1
|
Ciombor KK, Bae SW, Whisenant JG, Ayers GD, Sheng Q, Peterson TE, Smith GT, Lin K, Chowdhury S, Kanikarla Marie P, Sorokin A, Cohen AS, Goff LW, Cardin DB, Shen JP, Kopetz S, Eng C, Shyr Y, Berlin J, Manning HC. Results of the Phase I/II Study and Preliminary B-cell Gene Signature of Combined Inhibition of Glutamine Metabolism and EGFR in Colorectal Cancer. Clin Cancer Res 2025; 31:1437-1448. [PMID: 39927885 DOI: 10.1158/1078-0432.ccr-24-3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE EGFR-targeting mAbs are essential for managing rat sarcoma virus wild-type metastatic colorectal cancer (mCRC), but their limited efficacy necessitates exploring immunologic and metabolic factors influencing response. This study evaluated glutamine metabolism targeting with EGFR inhibition to identify response biomarkers in patients with prior anti-EGFR treatment progression. PATIENTS AND METHODS We conducted a phase I/II trial in patients with KRAS wild-type mCRC, combining panitumumab (6 mg/kg) and CB-839 (600 mg/kg or 800 mg/kg), hypothesizing that the dual inhibition of glutamine metabolism and MAPK signaling would enhance outcomes. As study correlatives, we investigated the B-cell activation signature "B-score" and glutamine PET as potential treatment response biomarkers. RESULTS The combination of panitumumab and CB-839 was tolerable with manageable side effects, including grade 4 hypomagnesemia in four patients, a known panitumumab-related event. Two patients achieved partial response, and five had stable disease, with a 41% disease control rate. Median progression-free survival and overall survival were 1.84 and 8.87 months, respectively. A positive correlation between "B-score" and lesion size reduction suggested its association with clinical benefit (partial response and stable disease). Lower "B-score" correlated with greater tumor avidity for glutamine by PET, indicating B-cell activation sensitivity to glutamine depletion. CONCLUSIONS The combination of CB-839 and panitumumab showed safety and promising preliminary responses, but the study closed early due to CB-839 development termination. The B-cell activation signature "B-score" emerged as a potential biomarker for EGFR and glutaminase inhibition in mCRC, warranting further studies. These findings suggest opportunities to improve immune response and therapies in glutaminolysis-dependent tumors.
Collapse
Affiliation(s)
- Kristen K Ciombor
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer G Whisenant
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gary T Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Allison S Cohen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Laura W Goff
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dana B Cardin
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
García-Alfonso P, Valladares-Ayerbes M, Muñoz Martín AJ, Morales Herrero R, Galvez Muñoz E, Prat-Llorens G. State of the art of the molecular hyperselection to guide treatment with anti-EGFR antibodies in RAS WT mCRC: implications for clinical practice and future perspectives. Expert Opin Biol Ther 2025; 25:413-423. [PMID: 40066702 DOI: 10.1080/14712598.2025.2477192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Adding monoclonal antibodies to chemotherapy drastically changed the landscape of advanced colorectal cancer. The prediction of benefit from anti-EGFR therapies is mainly based on the absence of mutations in RAS and BRAF genes, the primary tumor sidedness and microsatellite MSS/MSI status. Molecular hyperselection may optimize the outcome of patients receiving anti-EGFR while detecting additional resistance alterations, both in chemo-naïve and in chemo-refractory settings. AREAS COVERED Our review focuses on negative molecular hyperselection, both on tissue samples and ctDNA, and the impact of this further patient selection on response rate and survival outcomes. We searched electronic database, selecting relevant English-language publications from 2017 to 2024. EXPERT OPINION Negative hyperselection beyond RAS and BRAF in advanced colorectal cancer appears to be a powerful tool for predicting outcomes to anti-EGFR therapy and spare patients from unnecessary treatment. This improvement appears in both naïve and pre-treated patients. However, data come mainly from retrospective studies. Therefore, to validate and integrate these findings in the clinical practice, prospective studies should be conducted. It will be interesting to elucidate the role of ctDNA in this setting and the choice of molecular techniques, considering costs and accessibility, to guarantee its implementation in the clinic.
Collapse
Affiliation(s)
- Pilar García-Alfonso
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Andrés J Muñoz Martín
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Rocío Morales Herrero
- Medical Oncology Department, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | | | | |
Collapse
|
3
|
Pakvisal N, Goldberg RM, Sathitruangsak C, Silaphong W, Faengmon S, Teeyapun N, Teerapakpinyo C, Tanasanvimon S. Overall survival with frontline vs subsequent anti-epidermal growth factor receptor therapies in unresectable, RAS/BRAF wild-type, left-sided metastatic colorectal cancer. World J Clin Oncol 2025; 16:102076. [PMID: 40130051 PMCID: PMC11866077 DOI: 10.5306/wjco.v16.i3.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND The combination of anti-epidermal growth factor receptor (EGFR) therapy and chemotherapy is currently a preferred first-line treatment for patients with unresectable, RAS and BRAF wild-type, left-sided metastatic colorectal cancer (mCRC). Several studies have also demonstrated the benefit of anti-EGFR therapy in subsequent line settings for this patient population. However, direct evidence comparing the effectiveness of frontline vs subsequent anti-EGFR therapy remains limited, leaving a crucial gap in guiding optimal treatment strategies. AIM To compare overall survival (OS) between frontline and subsequent anti-EGFR treatment in patients with unresectable, RAS and BRAF wild-type, left-sided mCRC. METHODS We retrospectively reviewed the medical records of mCRC patients treated at The King Chulalongkorn Memorial Hospital and Songklanagarind Hospital, Thailand, between January 2013 and April 2023. Patients were classified into two groups based on the sequence of their anti-EGFR treatment. The primary endpoint was OS. RESULTS Among 222 patients with a median follow-up of 29 months, no significant difference in OS was observed between the frontline and subsequent-line groups (HR 1.03, 95%CI: 0.73-1.46, P = 0.878). The median OS was 35.53 months (95%CI: 26.59-44.47) for the frontline group and 31.60 months (95%CI: 27.83-35.37) for the subsequent-line group. In the subsequent-line group, 71 patients (32.4%) who ultimately never received anti-EGFR therapy had a significantly worse median OS of 19.70 months (95%CI: 12.87-26.53). CONCLUSION Frontline and subsequent-line anti-EGFR treatments provide comparable OS in unresectable, RAS/BRAF wild-type, left-sided mCRC patients, but early exposure is vital for those unlikely to receive subsequent therapy.
Collapse
Affiliation(s)
- Nussara Pakvisal
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Richard M Goldberg
- Department of Medicine, WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Chirawadee Sathitruangsak
- Medical Oncology Unit, Division of Internal Medicine, Faculty of Medicine, Holistic Center for Cancer Study and Care (HOCC-PSU) and Prince of Songkla University, Songkhla 90110, Thailand
| | - Witthaya Silaphong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Satawat Faengmon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Nattaya Teeyapun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Chinachote Teerapakpinyo
- Chulalongkorn GenePRO Center, Research Affairs, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Suebpong Tanasanvimon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Kazmi F, Shrestha N, Liu TFD, Foord T, Heesen P, Booth S, Dodwell D, Lord S, Yeoh KW, Blagden SP. Next-generation sequencing for guiding matched targeted therapies in people with relapsed or metastatic cancer. Cochrane Database Syst Rev 2025; 3:CD014872. [PMID: 40122129 PMCID: PMC11930395 DOI: 10.1002/14651858.cd014872.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Matched targeted therapies (MTT) given alone or in combination with systemic anti-cancer therapies have delivered proven survival benefit for many people with newly diagnosed cancer. However, there is little evidence of their effectiveness in the recurrent or late-stage setting. With this uncertainty, alongside the perception that late-stage cancers are too genetically heterogenous or too mutationally diverse to benefit from matched targeted therapies, next-generation sequencing (NGS) of tumours in people with refractory cancer remains a low priority. As a result, next-generation sequencing testing of recurrent or late-stage disease is discouraged. We lack evidence to support the utility of next generation sequencing in guiding matched targeted therapies in this setting. OBJECTIVES To evaluate the benefits and harms of matched targeted therapies in people with advanced cancers in randomised controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organisation International Clinical Trials Registry Platform (WHO-ICTRP) search portal up to 30th October 2024. We also screened reference lists of included studies and also the publications that cited these studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that had enroled participants with advanced/refractory solid or haematological cancers who had progressed through at least one line of standard anti-cancer systemic therapy. To be eligible, all participants should have received matched targeted therapy based on next-generation sequencing carried out on their tumour (tumour tissue, blood or bone marrow). DATA COLLECTION AND ANALYSIS We systematically searched medical databases (e.g. MEDLINE, Embase) and trial registers for randomised controlled trials (RCTs). Outcomes of interest were progression-free survival (PFS), overall survival (OS), overall response rates (ORR), serious (grade 3 or 4) adverse events (AEs) and quality of life (QOL). We used a random-effects model to pool outcomes across studies and compared predefined subgroups using interaction tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment of certainty was used to evaluate the quality of evidence. MAIN RESULTS We identified a total of 37 studies, out of which 35 studies (including 9819 participants) were included in the meta-analysis. All included studies compared a matched targeted therapy intervention to standard-of-care treatment, non-matched targeted therapies or no treatment (best supportive care): Matched targeted therapy versus standard-of-care treatment Matched targeted therapy (MTT) compared with standard systematic therapy probably reduces the risk of disease progression by 34% (hazard ratio (HR) = 0.66, 95% confidence interval (CI) 0.59 to 0.74; 14 studies, 3848 participants; moderate-certainty evidence). However, MTT might have little to no difference in risk of death (HR = 0.85, 95% CI 0.75 to 0.97; 14 studies, 3848 participants; low-certainty evidence) and may increase overall response rates (low-certainty evidence). There was no clear evidence of a difference in severe (grade 3/4) adverse events between matched targeted therapy and standard-of-care treatment (low-certainty evidence). There was limited evidence of a difference in quality of life between groups (very low-certainty of evidence). Matched targeted therapy in combination with standard-of-care treatment versus standard-of-care treatment alone Matched targeted therapy in combination with standard-of-care treatment compared with standard-of-care treatment alone probably reduces the risk of disease progression by 39% (HR = 0.61, 95% CI 0.53-0.70, 14 studies, 2,637 participants; moderate-certainty evidence) and risk of death by 21% (HR = 0.79, 95% CI 0.70 to 0.89; 11 studies, 2575 participants, moderate-certainty evidence). The combination of MTT and standard-of-care treatment may also increase overall response rates (low-certainty evidence). There was limited evidence of a difference in the incidence of severe adverse events (very low-certainty evidence) and quality of life between the groups (very low-certainty of evidence). Matched targeted therapy versus non-matched targeted therapy Matched targeted therapy compared with non-matched targeted therapy probably reduces the risk of disease progression by 24% (HR = 0.76, 95% CI 0.64 to 0.89; 3 studies, 1568 participants; moderate-certainty evidence) and may reduce the risk of death by 25% (HR = 0.75, 95% CI 0.65 to 0.86, 1307 participants; low-certainty evidence). There was little to no effect on overall response rates between MTT and non-MTT. There was no clear evidence of a difference in overall response rates (low-certainty evidence) and severe adverse events between MTT and non-MTT (low-certainty evidence). None of the studies comparing MTT and non-MTT reported quality of life. Matched targeted therapy versus best supportive care Matched targeted therapy compared with the best supportive care (BSC) i.e. no active treatment probably reduces the risk of disease progression by 63% (HR 0.37, 95% CI 0.28 to 0.50; 4 studies, 858 participants; moderate-certainty evidence). There was no clear evidence of a difference in overall survival between groups (HR = 0.88, 95% CI 0.73 to 1.06, 3 studies, 783 participants; low-certainty evidence). There was no clear evidence of a difference in overall response rates (very low-certainty of evidence) and incidence of severe adverse events (very low-certainty of evidence) between the groups. Quality of life was reported in a single study but did not provide composite scores. Risk of bias The overall risk of bias was judged low for eight studies, unclear for two studies, and the remaining 27 studies were high risk. AUTHORS' CONCLUSIONS Matched targeted therapies guided by next-generation sequencing in people with advanced cancer prolongs the time before cancer progresses compared to standard therapies. However, there is limited evidence to suggest that it prolongs overall survival, improves the quality of life or increases adverse events. Importantly, this review supports equitable access to next-generation sequencing technology for all people with advanced cancer and offers them the opportunity to access genotype-matched targeted therapies.
