and methylome-based unsupervised clustering and were able to divide TCs into immunologically hot and cold subsets, with hot TCs exhibiting higher T cell infiltration and significantly longer overall survival. In 65 out of 76 (86%) patients, we recommended molecularly informed therapies, which were applied in 29 out of 65 (45%) cases, leading to a disease control rate of 62% and an objective response rate of 23% (both n = 26). The progression-free survival ratio (PFSr) was > 1.3 in 8 out of 24 (33%) patients, 7 of them having TC. Among TCs, patients achieved a mean PFSr of 1.4, indicating potential therapeutic advantages in this subgroup. The PFSr between the PFS of immune checkpoint inhibition and preceding therapies was significantly higher in the hot cluster compared to the cold cluster (median 1.7 vs. 0.3; p = 0.01945). CONCLUSIONS Our findings expand the understanding of TET biology and emphasize the role of precision oncology in informing treatment decisions and improving outcomes for patients with advanced TETs, particularly in TCs.
Collapse
Affiliation(s)
- Lino Möhrmann
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, USA; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Lysann Rostock
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Maximilian Werner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Małgorzata Oleś
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas S Arnold
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nagarajan Paramasivam
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Korinna Jöhrens
- Department of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Sebastian Uhrig
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Hutter
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Arne Jahn
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marie Arlt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elena E Möhrmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Dorothea Hanf
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Laura Gieldon
- Institute of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Simon Kreutzfeldt
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Christoph E Heilig
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Maria-Veronica Teleanu
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Katja Beck
- Institute of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Annika Baude-Müller
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany; Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Ivan Jelas
- Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Damian T Rieke
- Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, Frankfurt, Germany; University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna L Illert
- Department of Internal Medicine I, Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg im Breisgau, Germany; Klinik und Poliklinik für Innere Medizin III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Desuki
- University Cancer Center and Department of Internal Medicine III, University Medical Center Mainz, Mainz, Germany; TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; DKTK, partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Mainz, Mainz, Germany
| | - Thomas Kindler
- University Cancer Center and Department of Internal Medicine III, University Medical Center Mainz, Mainz, Germany; TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; DKTK, partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Mainz, Mainz, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Internal Medicine III, University Hospital, LMU Munich and Comprehensive Cancer Center, Munich, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, and NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonidas Apostolidis
- Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Irina A Kerle
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Peter Horak
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Heidrun Grosch
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, and NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Evelin Schröck
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Hübschmann
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Innovation and Service Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Translational Functional Cancer Genomics, DKFZ Heidelberg, Heidelberg, Germany.
| |
Collapse
|
44
|
Wang YW, Allen I, Funingana G, Tischkowitz M, Joko-Fru YW. Predictive biomarkers for the efficacy of PARP inhibitors in ovarian cancer: an updated systematic review. BJC REPORTS 2025; 3:14. [PMID: 40069561 PMCID: PMC11897386 DOI: 10.1038/s44276-025-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 01/09/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND PARP inhibitors are effective in treating ovarian cancer, especially for BRCA1/2 pathogenic variant carriers and those with HRD (homologous recombination deficiency). Concerns over toxicity and costs have led to the search for predictive biomarkers. We present an updated systematic review, expanding on a previous ESMO review on PARP inhibitor biomarkers. METHODS Following ESMO's 2020 review protocol, we extended our search to March 31, 2023, including PubMed and clinical trial data. We also reviewed the reference lists of review articles. We conducted a meta-analysis using a random-effects model to evaluate hazard ratios and assess the predictive potential of biomarkers and the effectiveness of PARP inhibitors in survival. RESULTS We found 375 articles, 103 of which were included after screening (62 primary research, 41 reviews). HRD remained the primary biomarker (95%), particularly BRCA1/2 variants (77%). In the non-HRD category, six articles (10%) introduced innovative biomarkers, including ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11. DISCUSSION Prospective assessment of real-time homologous recombination repair via nuclear RAD51 levels shows promise but needs validation. Emerging biomarkers like ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11 offer potential but require large-scale validation.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Division of Gynaecologic Oncology, Department of Obstetrics and Gynaecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Isaac Allen
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Yvonne Walburga Joko-Fru
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Hu Y, Zhou T, Cai P, He Z. Neoantigens: new hope for cancer therapy. Front Oncol 2025; 15:1531592. [PMID: 40134605 PMCID: PMC11932895 DOI: 10.3389/fonc.2025.1531592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
As research into tumour immunotherapy continues to accelerate, new frontiers are being revealed in the field of cancer treatment. A significant focus has been drawn to neoantigen-based personalised tumour vaccines, a pioneering immunotherapy. This approach involves the use of genetic mutations that are unique to tumor cells to custom-design personalized tumor vaccines. These vaccines elicit an immune response that is specifically directed at targeting and eliminating cancer cells. The incorporation of neoantigens, arising from mutations within tumor cells, confers a distinct advantage to personalized tumor vaccines in terms of precision and the mitigation of adverse effects. However, the intricate pathways from antigen presentation to the activation of tumor immunogenicity remain to be elucidated. This paper primarily delves into the origins and characteristics of neoantigens, and also neoantigen prediction, highlights existing screening methods, and addresses the limitations of current approaches. It is hoped that this review will act as a catalyst, accelerating the understanding of relevant knowledge and illuminating research hotspots for scientists poised to venture into neoantigen research.
