1
|
Kumar M, Devi WM, Choudhury TG, Kamilya D, Monsang SJ, Irungbam S, Saha RK. Unraveling the Bioactivities and Immunomodulatory Potential of Postbiotics Derived from Bacillus subtilis and B. amyloliquefaciens for Aquaculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10528-z. [PMID: 40186049 DOI: 10.1007/s12602-025-10528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Postbiotics are molecules or soluble factors released as a result of a probiotic's metabolic activity. Their use in enhancing the growth, health, and disease resistance of aquatic animals has gained considerable attention in aquaculture. The present investigation was designed to assess the beneficial effects of postbiotic products derived from two probiotic strains, Bacillus subtilis and B. amyloliquefaciens. Postbiotics from B. subtilis exhibited significantly greater (p < 0.05) antibacterial activity against various pathogenic bacterial strains, more robust antagonistic growth kinetics, stronger anti-virulence potential, enhanced inhibition of biofilm formation, and increased antioxidant activity compared to those from B. amyloliquefaciens. Additionally, B. subtilis postbiotics triggered a significant (p < 0.05) cellular immune response, including higher myeloperoxidase activity, leucocyte proliferation, and production of nitric oxide and superoxide anions, along with a notable upregulation of immune-related gene expression (IL-1β, IL-10, IFN-γ, and TNF-α) in the head kidney leucocytes of Labeo rohita. A challenge test on L. rohita fingerlings confirmed the safety of B. subtilis postbiotics. These findings highlight the anti-pathogenic, immunostimulatory, and disease-resistant properties of B. subtilis postbiotics, suggesting their promising application in aquaculture.
Collapse
Affiliation(s)
- Monalisha Kumar
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Wangkheimayum Malemnganbi Devi
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Tanmoy Gon Choudhury
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India.
| | - Dibyendu Kamilya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Shongsir Joy Monsang
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Surajkumar Irungbam
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Ratan Kumar Saha
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
- Techno India University, Tripura, Agartala, 799004, Tripura, India
| |
Collapse
|
2
|
Sahoo DK, Chainy GBN, Jergens AE. Editorial: Gastrointestinal (GI) disorders and antioxidant therapeutics. Front Endocrinol (Lausanne) 2025; 16:1588417. [PMID: 40206596 PMCID: PMC11978617 DOI: 10.3389/fendo.2025.1588417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Gagan B. N. Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Huang Y, Peng S, Zeng R, Yao H, Feng G, Fang J. From probiotic chassis to modification strategies, control and improvement of genetically engineered probiotics for inflammatory bowel disease. Microbiol Res 2024; 289:127928. [PMID: 39405668 DOI: 10.1016/j.micres.2024.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
With the rising morbidity of inflammatory bowel disease (IBD) year by year, conventional therapeutic drugs with systemic side effects are no longer able to meet the requirements of patients. Probiotics can improve gut microbiota, enhance intestinal barrier function, and regulate mucosal immunity, making them a potential complementary or alternative therapy for IBD. To compensate for the low potency of probiotics, genetic engineering technology has been widely used to improve their therapeutic function. In this review, we systematically summarize the genetically engineered probiotics used for IBD treatment, including probiotic chassis, genetic modification strategies, methods for controlling probiotics, and means of improving efficacy. Finally, we provide prospects on how genetically engineered probiotics can be extended to clinical applications.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha 410081, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Li D, Liu Z, Fan X, Zhao T, Wen D, Huang X, Li B. Lactic Acid Bacteria-Gut-Microbiota-Mediated Intervention towards Inflammatory Bowel Disease. Microorganisms 2024; 12:1864. [PMID: 39338538 PMCID: PMC11433943 DOI: 10.3390/microorganisms12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), arises from intricate interactions involving genetics, environment, and pharmaceuticals with an ambiguous pathogenic mechanism. Recently, there has been an increasing utilization of lactic acid bacteria (LAB) in managing IBD, attributed to their ability to enhance intestinal barrier function, mitigate inflammatory responses, and modulate gut microbiota. This review initiates by elucidating the pathogenesis of IBD and its determinants, followed by an exploration of the mechanisms underlying LAB therapy in UC and CD. Special attention is directed towards their influence on intestinal barrier function and homeostasis regulated by gut microbiota. Furthermore, the review investigates the complex interplay among pivotal gut microbiota, metabolites, and pathways associated with inflammation. Moreover, it underscores the limitations of LAB in treating IBD, particularly in light of their varying roles in UC and CD. This comprehensive analysis endeavors to offer insights for the optimized application of LAB in IBD therapy.