Collapse
Affiliation(s)
- Farasat Kazmi
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Nipun Shrestha
- Health Evidence Synthesis, Recommendations and Impact (HESRI), School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Tik Fung Dave Liu
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | | | | | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital, Reading, UK
| | - David Dodwell
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kheng-Wei Yeoh
- Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
5
|
Xu C, Mannucci A, Esposito F, Oliveres H, Alonso-Orduña V, Yubero A, Fernández-Martos C, Salud A, Gallego J, Martín-Richard M, Fernández-Plana J, Guillot M, Aparicio J, Fakih M, Kopetz S, Feliu J, Maurel J, Goel A. An Exosome-Based Liquid Biopsy Predicts Depth of Response and Survival Outcomes to Cetuximab and Panitumumab in Metastatic Colorectal Cancer: The EXONERATE Study. Clin Cancer Res 2025; 31:1002-1015. [PMID: 39820673 PMCID: PMC11913580 DOI: 10.1158/1078-0432.ccr-24-1934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE The EXOsome and cell-free miRNAs of anti-EGFR ResistAnce (EXONERATE) study was an open-label, biomarker interventional study designed to develop, test, and validate a liquid biopsy predictive of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR) for first-line EGFR inhibitors in metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Patients with newly diagnosed RAS wild-type, chemotherapy-naïve mCRC, both right- and left-sided, were enrolled in two nationwide trials to receive cetuximab or panitumumab along with chemotherapy. The primary endpoint was 12-month PFS, which was hierarchically tested in left- and right-sided mCRCs to predict PFS, OS, and ORR. RESULTS Genome-wide small RNA sequencing identified 12 cell-free and 14 exosomal candidates that were differentially expressed in both plasma and tumor tissue of good versus poor responders (based on PFS <12 months). The 8 and 9 best performing candidates, respectively, were used to generate the EXONERATE assay. In left-sided mCRC, 65% were EXONERATE-high, correlating with shorter median PFS (9.5 vs. 18.5 months; P < 0.001). In the independent right-sided mCRC cohort, 80.8% were EXONERATE-high and experienced a similarly shorter median PFS (8.6 vs. 41.2 months; P = 0.0004). In the right-sided group, EXONERATE predicted PFS ≥12 months with 100% sensitivity. A linear relationship existed between EXONERATE values and response depth. Multivariate analysis revealed that EXONERATE predicts PFS and OS independently of tumor sidedness. CONCLUSIONS The EXONERATE assay robustly predicted PFS and OS outcomes in patients with mCRC, both right- and left-sided, before they received either panitumumab or cetuximab. It stratified PFS, OS, and ORR better than a right versus left approach.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Alessandro Mannucci
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Francis Esposito
- Department of Medical Oncology, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Helena Oliveres
- Department of Medical Oncology, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Alfonso Yubero
- Medical Oncology Service, Hospital Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Antonieta Salud
- Medical Oncology Service, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Javier Gallego
- Medical Oncology Service, Hospital General Universitario of Elche, Elche, Spain
| | - Marta Martín-Richard
- Medical Oncology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mónica Guillot
- Medical Oncology Service, Hospital Son Espases, Palma, Spain
| | - Jorge Aparicio
- Medical Oncology Department, Hospital La Fe de Valencia, Valencia, Spain
| | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaime Feliu
- Medical Oncology Service, Hospital Universitario La Paz, CIBERONC, Madrid, Spain
| | - Joan Maurel
- Department of Medical Oncology, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California
- City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
6
|
Montagut C, Martelli V, Vidal J. FOxTROT: is anti-EGFR a good dancing partner? Ann Oncol 2025:S0923-7534(25)00060-2. [PMID: 39924086 DOI: 10.1016/j.annonc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025] Open
Affiliation(s)
- C Montagut
- Department of Medical Oncology, Hospital del Mar Research Institute, CIBERONC, Universitat Pompeu Fabra, Barcelona, Spain.
| | - V Martelli
- Department of Medical Oncology, Hospital del Mar Research Institute, CIBERONC, Universitat Pompeu Fabra, Barcelona, Spain; Department of Internal Medicine and Medical Specialties (DiMI), Università degli Studi di Genova, Genoa, Italy
| | - J Vidal
- Department of Medical Oncology, Hospital del Mar Research Institute, CIBERONC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Guo H, Miao L, Yu C. The efficacy of targeted therapy and/or immunotherapy with or without chemotherapy in patients with colorectal cancer: A network meta-analysis. Eur J Pharmacol 2025; 988:177219. [PMID: 39716565 DOI: 10.1016/j.ejphar.2024.177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The use of targeted drugs and immunotherapy has significantly impacted the treatment of Colorectal Cancer. However, horizontal comparison among various regimens is extremely rare. Therefore, we evaluated the survival efficacy of multiple treatment regimens of targeted therapy and/or immunotherapy with or without chemotherapy in patients with Colorectal Cancer. METHODS A systematic search was conducted in PubMed, EMBASE, and Cochrane databases, covering the period from the establishment of the databases to October 29, 2024. To obtain articles that met the inclusion and exclusion criteria and contained the required data for conducting a network meta-analysis (NMA). The NMA evaluated overall survival (OS) and progression-free survival (PFS). RESULTS A total of 90 studies were identified, comprising a sample size of 33,167 subjects. In terms of PFS, compared with simple chemotherapy strategies, most of the other single or combined strategies are significantly effective, among which targeted therapy strategies have more advantages. Encorafenib + Binimetinib + Cetuximab (ENC-BIN-CET) shows significant benefits in all comparisons except when compared with Chemotherapy + Cetuximab + Dalotuzumab (Chemo-CET-DAL), Encorafenib + Cetuximab (ENC-CET), and Panitumumab + Sotorasib (PAN-SOT). The ENC-CET and PAN-SOT targeted strategies also show significant benefits. Pembrolizumab (PEM) monotherapy has advantages over all others except when it is not superior to some targeted strategies. Chemotherapy + Bevacizumab + Atezolizumab is only inferior to some strategies. In terms of OS, the combinations of Chemotherapy + Bevacizumab, ENC-CET, Chemotherapy + Panitumumab, and ENC-BIN-CET are superior to simple chemotherapy regimens. ENC-BIN-CET shows OS benefits in all comparisons except some. ENC-CET significantly improves OS in most cases, and PEM also significantly improves OS in some regimens. In the probability ranking of OS and PFS, ENC-BIN-CET has the best effect, followed by ENC-CET. CONCLUSIONS In conclusion, pembrolizumab is still effective in prolonging survival. Dual- and triple-drug targeted strategies are the best in terms of OS and PFS, and the combination of targeted immunotherapy and chemotherapy also works. However, not all combinations are beneficial. As targeted drugs play an active role, specific drugs for colorectal cancer regimens should be carefully selected.
Collapse
Affiliation(s)
- Haoyan Guo
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, No.16, Guicheng South Fifth Road, Foshan, Guangdong, 528200, China; Jinan University, Guangzhou, 510632, China
| | - Longjie Miao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518104, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chengdong Yu
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, No.16, Guicheng South Fifth Road, Foshan, Guangdong, 528200, China; Jinan University, Guangzhou, 510632, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Sun C, Fan E, Huang L, Zhang Z. Second-line systemic treatment for metastatic colorectal cancer: A systematic review and Bayesian network meta-analysis based on RCT. PLoS One 2024; 19:e0313278. [PMID: 39715232 DOI: 10.1371/journal.pone.0313278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The optimal second-line systemic treatment for metastatic colorectal cancer (mCRC) is inconclusive. METHODS We searched PubMed, Web of Science, EMBASE, and Cochrane Library for RCTs comparing second-line systemic treatments for mCRC from the inception of each database up to February 3, 2024. Markov Chain Monte Carlo (MCMC) technique was used in this network meta-analysis (NMA) to generate the direct and indirect comparison results among multiple treatments in progression-free survival (PFS), overall response rate (ORR), overall survival (OS), complete response (CR), partial response (PR), grade 3 and above adverse events (Grade ≥ 3AE), and any adverse events (Any AE). The surface under the cumulative ranking curve (SUCRA) was adopted to evaluate the probability of each treatment being the optimum intervention. Subgroup analyses were performed based on the RAS gene status. RESULTS A total of 47 randomized controlled trials were included, involving 16,925 patients and 44 second-line systemic treatments. In improving OS, FOLFOX + Bevacizumab + Erlotinib exhibited significant superiority (SUCRA:92.7%). In improving PFS, Irinotecan + CMAB009 (SUCRA:86.4%) had advantages over other treatments. FOLFIRI + Trebananib (SUCRA:88.1%) had a significant advantage in improving ORR. Among multiple second-line treatments, the SUCRA values of FOLFOX + Bevacizumab in PFS, OS, ORR, and PR were 83.4%, 74.0%, 81.1%, and 86.1%, respectively, and the safety was not significantly different from other interventions. Subgroup analyses showed that FOLFIRI + Bevacizumab + panitumumab ranked among the top in survival outcomes in the RAS-mutant population (OS SUCRA: 87.9%; PFS SUCRA: 70.2%); whereas in the RAS-wild-type population, FOLFIRI + Bevacizumab significantly improved survival outcomes (OS SUCRA: 73.2%; PFS SUCRA: 65.1%). CONCLUSION For most people, FOLFOX + Bevacizumab may be the best second-line systemic treatment regimen for mCRC. For RAS-mutant populations, FOLFIRI + Bevacizumab + Panitumumab is recommended. However, the therapeutic effect may be affected by the patient's physiological state, and clinicians should apply it based on actual conditions.
