1
|
Yao J, Tao Y, Hu Z, Li J, Xue Z, Zhang Y, Lei Y. Optimization of small molecule degraders and antagonists for targeting estrogen receptor based on breast cancer: current status and future. Front Pharmacol 2023; 14:1225951. [PMID: 37808197 PMCID: PMC10551544 DOI: 10.3389/fphar.2023.1225951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The estrogen receptor (ER) is a classical receptor protein that plays a crucial role in mediating multiple signaling pathways in various target organs. It has been shown that ER-targeting therapies inhibit breast cancer cell proliferation, enhance neuronal protection, and promote osteoclast formation. Several drugs have been designed to specifically target ER in ER-positive (ER+) breast cancer, including selective estrogen receptor modulators (SERM) such as Tamoxifen. However, the emergence of drug resistance in ER+ breast cancer and the potential side effects on the endometrium which has high ER expression has posed significant challenges in clinical practice. Recently, novel ER-targeted drugs, namely, selective estrogen receptor degrader (SERD) and selective estrogen receptor covalent antagonist (SERCA) have shown promise in addressing these concerns. This paper provides a comprehensive review of the structural functions of ER and highlights recent advancements in SERD and SERCA-related small molecule drugs, especially focusing on their structural optimization strategies and future optimization directions. Additionally, the therapeutic potential and challenges of novel SERDs and SERCAs in breast cancer and other ER-related diseases have been discussed.
Collapse
Affiliation(s)
- Jiaqi Yao
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zelin Hu
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Junjie Li
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Xue
- Department of Statistics, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Ya Zhang
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Discovery and preclinical profile of LX-039, a novel indole-based oral selective estrogen receptor degrader (SERD). Bioorg Med Chem Lett 2022; 66:128734. [PMID: 35436589 DOI: 10.1016/j.bmcl.2022.128734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 11/22/2022]
Abstract
We previously described the discovery of a novel indole series compounds as oral SERD for ER positive breast cancer treatment. Further SAR exploration focusing on substitutions on indole moiety of compound 12 led to the discovery of a clinical candidate LX-039. We report herein its profound anti-tumor activity, desirable ER antagonistic characteristics combined with favorable pharmacokinetic and preliminary safety properties. LX-039 is currently in clinical trial (NCT04097756).
Collapse
|
3
|
Landeros-Martínez LL, Glossman-Mitnik D, Flores-Holguín N. Interaction of Tamoxifen Analogs With the Pocket Site of Some Hormone Receptors. A Molecular Docking and Density Functional Theory Study. Front Chem 2018; 6:293. [PMID: 30057897 PMCID: PMC6053509 DOI: 10.3389/fchem.2018.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022] Open
Abstract
In this paper, the antiestrogenic properties of Tamoxifen analogs have been investigated and a theoretical report of its analogs interaction with the pocket site of some hormone receptors are presented. Analogs were generated by modification of the hydrophilic functional group of Tamoxifen by hydroxyl, amide, carboxyl, and sulfhydryl functional groups, in an attempt to improve their activity and selectivity. The analogs exhibit a negative binding energy in the estrogen and progesterone receptors, which indicates a spontaneous interaction between the analogs and the pocket site in the hormone receptors. The values of the molecular polar surface area indicate that the analogs have good permeability and are strong electrophiles. The couplings showed electrostatic interactions such as hydrogen bond and π-π interactions. According with the Lipinsky Rule of Five, the four analogs presented a good biodistribution, permeability, and pharmacological action on the hormone receptors. The analysis of the charge transfer suggests a limited enhanced oxidative damage in the estrogen receptor that not takes place with the progesterone receptor.
Collapse
Affiliation(s)
- Linda-Lucila Landeros-Martínez
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| |
Collapse
|
4
|
Zanganeh N, Ziamajidi N, Khodadadi I, Saidijam M, Abbasalipourkabir R. Liver Genes Expression Induced by Tamoxifen Loaded Solid Lipid Nanoparticles in Wistar Female Rats. Cell Biochem Biophys 2017; 76:303-310. [PMID: 29090414 DOI: 10.1007/s12013-017-0833-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022]
Abstract
The objective of this study was to investigate the effect of free tamoxifen and tamoxifen-loaded solid lipid nanoparticles (SLN) on cytochrome P450 (CYP3A2) and flavin-containing monooxygenase1 (FMO1) genes expression in the liver of female Wistar rats. Thirty female Wistar rats aged 7-8 weeks, were divided into six groups of six rats each. The first, second, third, and fourth groups were ovariectomized and received tamoxifen (2 mg/kg of body weight dissolved in 1 ml olive oil), tamoxifen-loaded SLN (2 mg/kg of body weight dispersed in 1 ml olive oil), SLN (10 mg/kg of body weight dispersed in 1 ml olive oil), and 1 ml olive oil, respectively. The fifth group comprised untreated ovariectomized control group and the sixth group served as unovariectomized healthy group. The treatments were given orally to the animals on 21 consecutive days using gastric intubations. At the end of the study, the rats were scarified and studied for some serum biochemical profile and two liver genes expression. The group treated with tamoxifen-loaded SLN showed significantly increased gene expression of CYP3A2 in comparison with the control, healthy, and group treated with free tamoxifen. The gene expression of FMO1 in the group that received tamoxifen-loaded SLN was significantly lower than that in the group treated with free tamoxifen. In addition, the group treated with free tamoxifen showed significantly increased gene expression of FMO1 as compared to the control and healthy groups. Encapsulation of tamoxifen inside solid lipid nanoparticles increased the gene expression of CYP3A2 and decreased the gene expression of FMO1.