Collapse
Affiliation(s)
- Diantong Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| |
Collapse
|
6
|
Kang JY, Lee M, Song JH, Choi EJ, Mun SY, Kim D, Lim SK, Kim N, Park BY, Chang JY. Intracellular pyruvate as one of the major bioactive substances of lactic acid bacteria isolated from kimchi. J Food Sci 2024; 89:5594-5604. [PMID: 39169543 DOI: 10.1111/1750-3841.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
The present study aimed to identify the metabolites associated with the physiological activity of kimchi-derived lactic acid bacteria (LAB). A clear difference was observed between the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging rates when the pyruvate content was high (273.5 ng/µL; radical removal speed 6.50% per min) and the rates when the pyruvate content had decreased (131.9 ng/µL; radical removal speed 3.63% per min). Additionally, the characteristics of LAB antioxidant activity (increase in ABTS radical scavenging activity with reaction time, low level of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity) were similar to those of pyruvate-derived activity. Hydrogen peroxide content (WiKim0124, 2.08 → 0.26; WiKim0121, 0.99 → 0.47; WiKim39, 1.93 → 0.24) and lactate dehydrogenase activity (WiKim0124, 1.53 → 0.00; WiKim0121, 0.73 → 0.01; WiKim39, 1.72 → 0.02) decreased more in heat-killed LAB than in non-heat-killed LAB. Accordingly, this resulted in increased pyruvate content and the inhibitory activity of lipid peroxide production increased by 2-3 times. Our findings indicate that pyruvate is one of the major metabolites regulating LAB physiological activity. PRACTICAL APPLICATION: The safety of utilizing live probiotics remains a topic of debate. To mitigate associated risks, there is a growing interest in non-viable microorganisms or microbial cell extracts for use as probiotics. Various methods can be employed for probiotic inactivation. Heat treatment typically emerges as the preferred choice for inactivating probiotic strains in many instances. The present study shows the distinctions between inactivating lactic acid bacteria (LAB) through heat treatment and non-heat treatment. It may serve as a valuable reference for selecting an appropriate inactivation method for LAB in industrial processes.
Collapse
Affiliation(s)
- Jin Yong Kang
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - So Yeong Mun
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Daun Kim
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Seul Ki Lim
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Namhee Kim
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Bo Yeon Park
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| |
Collapse
|
7
|
Dong F, Hao L, Wang L, Huang Y. Clickable nanozyme enhances precise colonization of probiotics for ameliorating inflammatory bowel disease. J Control Release 2024; 373:749-765. [PMID: 39084465 DOI: 10.1016/j.jconrel.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Convincing evidence suggests that aberrant gut microbiota changes play a critical role in the progression and pathogenesis of inflammatory bowel disease (IBD). Probiotic therapeutic interventions targeting the microbiota may provide alternative avenues to treat IBD, but currently available probiotics often suffer from low intestinal colonization and limited targeting capability. Here, we developed azido (N3)-modified Prussian blue nanozyme (PB@N3) spatio-temporal guidance enhances the targeted colonization of probiotics to alleviate intestinal inflammation. First, clickable PB@N3 targets intestinal inflammation, simultaneously, it scavenges reactive oxygen species (ROS). Subsequently, utilizing "click" chemistry to spatio-temporally guide targeted colonization of dibenzocyclooctyne (DBCO)-modified Lactobacillus reuteri DSM 17938 (LR@DBCO). The "click" reaction between PB@N3 and LR@DBCO has excellent specificity and efficacy both in vivo and in vitro. Despite the complex physiological environment of IBD, "click" reaction can prolong the retention time of probiotics in the intestine. Dextran sulfate sodium (DSS)-induced colitis mice model, demonstrates that the combination of PB@N3 and LR@DBCO effectively mitigates levels of ROS, enhances the colonization of probiotics, modulates intestinal flora composition and function, regulates immune profiles, restores intestinal barrier function, and alleviates intestinal inflammation. Hence, PB@N3 spatio-temporal guidance enhances targeted colonization of LR@DBCO provides a promising medical treatment strategy for IBD.