Collapse
Affiliation(s)
- Yitong Hu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tengda Zhou
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Ping Cai
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Zihao He
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
46
|
Fan Y, Ji X, Yuan K, Wu Q, Lou M. HDAC1 Mediates Immunosuppression of the Tumor Microenvironment in Non-Small Cell Lung Cancer. J Inflamm Res 2025; 18:3333-3347. [PMID: 40078575 PMCID: PMC11900795 DOI: 10.2147/jir.s509316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Background Studies have demonstrated that histone deacetylase 1 (HDAC1) enables cancer cells to evade killing mediated by cytotoxic T lymphocytes. However, there are no studies on the immunological aspects of HDAC1 in non-small cell lung cancer (NSCLC). Methods In this research, we used the Cancer Genome Atlas (TCGA) public database combined with tissue microarray (TMA) to investigate HDAC1 expression and prognosis in NSCLC. According to the median value of HDAC1 expression in the TCGA dataset, samples of patients with NSCLC were classified into high- and low-expression cohorts. Subsequently, the biological characteristics of HDAC1 in high- and low-expression cohorts in terms of signaling pathways, immune cell infiltration, immune cell function, and genomic stability were investigated to better understand the effect of HDAC1 in the tumor microenvironment (TME) of NSCLC. Additionally, we selected tissue samples with HDAC1 overexpression in TMA2 and performed immunohistochemical staining of CD8+ T cells to observe the distribution of CD8+ T cells in the tumor. Results The findings revealed that overexpression of HDAC1 in NSCLC was associated with poor prognosis. Analysis of signaling pathway enrichment indicated that HDAC1 downregulated immune-related signaling pathways in NSCLC. Immune cell infiltration, immune cell function, and genomic stability analyses suggested that the TME alteration mediated by HDAC1 in the high-expression cohort was consistent with the "immune desert" phenotype. Furthermore, CD8+ T immunohistochemical staining experiments of tissue samples with HDAC1 overexpression in NSCLC revealed few CD8+ T cells distributed in the tumor parenchyma and interstitium. Conclusion Conclusively, our findings from several biological analyses revealed that HDAC1 is overexpressed in NSCLC and induces TME immunosuppression.
Collapse
Affiliation(s)
- Yongfei Fan
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Xiang Ji
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, People’s Republic of China
| | - Kai Yuan
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Qiyong Wu
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Ming Lou
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| |
Collapse
|
47
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
48
|
Hohmann L, Sigurjonsdottir K, Campos AB, Nacer DF, Veerla S, Rosengren F, Reddy PT, Häkkinen J, Nordborg N, Vallon-Christersson J, Memari Y, Black D, Bowden R, Davies HR, Borg Å, Nik-Zainal S, Staaf J. Genomic characterization of the HER2-enriched intrinsic molecular subtype in primary ER-positive HER2-negative breast cancer. Nat Commun 2025; 16:2208. [PMID: 40044693 PMCID: PMC11882987 DOI: 10.1038/s41467-025-57419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
ER-positive/HER2-negative (ERpHER2n) breast cancer classified as PAM50 HER2-enriched (ERpHER2n-HER2E) represents a small high-risk patient subgroup. In this study, we investigate genomic, transcriptomic, and clinical features of ERpHER2n-HER2E breast tumors using two primary ERpHER2n cohorts comprising a total of 5640 patients. We show that ERpHER2n-HER2E tumors exhibit aggressive clinical features and poorer clinical outcomes compared to Luminal A and Luminal B tumors. Furthermore, ERpHER2n-HER2E breast cancer does not consist of misclassified or HER2-low cases, has little impact of ERBB2, is highly proliferative and less ER dependent than other luminal subtypes. It is not an obvious biological entity but is nevertheless associated with potentially targetable molecular features, notably a high immune response and high FGFR4 expression. Strikingly, molecular features that define the HER2E subtype in luminal disease are also consistent in HER2-positive disease, including an epigenetic mechanism for high FGFR4 expression in breast cancer.