Collapse
Affiliation(s)
- Naser Zanganeh
- Department of Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Medical Biotechnology, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
5
|
Mustonen MVJ, Pyrhönen S, Kellokumpu-Lehtinen PL. Toremifene in the treatment of breast cancer. World J Clin Oncol 2014; 5:393-405. [PMID: 25114854 PMCID: PMC4127610 DOI: 10.5306/wjco.v5.i3.393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/08/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Although more widespread screening and routine adjuvant therapy has improved the outcome for breast cancer patients in recent years, there remains considerable scope for improving the efficacy, safety and tolerability of adjuvant therapy in the early stage disease and the treatment of advanced disease. Toremifene is a selective estrogen receptor modifier (SERM) that has been widely used for decades in hormone receptor positive breast cancer both in early and late stage disease. Its efficacy has been well established in nine prospective randomized phase III trials compared to tamoxifen involving more than 5500 patients, as well as in several large uncontrolled and non-randomized studies. Although most studies show therapeutic equivalence between the two SERMs, some show an advantage for toremifene. Several meta-analyses have also confirmed that the efficacy of toremifene is at least as good as that of tamoxifen. In terms of safety and tolerability toremifene is broadly similar to tamoxifen although there is some evidence that toremifene is less likely to cause uterine neoplasms, serious vascular events and it has a more positive effect on serum lipids than does tamoxifen. Toremifene is therefore effective and safe in the treatment of breast cancer. It provides not only a useful therapeutic alternative to tamoxifen, but may bring specific benefits.
Collapse
|
6
|
Gao L, Sun X, Tu Y, Ågren H, Eriksson LA. Modification of the anticancer drug tamoxifen to avoid CYP2D6 polymorphism. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prodrug tamoxifen (TAM) is the most widely used drug to treat breast cancer, and is metabolised to the active 4-hydroxy derivatives dominantly by hepatic CYP2D6. However, the application to patients with different polymorphic CYP2D6 has been under debate, because the efficacy of TAM is suspected to be suppressed in patients who have diminished CYP2D6 activity, resulting in inadequate active metabolites. We here propose modified structures, such as 4-methylTAM, which is highly possible to be activated by CYP3A, the most abundant CYP isoforms in the liver, whereby the genetic polymorphism of CYP2D6 is avoided. The diversity of CYP catalyzed metabolic paths for TAM and its derivatives are studied by quantum chemistry calculations on the reaction energies of the initial H atom abstraction steps. The ability of forming DNA adducts is compared through the formation enthalpy of the carbocation intermediate. The results suggest that the modified structures are safe with regard to forming DNA adducts and may be used as prodrugs in a wide range of patients, due to CYP3A, rather than CYP2D6, mediated activation.
Collapse
Affiliation(s)
- Li Gao
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Xianqiang Sun
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Göteborg, Sweden
| |
Collapse
|
7
|
Danoun G, Tlili A, Monnier F, Taillefer M. Direct Copper-Catalyzed α-Arylation of Benzyl Phenyl Ketones with Aryl Iodides: Route towards Tamoxifen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Danoun G, Tlili A, Monnier F, Taillefer M. Direct Copper-Catalyzed α-Arylation of Benzyl Phenyl Ketones with Aryl Iodides: Route towards Tamoxifen. Angew Chem Int Ed Engl 2012; 51:12815-9. [DOI: 10.1002/anie.201206024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/12/2012] [Indexed: 11/07/2022]
|
9
|
Shahrokh K, Cheatham TE, Yost GS. Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen. Biochim Biophys Acta Gen Subj 2012; 1820:1605-17. [PMID: 22677141 DOI: 10.1016/j.bbagen.2012.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Structure-based methods for P450 substrates are commonly used during drug development to identify sites of metabolism. However, docking studies using available X-ray structures for the major drug-metabolizing P450, CYP3A4, do not always identify binding modes supportive of the production of high-energy toxic metabolites. Minor pathways such as P450-catalyzed dehydrogenation have been experimentally shown to produce reactive products capable of forming biomolecular adducts which can lead to increased risk toxicities. 4-Hydroxy-tamoxifen (4OHT) is metabolized by CYP3A4 via competing hydroxylation and dehydrogenation reactions. METHODS Ab initio gas-phase electronic structural characterization of 4OHT was used to develop a docking scoring scheme. Conformational sampling of CYP3A4 with molecular dynamics simulations along multiple trajectories were used to generate representative structures for docking studies using recently published heme parameters. A key predicted binding mode was tested experimentally using site-directed mutagenesis of CYP3A4 and liquid chromatography-mass spectroscopy analysis. RESULTS Docking with MD-refined CYP3A4 structures incorporating hexa-coordinate heme parameters identifies a unique binding mode involving ARG212 and channel 4, unobserved in the starting PDB ID: 1TQN X-ray structure. The models supporting dehydrogenation are consistent with results from in vitro incubations. GENERAL SIGNIFICANCE Our models indicate that coupled structural contributions of the ingress, egress and solvent channels to the CYP3A4 active site geometries play key roles in the observed 4OHT binding modes. Thus adequate sampling of the conformational space of these drug-metabolizing promiscuous enzymes is important for substrates that may bind in malleable regions of the enzyme active-site.