Collapse
Affiliation(s)
- Chengyu Sun
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luqiao Huang
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhengguo Zhang
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Cotan HT, Emilescu RA, Iaciu CI, Orlov-Slavu CM, Olaru MC, Popa AM, Jinga M, Nitipir C, Schreiner OD, Ciobanu RC. Prognostic and Predictive Determinants of Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:3928. [PMID: 39682117 DOI: 10.3390/cancers16233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, necessitating a thorough understanding of prognostic and predictive factors to enhance patient outcomes. This systematic review aims to comprehensively evaluate prognostic and predictive determinants in CRC, encompassing both traditional and emerging biomarkers. A systematic search of major electronic databases was conducted to identify relevant studies published from 1995 up to 2024. Eligible articles were critically appraised, and data extraction was performed according to predefined criteria. The prognostic determinants examined included clinicopathological features such as tumor stage, grade, and lymph node involvement, as well as molecular biomarkers including RAS, BRAF, and MSI status. Predictive determinants encompassed biomarkers influencing response to targeted therapies and immunotherapy, such as HER2 and Immunoscore. The review also explores novel prognostic and predictive markers, including tumor microenvironment characteristics and liquid biopsy-based biomarkers. Synthesizing evidence from diverse studies, this review provides insights into the prognostic and predictive landscape of CRC, highlighting the potential clinical implications of identified determinants. Understanding the multifaceted nature of prognostic and predictive factors in CRC is imperative for the advancement of personalized treatment strategies and improvement of patient outcomes.
Collapse
Affiliation(s)
- Horia T Cotan
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Radu A Emilescu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristian I Iaciu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristina M Orlov-Slavu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mihaela C Olaru
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Ana M Popa
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mariana Jinga
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Oliver Daniel Schreiner
- Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Department 3-Medical Sciences, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
11
|
Airoldi M, Bartolini M, Fazio R, Farinatti S, Daprà V, Santoro A, Puccini A. First-Line Therapy in Metastatic, RAS Wild-Type, Left-Sided Colorectal Cancer: Should Everyone Receive Anti-EGFR Therapy? Curr Oncol Rep 2024; 26:1489-1501. [PMID: 39392559 DOI: 10.1007/s11912-024-01601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW This narrative review explores the efficacy and applicability of anti-EGFR therapy as the first-line treatment for patients with RAS wild-type (WT) left-sided metastatic colorectal cancer (mCRC). It critically examines current guidelines, along with recent evidence in the literature, to assess whether it should be universally applied. RECENT FINDINGS Recent evidences highlight the variability of the response to anti-EGFR therapies due to molecular diversity and several clinical factors, such as RAS mutational status and primary tumor location. Anti-EGFR plus chemotherapy is the standard first-line treatment for most patients with MSS, RAS-WT, left-sided mCRC. Whether this combination is the best treatment for these patients remains an open question. This review delves into the role of EGFR inhibition in mCRC, focusing on clinical factors and the knowledge of biology, molecular targets, and biomarkers. It underscores the crucial role of a personalized approach, empowering healthcare providers and equipping them with the confidence to make informed decisions.
Collapse
Affiliation(s)
- Marco Airoldi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Michela Bartolini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Roberta Fazio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Sara Farinatti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Valentina Daprà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy
| | - Alberto Puccini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Milan, Italy.
- Medical Oncology and Haematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56Rozzano, 20089, Milan, Italy.
| |
Collapse
|
12
|
Liang Y, Lin H, Jiang Z, Zhao Q, Cui R, Li S. HOXB8 mediates resistance to cetuximab in colorectal cancer cells through activation of the STAT3 pathway. Discov Oncol 2024; 15:603. [PMID: 39472327 PMCID: PMC11522251 DOI: 10.1007/s12672-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Homeobox B8 (HOXB8) belongs to the HOX family and was essential to the development of colorectal carcinoma. Among the prevalent monoclonal antibodies for treating RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients, cetuximab stands out, but resistance to cetuximab frequently arises in targeted treatments. Currently, the role of HOXB8 in cetuximab-resistant mCRC remains unclear. By comparing drug-sensitive cell lines (SW48) with drug-resistant cell lines (HCT116, CACO2), we discovered that HOXB8 was substantially expressed in cetuximab-resistant cell lines, and furthermore, in drug-resistant cell lines (HCT116, CACO2), HOXB8 knockdown increased the cytotoxicity of cetuximab via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Conversely, the excessive expression of HOXB8 reduced the growth suppression in SW48 cells caused by cetuximab by triggering the STAT3 signaling pathway. Conclusively, we conclude that HOXB8 has played an essential role in cetuximab-resistant mCRC and that treating HOXB8 specifically may be a useful treatment approach for certain cetuximab-resistant mCRC patients.
Collapse
Affiliation(s)
- Yunan Liang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Han Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Zongsheng Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Qi Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
13
|
Ashouri K, Wong A, Mittal P, Torres-Gonzalez L, Lo JH, Soni S, Algaze S, Khoukaz T, Zhang W, Yang Y, Millstein J, Lenz HJ, Battaglin F. Exploring Predictive and Prognostic Biomarkers in Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:2796. [PMID: 39199569 PMCID: PMC11353018 DOI: 10.3390/cancers16162796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors have significantly improved patient outcomes, their effectiveness is mostly limited to tumors with microsatellite instability (MSI-H/dMMR) or an increased tumor mutational burden, which comprise 10% of cases. Advancing personalized medicine in CRC hinges on identifying predictive biomarkers to guide treatment decisions. This comprehensive review examines established tissue markers such as KRAS and HER2, highlighting their roles in resistance to anti-EGFR agents and discussing advances in targeted therapies for these markers. Additionally, this review summarizes encouraging data on promising therapeutic targets and highlights the clinical utility of liquid biopsies. By synthesizing current evidence and identifying knowledge gaps, this review provides clinicians and researchers with a contemporary understanding of the biomarker landscape in CRC. Finally, the review examines future directions and challenges in translating promising biomarkers into clinical practice, with the goal of enhancing personalized medicine approaches for colorectal cancer patients.
Collapse
Affiliation(s)
- Karam Ashouri
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Alexandra Wong
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Pooja Mittal
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Lesly Torres-Gonzalez
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Taline Khoukaz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Yan Yang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| |
Collapse
|
14
|
Wheaton L, Jackson D, Bujkiewicz S. Bayesian meta-analysis for evaluating treatment effectiveness in biomarker subgroups using trials of mixed patient populations. Res Synth Methods 2024; 15:543-560. [PMID: 38316618 DOI: 10.1002/jrsm.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
During drug development, evidence can emerge to suggest a treatment is more effective in a specific patient subgroup. Whilst early trials may be conducted in biomarker-mixed populations, later trials are more likely to enroll biomarker-positive patients alone, thus leading to trials of the same treatment investigated in different populations. When conducting a meta-analysis, a conservative approach would be to combine only trials conducted in the biomarker-positive subgroup. However, this discards potentially useful information on treatment effects in the biomarker-positive subgroup concealed within observed treatment effects in biomarker-mixed populations. We extend standard random-effects meta-analysis to combine treatment effects obtained from trials with different populations to estimate pooled treatment effects in a biomarker subgroup of interest. The model assumes a systematic difference in treatment effects between biomarker-positive and biomarker-negative subgroups, which is estimated from trials which report either or both treatment effects. The systematic difference and proportion of biomarker-negative patients in biomarker-mixed studies are used to interpolate treatment effects in the biomarker-positive subgroup from observed treatment effects in the biomarker-mixed population. The developed methods are applied to an illustrative example in metastatic colorectal cancer and evaluated in a simulation study. In the example, the developed method improved precision of the pooled treatment effect estimate compared with standard random-effects meta-analysis of trials investigating only biomarker-positive patients. The simulation study confirmed that when the systematic difference in treatment effects between biomarker subgroups is not very large, the developed method can improve precision of estimation of pooled treatment effects while maintaining low bias.
Collapse
Affiliation(s)
- Lorna Wheaton
- Biostatistics Research Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Dan Jackson
- Statistical Innovation Group, AstraZeneca, Cambridge, UK
| | - Sylwia Bujkiewicz
- Biostatistics Research Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Karapetis CS, Liu H, Sorich MJ, Pederson LD, Van Cutsem E, Maughan T, Douillard JY, O'Callaghan CJ, Jonker D, Bokemeyer C, Sobrero A, Cremolini C, Chibaudel B, Zalcberg J, Adams R, Buyse M, Peeters M, Yoshino T, de Gramont A, Shi Q. Fluoropyrimidine type, patient age, tumour sidedness and mutation status as determinants of benefit in patients with metastatic colorectal cancer treated with EGFR monoclonal antibodies: individual patient data pooled analysis of randomised trials from the ARCAD database. Br J Cancer 2024; 130:1269-1278. [PMID: 38402342 PMCID: PMC11015038 DOI: 10.1038/s41416-024-02604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND KRAS mutations in metastatic colorectal cancer (mCRC) are used as predictive biomarkers to select therapy with EGFR monoclonal antibodies (mAbs). Other factors may be significant determinants of benefit. METHODS Individual patient data from randomised trials with a head-to-head comparison between EGFR mAb versus no EGFR mAb (chemotherapy alone or best supportive care) in mCRC, across all lines of therapy, were pooled. Overall survival (OS) and progression-free survival (PFS) were compared between groups. Treatment effects within the predefined KRAS biomarker subsets were estimated by adjusted hazard ratio (HRadj) and 95% confidence interval (CI). EGFR mAb efficacy was measured within the KRAS wild-type subgroup according to BRAF and NRAS mutation status. In both KRAS wild-type and mutant subgroups, additional factors that could impact EGFR mAb efficacy were explored including the type of chemotherapy, line of therapy, age, sex, tumour sidedness and site of metastasis. RESULTS 5675 patients from 8 studies were included, all with known mCRC KRAS mutation status. OS (HRadj 0.90, 95% CI 0.84-0.98, p = 0.01) and PFS benefit (HRadj 0.73, 95% CI 0.68-0.79, p < 0.001) from EGFR mAbs was observed in the KRAS wild-type group. PFS benefit was seen in patients treated with fluorouracil (HRadj 0.75, 95% CI 0.68-0.82) but not with capecitabine-containing regimens (HRadj 1.04, 95% CI 0.86-1.26) (pinteraction = 0.002). Sidedness also interacted with EGFR mAb efficacy, with survival benefit restricted to left-sided disease (pinteraction = 0.038). PFS benefits differed according to age, with benefits greater in those under 70 (pinteraction = 0.001). The survival benefit was not demonstrated in those patients with mutations found in the KRAS, NRAS or BRAF genes. The presence of liver metastases interacted with EGFR mAb efficacy in patients with KRAS mutant mCRC (pinteraction = 0.004). CONCLUSION The benefit provided by EGFR mAbs in KRAS WT mCRC is associated with left-sided primary tumour location, younger patient age and absence of NRAS or BRAF mutations. Survival benefit is observed with fluorouracil but not capecitabine. Exploratory results support further research in KRAS mutant mCRC without liver metastases.
Collapse
Affiliation(s)
- C S Karapetis
- Flinders Medical Centre, Adelaide, SA, Australia.