Collapse
Affiliation(s)
- Lennart Hohmann
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristin Sigurjonsdottir
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ana Bosch Campos
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Deborah F Nacer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Frida Rosengren
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Nicklas Nordborg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Yasin Memari
- Academic Department of Medical Genetics, School of Clinical Medicine & Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Daniella Black
- Academic Department of Medical Genetics, School of Clinical Medicine & Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Ramsay Bowden
- Academic Department of Medical Genetics, School of Clinical Medicine & Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Helen R Davies
- Academic Department of Medical Genetics, School of Clinical Medicine & Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine & Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
49
|
Starostecka M, Jeong H, Hasenfeld P, Benito-Garagorri E, Christiansen T, Stober Brasseur C, Gomes Queiroz M, Garcia Montero M, Jechlinger M, Korbel JO. Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model. Proc Natl Acad Sci U S A 2025; 122:e2415475122. [PMID: 39993200 DOI: 10.1073/pnas.2415475122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
The most common chemotherapeutics induce DNA damage to eradicate cancer cells, yet defective DNA repair can propagate mutations, instigating therapy resistance and secondary malignancies. Structural variants (SVs), arising from copy-number-imbalanced and -balanced DNA rearrangements, are a major driver of tumor evolution, yet understudied posttherapy. Here, we adapted single-cell template-strand sequencing (Strand-seq) to a HER2+ breast cancer model to investigate the formation of doxorubicin-induced de novo SVs. We coupled this approach with nucleosome occupancy (NO) measurements obtained from the same single cell to enable simultaneous SV detection and cell-type classification. Using organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA mice modeling HER2+ breast cancer, we generated 459 Strand-seq libraries spanning various tumorigenesis stages, identifying a 7.4-fold increase in large chromosomal alterations post-doxorubicin. Complex DNA rearrangements, deletions, and duplications were prevalent across basal, luminal progenitor (LP), and mature luminal (ML) cells, indicating uniform susceptibility of these cell types to SV formation. Doxorubicin further elevated sister chromatid exchanges (SCEs), indicative of genomic stress persisting posttreatment. Altered nucleosome occupancy levels on distinct cancer-related genes further underscore the broad genomic impact of doxorubicin. The organoid-based system for single-cell multiomics established in this study paves the way for unraveling the most important therapy-associated SV mutational signatures, enabling systematic studies of the effect of therapy on cancer evolution.
Collapse
Affiliation(s)
- Maja Starostecka
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg 69120, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eva Benito-Garagorri
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Tania Christiansen
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg 69120, Germany
| | | | - Maise Gomes Queiroz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Marta Garcia Montero
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg 69117, Germany
| | - Martin Jechlinger
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg 69117, Germany
- Molecular and Information Technology Institute for Personalized Medicine gGmbH, Heilbronn 74076, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
50
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and Systematic NMR Measurements of Sequence-Dependent A-T Hoogsteen Dynamics in the DNA Double Helix. Biochemistry 2025; 64:1042-1054. [PMID: 39982856 DOI: 10.1021/acs.biochem.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
The dynamic properties of DNA depend on the sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging, especially when they involve lowly populated and short-lived conformational states. Using 1H CEST supplemented by targeted 13C R1ρ NMR experiments, we quantitatively measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in 13 trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. Our results uncover a unique conformational basis for sequence-specificity in the DNA double helix and establish the utility of NMR to quantitatively and comprehensively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|