Collapse
Affiliation(s)
- Kiumars Shahrokh
- Department of Pharmacology and Toxicology, College of Pharmacy, Skaggs Hall 201, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
10
|
Gu R, Jia W, Zeng Y, Rao N, Hu Y, Li S, Wu J, Jin L, Chen L, Long M, Chen K, Chen L, Xiao Q, Wu M, Song E, Su F. A comparison of survival outcomes and side effects of toremifene or tamoxifen therapy in premenopausal estrogen and progesterone receptor positive breast cancer patients: a retrospective cohort study. BMC Cancer 2012; 12:161. [PMID: 22548922 PMCID: PMC3503787 DOI: 10.1186/1471-2407-12-161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 03/03/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In premenopausal women, endocrine adjuvant therapy for breast cancer primarily consists of tamoxifen alone or with ovarian suppressive strategies. Toremifene is a chlorinated derivative of tamoxifen, but with a superior risk-benefit profile. In this retrospective study, we sought to establish the role of toremifene as an endocrine therapy for premenopausal patients with estrogen and/or progesterone receptor positive breast cancer besides tamoxifen. METHODS Patients with early invasive breast cancer were selected from the breast tumor registries at the Sun Yat-Sen Memorial Hospital (China). Premenopausal patients with endocrine responsive breast cancer who underwent standard therapy and adjuvant therapy with toremifene or tamoxifen were considered eligible. Patients with breast sarcoma, carcinosarcoma, concurrent contralateral primary breast cancer, or with distant metastases at diagnosis, or those who had not undergone surgery and endocrine therapy were ineligible. Overall survival and recurrence-free survival were the primary outcomes measured. Toxicity data was also collected and compared between the two groups. RESULTS Of the 810 patients reviewed, 452 patients were analyzed in the study: 240 received tamoxifen and 212 received toremifene. The median and mean follow up times were 50.8 and 57.3 months, respectively. Toremifene and tamoxifen yielded similar overall survival values, with 5-year overall survival rates of 100% and 98.4%, respectively (p = 0.087). However, recurrence-free survival was significantly better in the toremifene group than in the tamoxifen group (p = 0.022). Multivariate analysis showed that recurrence-free survival improved independently with toremifene (HR = 0.385, 95% CI = 0.154-0.961; p = 0.041). Toxicity was similar in the two treatment groups with no women experiencing severe complications, other than hot flashes, which was more frequent in the toremifene patients (p = 0.049). No patients developed endometrial cancer. CONCLUSION Toremifene may be a valid and safe alternative to tamoxifen in premenopausal women with endocrine-responsive breast cancer.
Collapse
Affiliation(s)
- Ran Gu
- Department of Breast Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gao L, Tu Y, Wegman P, Wingren S, Eriksson LA. A Mechanistic Hypothesis for the Cytochrome P450-Catalyzed Cis–Trans Isomerization of 4-Hydroxytamoxifen: An Unusual Redox Reaction. J Chem Inf Model 2011; 51:2293-301. [DOI: 10.1021/ci2001082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Gao
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Yaoquan Tu
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Pia Wegman
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Sten Wingren
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Leif A. Eriksson
- School of Chemistry, National University of Ireland - Galway, Ireland
| |
Collapse
|
12
|
Gao L, Tu Y, Wegman P, Wingren S, Eriksson LA. Conformational Enantiomerization and Estrogen Receptor α Binding of Anti-Cancer Drug Tamoxifen and Its Derivatives. J Chem Inf Model 2010; 51:306-14. [DOI: 10.1021/ci100401t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Gao
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Yaoquan Tu
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Pia Wegman
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Sten Wingren
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Leif A. Eriksson
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Kulkarni SA, Moir D, Zhu J. Influence of structural and functional modifications of selected genotoxic carcinogens on metabolism and mutagenicity - a review. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2007; 18:459-514. [PMID: 17654335 DOI: 10.1080/10629360701430090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alterations in molecular structure are responsible for the differential biological response(s) of a chemical inside a biosystem. Structural and functional parameters that govern a chemical's metabolic course and determine its ultimate outcome in terms of mutagenic/carcinogenic potential are extensively reviewed here. A large number of environmentally-significant organic chemicals are addressed under one or more broadly classified groups each representing one or more characteristic structural feature. Numerous examples are cited to illustrate the influence of key structural and functional parameters on the metabolism and DNA adduction properties of different chemicals. It is hoped that, in the event of limited experimental data on a chemical's bioactivity, such knowledge of the likely roles played by key molecular features should provide preliminary information regarding its bioactivation, detoxification and/or mutagenic potential and aid the process of screening and prioritising chemicals for further testing.
Collapse
Affiliation(s)
- S A Kulkarni
- Chemistry Research Division, Safe Environments Programme, Health Canada, AL: 0800C, Ottawa, Ontario, K1A 0L2, Canada
| | | | | |
Collapse
|
14
|
Gamboa da Costa G, Pereira PC, Churchwell MI, Beland FA, Marques MM. DNA adduct formation in the livers of female Sprague-Dawley rats treated with toremifene or alpha-hydroxytoremifene. Chem Res Toxicol 2007; 20:300-10. [PMID: 17261033 DOI: 10.1021/tx600275d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toremifene, an analogue of tamoxifen in which the ethyl side chain has been replaced with a 2-chloroethyl substituent, is used as a chemotherapeutic agent in postmenopausal women with advanced breast cancer. Toremifene is metabolized in a manner similar to that of tamoxifen, with alpha-hydroxytoremifene being a predominant metabolite in incubations in vitro. DNA adducts have been detected previously in liver DNA upon the administration of toremifene to rats; however, the identity of these adducts is unknown. In the present study, we have characterized the DNA adducts produced by alpha-hydroxytoremifene and have compared the extent of hepatic DNA adduct formation in rats administered toremifene, alpha-hydroxytoremifene, or tamoxifen. alpha-Hydroxytoremifene was synthesized, further activated by sulfation, and then reacted with salmon testis DNA. After enzymatic hydrolysis to deoxynucleosides, HPLC analysis indicated the formation of two major DNA adducts, which were characterized as (E)- and (Z)-alpha-(deoxyguanosin-N2-yl)toremifene on the basis of 1H NMR and mass spectral analyses. To assess the formation of toremifene DNA adducts in vivo, female Sprague-Dawley rats were treated intraperitoneally with toremifene, alpha-hydroxytoremifene, or tamoxifen. 32P-Postlabeling analyses of hepatic DNA from the tamoxifen-treated rats indicated three DNA adducts at a total level of 2,200 +/- 270 adducts/108 nucleotides. DNA adducts were not detected (<5 adducts/108 nucleotides) in the livers of rats treated with toremifene. Two DNA adducts, of which the major one coeluted with the 3',5'-bis-phosphate of (E)-alpha-(deoxyguanosin-N2-yl)toremifene, were present at a level of 57 +/- 12 adducts/108 nucleotides in hepatic DNA from rats administered alpha-hydroxytoremifene. The low level of hepatic DNA adduct formation observed with both toremifene and alpha-hydroxytoremifene, as compared to that with tamoxifen, may be due to the limited esterification of alpha-hydroxytoremifene and/or the poor reactivity of alpha-sulfoxytoremifene.