- Flinders University, Adelaide, SA, Australia.
| | - H Liu
- Mayo Clinic, Rochester, NY, USA
| | - M J Sorich
- Flinders University, Adelaide, SA, Australia
| | | | - E Van Cutsem
- University Hospitals Gasthuisberg Leuven and University of Leuven, Leuven, Belgium
| | - T Maughan
- University of Liverpool, Liverpool, UK
| | - J Y Douillard
- University of Nantes and Integrated Centers of Oncology ICO Rene Gauducheau Cancer Nantes, Nantes, France
| | | | - D Jonker
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - C Bokemeyer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - B Chibaudel
- Franco-British Institute Levallois-Perre, Levallois-Perre, France
| | - J Zalcberg
- Dept of Medical Oncology, Alfred Health and School of Public Health, Monash University, Melbourne, VIC, Australia
| | - R Adams
- Velindre Cancer Centre Cardiff University, Cardiff, UK
| | - M Buyse
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - M Peeters
- Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - T Yoshino
- National Cancer Centre Hospital East, Kashiwa, Japan
| | - A de Gramont
- Franco-British Institute Levallois-Perre, Levallois-Perre, France
| | - Q Shi
- Mayo Clinic, Rochester, NY, USA
| |
Collapse
|
16
|
Di Nardo P, Basile D, Siciliano A, Pelizzari G, Corvaja C, Buriolla S, Ongaro E, Maria Grazia D, Garattini SK, Foltran L, Guardascione M, Casagrande M, Buonadonna A, Prantera T, Aprile G, Puglisi F. Second-line treatment strategies for RAS wild-type colorectal cancer: A systematic review and Network Meta-analysis (NMA). Dig Liver Dis 2024; 56:786-794. [PMID: 37586908 DOI: 10.1016/j.dld.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The optimal strategy for second-line (IIL) treatment in KRAS wt metastatic colorectal cancer (mCRC) is not determined yet. METHODS A random-effect NMA of phase II/III RCTs was conducted to evaluate IIL treatment for all-RAS wt mCRC, comparing anti-EGFR or anti-VEGF, and chemotherapy (CT). RESULTS Overall, 11 RCTs (3613 patients) were included. In KRAS wt patients, PFS was improved with anti-VEGF (HR 0.43) and anti-EGFR (HR 0.63) vs CT. However, anti-VEGF based therapy had the highest likelihood of being ranked as the best treatment in terms of PFS (SUCRA 99.3%) and OS (SUCRA 99.4%). Bevacizumab-based treatment is most likely to be the best treatment in terms of PFS (SUCRA 89.1%) and OS (SUCRA 86.7%). CONCLUSIONS Second line treatment with anti-VEGF and anti-EGFR improved PFS in mCRC patients, however, anti-VEGF based therapy, particularly CT plus bevacizumab, is the best treatment according to SUCRA in terms of PFS and OS.
Collapse
Affiliation(s)
- P Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - D Basile
- Unit of Medical Oncology, Lamezia Terme Hospital, Italy.
| | - A Siciliano
- Unit of Medical Oncology, AO Pugliese-Ciaccio of Catanzaro, Italy
| | - G Pelizzari
- Department of Oncology, University Hospital of Udine, Italy
| | - C Corvaja
- Department of Medicine, University of Udine, Udine, Italy
| | - S Buriolla
- Department of Medicine, University of Udine, Udine, Italy
| | - E Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - S K Garattini
- Department of Oncology, University Hospital of Udine, Italy
| | - L Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - M Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - M Casagrande
- Department of Oncology, University Hospital of Udine, Italy
| | - A Buonadonna
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - T Prantera
- Unit of Medical Oncology, Lamezia Terme Hospital, Italy
| | - G Aprile
- Medical Oncology, ULSS 8 Berica, Vicenza, Italy
| | - F Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Braicu V, Stelian P, Fulger L, Verdes G, Brebu D, Duta C, Fizedean C, Ignuta F, Danila AI, Cozma GV. Impact of Systemic Treatments on Outcomes and Quality of Life in Patients with RAS-Positive Stage IV Colorectal Cancer: A Systematic Review. Diseases 2024; 12:79. [PMID: 38667537 PMCID: PMC11049632 DOI: 10.3390/diseases12040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This systematic review critically evaluates the impact of systemic treatments on outcomes and quality of life (QoL) in patients with RAS-positive stage IV colorectal cancer, with studies published up to December 2023 across PubMed, Scopus, and Web of Science. From an initial pool of 1345 articles, 11 relevant studies were selected for inclusion, encompassing a diverse range of systemic treatments, including panitumumab combined with FOLFOX4 and FOLFIRI, irinotecan paired with panitumumab, regorafenib followed by cetuximab ± irinotecan and vice versa, and panitumumab as a maintenance therapy post-induction. Patient demographics predominantly included middle-aged to elderly individuals, with a slight male predominance. Racial composition, where reported, showed a majority of Caucasian participants, highlighting the need for broader demographic inclusivity in future research. Key findings revealed that the addition of panitumumab to chemotherapy (FOLFOX4 or FOLFIRI) did not significantly compromise QoL while notably improving disease-free survival, with baseline EQ-5D HSI mean scores ranging from 0.76 to 0.78 and VAS mean scores from 70.1 to 74.1. Improvements in FACT-C scores and EQ-5D Index scores particularly favored panitumumab plus best supportive care in KRAS wild-type mCRC, with early dropout rates of 38-42% for panitumumab + BSC. Notably, cetuximab + FOLFIRI was associated with a median survival of 25.7 months versus 16.4 months for FOLFIRI alone, emphasizing the potential benefits of integrating targeted therapies with chemotherapy. In conclusion, the review underscores the significant impact of systemic treatments, particularly targeted therapies and their combinations with chemotherapy, on survival outcomes and QoL in patients with RAS-positive stage IV colorectal cancer, and the need for personalized treatment.
Collapse
Affiliation(s)
- Vlad Braicu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (V.B.); (F.I.); (A.I.D.)
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Pantea Stelian
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Lazar Fulger
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Gabriel Verdes
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Dan Brebu
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Ciprian Duta
- Department of General Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (P.S.); (L.F.); (G.V.); (D.B.); (C.D.)
| | - Camelia Fizedean
- Methodological and Infectious Diseases Research Center, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Flavia Ignuta
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (V.B.); (F.I.); (A.I.D.)
- Methodological and Infectious Diseases Research Center, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alexandra Ioana Danila
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (V.B.); (F.I.); (A.I.D.)
- Department of Anatomy and Embryology, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Gabriel Veniamin Cozma
- Discipline of Surgical Semiology I and Thoracic Surgery, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Thoracic Surgery Research Center, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Nowak KM, Chetty R. Predictive and prognostic biomarkers in gastrointestinal tract tumours. Pathology 2024; 56:205-213. [PMID: 38238239 DOI: 10.1016/j.pathol.2023.12.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 02/18/2024]
Abstract
Tumours of the gastrointestinal tract represent nearly a quarter of all newly diagnosed tumours diagnosed in 2019. Various treatment modalities for gastrointestinal cancers exist, some of which may be guided by biomarkers. Biomarkers act as gauges of either normal or pathogenic processes or responses to an exposure or intervention. They come in many forms. This review explores established and potential molecular/immunohistochemical (IHC) predictive and prognostic biomarkers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | | |
Collapse
|
19
|
Jenkins LJ, Luk IY, Chionh F, Tan T, Needham K, Ayton J, Reehorst CM, Vukelic N, Sieber OM, Mouradov D, Gibbs P, Williams DS, Tebbutt NC, Desai J, Hollande F, Dhillon AS, Lee EF, Merino D, Fairlie WD, Mariadason JM. BCL-X L inhibitors enhance the apoptotic efficacy of BRAF inhibitors in BRAF V600E colorectal cancer. Cell Death Dis 2024; 15:183. [PMID: 38429301 PMCID: PMC10907349 DOI: 10.1038/s41419-024-06478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.
Collapse
Affiliation(s)
- Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Tao Tan
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristen Needham
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Jamieson Ayton
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Pathology, Austin Health, Melbourne, VIC, Australia
| | - Niall C Tebbutt
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Austin Health, Melbourne, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Amardeep S Dhillon
- The institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
21
|
Jiang Y, Zhao M, Tang W, Zheng X. Impacts of systemic treatments on health-related quality of life for patients with metastatic colorectal cancer: a systematic review and network meta-analysis. BMC Cancer 2024; 24:188. [PMID: 38336718 PMCID: PMC10854105 DOI: 10.1186/s12885-024-11937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE There is limited evidence of comparative results among different treatments regarding impacts of Health-Related Quality of Life (HRQoL) for patients with metastatic colorectal cancer (mCRC). We aimed to compare efficacy of systemic treatments on HRQoL among patients with mCRC. METHODS We collected randomized controlled trials (RCTs) reported in English up until July 2023, from databases including PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and prominent conference databases, for this Bayesian network meta-analysis. Phase 2 or 3 trials that evaluated at least two therapeutic regimens were included. Primary outcomes were short-term and long-term mean changes in EORTC QLQ-C30 global health status/quality of life (GHS/QoL) scores. Secondary outcome was mean change in EQ-5D health utility scores. Mean differences (MDs) with 95% confidence intervals (CIs) were used as effect size. Subgroup analysis was performed based on whether patients received systemic treatments before. We conducted various sensitivity analyses, including differentiating between chemotherapy types, and analyzed patient cohorts with non-specified gene expression levels as well as those with target KRAS expression statuses. The current systematic review protocol was registered on PROSPERO (CRD42023453315 and CRD42023420498). RESULTS Immunotherapy and targeted therapy significantly improved HRQoL over chemotherapy, with MDs of 9.27 (95% CI: 3.96 to 14.6) and 4.04 (95% CI: 0.11 to 7.94), respectively. Monotherapy significantly outperformed both combination therapy (MD 5.71, 95%CI 0.78 to 10.63) and no active treatment (MD 3.7, 95%CI 1.41 to 6.01) regarding GHS/QoL in the short-term. Combining targeted therapy with chemotherapy did not improve HRQoL. Focusing on HRQoL, cetuximab excelled when gene expression baselines were unspecified. Subgroup and sensitivity analyses upheld these robust findings, unaffected by model or patient baseline characteristics. Evidence from clinical trials without specific gene level data suggested that monotherapies, especially targeted therapies such as cetuximab, demonstrated superiority in HRQoL. For KRAS wild-type patients, no significant HRQoL differences emerged between chemotherapy, targeted therapy, or their combination.. CONCLUSIONS Targeted therapies and immunotherapy demonstrate superior HRQoL benefits, monotherapy such as cetuximab is associated with significant improvements as compared to combination therapy. However, tailoring these results to individual gene expression profiles requires more evidence.
Collapse
Affiliation(s)
- Yunlin Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingye Zhao
- Center for Pharmacoeconomics and Outcomes Research & Department of Public Affairs Management, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxi Tang
- Center for Pharmacoeconomics and Outcomes Research & Department of Public Affairs Management, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Xueping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
22
|
Chai Y, Liu JL, Zhang S, Li N, Xu DQ, Liu WJ, Fu RJ, Tang YP. The effective combination therapies with irinotecan for colorectal cancer. Front Pharmacol 2024; 15:1356708. [PMID: 38375031 PMCID: PMC10875015 DOI: 10.3389/fphar.2024.1356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer is the third most common type of cancer worldwide and has become one of the major human disease burdens. In clinical practice, the treatment of colorectal cancer has been closely related to the use of irinotecan. Irinotecan combines with many other anticancer drugs and has a broader range of drug combinations. Combination therapy is one of the most important means of improving anti-tumor efficacy and overcoming drug resistance. Reasonable combination therapy can lead to better patient treatment options, and inappropriate combination therapy will increase patient risk. For the colorectal therapeutic field, the significance of combination therapy is to improve the efficacy, reduce the adverse effects, and improve the ease of treatment. Therefore, we explored the clinical advantages of its combination therapy based on mechanism or metabolism and reviewed the rationale basis and its limitations in conducting exploratory clinical trials on irinotecan combination therapy, including the results of clinical trials on the combination potentiation of cytotoxic drugs, targeted agents, and herbal medicine. We hope that these can evoke more efforts to conduct irinotecan in the laboratory for further studies and evaluations, as well as the possibility of more in-depth development in future clinical trials.
