1
|
Cao Y, Li S, Zhang P, Li H, Hao Z, Zheng X, Feng W. Exploring Active Ingredients of Hepatoprotective Effect of Raw and Stir-Baked Gardeniae Fructus Based on Spectrum-Effect Relationship Analysis. Biomed Chromatogr 2025; 39:e70115. [PMID: 40375796 DOI: 10.1002/bmc.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/03/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Gardeniae Fructus (GF) has been used as a hepatoprotective medicine; however, the active ingredients of GF against cholestatic liver injury (CLI) remain unclear. This study aims to explore active ingredients of the hepatoprotective effects of raw GF (RGF) and stir-baked GF (SGF) by spectrum-effect relationship analysis. A total of 32 common peaks were recorded in RGF and SGF HPLC fingerprints, and nine of them were structurally characterized. Both RGF and SGF demonstrated hepatoprotective effects in an ANIT-induced CLI rat model. The spectrum-effect relationship analysis results showed that peaks 3 (gardenoside), 4, 5 (jasminoside B), 6 (genipin 1-gentiobioside), 8 (geniposide), 9, 16, 17, 19, and 22 were determined as the potential active ingredients of GF against CLI. Notably, gardenoside, jasminoside B, and genipin 1-gentiobioside exhibited good hepatoprotective effects. The research establishes a research foundation for the future quality control and medicinal application of GF.
Collapse
Affiliation(s)
- Yangang Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Shujing Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Peiyang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Hongwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Zhiyou Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Cheng R, Cheng X, Jiang D, Xiong J, Ding Y, Liu J, Zhao H, Feng H, Wu D, Zhang W. Spectrum-effect relationship of the cardiovascular-protective effect of with Chrysanthemi Flos by UPLC-MS/MS and component knock-out method. Food Chem Toxicol 2025; 200:115372. [PMID: 40054725 DOI: 10.1016/j.fct.2025.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Chrysanthemi Flos (CF), as one of the important 'dual-use' plants, possesses great pharmacological research and development potential. This work aimed to find the pharmacodynamic material basis of CF in cardiovascular-protection by spectrum-effect relationship and component knock-out method. The fingerprint was established by ultra-high performance liquid chromatography and 25 peaks were picked out as common peaks. The common peaks were identified by ultra-performance liquid chromatography-quadrupole-orbitrap-mass spectrometry including twelve flavonoids, nine phenylpropanoids, three organic acids, and one nucleoside. The cardiovascular-protective effect of CF was determined by angiotensin II-induced injury model of human umbilical vein endothelial cells. Grey relation analysis, partial least squares regression analysis and Pearson's correlation analysis were performed to assess the relationship between the cardiovascular-protective effect and ingredients. Spectrum-effect relationship and component knock-out method revealed that P11 (luteolin-7-O-β-D-glucoside), P14 (3,4-O-dicaffeoylquinic acid), P16 (1,5-O-dicaffeoylquinic acid), and P17 (3,5-O-dicaffeoylquinic acid) were the pharmacological material basis for the cardiovascular-protective effect of CF. This work preliminarily elucidated the pharmacodynamic material basis of cardiovascular-protective effect of CF, which could be used to considerable methods and insight for the fundamental research of the pharmacodynamic material basis of Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Ranran Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiang Cheng
- Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Dongliang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Junwei Xiong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yangfei Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Juan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hongsu Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hangmin Feng
- Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China.
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Pan W, Chen Q, Wu M, Sun Y, Li M, Wang S, Xue X, Meng J. Identifying of Anticoagulant Ingredients From Moutan Cortex Based on Spectrum-Effect Relationship Analysis Combined With GRA, PLS, and SVM Algorithms. Biomed Chromatogr 2025; 39:e70060. [PMID: 40091648 DOI: 10.1002/bmc.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Moutan Cortex (MC) is a renowned Chinese medicine used for promoting blood circulation and removing blood stasis. However, the active ingredients are unclear. This study aimed to identify and validate the active ingredients of MC. UPLC fingerprints of 23 batches of MC from various origins were analyzed. The activating blood efficacy of MC was assessed by evaluating the inhibitory effects on thrombin and factor Xa (FXa) using the chromogenic substrate method. Active ingredients were identified through spectrum-effect relationship analysis using gray relation analysis (GRA), partial least squares (PLS), and support vector machine (SVM) algorithms. Consequently, five components were identified as potential active ingredients: mudanpioside H, oxypaeoniflorin, 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), benzoyloxypaeoniflorin, and suffruticoside A/B/C/D. The pharmacological activities of these five active ingredients were further confirmed by measuring their thrombin inhibition ability and antithrombotic effects in zebrafish, and their interactions with thrombin and FXa were examined using molecular docking technology. Oxypaeoniflorin, benzoyloxypaeoniflorin, and PGG demonstrated significant efficacy in promoting blood circulation and resolving blood stasis, as well as strong binding affinities. This study provides a biochemical foundation for the anticoagulant effects of MC and offers valuable insights for quality control and the development of novel anticoagulant ingredients drugs.