Collapse
Affiliation(s)
- Gonçalo Gamboa da Costa
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
15
|
Dowers TS, Qin ZH, Thatcher GRJ, Bolton JL. Bioactivation of Selective Estrogen Receptor Modulators (SERMs). Chem Res Toxicol 2006; 19:1125-37. [PMID: 16978016 PMCID: PMC2517576 DOI: 10.1021/tx060126v] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamara S Dowers
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA
| | | | | | | |
Collapse
|
16
|
Harvey HA, Kimura M, Hajba A. Toremifene: an evaluation of its safety profile. Breast 2005; 15:142-57. [PMID: 16289904 DOI: 10.1016/j.breast.2005.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/06/2005] [Accepted: 09/21/2005] [Indexed: 12/14/2022] Open
Abstract
Toremifene has been in clinical use for 8 years for the treatment of advanced hormone-sensitive breast cancer and the adjuvant treatment of early breast cancer. More than 350,000 patient treatment years have accumulated, sufficient to allow evaluation of its longer-term safety profile in comparison with tamoxifen and, where possible, with raloxifene and aromatase inhibitors. We reviewed all preclinical and clinical safety data from 1978 to 2004 and comparative clinical safety data between October 1995 and the end of 2004. Secondary endometrial cancer incidence was lower with toremifene than with tamoxifen and was similar to that with raloxifene. It is speculated that toremifene may unmask existing endometrial tumors rather than induce new events. The risk of stroke, pulmonary embolism, and cataract may be lower with toremifene than with tamoxifen and the risk of pulmonary embolism and deep vein thrombosis lower than with raloxifene. Beneficial estrogen agonistic effects were equivalent to those of tamoxifen regarding bone mineral density and superior regarding lipid profiles.
Collapse
Affiliation(s)
- Harold A Harvey
- Division of Hematology/Oncology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
17
|
Apak TI, Duffel MW. Interactions of the stereoisomers of alpha-hydroxytamoxifen with human hydroxysteroid sulfotransferase SULT2A1 and rat hydroxysteroid sulfotransferase STa. Drug Metab Dispos 2004; 32:1501-8. [PMID: 15371299 DOI: 10.1124/dmd.104.000919] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tamoxifen (TAM) is a nonsteroidal antiestrogenic drug that is widely used for the treatment of estrogen receptor-dependent breast cancer. An increased risk of endometrial cancer in some patients treated with TAM has been linked to the metabolic formation of alpha-hydroxytamoxifen (alpha-OHTAM) and its subsequent sulfation. Alpha-OHTAM has been found to be a substrate for rat and human hydroxysteroid sulfotransferases (STa and SULT2A1, respectively). Since stereochemistry plays an important role in the interactions of hydroxysteroid sulfotransferases with their substrates, we have now investigated the interactions of each of the stereoisomers of alpha-OHTAM with highly purified recombinant STa and SULT2A1. Methods for the preparation of the enantiomers of E- and Z-alpha-OHTAM were developed. When each of the four enantiomers was examined with rat STa, E-(+)-alpha-OHTAM was the only substrate for the enzyme, whereas E-(-)-alpha-OHTAM, Z-(+)-alpha-OHTAM, and Z-(-)-alpha-OHTAM were inhibitors of the sulfation of E-(+)-alpha-OHTAM catalyzed by STa. The dissociation constants for the alpha-OHTAM enantiomers indicated that they bound to STa with similar affinity, but only the E-(+)-enantiomer was a substrate. In contrast to the results obtained with rat hydroxysteroid sulfotransferase STa, all enantiomers of alpha-OHTAM were substrates for the human SULT2A1. Moreover, kcat/Km values with SULT2A1 were higher with the Z enantiomers than with the E enantiomers. As a result of the potential for interconversion of the E and Z geometric isomers upon metabolism, the sulfation of the Z isomers may be of greater concern in human tissues than has been previously assumed.