Collapse
Affiliation(s)
- Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jing-Li Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
23
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
24
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
25
|
Mohapatra L, Tripathi AS, Mishra D, Yasir M, Maurya RK, Prajapati BG, Alka. Colorectal cancer: understanding of disease. COLORECTAL CANCER 2024:1-27. [DOI: 10.1016/b978-0-443-13870-6.00010-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Ruff SM, Brown ZJ, Pawlik TM. A review of targeted therapy and immune checkpoint inhibitors for metastatic colorectal cancer. Surg Oncol 2023; 51:101993. [PMID: 37742544 DOI: 10.1016/j.suronc.2023.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Surgical resection is the cornerstone of treatment for metastatic colorectal cancer (CRC) and offers the best chance at long-term survival. Unfortunately, most patients do not present with resectable metastatic disease and, among patients who do undergo curative-intent resection, many will develop recurrence. In turn, patients require a multi-disciplinary treatment approach with a combination of chemotherapy, surgery, radiation, and/or liver directed therapies that is guided by patient disease burden and clinical status. The development of targeted therapies has led to varying success in other cancers and has emerged as a treatment option for patients with metastatic CRC. While cytotoxic chemotherapy aims to kill cells as they replicate, targeted therapies are directed at biologic features of cancers, like angiogenesis or immune checkpoints. Targeted therapy can facilitate a more treatment tailored approach to the unique genomic alterations of the tumor and hopefully deliver more personalized therapy. We herein provide a systematic review of approved targeted therapies and immune checkpoint inhibitors for metastatic CRC and provide an overview of the current literature.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zachary J Brown
- Department of Surgery, Division of Surgical Oncology, New York University Long Island, Mineola, NY, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Yu Z, Gao Y. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1117. [PMID: 37974093 PMCID: PMC10655341 DOI: 10.1186/s12885-023-11600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND RAS mutations affect prognosis in patients with metastatic colorectal cancer (mCRC) and have been identified as strong negative predictive markers for anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) therapy, but many tumors containing wild-type RAS genes still do not respond to these therapies. Some additional biomarkers may have prognostic or predictive roles, but conclusions remain controversial. METHODS We performed a meta-analysis and systematic review of randomized controlled trials comparing anti-EGFR mAb therapy with alternative therapy that investigated the prognostic and predictive impact of additional biomarkers in RAS wild-type (wt) mCRC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) for progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) for objective response rate (ORR) were calculated. The prognostic value of biomarkers was investigated by separately pooling HR and OR for different treatment groups in an individual study. The predictive value was assessed by pooling study interactions between treatment effects and biomarker subgroups. RESULTS Thirty publications reporting on eighteen trials were selected, including a total of 13,507 patients. In prognostic analysis, BRAF mutations were associated with poorer PFS [HRs = 3.76 (2.47-5.73) and 2.69 (1.82-3.98)] and OS [HRs = 2.66 (1.95-3.65) and 2.45 (1.55-3.88)] in both the experimental and control arms; low miR-31-3p expression appeared to have longer PFS and OS. In terms of predictive effect, a lack of response to anti-EGFR therapy was observed in patients with BRAF mutant tumors (Pinteraction < 0.01 for PFS). Patients with tumors with any mutation in the KRAS/NRAS/BRAF/PIK3CA gene also showed similar results compared with all wild-type tumors (Pinteraction for PFS, OS, and ORR were < 0.01, < 0.01 and 0.01, respectively). While low miR-31-3p expression could predict PFS (Pinteraction = 0.01) and OS (Pinteraction = 0.04) benefit. The prognostic and predictive value regarding PIK3CA mutations, PTEN mutations or deletions, EGFR, EREG/AREG, HER2, HER3, and HER4 expression remains uncertain. CONCLUSIONS In RAS wt mCRC patients receiving EGFR-targeted therapy, BRAF mutation is a powerful prognostic and therapy-predictive biomarker, with no effect found for PIK3CA mutation, PTEN mutation or deletion, but the combined biomarker KRAS/NRAS/BRAF/PIK3CA mutations predict resistance to anti-EGFR therapy. Low miR-31-3p expression may have positive prognostic and therapy predictive effects. Evidence on the prognostic and predictive roles of EGFR and its ligands, and HER2/3/4 is insufficient.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
28
|
Williams CJ, Elliott F, Sapanara N, Aghaei F, Zhang L, Muranyi A, Yan D, Bai I, Zhao Z, Shires M, Wood HM, Richman SD, Hemmings G, Hale M, Bottomley D, Galvin L, Cartlidge C, Dance S, Bacon CM, Mansfield L, Young-Zvandasara K, Sudan A, Lambert K, Bibby I, Coupland SE, Montazeri A, Kipling N, Hughes K, Cross SS, Dewdney A, Pheasey L, Leng C, Gochera T, Mangham DC, Saunders M, Pritchard M, Stott H, Mukherjee A, Ilyas M, Silverman R, Hyland G, Sculthorpe D, Thornton K, Gould I, O'Callaghan A, Brown N, Turnbull S, Shaw L, Seymour MT, West NP, Seligmann JF, Singh S, Shanmugam K, Quirke P. Associations between AI-Assisted Tumor Amphiregulin and Epiregulin IHC and Outcomes from Anti-EGFR Therapy in the Routine Management of Metastatic Colorectal Cancer. Clin Cancer Res 2023; 29:4153-4165. [PMID: 37363997 PMCID: PMC10570673 DOI: 10.1158/1078-0432.ccr-23-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE High tumor production of the EGFR ligands, amphiregulin (AREG) and epiregulin (EREG), predicted benefit from anti-EGFR therapy for metastatic colorectal cancer (mCRC) in a retrospective analysis of clinical trial data. Here, AREG/EREG IHC was analyzed in a cohort of patients who received anti-EGFR therapy as part of routine care, including key clinical contexts not investigated in the previous analysis. EXPERIMENTAL DESIGN Patients who received panitumumab or cetuximab ± chemotherapy for treatment of RAS wild-type mCRC at eight UK cancer centers were eligible. Archival formalin-fixed paraffin-embedded tumor tissue was analyzed for AREG and EREG IHC in six regional laboratories using previously developed artificial intelligence technologies. Primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS A total of 494 of 541 patients (91.3%) had adequate tissue for analysis. A total of 45 were excluded after central extended RAS testing, leaving 449 patients in the primary analysis population. After adjustment for additional prognostic factors, high AREG/EREG expression (n = 360; 80.2%) was associated with significantly prolonged PFS [median: 8.5 vs. 4.4 months; HR, 0.73; 95% confidence interval (CI), 0.56-0.95; P = 0.02] and OS [median: 16.4 vs. 8.9 months; HR, 0.66 95% CI, 0.50-0.86; P = 0.002]. The significant OS benefit was maintained among patients with right primary tumor location (PTL), those receiving cetuximab or panitumumab, those with an oxaliplatin- or irinotecan-based chemotherapy backbone, and those with tumor tissue obtained by biopsy or surgical resection. CONCLUSIONS High tumor AREG/EREG expression was associated with superior survival outcomes from anti-EGFR therapy in mCRC, including in right PTL disease. AREG/EREG IHC assessment could aid therapeutic decisions in routine practice. See related commentary by Randon and Pietrantonio, p. 4021.
Collapse
Affiliation(s)
- Christopher J.M. Williams
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Faye Elliott
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Nancy Sapanara
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Faranak Aghaei
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Liping Zhang
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Andrea Muranyi
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Dongyao Yan
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Isaac Bai
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Zuo Zhao
- Imaging and Algorithms, Digital Pathology, Roche Sequencing Solutions Inc., Santa Clara, California
| | - Michael Shires
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Henry M. Wood
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Susan D. Richman
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Gemma Hemmings
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Michael Hale
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Daniel Bottomley
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Leanne Galvin
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Caroline Cartlidge
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Sarah Dance
- Medical Affairs, Access and Innovation, Roche Diagnostics Limited, Burgess Hill, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Mansfield
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Ajay Sudan
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katy Lambert
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Irena Bibby
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sarah E. Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amir Montazeri
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Natalie Kipling
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kathryn Hughes
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Alice Dewdney
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Leanne Pheasey
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Cathryn Leng
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Tatenda Gochera
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - D. Chas Mangham
- Adult Histopathology, Laboratory Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Mark Saunders
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Martin Pritchard
- Adult Histopathology, Laboratory Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Helen Stott
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Abhik Mukherjee
- Translational Medical Sciences, Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Translational Medical Sciences, Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rafael Silverman
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Georgina Hyland
- Translational Medical Sciences, Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Declan Sculthorpe
- Translational Medical Sciences, Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kirsty Thornton
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Imogen Gould
- Translational Medical Sciences, Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Nicholas Brown
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Samantha Turnbull
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Lisa Shaw
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Matthew T. Seymour
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Nicholas P. West
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Jenny F. Seligmann
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Shalini Singh
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Kandavel Shanmugam
- Medical & Scientific Affairs, Roche Molecular Systems Inc., Tucson, Arizona
| | - Philip Quirke
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Ohnmacht AJ, Stahler A, Stintzing S, Modest DP, Holch JW, Westphalen CB, Hölzel L, Schübel MK, Galhoz A, Farnoud A, Ud-Dean M, Vehling-Kaiser U, Decker T, Moehler M, Heinig M, Heinemann V, Menden MP. The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer. Nat Commun 2023; 14:5391. [PMID: 37666855 PMCID: PMC10477267 DOI: 10.1038/s41467-023-41011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Precision medicine has revolutionised cancer treatments; however, actionable biomarkers remain scarce. To address this, we develop the Oncology Biomarker Discovery (OncoBird) framework for analysing the molecular and biomarker landscape of randomised controlled clinical trials. OncoBird identifies biomarkers based on single genes or mutually exclusive genetic alterations in isolation or in the context of tumour subtypes, and finally, assesses predictive components by their treatment interactions. Here, we utilise the open-label, randomised phase III trial (FIRE-3, AIO KRK-0306) in metastatic colorectal carcinoma patients, who received either cetuximab or bevacizumab in combination with 5-fluorouracil, folinic acid and irinotecan (FOLFIRI). We systematically identify five biomarkers with predictive components, e.g., patients with tumours that carry chr20q amplifications or lack mutually exclusive ERK signalling mutations benefited from cetuximab compared to bevacizumab. In summary, OncoBird characterises the molecular landscape and outlines actionable biomarkers, which generalises to any molecularly characterised randomised controlled trial.