Collapse
Affiliation(s)
- Weijie Pan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Qianru Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Menghua Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ming Li
- Medical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Xingyang Xue
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Ma J, Su Y, Xie J, Tao L, Zhao Y, Wang X, Kuang Z, Sheng X, Kang A, Aa J, Wang G. Chemometric-based analysis and bioassay guided identification of potent compounds with intestinal motility promoting effects from Dalitong Granules. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118777. [PMID: 39236779 DOI: 10.1016/j.jep.2024.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalitong Granules (DLT), a potent Traditional Chinese Medicine known for its ability to promote gastrointestinal motility, is widely used in clinical practice for the treatment of Functional Dyspepsia (FD). Despite the remarkable clinical efficacy of DLT, the specific components responsible for its effectiveness remains unclear. AIM OF THE STUDY The study aimed to identify potential active ingredients of DLT for treating FD through spectrum-effect relationship analysis, multivariate statistical analysis and network pharmacology analysis. The efficacy of these identified compounds was subsequently validated using the zebrafish intestinal peristalsis model. MATERIALS AND METHODS The fingerprints of various solvent-extracted DLT were analyzed using high performance liquid chromatography coupled with tandem high-resolution mass spectrometry. The intestinal motility-promoting activities of DLT extracted by different solvents were evaluated through an intestinal propulsion test in mice. Potential therapeutic substances in DLT for treating FD were screened via chemometric analysis based on spectrum-effect relationship analysis. The correlation between the intensity of common peaks in the total ion chromatogram and the pharmacodynamic indices was assessed using multivariate statistical analysis. Additionally, given the complexity of Traditional Chinese Medicine, which comprises multiple components and targets, a network pharmacology analysis was performed to investigate the potential active ingredients in DLT. Finally, the pharmacological effects of these compounds in DLT were validated using a zebrafish intestinal motility model. RESULTS Through spectral-effect relationships analysis and network pharmacology analysis, it was determined that ten ingredients in DLT contribute to the promotion of intestinal motility. In a zebrafish intestinal motility model, it was observed that eight chemicals (excluding tetrahydropalmatine) demonstrate favorable activity of promoting gastrointestinal motility. These findings suggest that these ingredients may serve as potential therapeutic agents for improving gastric motility disorders. CONCLUSIONS This study employed spectral-effect relationship and network pharmacology analysis to identify the active ingredients in DLT. The findings were then validated using a zebrafish intestinal peristalsis model. These results provide a scientific foundation for the clinical application of DLT as a key traditional herbal formula for managing FD.
Collapse
Affiliation(s)
- Jiayi Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yan Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jingru Xie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Tao
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Yan Zhao
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Xiaoxia Wang
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Zhenying Kuang
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Xianjie Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiye Aa
- Laboratory of Metabolomics, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangji Wang
- Laboratory of Metabolomics, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Li Y, Zhao M, Tang R, Fang K, Ye Y, Zhu B, Chen L, Chen Y, Ge W, Du W. Study on quality control methods and pharmacodynamic material basis of different specifications of Corydalis Rhizoma produced in Zhejiang Province. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118375. [PMID: 38789094 DOI: 10.1016/j.jep.2024.118375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality control methods of different specifications of Corydalis Rhizoma in Zhejiang China (ZJ CR) are the same, so the quality of each specification couldnot be guaranteed. To clarify the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications could provide reference for the quality control of ZJ CR. AIM OF THE STUDY The purpose of this study was to establish a quality control method for ZJ CR with different specifications and to screen out the pharmacodynamic material basis of ZJ CR with different specifications. MATERIALS AND METHODS Firstly, according to the existing grading standards, the medicinal materials were divided into specifications, and the character indexes of ZJ CR with different specifications were established. The quality indexes were established by HPLC, network pharmacology and literature retrieval. The correlation between the trait indexes and quality indexes of ZJ CR with different specifications was analyzed, and the best quality control method was established. Further combined with the pharmacodynamic indexes of ZJ CR with different specifications, the pharmacodynamic material basis of ZJ CR with different specifications was screened out by spectrum-effect analysis. The correlation between trait indexes and pharmacodynamic indexes was analyzed to verify the rationality of grade standard. RESULTS The three specifications of ZJ CR were CR (Diameter ≥1.1 cm), CR (Diameter <1.1 cm), and CR (No size distinction). Diameter, width, thickness, grain weight, volume and 50 g grain number could be used as the trait indexes of ZJ CR. Protopine (CR1), palmatine hydrochloride (CR2), berberine hydrochloride (CR3), dehydrocorydaline (CR4), tetrahydropalmatine (CR5), tetrahydroberberine (CR6), corydaline (CR7), stylopine (CR8) and isoimperatorin (CR9) were identified. Total components, core components (CR5, CR6, CR7 and CR8), alcohol-soluble extracts (ASE) could be used as quality indexes. The best quality control methods of the three specifications respectively were: the larger the diameter and grain weight, the smaller the number of 50 g grains; The larger the diameter, the smaller the volume, thickness, width and number of 50 g particles; The larger the grain weight and volume, the smaller the number of 50 g grains. The main analgesic components of the three specifications respectively were: CR1, CR2 and core components; CR2, CR4; CR8, CR9. The larger the diameter and the less the number of 50 g grains, the better the analgesic effect of ZJ CR, and the grade standard was reasonable. CONCLUSIONS This study showed that the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications were different, which may be caused by the differences in traits and the contribution of main active ingredients. This study constructed an evaluation model combining external traits, internal quality and overall efficacy, and provided theoretical support for the rationality of ZJ CR grade standard.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Yu Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Bing Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Lei Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Yutian Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