Collapse
Affiliation(s)
- T Idil Apak
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
18
|
Kim SY, Suzuki N, Laxmi YRS, Shibutani S. Genotoxic Mechanism of Tamoxifen in Developing Endometrial Cancer. Drug Metab Rev 2004; 36:199-218. [PMID: 15237851 DOI: 10.1081/dmr-120033997] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Increased risk of developing endometrial cancers has been observed in women treated with tamoxifen (TAM), a widely used drug for breast cancer therapy and chemoprevention. The carcinogenic effect may be due to genotoxic DNA damage induced by TAM. In fact, TAM-DNA adducts were detected in the endometrium of women treated with this drug. TAM is alpha-hydroxylated by cytochrome P450 3A4 followed by O-sulfonation by hydroxysteroid sulfotransferase, and reacts with guanine residues in DNA, resulting in the formation of alpha-(N2-deoxyguanosinyl)tamoxifen adducts. During this metabolic process, short-lived carbocations are produced at the ethyl moiety of TAM as reactive intermediates. TAM-DNA adducts promote primarily G -->T transversions in mammalian cells. The same mutations have been frequently detected at codon 12 of the K-ras gene in the endometrial tissue of women treated with this drug. TAM-DNA adducts, if not readily repaired, may act as initiators, leading to development of endometrial cancers. The reactivity of TAM metabolites with DNA is inhibited in toremifene, where the hydrogen atom has been replaced by a chlorine atom at the ethyl moiety. Therefore, toremifene may be a safer alternative to TAM. This article describes an overview of the mechanism of TAM-DNA adduct formation, mutagenic events of this adduct, and detection of TAM-DNA adducts in the endometrium of women treated with TAM.
Collapse
Affiliation(s)
- Sung Yeon Kim
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
19
|
Gust R, Lubczyk V. Structure activity relationship studies on C2 side chain substituted 1,1-bis(4-methoxyphenyl)-2-phenylalkenes and 1,1,2-tris(4-methoxyphenyl)alkenes. J Steroid Biochem Mol Biol 2003; 87:75-83. [PMID: 14630093 DOI: 10.1016/s0960-0760(03)00385-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1,1-bis(4-Methoxyphenyl)-2-phenylalkenes (1a-9a) and 1,1,2-tris(4-methoxyphenyl)alkenes (1b-9b) with various C2-substituents (H (1a, 1b), methyl (2a, 2b), ethyl (3a, 3b), propyl (4a, 4b), butyl (5a, 5b), 2-cyanoethyl (6a, 6b), 3-cyanopropyl (7a, 7b), 3-aminopropyl (8a, 8b), 3-carboxypropyl (9a, 9b)) were tested for cytotoxic effects on hormone dependent MCF-7 cells. The effects were correlated with agonistic and antagonist properties determined on the MCF-7-2a cell line stably transfected with the plasmid ERE(wtc)luc. We demonstrated that the antiproliferative effects did not result from an interaction with the estrogen receptor (ER). The most cytotoxic compounds 5,5-bis(4-methoxyphenyl)-4-phenylpent-4-enylamine (8a) and 4,5,5-tris(4-methoxyphenyl)pent-4-enyl (8b) showed cytocidal effects without having significant agonistic and antagonistic properties.
Collapse
Affiliation(s)
- Ronald Gust
- Institut für Pharmazie der FU Berlin, Königin Luise Strasse 2+4, D-14195 Berlin, Germany.
| | | |
Collapse
|
20
|
Brown K. Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin Drug Saf 2002; 1:253-67. [PMID: 12904141 DOI: 10.1517/14740338.1.3.253] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anti-oestrogen tamoxifen, which is widely used as adjuvant therapy for breast cancer, is undergoing evaluation as a chemopreventive agent in women at increased risk of developing this disease. Recent results from the National Surgical Adjuvant Breast and Bowel Project (NSABP) P-1 prevention trial show a 49% reduction in breast cancer incidence in healthy, high-risk women. However, tamoxifen treatment has the serious side effect of increasing the incidence of endometrial cancer in women and long-term administration of tamoxifen causes hepatic tumours in rats. These liver tumours are induced via a genotoxic mechanism, but the mechanisms responsible for endometrial cancer in women are not yet known and are a focus of much debate. This review describes the findings from the chemoprevention trials and problems associated with the use of tamoxifen in this setting. The mechanism of carcinogenesis in rat liver is explained in detail and compared to the situation in humans, with a view to assessing the risks associated with tamoxifen therapy and predicting whether other anti-oestrogens might be safer alternatives.
Collapse
Affiliation(s)
- Karen Brown
- Cancer Biomarkers and Prevention Group, The Biocentre, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
21
|
Yao D, Zhang F, Yu L, Yang Y, van Breemen RB, Bolton JL. Synthesis and reactivity of potential toxic metabolites of tamoxifen analogues: droloxifene and toremifene o-quinones. Chem Res Toxicol 2001; 14:1643-53. [PMID: 11743747 DOI: 10.1021/tx010137i] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamoxifen remains the endocrine therapy of choice in the treatment of all stages of hormone-dependent breast cancer. However, tamoxifen has been shown to increase the risk of endometrial cancer which has stimulated research for new effective antiestrogens, such as droloxifene and toremifene. In this study, the potential for these compounds to cause cytotoxic effects was investigated. One potential cytotoxic mechanism could involve metabolism of droloxifene and toremifene to catechols, followed by oxidation to reactive o-quinones. Another cytotoxic pathway could involve the oxidation of 4-hydroxytoremifene to an electrophilic quinone methide. Comparison of the amounts of GSH conjugates formed from 4-hydroxytamoxifen, droloxifene, and 4-hydroxytoremifene suggested that 4-hydroxytoremifene is more effective at formation of a quinone methide. However, all three substrates formed similar amounts of o-quinones. Both the tamoxifen-o-quinone and toremifene-o-quinone reacted with deoxynucleosides to give corresponding adducts. However, the toremifene-o-quinone was shown to be considerably more reactive than the tamoxifen-o-quinone in terms of both kinetic data as well as the yield and type of deoxynucleoside adducts formed. Since thymidine formed the most abundant adducts with the toremifene-o-quinone, sufficient material was obtained for characterization by (1)H NMR, COSY-NMR, DEPT-NMR, and tandem mass spectrometry. Cytotoxicity studies with tamoxifen, droloxifene, 4-hydroxytamoxifen, 4-hydroxytoremifene, and their catechol metabolites were carried out in the human breast cancer cell lines S30 and MDA-MB-231. All of the metabolites tested showed cytotoxic effects that were similar to the parent antiestrogens which suggests that o-quinone formation from tamoxifen, droloxifene, and 4-hydroxytoremifene is unlikely to contribute to their cytotoxicity. However, the fact that the o-quinones formed adducts with deoxynucleosides in vitro implies that the o-quinone pathway might contribute to the genotoxicity of the antiestrogens in vivo.