Collapse
Affiliation(s)
- Alexander J Ohnmacht
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Arndt Stahler
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Stintzing
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), partner sites Berlin and Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Dominik P Modest
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
| | - Julian W Holch
- German Cancer Consortium (DKTK), partner sites Berlin and Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Linus Hölzel
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Marisa K Schübel
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Ana Galhoz
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | | | | | - Markus Moehler
- Department of Medicine I and Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Clinic, 55131, Mainz, Germany
| | - Matthias Heinig
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany.
| | - Michael P Menden
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany.
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany.
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
30
|
Huang S, Ye J, Gao X, Huang X, Huang J, Lu L, Lu C, Li Y, Luo M, Xie M, Lin Y, Liang R. Progress of research on molecular targeted therapies for colorectal cancer. Front Pharmacol 2023; 14:1160949. [PMID: 37614311 PMCID: PMC10443711 DOI: 10.3389/fphar.2023.1160949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, accounting for approximately 10% of global cancer incidence and mortality. Approximately 20% of patients with CRC present metastatic disease (mCRC) at the time of diagnosis. Moreover, up to 50% of patients with localized disease eventually metastasize. mCRC encompasses a complex cascade of reactions involving multiple factors and processes, leading to a diverse array of molecular mechanisms. Improved comprehension of the pathways underlying cancer cell development and proliferation, coupled with the accessibility of relevant targeted agents, has propelled advancements in CRC treatment, ultimately leading to enhanced survival rates. Mutations in various pathways and location of the primary tumor in CRC influences the efficacy of targeted agents. This review summarizes available targeted agents for different CRC pathways, with a focus on recent advances in anti-angiogenic and anti-epidermal growth factor receptor agents, BRAF mutations, and human epidermal growth factor receptor 2-associated targeted agents.
Collapse
Affiliation(s)
- Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
31
|
Richman SD, Hemmings G, Roberts H, Gallop N, Dodds R, Wilkinson L, Davis J, White R, Yates E, Jasani B, Brown L, Maughan TS, Butler R, Quirke P, Adams R. FOCUS4 biomarker laboratories: from the benefits to the practical and logistical issues faced during 6 years of centralised testing. J Clin Pathol 2023; 76:548-554. [PMID: 35256486 PMCID: PMC7614788 DOI: 10.1136/jclinpath-2022-208233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
AIMS FOCUS4 was a phase II/III umbrella trial, recruiting patients with advanced or metastatic colorectal cancer, between 2014 and 2020. Molecular profiling of patients' formalin-fixed, paraffin-embedded tumour blocks was undertaken at two centralised biomarker laboratories (Leeds and Cardiff), and the results fed directly to the Medical Research Council Clinical Trials Unit, and used for subsequent randomisation. Here the laboratories discuss their experiences. METHODS Following successful tumour content assessment, blocks were sectioned for DNA extraction and immunohistochemistry (IHC). Pyrosequencing was initially used to determine tumour mutation status (KRAS, NRAS, BRAF and PIK3CA), then from 2018 onwards, next-generation sequencing was employed to allow the inclusion of TP53. Protein expression of MLH1, MSH2, MSH6, PMS2 and pTEN was determined by IHC. An interlaboratory comparison programme was initiated, allowing sample exchanges, to ensure continued assay robustness. RESULTS 1291 tumour samples were successfully analysed. Assay failure rates were very low; 1.9%-3.3% for DNA sequencing and 0.9%-1.3% for IHC. Concordance rates of >98% were seen for the interlaboratory comparisons, where a result was obtained by both laboratories. CONCLUSIONS Practical and logistical problems were identified, including poor sample quality and difficulties with sample anonymisation. The often last-minute receipt of a sample for testing and a lack of integration with National Health Service mutation analysis services were challenging. The laboratories benefitted from both pretrial validations and interlaboratory comparisons, resulting in robust assay development and provided confidence during the implementation of new sequencing technologies. We conclude that our centralised approach to biomarker testing in FOCUS4 was effective and successful.
Collapse
Affiliation(s)
- Susan D Richman
- Leeds Institute on Medical Research, University of Leeds, Leeds, UK
| | - Gemma Hemmings
- Leeds Institute on Medical Research, University of Leeds, Leeds, UK
| | - Helen Roberts
- All Wales Molecular Genetics Laboratory, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK
| | - Niall Gallop
- Leeds Institute on Medical Research, University of Leeds, Leeds, UK
| | - Rachel Dodds
- All Wales Molecular Genetics Laboratory, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK
| | | | - Jonathan Davis
- Leeds Institute on Medical Research, University of Leeds, Leeds, UK
| | - Rhian White
- All Wales Molecular Genetics Laboratory, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK
| | - Emma Yates
- MRC Clinical Trials Unit at UCL, London, UK
| | | | | | - Tim S Maughan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Rachel Butler
- All Wales Molecular Genetics Laboratory, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK
| | - Philip Quirke
- Leeds Institute on Medical Research, University of Leeds, Leeds, UK
| | - Richard Adams
- Velindre Cancer Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
[Targeting HER2 in colorectal cancer]. Bull Cancer 2023; 110:402-411. [PMID: 36870811 DOI: 10.1016/j.bulcan.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/06/2023]
Abstract
Among the molecular subgroups of interest in metastatic colorectal cancer (mCRC), innovations are underway for tumors with overexpression of HER2 (Human Epidermal Growth Factor Receptor 2). Overexpression of the HER2 protein concerns 2 to 5% of CRC at any stage mainly located in the distal colon and rectum. Diagnosis is based on immunohistochemistry, in situ hybridization with appropriate criteria for colorectal localization, and molecular biology (NGS: next-generation sequencing). Overexpression of HER2 is a predictive factor for resistance to treatments targeting EGFR which are indicated in the case where the tumor is wild-type RAS. It seems to be associated with a poor prognosis of mCRC with a higher risk of brain metastasis. Regarding treatments targeting HER2, no randomized controlled phase III has been published to date. However, several combinations have been evaluated in phase II with clinically meaningful objective response rates: trastuzumab-deruxtecan (45%), trastuzumab-tucatinib (46%), trastuzumab-pyrotinib (45%), trastuzumab-pertuzumab (30%) ou trastuzumab-lapatinib (30%). In this literature review, we present here the current state of knowledge on the diagnostic methods of HER2 overexpression in CRC, the main clinical, molecular and prognostic characteristics, and the efficacy results of the different therapeutic combinations for the patients with HER2 overexpressed mCRC. This justifies, despite the lack of marketing authorization in France and in Europe for agents targeting HER2 in CRC, the systematic evaluation of the HER2 status, as recommended in particular by the NCCN (National Comprehensive Cancer Network).
Collapse
|
33
|
Karati D, Kumar D. A Comprehensive Review on Targeted Cancer Therapy: New Face of Treatment Approach. Curr Pharm Des 2023; 29:3282-3294. [PMID: 38038008 DOI: 10.2174/0113816128272203231121034814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of life's most difficult difficulties and a severe health risk everywhere. Except for haematological malignancies, it is characterized by unchecked cell growth and a lack of cell death, which results in an aberrant tissue mass or tumour. Vascularization promotes tumor growth, which eventually aids metastasis and migration to other parts of the body, ultimately resulting in death. The genetic material of the cells is harmed or mutated by environmental or inherited influences, which results in cancer. Presently, anti-neoplastic medications (chemotherapy, hormone, and biological therapies) are the treatment of choice for metastatic cancers, whilst surgery and radiotherapy are the mainstays for local and non-metastatic tumors. Regrettably, chemotherapy disturbs healthy cells with rapid proliferation, such as those in the gastrointestinal tract and hair follicles, leading to the typical side effects of chemotherapy. Finding new, efficient, targeted therapies based on modifications in the molecular biology of tumor cells is essential because current chemotherapeutic medications are harmful and can cause the development of multidrug resistance. These new targeted therapies, which are gaining popularity as demonstrated by the FDA-approved targeted cancer drugs in recent years, enter molecules directly into tumor cells, diminishing the adverse reactions. A form of cancer treatment known as targeted therapy goes after the proteins that regulate how cancer cells proliferate, divide, and disseminate. Most patients with specific cancers, such as chronic myelogenous leukemia (commonly known as CML), will have a target for a particular medicine, allowing them to be treated with that drug. Nonetheless, the tumor must typically be examined to determine whether it includes drug targets.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal 900017, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharti Vidyapeeth, Pune, Maharashtra 411038, India
| |
Collapse
|
34
|
Trouiller JB, Macabeo B, Poll A, Howard D, Buckland A, Sivignon M, Clay E, Malka D, Samalin E, Toumi M, Laramée P. Economic evaluation of encorafenib with cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer in France: a cost-effectiveness analysis using data from the BEACON CRC randomised controlled trial. BMJ Open 2022; 12:e063700. [PMID: 36410812 PMCID: PMC9680156 DOI: 10.1136/bmjopen-2022-063700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The BEACON CRC randomised controlled trial (NCT02928224) in BRAF-mutant metastatic colorectal cancer (mCRC) patients showed improved overall survival for the combination treatment of encorafenib (BRAF inhibitor) with cetuximab (EGFR inhibitor) compared with cetuximab with chemotherapy (FOLFIRI (folinic acid, fluorouracil and irinotecan) or irinotecan). We aimed to evaluate the cost-effectiveness of encorafenib with cetuximab in adult patients with BRAF-mutant mCRC after prior systemic therapy, from the perspective of the French healthcare system. DESIGN A partitioned survival analysis model was developed to assess the cost-effectiveness of encorafenib with cetuximab using data from BEACON CRC (encorafenib with cetuximab and cetuximab with FOLFIRI or irinotecan). For two further comparator treatments (FOLFIRI alone and bevacizumab with FOLFIRI), a systemic literature review identified appropriate clinical trial data for indirect comparison. Piecewise modelling extrapolation was used to fulfil a lifetime horizon in the model. A discount rate of 2.5% was used. Treatment-emergent adverse events ≥grade 3 with an incidence of ≥2% were included, as well as relative dose intensity and utility values. OUTCOME MEASURES The effectiveness outcomes of the model were expressed in terms of incremental life years gained and incremental quality-adjusted life years (QALY) gained. The cost-effectiveness of encorafenib with cetuximab was assessed using the incremental cost-effectiveness ratio (ICER). Results were presented probabilistically to account for parametric uncertainty. Deterministic and scenario analyses were conducted. RESULTS The ICER for encorafenib with cetuximab versus cetuximab with FOLFIRI or irinotecan, FOLFIRI alone and bevacizumab with FOLFIRI was €69 823/QALY, €70 421/QALY and €72 336/QALY, respectively. Encorafenib with cetuximab was considered cost-effective compared with the three comparators at a willingness to pay threshold of €90 000/QALY, with probabilities of being cost-effective of 89.8%, 98.2% and 86.4%, respectively. CONCLUSIONS This analysis showed encorafenib with cetuximab to be a cost-effective treatment in mCRC patients with a BRAF V600E mutation.