6
|
Yu Q, Yang M, Yang L, Li M, Yang Y. Optimization and Spectrum-Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules 2024; 29:3860. [PMID: 39202938 PMCID: PMC11356933 DOI: 10.3390/molecules29163860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The objectives of this study were to optimize the ultrasonic-assisted flavonoid extraction process from PR and to establish fingerprints in order to analyze the spectrum-effect relationship of antioxidant activity. The ultrasonic-assisted flavonoid extraction process from PR was optimized using RSM, and the fingerprints of twenty-eight batches of flavonoids from PR were established using UHPLC. Meanwhile, the in vitro antioxidant activity of PR was evaluated in DPPH and ABTS free radical-scavenging experiments. Then, the peaks of the effective antioxidant components were screened using the spectrum-effect relationships. The results show that the optimal extraction yield of flavonoids from PR was 3.24 ± 0.01 mg/g when using 53% ethanol, a 1:26 (g/mL) solid-liquid ratio, and 60 min of ultrasonic extraction. Additionally, the clearance of two antioxidant indices by the flavonoids extracted from PR had different degrees of correlation and showed concentration dependence. Simultaneously, the similarity of the UHPLC fingerprints of twenty-eight batches of PR samples ranged from 0.801 to 0.949, and four characteristic peaks, namely peaks 4, 12, 21, and 24, were screened as the peaks of the components responsible for the antioxidant effect of PR using a GRA, a Pearson correlation analysis, and a PLS-DA. In this study, characteristic peaks of the antioxidant effects of PR were screened in an investigation of the spectrum-effect relationship to provide a scientific basis for the study of pharmacodynamic substances and the elucidation of the mechanism of action of the antioxidant effect of PR.
Collapse
Affiliation(s)
- Qihua Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mingyu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liyong Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
| | - Mengyu Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ye Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
7
|
Li Y, Tang L, Zhao M, Tang R, Fang K, Ge W, Du W. Study on the active components and mechanism of Atractylodis Macrocephalae Rhizoma for invigorating the spleen and tonifying qi based on spectrum-effect relationship and network pharmacology. Biomed Chromatogr 2024; 38:e5870. [PMID: 38664069 DOI: 10.1002/bmc.5870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 06/20/2024]
Abstract
Spleen deficiency can lead to various abnormal physiological functions of the spleen. Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used to invigorate the spleen and tonify qi. The study aimed to identify the primary active components influencing the efficacy of AMR in strengthening the spleen and replenishing qi through spectrum-effect relationship and chemometrics. Network pharmacology was used to investigate the mechanism by which AMR strengthens the spleen and replenishes qi, with molecular docking utilized for validation purposes. The findings indicated that bran-fried AMR exhibited superior efficacy, with atractylenolides and atractylone identified as the primary active constituents. Atractylenolide II emerged as the most influential component impacting the effectiveness of AMR, while the key target was androgen receptor. Furthermore, crucial pathways implicated included the mitogen-activated protein cascade (MAPK) cascade, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, and RNA polymerase II sequence-specific DNA-binding transcription factor binding. In summary, our study has identified the primary active components associated with the efficacy of AMR and has provided an initial exploration of its mechanism of action. This offers a theoretical foundation for future investigations into the material basis and molecular mechanisms underlying the pharmacodynamics of AMR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lulu Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, China
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, China
| |
Collapse
|
8
|
Li Y, Zhao M, Tang R, Fang K, Zhang H, Kang X, Yang L, Ge W, Du W. Study on the quality of Corydalis Rhizoma in Zhejiang based on multidimensional evaluation method. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118047. [PMID: 38499258 DOI: 10.1016/j.jep.2024.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality requirements of Corydalis Rhizoma (CR) in different producing areas are uniform, resulting in uneven efficacy. As a genuine producing area, the effective quality control of CR in Zhejiang Province (ZJ) could provide a theoretical basis for the rational application of medicinal materials. AIM OF THE STUDY The purpose of this study was to effectively distinguish the CR inside and outside ZJ, and provided a theoretical basis for the quality control and material basis research of ZJ CR. MATERIALS AND METHODS The core components of ZJ CR could be identified by HPLC combined with chemometrics screening, and the quality of CR from different producing areas was evaluated by a genetic algorithm-back propagation (GA-BP) neural network. Chromaticity and near-infrared (NIR) spectroscopy were used to identify CR inside and outside ZJ, and rapid content prediction was realized. The analgesic effect of CR in different regions was compared by a zebrafish analgesic experiment. Analgesic experiments in rats and analysis of the research status of quality components were used to screen the quality control components of ZJ CR. RESULTS The contents of palmatine hydrochloride (YSBMT), dehydrocorydaline (TQZJJ), tetrahydropalmatine (YHSYS), tetrahydroberberine (SQXBJ), corydaline (YHSJS), stylopine (SQHLJ), and isoimperatorin (YOQHS) in ZJ CR were higher than those in CR from outside ZJ, but the content of protopine (YAPJ) and berberine hydrochloride (YSXBJ) was lower than that in CR from outside ZJ. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. The GA-BP neural network showed that the relative importance of ZJ CR was the strongest. Chroma-content correlation analysis and the NIR qualitative model could effectively distinguish CR from inside and outside of ZJ, and the NIR quantitative model could quickly predict the content of CR from inside and outside of ZJ. Zebrafish experiments showed that ZJ, Shaanxi (SX), Henan (HN), and Sichuan (SC) CR had significant analgesic effects, while Hebei (HB) CR had no significant analgesic effect. Overall comparison, the analgesic effect of ZJ CR was better than that of CR outside ZJ. The comprehensive score of the grey correlation degree between YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, YHSJS, SQXBJ, and SQHLJ were higher than 0.9, and the research frequency were extremely high. CONCLUSIONS The relative importance of the content and origin of most components of ZJ CR was higher than that of CR outside ZJ. The holistic analgesic effect of ZJ CR was better than that of CR outside ZJ, but slightly lower than that of SX CR. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, SQXBJ, YHSJS, and SQHLJ could be used as the quality control components of ZJ CR. The multidimensional evaluation method used in this study provided a reference for the quality control and material basis research of ZJ CR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Xianjie Kang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Liu Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
9
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Chen C, Chen F, Gu L, Jiang Y, Cai Z, Zhao Y, Chen L, Zhu Z, Liu X. Discovery and validation of COX2 as a target of flavonoids in Apocyni Veneti Folium: Implications for the treatment of liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117919. [PMID: 38364933 DOI: 10.1016/j.jep.2024.117919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feiyan Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ling Gu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yucui Jiang
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yunan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Huang P, Yuan J, Yang P, Xiao F, Zhao Y. Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics. Foods 2024; 13:1320. [PMID: 38731691 PMCID: PMC11083205 DOI: 10.3390/foods13091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Sunflower is an important crop, and the vitality and moisture content of sunflower seeds have an important influence on the sunflower's planting and yield. By employing hyperspectral technology, the spectral characteristics of sunflower seeds within the wavelength range of 384-1034 nm were carefully analyzed with the aim of achieving effective prediction of seed vitality and moisture content. Firstly, the original hyperspectral data were subjected to preprocessing techniques such as Savitzky-Golay smoothing, standard normal variable correction (SNV), and multiplicative scatter correction (MSC) to effectively reduce noise interference, ensuring the accuracy and reliability of the data. Subsequently, principal component analysis (PCA), extreme gradient boosting (XGBoost), and stacked autoencoders (SAE) were utilized to extract key feature bands, enhancing the interpretability and predictive performance of the data. During the modeling phase, random forests (RFs) and LightGBM algorithms were separately employed to construct classification models for seed vitality and prediction models for moisture content. The experimental results demonstrated that the SG-SAE-LightGBM model exhibited outstanding performance in the classification task of sunflower seed vitality, achieving an accuracy rate of 98.65%. Meanwhile, the SNV-XGBoost-LightGBM model showed remarkable achievement in moisture content prediction, with a coefficient of determination (R2) of 0.9715 and root mean square error (RMSE) of 0.8349. In conclusion, this study confirms that the fusion of hyperspectral technology and multivariate data analysis algorithms enables the accurate and rapid assessment of sunflower seed vitality and moisture content, providing robust tools and theoretical support for seed quality evaluation and agricultural production practices. Furthermore, this research not only expands the application of hyperspectral technology in unraveling the intrinsic vitality characteristics of sunflower seeds but also possesses significant theoretical and practical value.
Collapse
Affiliation(s)
| | | | | | | | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya’an 625014, China; (P.H.); (J.Y.); (P.Y.); (F.X.)
| |
Collapse
|
12
|
Bai R, Zhou J, Wang S, Zhang Y, Nan T, Yang B, Zhang C, Yang J. Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods 2024; 13:498. [PMID: 38338633 PMCID: PMC10855119 DOI: 10.3390/foods13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Developing a fast and non-destructive methodology to identify the storage years of Coix seed is important in safeguarding consumer well-being. This study employed the utilization of hyperspectral imaging (HSI) in conjunction with conventional machine learning techniques such as support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), as well as the deep learning method of residual neural network (ResNet), to establish identification models for Coix seed samples from different storage years. Under the fusion-based modeling approach, the model's classification accuracy surpasses that of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectral modeling individually. The classification accuracy of the ResNet model and SVM exceeds that of other conventional machine learning models (KNN, RF, and XGBoost). Redundant variables were further diminished through competitive adaptive reweighted sampling feature wavelength screening, which had less impact on the model's accuracy. Upon validating the model's performance using an external validation set, the ResNet model yielded more satisfactory outcomes, exhibiting recognition accuracy exceeding 85%. In conclusion, the comprehensive results demonstrate that the integration of deep learning with HSI techniques effectively distinguishes Coix seed samples from different storage years.
Collapse
Affiliation(s)
- Ruibin Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Siman Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Yue Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Bin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| |
Collapse
|
13
|
Tang L, Zhao HQ, Yang H, Hu C, Ma SJ, Xiao WZ, Qing YH, Yang L, Zhou RR, Liu J, Zhang SH. Spectrum-effect relationship combined with bioactivity evaluation to discover the main anxiolytic active components of Baihe Dihuang decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117090. [PMID: 37640258 DOI: 10.1016/j.jep.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. AIM OF THE STUDY To screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. METHODS The UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. RESULTS In the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. CONCLUSION The butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.