Collapse
Affiliation(s)
- D Yao
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA
| | | | | | | | | | | |
Collapse
|
22
|
Karami-Tehrani F, Salami S, Mokarram P. Competition of tamoxifen with thyroxine for TBG binding: ligand binding assay and computational data. Clin Biochem 2001; 34:603-6. [PMID: 11849618 DOI: 10.1016/s0009-9120(01)00277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Tamoxifen, a nonesteroidal antiesterogen, is widely used in the treatment of breast cancer. Recently, the effect of tamoxifen on thyroid function has caused considerable concern, yet the results of different studies are controversial and the precise mechanism of such influence is obscure. In view of the fact that some drugs such as furosemide, diclofenac and mefenamic acid, based on the structural similarities to thyroxine could compete for binding to thyroxine binding globulin (TBG) and appears that there are some structural similarities between tamoxifen and thyroxine, one can hypothesize that tamoxifen is also able to compete for TBG binding and thereby affecting thyroid function tests. DESIGN AND METHODS In this study, we designed an in vitro binding assay as well as computational methods using MOPAC 7 package for evaluation of competitive potency of tamoxifen for TBG binding in comparison with well-known TBG competitors (including furosemide, mefenamic acid and diclofenac). RESULTS The result of competition assay and Scatchard analysis revealed that tamoxifen does not bind to TBG at the T4 binding site, thus it is not a thyroxine competitor. Computational results also indicated that structural characteristics of tamoxifen are significantly different from those of T4 and its well-known competitors. CONCLUSION In conclusion, the probability of competition between tamoxifen and T4 is ruled out by these results.
Collapse
Affiliation(s)
- F Karami-Tehrani
- Cancer Research Laboratory, Clinical Biochemistry Department, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
| | | | | |
Collapse
|
23
|
Fan PW, Zhang F, Bolton JL. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Chem Res Toxicol 2000; 13:45-52. [PMID: 10649966 DOI: 10.1021/tx990144v] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two molecules of GSH and loses chlorine to give the corresponding di-GSH conjugates. The reaction mechanism likely involves an episulfonium ion intermediate which may contribute to the potential cytotoxic effects of toremifene. Similar to what was observed with 4-hydroxytamoxifen, 4-hydroxytoremifene was metabolized to di-GSH conjugates in microsomal incubations at about 3 times the rate of 4-hydroxytamoxifen, although no conjugates were detected with MCF-7 cells. Finally, these data suggest that quinone methide formation may not make a significant contribution to the cytotoxic and genotoxic effects of tamoxifen and toremifene.
Collapse
Affiliation(s)
- P W Fan
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA
| | | | | |
Collapse
|
24
|
Osborne MR, Davis W, Hewer AJ, Hardcastle IR, Phillips DH. 4-Hydroxytamoxifen gives DNA adducts by chemical activation, but not in rat liver cells. Chem Res Toxicol 1999; 12:151-8. [PMID: 10027792 DOI: 10.1021/tx980187w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The drug tamoxifen shows evidence of genotoxicity, and induces liver tumors in rats. Covalent DNA adducts have been detected in the liver of rats treated with tamoxifen, and in rat hepatocytes in culture. These arise primarily from its metabolite alpha-hydroxytamoxifen, and may also arise, in part, from another metabolite, 4-hydroxytamoxifen. We have prepared two model compounds for the potential reactive metabolite formed from 4-hydroxytamoxifen in rat liver. One of these was its alpha-acetoxy ester. This was much more reactive than that from tamoxifen, and could not be isolated in pure form. It reacted with DNA in the same way that alpha-acetoxytamoxifen did, to give adducts which were isolated by hydrolysis and chromatography, and identified as alkyldeoxyguanosines. The second derivative was alpha, beta-dehydro-4-hydroxytamoxifen. This also reacts with DNA in vitro, to give the same products as those from alpha-acetoxy-4-hydroxytamoxifen. Reaction probably proceeds through the same resonance-stabilized carbocation in either case. However, when primary cultures of rat hepatocytes were treated with either 4-hydroxytamoxifen, 4,alpha-dihydroxytamoxifen, or alpha, beta-dehydro-4-hydroxytamoxifen at a concentration of 10 microM, no adducts could be detected in their DNA by the 32P-postlabeling technique. Similarly, no adducts could be found in the liver DNA of female Fischer F344 rats treated orally (at 0.12 mmol kg-1) with the same substances. If 4-hydroxytamoxifen is metabolized to 4, alpha-dihydroxytamoxifen in rat liver, then either this substance is not converted to reactive esters or they are rapidly detoxified.