Collapse
Affiliation(s)
- Jean-Baptiste Trouiller
- Department of Public Health, Aix-Marseille University, Marseille, France
- Pierre Fabre Laboratories, Paris, France
| | - Bérengère Macabeo
- Department of Public Health, Aix-Marseille University, Marseille, France
- Pierre Fabre Laboratories, Paris, France
| | | | | | | | | | | | - David Malka
- Medical Oncology Department, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Samalin
- Medical Oncology Department, Institut du Cancer de Montpellier, Montpellier, France
| | | | - Philippe Laramée
- Department of Public Health, Aix-Marseille University, Marseille, France
- Pierre Fabre Laboratories, Paris, France
| |
Collapse
|
35
|
Doleschal B, Petzer A, Rumpold H. Current concepts of anti-EGFR targeting in metastatic colorectal cancer. Front Oncol 2022; 12:1048166. [PMID: 36465407 PMCID: PMC9714621 DOI: 10.3389/fonc.2022.1048166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2023] Open
Abstract
Anti-EGFR targeting is one of the key strategies in the treatment of metastatic colorectal cancer (mCRC). For almost two decades oncologists have struggled to implement EGFR antibodies in the mCRC continuum of care. Both sidedness and RAS mutational status rank high among the predictive factors for the clinical efficacy of EGFR inhibitors. A prospective phase III trial has recently confirmed that anti-EGFR targeting confers an overall survival benefit only in left sided RAS-wildtype tumors when given in first line. It is a matter of discussion if more clinical benefit can be reached by considering putative primary resistance mechanisms (e.g., HER2, BRAF, PIK3CA, etc.) at this early stage of treatment. The value of this procedure in daily routine clinical utility has not yet been clearly delineated. Re-exposure to EGFR antibodies becomes increasingly crucial in the disease journey of mCRC. Yet re- induction or re-challenge strategies have been problematic as they relied on mathematical models that described the timely decay of EGFR antibody resistant clones. The advent of liquid biopsy and the implementation of more accurate next-generation sequencing (NGS) based high throughput methods allows for tracing of EGFR resistant clones in real time. These displays the spatiotemporal heterogeneity of metastatic disease compared to the former standard radiographic assessment and re-biopsy. These techniques may move EGFR inhibition in mCRC into the area of precision medicine in order to apply EGFR antibodies with the increase or decrease of EGFR resistant clones. This review critically discusses established concepts of tackling the EGFR pathway in mCRC and provides insight into the growing field of liquid biopsy guided personalized approaches of EGFR inhibition in mCRC.
Collapse
Affiliation(s)
- Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Andreas Petzer
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| |
Collapse
|
36
|
Poad H, Khan S, Wheaton L, Thomas A, Sweeting M, Bujkiewicz S. The Validity of Surrogate Endpoints in Sub Groups of Metastatic Colorectal Cancer Patients Defined by Treatment Class and KRAS Status. Cancers (Basel) 2022; 14:5391. [PMID: 36358810 PMCID: PMC9654686 DOI: 10.3390/cancers14215391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Aim: Findings from the literature suggest that the validity of surrogate endpoints in metastatic colorectal cancer (mCRC) may depend on a treatments' mechanism of action. We explore this and the impact of Kirsten rat sarcoma (KRAS) status on surrogacy patterns in mCRC. Methods: A systematic review was undertaken to identify randomized controlled trials (RCTs) for pharmacological therapies in mCRC. Bayesian meta-analytic methods for surrogate endpoint evaluation were used to evaluate surrogate relationships across all RCTs, by KRAS status and treatment class. Surrogate endpoints explored were progression free survival (PFS) as a surrogate endpoint for overall survival (OS), and tumour response (TR) as a surrogate for PFS and OS. Results: 66 RCTs were identified from the systematic review. PFS showed a strong surrogate relationship with OS across all data and in subgroups by KRAS status. The relationship appeared stronger within individual treatment classes compared to the overall analysis. The TR-PFS and TR-OS relationships were found to be weak overall but stronger within the Epidermal Growth Factor Receptor + Chemotherapy (EGFR + Chemo) treatment class; both overall and in the wild type (WT) patients for TR-PFS, but not in patients with the mutant (MT) KRAS status where data were limited. Conclusions: PFS appeared to be a good surrogate endpoint for OS. TR showed a moderate surrogate relationship with PFS and OS for the EGFR + Chemo treatment class. There was some evidence of impact of the mechanism of action on the strength of the surrogacy patterns in mCRC, but little evidence of the impact of KRAS status on the validity of surrogate endpoints.
Collapse
Affiliation(s)
- Heather Poad
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Sam Khan
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Lorna Wheaton
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Anne Thomas
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Michael Sweeting
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Sylwia Bujkiewicz
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
37
|
Crane RA, Grubb ES, Coward LU, Gorman GS. In vitro metabolic biomodulation of irinotecan to increase potency and reduce dose-limiting toxicity by inhibition of SN-38 glucuronide formation. Drug Metab Pers Ther 2022; 37:295-303. [PMID: 35257538 DOI: 10.1515/dmpt-2021-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Colorectal cancer continues to have one of the highest incidents of occurrence with a rising rate of diagnosis among people under the age of 50. Chemotherapy with irinotecan results in severe gastrointestinal dose-limiting toxicity that is caused by the glucuronidated form of the active metabolite (SN-38G). This study evaluates herbal compounds and analogs to biomodulate the metabolism of IR to decrease dose-limiting toxicity while increasing the amount of the active metabolite. METHODS In vitro metabolism using human liver microsomes was conducted with white willow bark (WWB) extract, select specific components of WWB, and analogues to evaluate biomodulation of the IR metabolism. Samples were analyzed using liquid chromatography-tandem mass spectrometry to measure metabolites between reactions with and without herbals components. RESULTS WWB showed an optimal decrease (>80%) in SN-38G and a corresponding increase in SN-38 levels (128%) at a concentration of near 200 μg/mL. Tannic acid produced a 75% decrease in SN-38G with a 130% increase in SN-38 at 10 μg/mL, whereas the treatment with beta-pentagalloyl glucose and various analogues decreased SN-38G by 70% and increased SN-38 by 20% at 10 μg/mL. CONCLUSIONS These results suggest naturally occurring compounds from WWB may have the potential to increase potency by increasing the conversion of IR to SN-38 and decrease dose-limiting toxicity of IR chemotherapy by reducing glucuronidation of SN-38.
Collapse
Affiliation(s)
- Rachel A Crane
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Emery S Grubb
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Lori U Coward
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Greg S Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| |
Collapse
|
38
|
Wang PP, Lin C, Wang J, Margonis GA, Wu B. BRAF Mutations in Colorectal Liver Metastases: Prognostic Implications and Potential Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14174067. [PMID: 36077604 PMCID: PMC9454989 DOI: 10.3390/cancers14174067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this literature review, we investigated the relationship between BRAF mutation and prognosis in patients with colorectal cancer liver metastases. We also investigated factors affecting the prognosis of patients with BRAF mutations and summarized the latest research on targeted therapies. Abstract Surgery combined with chemotherapy and precision medicine is the only potential treatment for patients with colorectal cancer liver metastases (CRLM). The use of modern molecular biotechnology to identify suitable biomarkers is of great significance for predicting prognosis and formulating individualized treatment plans for these patients. BRAF mutations, particularly V600E, are widely believed to be associated with poor prognosis in patients with metastatic CRC (mCRC). However, it is unclear which specific factors affect the prognosis of CRLM patients with BRAF mutations. It is also unknown whether patients with resectable CRLM and BRAF mutations should undergo surgical treatment since there is an increased recurrence rate after surgery in these patients. In this review, we combined the molecular mechanism and clinical characteristics of BRAF mutations to explore the prognostic significance and potential targeted therapy strategies for patients with BRAF-mutated CRLM.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jane Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
39
|
Russo V, Lallo E, Munnia A, Spedicato M, Messerini L, D’Aurizio R, Ceroni EG, Brunelli G, Galvano A, Russo A, Landini I, Nobili S, Ceppi M, Bruzzone M, Cianchi F, Staderini F, Roselli M, Riondino S, Ferroni P, Guadagni F, Mini E, Peluso M. Artificial Intelligence Predictive Models of Response to Cytotoxic Chemotherapy Alone or Combined to Targeted Therapy for Metastatic Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:4012. [PMID: 36011003 PMCID: PMC9406544 DOI: 10.3390/cancers14164012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tailored treatments for metastatic colorectal cancer (mCRC) have not yet completely evolved due to the variety in response to drugs. Therefore, artificial intelligence has been recently used to develop prognostic and predictive models of treatment response (either activity/efficacy or toxicity) to aid in clinical decision making. In this systematic review, we have examined the ability of learning methods to predict response to chemotherapy alone or combined with targeted therapy in mCRC patients by targeting specific narrative publications in Medline up to April 2022 to identify appropriate original scientific articles. After the literature search, 26 original articles met inclusion and exclusion criteria and were included in the study. Our results show that all investigations conducted on this field have provided generally promising results in predicting the response to therapy or toxic side-effects. By a meta-analytic approach we found that the overall weighted means of the area under the receiver operating characteristic (ROC) curve (AUC) were 0.90, 95% C.I. 0.80-0.95 and 0.83, 95% C.I. 0.74-0.89 in training and validation sets, respectively, indicating a good classification performance in discriminating response vs. non-response. The calculation of overall HR indicates that learning models have strong ability to predict improved survival. Lastly, the delta-radiomics and the 74 gene signatures were able to discriminate response vs. non-response by correctly identifying up to 99% of mCRC patients who were responders and up to 100% of patients who were non-responders. Specifically, when we evaluated the predictive models with tests reaching 80% sensitivity (SE) and 90% specificity (SP), the delta radiomics showed an SE of 99% and an SP of 94% in the training set and an SE of 85% and SP of 92 in the test set, whereas for the 74 gene signatures the SE was 97.6% and the SP 100% in the training set.
Collapse
Affiliation(s)
- Valentina Russo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Eleonora Lallo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Armelle Munnia
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Miriana Spedicato
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Romina D’Aurizio
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Elia Giuseppe Ceroni
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Giulia Brunelli
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Marco Peluso
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| |
Collapse
|
40
|
Yu IS, Aubin F, Goodwin R, Loree JM, Mather C, Sheffield BS, Snow S, Gill S. Tumor Biomarker Testing for Metastatic Colorectal Cancer: a Canadian Consensus Practice Guideline. Ther Adv Med Oncol 2022; 14:17588359221111705. [PMID: 35898967 PMCID: PMC9310231 DOI: 10.1177/17588359221111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The systemic therapy management of metastatic colorectal cancer (mCRC) has evolved from primarily cytotoxic chemotherapies to now include targeted agents given alone or in combination with chemotherapy, and immune checkpoint inhibitors. A better understanding of the pathogenesis and molecular drivers of colorectal cancer not only aided the development of novel targeted therapies but led to the discovery of tumor mutations which act as predictive biomarkers for therapeutic response. Mutational status of the KRAS gene became the first genomic biomarker to be established as part of standard of care molecular testing, where KRAS mutations within exons 2, 3, and 4 predict a lack of response to anti- epidermal growth factor receptor therapies. Since then, several other biomarkers have become relevant to inform mCRC treatment; however, there are no published Canadian guidelines which reflect the current standards for biomarker testing. This guideline was developed by a pan-Canadian advisory group to provide contemporary, evidence-based recommendations on the minimum acceptable standards for biomarker testing in mCRC, and to describe additional biomarkers for consideration.