Collapse
Affiliation(s)
- Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chao Hu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Si-Jing Ma
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang-Zhong Xiao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hui Qing
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lei Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong-Rong Zhou
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
14
|
Li H, Peng L, Yin F, Fang J, Cai L, Zhang C, Xiang Z, Zhao Y, Zhang S, Sheng H, Wang D, Zhang X, Liang Z. Research on Coix seed as a food and medicinal resource, it's chemical components and their pharmacological activities: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117309. [PMID: 37858750 DOI: 10.1016/j.jep.2023.117309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coix lacryma-jobi var. ma-yuen (Romanet du Caillaud) Stapf is a plant of the genus Coix in the Gramineae family. Coix seed is cultivated in various regions throughout China. In recent years, with the research on the medicinal value of Coix seed, it has received more and more widespread attention from people. Numerous pharmacological effects of Coix seed have been demonstrated through modern pharmacological studies, such as hypoglycemia, improving liver function, anti-tumor, regulating intestinal microbiota, improving spleen function, and anti-inflammatory effects. AIMS OF THE STUDY This article is a literature review. In recent years, despite the extensive research on Coix seed, there has yet to be a comprehensive review of its traditional usage, medicinal resources, chemical components, and pharmacological effects is still lacking. To fill this gap, the paper provides an overview of the latest research progress on Coix seed, aiming to offer guidance and references for its further development and comprehensive utilization. MATERIAL AND METHODS To gather information on the traditional usage, phytochemical ingredients, and pharmacological properties of Coix seed, we conducted a literature search using both Chinese and English languages in five databases: PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Springer. RESULTS This article is a literature review. The chemical constituents of Coix seed include various fatty acids, esters, polysaccharides, sterols, alkaloids, triterpenes, tocopherols, lactams, lignans, phenols, flavonoids and other constituents. Modern pharmacological research has indeed shown that Coix seed has many pharmacological effects and is a natural anti-tumor drug. In addition to its anti-tumor effect, it also has pharmacological effects such as hypoglycemia, improving liver function, regulating intestinal microbiota, improving spleen function, and anti-inflammatory effects. CONCLUSIONS This article provides a brief overview of the traditional uses, biotechnological applications, chemical components, and pharmacological effects of Coix seed. It highlights the importance of establishing quality standards, discovering new active ingredients, and exploring pharmacological mechanisms in Coix seed research. The article also emphasizes the significance of clinical trials, toxicology studies, pharmacokinetics data, and multidisciplinary collaboration for further advancements in this field. Overall, it aims to enhance understanding of Coix seed and its potential in pharmaceutical development and wellness products.
Collapse
Affiliation(s)
- Hongju Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lingxia Peng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Yin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahao Fang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lietao Cai
- R&D Center of Kanglaite, Hangzhou, 310018, China
| | | | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China
| | - Yuyang Zhao
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuifeng Zhang
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Fangyuan Test Group Co., LTD, Hanghzou, 310018, China
| | - Huadong Sheng
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Fangyuan Test Group Co., LTD, Hanghzou, 310018, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Wu H, Lv Y, Zhao M, Tang R, Li Y, Fang K, Wei F, Ge W, Du W, Li C, Zhang Y. Study on the substance basis of the efficacy of eucommiae cortex before and after salt processing for the treatment of kidney-yang deficiency syndrome based on the spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116926. [PMID: 37479066 DOI: 10.1016/j.jep.2023.116926] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney-Yang deficiency syndrome (KYDS) is one of the common diseases of the elderly and closely related to the ageing of the body, it has a major impact on the quality of life of the patient. Eucommiae Cortex (EC) is the dried bark of Eucommia ulmoides Oliv. Which has the effect of tonifying the liver and kidneys, strengthening the muscles and bones. In Traditional Chinese Medicine clinics, EC is commonly used in the treatment of KYDS, but the material basis for the improvement of its efficacy in treating KYDS after salt processing remains unclear. AIM OF THE STUDY This study aimed to find the main active ingredients that could improve the treatment of KYDS efficacy of EC after salt processing. MATERIALS AND METHODS Firstly, the fingerprints of raw and salt-processed EC were established to determine the common components by using HPLC, and then an experimental study on the treatment of KYDS efficacy was carried out to compare the difference in the efficacy between raw and salt-processed EC. Thirdly, the spectrum-effect relationship of chemical components and pharmacodynamic indexes was established by using Grey Relational Analysis and Entropy Method. Finally, the network pharmacology and molecular docking technique was used to verify the kidney tonifying effect of the active ingredients of EC. RESULTS According to the results of the analysis of hormonal index levels on the hypothalamic-pituitary-target gland axis and the extent of renal lesions, the therapeutic effect of EC on KYDS was mainly reflected in the regulation of the Adrenocorticotropic hormone, Corticosterone in the hypothalamic-pituitary-adrenal axis and Tri-iodothyronine, Tetra-iodothyronine in the hypothalamic-pituitary-thyroid axis, moreover the therapeutic effect of salt-processed EC was stronger than that of raw EC. The pharmacologically active ingredients that improved its treatment of KYDS efficacy after salt processing were peak 1 (geniposidic acid), peak 2 (chlorogenic acid), peak 5 (geniposide), peak 6 (genipin), peak 7 (pinoresinol diglucoside) and peak 11 (hyperoside). Meanwhile, the results of network pharmacology and molecular docking showed that the 6 active ingredients could exert kidney tonic effects through multiple signaling pathways by acting on core targets such as AKT1 and PTGS2. CONCLUSION As far as we known, this was the first time to establish and compare the spectrum-effect relationship between raw and salt-processed EC, which laid the foundation for the pharmacokinetics studies of EC and provided a reference for future EC studies.