Collapse
Affiliation(s)
- M R Osborne
- Section of Molecular Carcinogenesis, Haddow Laboratories, and CRC Centre for Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG,
| | | | | | | | | |
Collapse
|
25
|
Hardcastle IR, Horton MN, Osborne MR, Hewer A, Jarman M, Phillips DH. Synthesis and DNA reactivity of alpha-hydroxylated metabolites of nonsteroidal antiestrogens. Chem Res Toxicol 1998; 11:369-74. [PMID: 9548808 DOI: 10.1021/tx970198+] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tamoxifen [(E)-1-(4-(2-(N,N-dimethylamino)ethoxy)phenyl)-1, 2-diphenylbut-1-ene], a nonsteroidal antiestrogen, induces liver tumors in rats by a genotoxic mechanism. The mechanism of DNA adduct formation is believed to proceed via the formation of a reactive carbocation at the alpha-position from the alpha-hydroxylated metabolite. Molecular mechanics calculations [Kuramochi, H. (1996) J. Med. Chem. 39, 2877-2886] have predicted that 4-substitution will affect the stability of the carbocation and thus will alter its reactivity toward DNA. We have synthesized the putative alpha-hydroxylated metabolites of 4-hydroxytamoxifen [(E)-1-(4-(2-(N, N-dimethylamino)ethoxy)phenyl)-1-(4-hydroxyphenyl)-3-hydroxy-2-phenyl but-1-ene] and idoxifene [(Z)-1-(4-iodophenyl)-3-hydroxy-2-phenyl-1-(4-(2-(N-pyrrolidino) ethoxy)phenyl)but-1-ene] and compared their reactivities with DNA with that of alpha-hydroxytamoxifen [(E)-1-(4-(2-(N, N-dimethylamino)ethoxy)phenyl)-3-hydroxy-1,2-diphenylbut-1-ene]. As predicted, the bis-hydroxylated compound reacted with DNA in aqueous solution at pH 5 to give 12-fold greater levels of adducts than alpha-hydroxytamoxifen, whereas alpha-hydroxyidoxifene gave one-half the number of adducts. The results demonstrate that idoxifene presents a significantly lower genotoxic hazard than tamoxifen for the treatment and prophylaxis of breast cancer.
Collapse
Affiliation(s)
- I R Hardcastle
- CRC Centre for Cancer Therapeutics and Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, U.K
| | | | | | | | | | | |
Collapse
|
26
|
Hendry LB, Bransome ED, Mahesh VB. The ligand insertion hypothesis in the genomic action of steroid hormones. J Steroid Biochem Mol Biol 1998; 65:75-89. [PMID: 9699860 DOI: 10.1016/s0960-0760(97)00186-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gene regulation by steroids is tightly coupled to hormone concentration and stereochemistry. A key step is binding of hormones to receptors which interact with consensus DNA sequences known as hormone response elements (HREs). The specificity and strength of hormone binding do not correlate well with hormonal activity suggesting an additional step involving recognition of ligand by the gene. Stereospecific fit of hormones between base pairs and correlation of fit with hormonal activity led to the proposal that such recognition involves insertion of hormone into DNA. Here, the feasibility of insertion was investigated using computer models of the glucocorticoid receptor DNA binding domain bound to its HRE. The site reported to accommodate glucocorticoids was found in the HRE and was exposed to permit unwinding at this locus. The resulting cavity in the unwound DNA/receptor interface fit cortisol remarkably well; cortisol formed hydrogen bonds to both the receptor and DNA. Current experimental evidence is generally consistent with ligand binding domains of receptors undergoing a conformational change which facilitates transfer of the ligand into the unwound DNA/receptor interface. We propose this step is rate limiting and alterations in receptor, DNA or hormone which attenuate insertion impair hormonal regulation of gene function.
Collapse
Affiliation(s)
- L B Hendry
- Drug Design and Development Laboratory, Department of Physiology and Endocrinology CLW3134, Augusta, GA 30912, USA
| | | | | |
Collapse
|
27
|
Okubo T, Nagai F, Ushiyama K, Yokoyama Y, Ozawa S, Kano K, Tomita S, Kubo H, Kano I. DNA cleavage and 8-hydroxydeoxyguanosine formation caused by tamoxifen derivatives in vitro. Cancer Lett 1998; 122:9-15. [PMID: 9464485 DOI: 10.1016/s0304-3835(97)00359-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage caused by tamoxifen and its derivatives was examined by estimating the conversion of supercoiled pUC18 plasmid DNA to linear form by means of agarose gel electrophoresis. N-Desmethyltamoxifen induced DNA cleavage and its effect was enhanced by the addition of reducing agents such as dithiothreitol, NADPH and 2-mercaptoethanol. 4-Hydroxytamoxifen itself had little effect, but the cleavage was slightly enhanced by the addition of reducing agents. DNA damage was higher with alpha-hydroxytoremifene than with alpha-hydroxytamoxifen, which had a prominent effect only at high concentration. The cleavage by alpha-hydroxy derivatives were not enhanced by reducing agents. No damage was induced by tamoxifen, toremifene, 3-hydroxytamoxifen or N-desmethyltoremifene. The DNA cleavage by N-desmethyltamoxifen was inhibited by the addition of EDTA, mannitol, sodium azide, methionine, catalase and superoxide dismutase. The formation of 8-hydroxy-2'-deoxyguanosine was also examined with calf thymus DNA in vitro. A slight increase of its level was found with 4-hydroxytamoxifen in the presence of dithiothreitol and also with N-desmethyltamoxifen in the presence of NADPH, but alpha-hydroxytoremifene and alpha-hydroxytamoxifen were ineffective. These experimental data suggest that among metabolites of tamoxifen, N-desmethyltamoxifen and probably also 4-hydroxytamoxifen cause oxidative DNA damage in which redox cycling is involved. The DNA damage by alpha-hydroxytoremifene appears to involve a different mechanism from that by N-desmethyltamoxifen. Tamoxifen and toremifene are possibly metabolized to the forms contributing to DNA damage.