Collapse
Affiliation(s)
- Irene S. Yu
- Department of Medical Oncology, BC Cancer
Surrey, Surrey, BC, Canada
| | - Francine Aubin
- Division of Hematology and Oncology, Department
of Medicine, Centre Hospitalier de l’Université de Montréal, Montreal, QC,
Canada
| | - Rachel Goodwin
- Division of Medical Oncology, Department of
Medicine, Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Jonathan M. Loree
- Department of Medical Oncology, BC Cancer
Agency - Vancouver Centre, Vancouver, BC, Canada
| | - Cheryl Mather
- Department of Laboratory Medicine and
Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brandon S. Sheffield
- Division of Advanced Diagnostics, William Osler
Health System, Brampton, ON, Canada
| | - Stephanie Snow
- Department of Medicine, Queen Elizabeth II
Health Sciences Centre, Halifax, NS, Canada
| | - Sharlene Gill
- Department of Medical Oncology, BC Cancer
Agency – Vancouver Centre, 600 W 10th Ave, Vancouver, BC, V5Z 4E6,
Canada
| |
Collapse
|
41
|
Strzebonska K, Blukacz M, Wasylewski MT, Polak M, Gyawali B, Waligora M. Risk and benefit for umbrella trials in oncology: a systematic review and meta-analysis. BMC Med 2022; 20:219. [PMID: 35799149 PMCID: PMC9264503 DOI: 10.1186/s12916-022-02420-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Umbrella clinical trials in precision oncology are designed to tailor therapies to the specific genetic changes within a tumor. Little is known about the risk/benefit ratio for umbrella clinical trials. The aim of our systematic review with meta-analysis was to evaluate the efficacy and safety profiles in cancer umbrella trials testing targeted drugs or a combination of targeted therapy with chemotherapy. METHODS Our study was prospectively registered in PROSPERO (CRD42020171494). We searched Embase and PubMed for cancer umbrella trials testing targeted agents or a combination of targeted therapies with chemotherapy. We included solid tumor studies published between 1 January 2006 and 7 October 2019. We measured the risk using drug-related grade 3 or higher adverse events (AEs), and the benefit by objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). When possible, data were meta-analyzed. RESULTS Of the 6207 records identified, we included 31 sub-trials or arms of nine umbrella trials (N = 1637). The pooled overall ORR was 17.7% (95% confidence interval [CI] 9.5-25.9). The ORR for targeted therapies in the experimental arms was significantly lower than the ORR for a combination of targeted therapy drugs with chemotherapy: 13.3% vs 39.0%; p = 0.005. The median PFS was 2.4 months (95% CI 1.9-2.9), and the median OS was 7.1 months (95% CI 6.1-8.4). The overall drug-related death rate (drug-related grade 5 AEs rate) was 0.8% (95% CI 0.3-1.4), and the average drug-related grade 3/4 AE rate per person was 0.45 (95% CI 0.40-0.50). CONCLUSIONS Our findings suggest that, on average, one in five cancer patients in umbrella trials published between 1 January 2006 and 7 October 2019 responded to a given therapy, while one in 125 died due to drug toxicity. Our findings do not support the expectation of increased patient benefit in cancer umbrella trials. Further studies should investigate whether umbrella trial design and the precision oncology approach improve patient outcomes.
Collapse
Affiliation(s)
- Karolina Strzebonska
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz Blukacz
- Institute of Psychology, University of Silesia, Katowice, Poland
- Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz T. Wasylewski
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Polak
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Bishal Gyawali
- Department of Oncology and the Department of Public Health Sciences, Queen’s University, Kingston, Ontario Canada
| | - Marcin Waligora
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
42
|
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 2022; 72:372-401. [PMID: 35472088 DOI: 10.3322/caac.21728] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents approximately 10% of all cancers and is the second most common cause of cancer deaths. Initial clinical presentation as metastatic CRC (mCRC) occurs in approximately 20% of patients. Moreover, up to 50% of patients with localized disease eventually develop metastases. Appropriate clinical management of these patients is still a challenging medical issue. Major efforts have been made to unveil the molecular landscape of mCRC. This has resulted in the identification of several druggable tumor molecular targets with the aim of developing personalized treatments for each patient. This review summarizes the improvements in the clinical management of patients with mCRC in the emerging era of precision medicine. In fact, molecular stratification, on which the current treatment algorithm for mCRC is based, although it does not completely represent the complexity of this disease, has been the first significant step toward clinically informative genetic profiling for implementing more effective therapeutic approaches. This has resulted in a clinically relevant increase in mCRC disease control and patient survival. The next steps in the clinical management of mCRC will be to integrate the comprehensive knowledge of tumor gene alterations, of tumor and microenvironment gene and protein expression profiling, of host immune competence as well as the application of the resulting dynamic changes to a precision medicine-based continuum of care for each patient. This approach could result in the identification of individual prognostic and predictive parameters, which could help the clinician in choosing the most appropriate therapeutic program(s) throughout the entire disease journey for each patient with mCRC. CA Cancer J Clin. 2022;72:000-000.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Division of Medical Oncology, IRCCS Foundation Home for the Relief of Suffering, San Giovanni Rotondo, Italy
| | - Giulia Martini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Institute of Oncology, University of Vic/Central University of Catalonia, Barcelona, Spain
- Oncology Institute of Barcelona-Quironsalud, Biomedical Research Center in Cancer, Barcelona, Spain
| | - Andres Cervantes
- Medical Oncology Department, Instituto de Investigación Sanitaria Valencia Biomedical Research Institute, University of Valencia, Valencia, Spain
- Carlos III Institute of Health, Biomedical Research Center in Cancer, Madrid, Spain
| |
Collapse
|
43
|
Systematic review of randomised clinical trials and observational studies for patients with RAS wild-type or BRAF V600E-mutant metastatic and/or unresectable colorectal cancer. Crit Rev Oncol Hematol 2022; 173:103646. [PMID: 35344913 DOI: 10.1016/j.critrevonc.2022.103646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Approximately 8-10% of metastatic colorectal cancer (mCRC) tumours harbour BRAFV600E mutations. Eleven randomised controlled trials (RCTs) and 24 non-RCTs were identified. Seven studies evaluated BRAF inhibitors. Single-agent BRAF inhibitors had minimal efficacy, whereas BRAF inhibitor plus anti-EGFR therapy improved outcomes. In BEACON CRC, overall survival (OS) was significantly longer for patients receiving encorafenib plus cetuximab ± binimetinib when compared with irinotecan/FOLFIRI plus cetuximab as second- and third-line therapy. Seven prospective non-RCTs reported worse OS and progression-free survival (PFS) for patients with BRAFV600E-mutant vs BRAF wild-type mCRC. Eight RCTs reported that PFS and OS were generally shorter for patients with BRAFV600E-mutant mCRC vs those with KRAS or RAS wild-type mCRC. Patients with BRAFV600E-mutant mCRC have worse outcomes with conventional therapy vs patients with BRAF wild-type tumours. BRAF inhibitors in conjunction with anti-EGFR therapy improves outcomes for patients with BRAFV600E-mutant mCRC vs conventional therapy or a BRAF inhibitor alone.
Collapse
|
44
|
Coleman R, Chan A, Barrios C, Cameron D, Costa L, Dowsett M, Harrison D, Howell A, Lacombe D, MacKenzie M, Martin M, McIntosh S, Morgan A, Piccart M, Spanic T. Code of practice needed for samples donated by trial participants. Lancet Oncol 2022; 23:e89-e90. [DOI: 10.1016/s1470-2045(22)00059-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
|
45
|
Medicina de precisión en cáncer colorrectal y gastroesofágico avanzado. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Hoang T, Sohn DK, Kim BC, Cha Y, Kim J. Efficacy and Safety of Systemic Treatments Among Colorectal Cancer Patients: A Network Meta-Analysis of Randomized Controlled Trials. Front Oncol 2022; 11:756214. [PMID: 35223449 PMCID: PMC8864322 DOI: 10.3389/fonc.2021.756214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Systemic treatments, namely, either monotherapy or combination therapy, are commonly administered to patients with advanced or metastatic colorectal cancer (CRC). This study aimed to provide the complete efficacy and safety profiles and ranking of systemic therapies for the treatment of unresectable advanced or metastatic CRC. METHODS We searched PubMed, Embase, the Cochrane Library, and ClinicalTrials.gov from inception until June 30, 2021, and also the bibliographies of relevant studies. Randomized controlled trials comparing two or more treatments, namely, at least capecitabine, 5-fluorouracil, leucovorin, irinotecan, bevacizumab, cetuximab, oxaliplatin, or panitumumab were investigated. A network meta-analysis using the Bayesian approach was performed to compare the efficacy and safety of treatments. The surface under the cumulative ranking curve (SUCRA) was calculated for the probability of each treatment as the most effective. The overall response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), adverse events (AEs) grade ≥3, and serious adverse events (SAEs) were evaluated. RESULTS One hundred two publications with 36,147 participants were assigned to 39 different treatments. Among 11 treatments with full information on six outcomes, FOLFIRI/FOLFOX/FOLFOXIRI + bevacizumab significantly improved both the ORR and DCR, compared to FOLFIRI. Although FOLFOX and FOLFIRI/FOLFOX + cetuximab significantly prolonged both OS and PFS, treatments were comparable in terms of AEs grade ≥3 and SAEs. The top highest SUCRA values were observed in the FOLFOXIRI + panitumumab group for ORR (96%) and DCR (99%), FOLFIRI + bevacizumab + panitumumab group for OS (62%) and PFS (54%), and FOLFOXIRI + bevacizumab group for AEs grade ≥3 (59%) and SAEs (59%) outcomes. CONCLUSIONS These findings suggest an available range of systemic treatment therapies with different efficacy and safety profiles with patients. Further investigations of the side effects and mutation status are required to confirm our findings. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42019127772.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Yongjun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| |
Collapse
|
47
|
Ji J, Wang C, Fakih M. Rechallenge With BRAF and anti-EGFR Inhibitors in Patients With Metastatic Colorectal Cancer Harboring BRAF Mutation Who Progressed on Cetuximab and Encorafenib With or Without Binimetinib: A Case Series. Clin Colorectal Cancer 2021; 21:267-271. [DOI: 10.1016/j.clcc.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022]
|
48
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci 2021; 22:ijms222312828. [PMID: 34884633 PMCID: PMC8657471 DOI: 10.3390/ijms222312828] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
49
|
Hummel M, Hegewisch-Becker S, Neumann JHL, Vogel A. BRAF testing in metastatic colorectal carcinoma and novel, chemotherapy-free therapeutic options. DER PATHOLOGE 2021; 42:98-109. [PMID: 34259881 PMCID: PMC8571135 DOI: 10.1007/s00292-021-00946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie der Charité, Universitätsmedizin, Campus Charité Mitte, Virchowweg 16/17a, 10117, Berlin, Germany.
| | | | - Jens H L Neumann
- Pathologisches Institut der Medizinischen Fakultät, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
50
|
Hummel M, Hegewisch-Becker S, Neumann J, Vogel A. [BRAF-V600E testing in metastatic colorectal cancer and new, chemotherapy-free therapy options. German version]. DER PATHOLOGE 2021; 42:578-590. [PMID: 33956173 PMCID: PMC8536591 DOI: 10.1007/s00292-021-00942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Virchowweg 16/17a, 10117, Berlin, Deutschland.
| | | | - Jens Neumann
- Pathologisches Institut, Medizinische Fakultät, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|