Collapse
Affiliation(s)
- Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd, Hangzhou, 311401, PR China.
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yefeng Zhang
- Ningbo Chinese Medicine Yinpian Co., Ltd, Ningbo, 315336, PR China
| |
Collapse
|
16
|
Huang Y, Tao M, Li R, Liang F, Xu T, Zhong Q, Yuan Y, Wu T, Pan S, Xu X. Identification of key phenolic compounds for alleviating gouty inflammation in edible chrysanthemums based on spectrum-effect relationship analyses. Food Chem X 2023; 20:100897. [PMID: 38144783 PMCID: PMC10739853 DOI: 10.1016/j.fochx.2023.100897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
Edible chrysanthemum is a common food resource for tea and functional foods with potential benefits for human health. Studies have indicated that chrysanthemum has the potential effect on inflammatory diseases, while the effects on gouty inflammation remain underexplored. The present study aimed to investigate the anti-gout activity and characterize the active ingredients of chrysanthemums by using metabolite profiles, in vitro experiments, and spectrum-effect analysis. Results showed that 'Boju' (BJ), 'Hangbaiju' (HBJ), and 'Huaiju' (HJ) exhibited regulatory effects on monosodium urate (MSU)-induced inflammation. At the dose of 50 µg/mL, the inhibitory rates of IL-1β secretion were 24.53 %, 14.36 %, and 38.10 %, respectively. A total of 32 phenolic compounds were identified or preliminarily assigned in UPLC-Q/TOF-MS analysis. And seven phenolics related to anti-gout activity were identified by spectrum-effect relationships. According to ADME (absorption, distribution, metabolism, excretion) evaluation and experiments verification, luteolin, acacetin-7-O-glucoside, and apigenin-7-O-glucoside were critical constituents potentially associated with the reduction of inflammation in gout. Additionally, these phenolics might be suitable as quality control indicators. This study clarified the anti-gout properties of different cultivars of chrysanthemums and active compounds, providing a theoretical basis for its scientific utilization in functional foods.
Collapse
Affiliation(s)
- Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Agricultural Quality Standards and Detection Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen 448000, China
| | - Fuqiang Liang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhong
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Yuan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Meng FD, Yuan L, Lu DD, Yang YT, Xu DJ, Che MY, Nan Y. Anti-tumor effect of coix seed based on the theory of medicinal and food homology. World J Clin Oncol 2023; 14:593-605. [PMID: 38179404 PMCID: PMC10762529 DOI: 10.5306/wjco.v14.i12.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/22/2023] Open
Abstract
Coix seed is a dry and mature seed of Coix lacryma-jobi L.var.ma-yuen (Roman.) Stapf in the Gramineae family. Coix seed has a sweet, light taste, and a cool nature. Coix seed enters the spleen, stomach, and lung meridians. It has the effects of promoting diuresis and dampness, strengthening the spleen to prevent diarrhea, removing arthralgia, expelling pus, and detoxifying and dispersing nodules. It is used for the treatment of edema, athlete's foot, poor urination, spleen deficiency and diarrhea, dampness and obstruction, lung carbuncle, intestinal carbuncle, verruca, and cancer. The medicinal and health value is high, and it has been included in the list of medicinal and food sources in China, which has a large development and application space. This article reviews the current research achievements in the processing methods and anti-tumor activities of Coix seed and provides examples of its clinical application in ancient and modern times, aiming to provide reference for further research on Coix seed and contribute to its clinical application and development. Through the analysis of the traditional Chinese patent medicines, and simple preparations and related health food of Coix seed queried by Yaozhi.com, the source, function, and dosage form of Coix seed were comprehensively analyzed, with a view of providing a reference for the development of Coix seed medicine and food.