Collapse
Affiliation(s)
- T Okubo
- Department of Toxicology, The Tokyo Metropolitan Research Laboratory of Public Health, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramakrishna KV, Fan PW, Boyer CS, Dalvie D, Bolton JL. Oxo substituents markedly alter the phase II metabolism of alpha-hydroxybutenylbenzenes: models probing the bioactivation mechanisms of tamoxifen. Chem Res Toxicol 1997; 10:887-94. [PMID: 9282838 DOI: 10.1021/tx970060r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The P450-catalyzed hydroxylation of tamoxifen to give alpha-hydroxytamoxifen [(E)-4-{4-[2-(dimethylamino)ethoxy]phenyl}-3,4-diphenyl-3-buten-2- ol] and subsequent formation of reactive sulfate esters which alkylate DNA has been proposed to be a potential carcinogenic pathway for tamoxifen. In the present study, the ability of alpha-hydroxytamoxifen analogs to form GSH and sulfate conjugates was investigated in order to understand the structural features influencing reactivity. The para oxo analogs 1 [1-(4-methoxyphenyl)-3-hydroxy-1-butene], 2 [1-(4-hydroxyphenyl)-3-hydroxy-1-butene], and 4 [1-(4-hydroxyphenyl)-1-phenyl-3-hydroxy-1-butene] reacted with GSH instantaneously under strong acidic conditions to yield GSH conjugates in greater than 90% yields. Interestingly, the meta phenolic analogs 3 [1-(3-hydroxyphenyl)-3-hydroxy-1-butene] and 5 [1-(3-hydroxyphenyl)-1-phenyl-3-hydroxy-1-butene] did not react with GSH to any significant extent under similar conditions. Characterization of the GSH conjugates with 1H-NMR, electrospray mass spectrometry, and UV showed that all of the conjugates resulted from attack of GSH at the alpha-position of the substrates with displacement of the hydroxyl group. The formation of a single pair of diastereomeric conjugates strongly supported adduct formation to proceed through a direct S(N)2 displacement mechanism and not through a quinone methide (4-alkyl-2,5-cyclohexadien-1-one) intermediate. At physiological pH and temperature only the para hydroxy analogs 2 and 4 gave GSH conjugates, a reaction which seems to be catalyzed by isoforms of glutathione S-transferase. Similar substituent effects were observed in the sulfotransferase-mediated formation of alpha-hydroxy sulfate esters in that only the para hydroxy analogs formed conjugates at the aliphatic hydroxyl group. Finally, the present investigation showed a remarkable difference in the reactivities of para and meta phenolic analogs of alpha-hydroxybutenylbenzenes toward GSH and sulfate conjugation reactions.
Collapse
Affiliation(s)
- K V Ramakrishna
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 60612-7231, USA
| | | | | | | | | |
Collapse
|
29
|
Wiseman LR, Goa KL. Toremifene. A review of its pharmacological properties and clinical efficacy in the management of advanced breast cancer. Drugs 1997; 54:141-60. [PMID: 9211086 DOI: 10.2165/00003495-199754010-00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The triphenylethylene antiestrogen toremifene is a chlorinated derivative of the antiestrogen tamoxifen, an agent which has been widely and successfully used in the treatment of breast cancer. Clinical trials investigating the efficacy of toremifene as first-line endocrine therapy in postmenopausal women with advanced breast cancer (estrogen receptor status positive or unknown) have shown this drug to have similar antitumour activity to that of tamoxifen. In multicentre comparative trials, objective responses (complete and partial) occurred in 20 to 29% of patients treated with toremifene (60 to 240 mg/day) and in 19 to 37.5% of tamoxifen (20 or 40 mg/day) recipients. The duration of response, time to disease progression and median overall survival time were generally similar in both treatment groups. Toremifene is well tolerated. Most drug-related adverse effects are mild or moderate in severity and rarely necessitate discontinuation of therapy. The tolerability profile of toremifene is similar to that reported for tamoxifen, the most common adverse effects being hot flushes, sweating, nausea and/or vomiting, dizziness, oedema, and vaginal discharge and/or bleeding. Thus, toremifene provides an equally effective and well tolerated alternative to tamoxifen for the first-line endocrine therapy of postmenopausal advanced breast cancer. Preclinical studies showing toremifene to have a lower carcinogenic potential than tamoxifen indicate that toremifene may be a preferable agent for long term treatment regimens; however, these findings require confirmation in the clinical setting.
Collapse
Affiliation(s)
- L R Wiseman
- Adis International Limited, Auckland, New Zealand.
| | | |
Collapse
|
30
|
Costantino G, Pellicciari R. Homology modeling of metabotropic glutamate receptors. (mGluRs) structural motifs affecting binding modes and pharmacological profile of mGluR1 agonists and competitive antagonists. J Med Chem 1996; 39:3998-4006. [PMID: 8831765 DOI: 10.1021/jm9601718] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A three-dimensional model of the amino terminal domain (ATD) of the mGluR1 receptor subtype was constructed on the basis of the previously reported sequence homology with bacterial periplasmic proteins. The model was utilized for revealing structural motifs affecting the interaction with mGluR1 agonists and competitive antagonists. The agonist binding site region, identified on the basis of published site-directed mutagenesis experiments, is located on the surface of one of the two lobes constituting the mGluR1 ATD. A number of electrostatic and hydrogen-bonding interactions can be detected between mGluR1 agonists such as L-Glu (1), Quis (2), and (1S,3R)-ACPD (4) and binding site residues. A different binding mode was proposed for mGluR1 competitive antagonists such as 4CPG (5), 4C3HPG (6), and UPF523 (10). Interactions with both lobes of the ATD of mGluR1 and the lack of a specific role for the phenyl moiety of mGluR1 antagonists are important features of the proposed antagonist binding mode. The correspondence of the molecular modeling results with the pharmacological data of mGluR1 agonists and competitive antagonists is a confirmation of the plausibility of the model.
Collapse
Affiliation(s)
- G Costantino
- Istituto di Chimica e Technologia del Farmaco, Università di Perugia, Italy
| | | |
Collapse
|