Collapse
Affiliation(s)
- Fan-Di Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ya-Ting Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Duo-Jie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Meng-Ying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
18
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023; 55:353-374. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Ouyang XJ, Li JQ, Zhong YQ, Tang M, Meng J, Ge YW, Liang SW, Wang SM, Sun F. Identifying the active ingredients of carbonized Typhae Pollen by spectrum-effect relationship combined with MBPLS, PLS, and SVM algorithms. J Pharm Biomed Anal 2023; 235:115619. [PMID: 37619295 DOI: 10.1016/j.jpba.2023.115619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Typhae Pollen (TP) and its carbonized product (carbonized Typhae Pollen, CTP), as cut-and-dried herbal drugs, have been widely used in the form of slices in clinical settings. However, the two drugs exhibit a great difference in terms of their clinical efficacy, for TP boasts an effect of removing blood stasis and promoting blood circulation, while CTP typically presents a hemostatic function. Since the active ingredients of CTP, so far, still remain unclear, this study aimed at identifying the active ingredients of CTP by spectrum-effect relationship approach coupled with multi-block partial least squares (MBPLS), partial least squares (PLS), and support vector machine (SVM) algorithms. In this study, the chemical profiles of a series of CTP samples which were stir-fried for different duration (denoted as CTP0∼CTP9) were firstly characterized by UHPLC-QE-Orbitrap MS. Then the hemostatic effect of the CTP samples was evaluated from the perspective of multiple parameters-APTT, PT, TT, FIB, TXB2, 6-keto-PGF1α, PAI-1 and t-PA-using established rat models with functional uterine bleeding. Subsequently, MBPLS, PLS and SVM were combined to perform spectrum-effect relationship analysis to identify the active ingredients of CTP, followed by an in vitro hemostatic bioactivity test for verification. As a result, a total of 77 chemical ingredients were preliminarily identified from the CTP samples, and the variations occurred in these ingredients were also analyzed during the carbonizing process. The study revealed that all the CTP samples, to a varying degree, showed a hemostatic effect, among which CTP6 and CTP7 were superior to the others in terms of the hemostatic effect. The block importance in the projection (BIP) indexes of MBPLS model indicated that flavonoids and organic acids made more contributions to the hemostatic effect of CTP in comparison to other ingredients. Consequently, 9 bioactive ingredients, including quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, quercetin, kaempferol, isorhamnetin, 2-methylenebutanedioic acid, pentanedioic acid, benzoic acid and 3-hydroxybenzoic acid, were further identified as the potential active ingredients based on PLS and SVM models as well as the in vitro verification. This study successfully revealed the bioactive ingredients of CTP associated with its hemostatic effect, and also provided a scientific basis for further understanding the mechanism of TP processing. In addition, it proposed a novel path to identify the active ingredients for Chinese herbal medicines.
Collapse
Affiliation(s)
- Xiao-Jie Ouyang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Qi Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong-Qi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Tang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiang Meng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China
| | - Sheng-Wang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China.
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou, China; Traditional Chinese Medicine Quality Engineering and Technology Research Center of Guangdong Universities, Guangzhou, China.
| |
Collapse
|
20
|
He P, Zhang C, Yang Y, Tang S, Liu X, Yong J, Peng T. Spectrum-Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules 2023; 28:7011. [PMID: 37894489 PMCID: PMC10609026 DOI: 10.3390/molecules28207011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
As natural products with biological activity, the quality of traditional Chinese medicines (TCM) is the key to their clinical application. Fingerprints based on the types and contents of chemical components in TCM are an internationally recognized quality evaluation method but ignore the correlation between chemical components and efficacy. Through chemometric methods, the fingerprints represented by the chemical components of TCM were correlated with its pharmacodynamic activity results to obtain the spectrum-effect relationships of TCM, which can reveal the pharmacodynamic components information related to the pharmacodynamic activity and solve the limitations of segmentation of chemical components and pharmacodynamic research in TCM. In the 20th anniversary of the proposed spectrum-effect relationships, this paper reviews its research progress in the field of TCM, including the establishment of fingerprints, pharmacodynamic evaluation methods, chemometric methods and their practical applications in the field of TCM. Furthermore, the new strategy of spectrum-effect relationships research in recent years was also discussed, and the application prospects of this technology were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (P.H.); (C.Z.); (Y.Y.); (S.T.); (X.L.); (J.Y.)
| |
Collapse
|
21
|
Lv Y, Wu H, Hong Z, Wei F, Zhao M, Tang R, Li Y, Ge W, Li C, Du W. Exploring active ingredients of anti-osteoarthritis in raw and wine-processed Dipsaci Radix based on spectrum-effect relationship combined with chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116281. [PMID: 36828196 DOI: 10.1016/j.jep.2023.116281] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dipsaci Radix (DR) is the dry root of the Dipsacus asper Wall. ex DC., which has the function of tonifying the liver and kidney, continuing tendons and bones, and regulating blood vessels. However, there are few reports on the main active ingredients. AIM OF THE STUDY This study aimed to find the main active components of DR in the treatment of osteoarthritis (OA) by spectrum-effect relationship and compare the differences between RDR and WDR. MATERIALS AND METHODS Firstly, the high-performance liquid chromatography (HPLC) method was used to establish the fingerprint of DR, and 10 peaks of them were determined by UPLC-Q-TOF/MS. Then, the OA rat model was established by injecting sodium iodoacetate to study the effect of DR on OA. The spectrum-effect relationship was analyzed by grey relational analysis (GRA) and Pearson correlation analysis. RESULTS According to the pharmacological results, compared with the model group, the cartilage score, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), and Mankin score of rats in low, medium and high dose groups were decreased, and the therapeutic effect of wine-processed DR tended to be better than raw DR at the same dose. Finally, the active components of DR were preliminarily determined as 4 (loganic acid), 6 (chlorogenic acid), 8 (caffeic acid), 14 (dipsanoside B), 16, and 17 (asperosaponin VI) which had a large correlation in GRA and Pearson correlation analysis. CONCLUSION This study established the spectrum-effect relationship between the raw and wine-processed DR for the first time, which provided a theoretical basis for the study of the pharmacodynamic substance basis of DR before and after processing. This research provided a reference for the subsequent study of DR.
Collapse
Affiliation(s)
- Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Zhihui Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
22
|
Wubuli A, Abdulla R, Zang D, Jiang L, Chen L, Aisa HA. Spectrum-effect relationship between UPLC fingerprints and melanogenic effect of Ruta graveolens L. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123683. [PMID: 36965451 DOI: 10.1016/j.jchromb.2023.123683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
A total of 29 batches of R. graveolens were used in this study, their fingerprints were obtained by ultra-performance liquid chromatography (UPLC) and their melanogenesis activities were evaluated. The common peaks were identified by quadrupole-orbitrap high-resolution mass spectrometry (Q-Orbitrap-HRMS). Eleven coumarins, six alkaloids, three flavonoids, three phenolic acids, and four other compounds were found. The spectrum-effect relationships between R. graveolens' chemical fingerprints, the melanin synthesis, and tyrosine's activation activities were established through chemometrics methods which in detail principal component analysis (PCA), gray correlation analysis (GRA), bivariate correlation analysis (BCA) and orthogonal partial least squares analysis (OPLS). The results showed that P18 (bergapten), P22 (isoimperatorin), P15 (kokusaginine), P7 (rutin), P12 (psoralen), and P13 (graveolinine) were relevant to intracellular melanin synthesis activity and tyrosinase activity. Among them, P18 (bergapten), P15 (kokusaginine), and P12 (psoralen) were validated with good melanogenesis activities. This study provides a research basis for future quality control and medicinal application of R. graveolens.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lan Jiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Longyi Chen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Guo W, Yao X, Lan S, Zhang C, Li H, Chen Z, Yu L, Liu G, Lin Y, Liu S, Chen H. Metabolomics and integrated network pharmacology analysis reveal SNKAF decoction suppresses cell proliferation and induced cell apoptisis in hepatocellular carcinoma via PI3K/Akt/P53/FoxO signaling axis. Chin Med 2022; 17:76. [PMID: 35725485 PMCID: PMC9208213 DOI: 10.1186/s13020-022-00628-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is no comprehensive treatment method for hepatocellular carcinoma (HCC); hence, research and development are still focused on systemic therapies, including drugs. Sinikangai fang (SNKAF) decoction, a classic Chinese herbal prescription, has been widely used to treat liver cancer. However, there is no research on its core active component and target. METHODS Mouse models were established to measure the anticancer effect of SNKAF decoction on HCC. Further, we investigated the effect of SNKAF decoction on inhibition of hepatoma cells proliferation using cell viability, cloning and invasion assays in vitro. The components of SNKAF were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and TCM@Taiwan database. Metabolomic analysis was used to identify the potential genes and pathways in HCC treated with SNKAF decoction. Then, the expression of phosphoinositide 3-kinase (PI3K), Akt, P53, FoxO proteins of the potential signal pathways were detected using Western blot. RESULTS The animal experiments showed that SNKAF decoction inhibited tumor growth (P < 0.05) and induced no weight loss in the mice. In vitro data showed that HCCLM3 and MHCC97H cell proliferation was inhibited by SNKAF serum in a time- and concentration dependent manner. Further combined analysis network pharmacology with metabonomics showed that 217 target genes overlapped. The core target genes included BCL2, MCL1, Myc, PTEN, gsk3b, CASP9, CREB1, MDM2, pt53 and CCND1. Cancer-associated pathways were largely involved in SNKAF mechanisms, including P53, FoxO, and PI3K/Akt signaling pathways, which are closely related to induced-tumor cell apoptosis. In addition, Western bolt verified that 10% SNKAF serum significantly affected the main proteins of PI3K/Akt/P53/FoxO signaling pathway in both cell lines. CONCLUSION SNKAF decoction-containing serum inhibited HCCLM3 and MHCC97H cell proliferation, migration, invasion, and induced-tumor cell apoptosis in-vivo. We confirmed that SNKAF decoction is a promising alternative treatments for HCC patients.
Collapse
Affiliation(s)
- Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaohui Yao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Siyuan Lan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chi Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hanhan Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhuangzhong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ling Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guanxian Liu
- Department of Nephrology, Huizhou Municipal Central Hospital, Huizhou, 510006, Guangdong, People's Republic of China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Shan Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Hanrui Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Lai J, Huang L, Bao Y, Wang L, Lyu Q, Kuang H, Wang K, Sang X, Yang Q, Shan Q, Cao G. A deep clustering-based mass spectral data visualization strategy for anti-renal fibrotic lead compound identification from natural products. Analyst 2022; 147:4739-4751. [DOI: 10.1039/d2an01185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a deep clustering-based MS data visualization strategy (MCnebula), integrated with the influential open-source automatic MS annotation platform SIRIUS and in vivo and in vitro methods, to screen and validate potential lead compounds from natural products.
Collapse
Affiliation(s)
- Jieying Lai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lichuang Huang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yini Bao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Lyu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haodan Kuang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiyuan Shan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gang Cao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|