Collapse
Affiliation(s)
- Fang Dong
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Liangwen Hao
- The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Wang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
8
|
Gao B, Ruiz D, Case H, Jinkerson RE, Sun Q. Engineering bacterial warriors: harnessing microbes to modulate animal physiology. Curr Opin Biotechnol 2024; 87:103113. [PMID: 38564969 PMCID: PMC11444245 DOI: 10.1016/j.copbio.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Daniela Ruiz
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States
| | - Hayden Case
- Department of Biology, Texas A&M University, College Station, TX 77840, United States
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
9
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
10
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
11
|
El Maksoud AIA, Al-Karmalawy AA, ElEbeedy D, Ghanem A, Rasheed Y, Ibrahim IA, Elghaish RA, Belal A, Raslan MA, Taher RF. Symbiotic Antidiabetic Effect of Lactobacillus casei and the Bioactive Extract of Cleome droserifolia (Forssk.) Del. on Mice with Type 2 Diabetes Induced by Alloxan. Chem Biodivers 2024; 21:e202301397. [PMID: 38078801 DOI: 10.1002/cbdv.202301397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
The consumption of probiotics protects pancreatic β-cells from oxidative damage, delaying the onset of type 2 diabetes mellitus (T2DM) and preventing microvascular and macrovascular complications. This study aimed to evaluate the antidiabetic activity of CDE fermented by Lactobacillus casei (ATCC 39539) (LC) in alloxan-induced diabetic rats. The oxidative stress identified by catalase (CAT), serum AST, ALT, ALP, creatinine, urea, and uric acid were measured. The chemical profiles of the plant extract and the fermented extract were studied using HPLC/MS. The potential of the compounds towards the binding pockets of aldose reductase and PPAR was discovered by molecular docking. A significant reduction in fasting blood glucose in alloxan-treated rats. The CAT showed a significant decrease in diabetic rats. Also, serum AST, ALT, ALP, creatinine, urea, and uric acid were significantly decreased in the mixture group. Mild histological changes of pancreatic and kidney tissues suggested that the mixture of probiotics and cleome possesses a marked anti-diabetic effect. Overall, the study suggests that the combination of Cleome droserifolia fermented by Lactobacillus casei exhibits significant antidiabetic activity (p-value=0.05), reduces oxidative stress, improves lipid profiles, and shows potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Ahmed I Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Dalia ElEbeedy
- Department of Microbiology and Immunology, Faculty of Biotechnology, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Yasmin Rasheed
- College of Biotechnology, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ibrahim A Ibrahim
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | | | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mona A Raslan
- Pharmacognosy Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
12
|
Kleib J, Rizk Z, Tannouri A, Abou-Khalil R. Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments. Microorganisms 2023; 11:2815. [PMID: 38004826 PMCID: PMC10673524 DOI: 10.3390/microorganisms11112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Bread is the oldest and most essential food consumed by humans, with its consumption exceeding nutritional needs and becoming part of cultural habits. Fermentation is an important step in the bread-making process, giving it its rheological, organoleptic, aromatic, and nutritional properties. Lactic acid bacteria and yeasts are both responsible for the fermentation step and part of the natural flour microbiota. In this study, we aimed to characterize LAB in three types of flour, namely, wheat, oat, and rice flour, using conventional phenotypic and biochemical assays and to carry out molecular-biology-based characterization via studying the rrn Operon using RFLP of the ITS region and via PCR using species-specific primers. Additionally, the effect of LAB diversity among the three types of flour and their influence on dough characteristics were assessed. Also, we evaluated the antagonistic effects of LAB on two bacterial (E. coli and S. aureus) and two fungal (Botrytis and Fusarium) pathogens. This study showed that LAB are not the predominant species in rice flour, while they were predominant in wheat and oat flour. Additionally, Lactobacillus sanfranciscencis was found to be the predominant species in wheat flour, while its presence in oat flour was minor. Finally, through their production of soluble substances, LAB exerted antagonistic effects on the four types of pathogenic microorganisms.
Collapse
Affiliation(s)
- Jihad Kleib
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon; (J.K.); (Z.R.); (A.T.)
| | - Ziad Rizk
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon; (J.K.); (Z.R.); (A.T.)
- Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeidet El-Metn, Fanar P.O. Box 90-1965, Lebanon
| | - Abdo Tannouri
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon; (J.K.); (Z.R.); (A.T.)
- Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeidet El-Metn, Fanar P.O. Box 90-1965, Lebanon
| | - Rony Abou-Khalil
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon; (J.K.); (Z.R.); (A.T.)
| |
Collapse
|
13
|
Musazadeh V, Faghfouri AH, Zarezadeh M, Pakmehr A, Moghaddam PT, Hamedi-Kalajahi F, Jahandideh A, Ghoreishi Z. Remarkable impacts of probiotics supplementation in enhancing of the antioxidant status: results of an umbrella meta-analysis. Front Nutr 2023; 10:1117387. [PMID: 37637950 PMCID: PMC10451070 DOI: 10.3389/fnut.2023.1117387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Numerous meta-analyses have demonstrated the beneficial effects of probiotics on oxidative stress biomarkers, although some studies have contradictory results. Therefore, the current research was conducted to obtain a precise and definite understanding on the impact of probiotics on oxidative stress biomarkers in adults. Methods We conducted a comprehensive systematic search of results on Scopus, PubMed, Embase, Web of Science, and Google Scholar dating up to March 2022. Fifteen meta-analyses were included in this umbrella meta-analysis. The random-effects model was employed to obtain the overall effect size. Subgroup analyses were carried out based on supplementation dosage and duration, mean age, and study population. Results Our results indicated that probiotics supplementation meaningfully decreased serum malondialdehyde (MDA) (ESWMD = -0.56, 95% CI: -0.72, -0.39; p < 0.001, and ESSMD = -0.50, 95% CI: -0.66, -0.34; p < 0.001). Moreover, the findings showed that probiotics resulted in a significant increase in total antioxidant capacity (TAC) (ESWMD = 29.18, 95% CI: 16.31, 42.04; p < 0.001, and ESSMD = 0.25, 95% CI: 0.02, 0.47; p = 0.032), total glutathione (GSH) (ESWMD: 30.65; 95% CI: 16.94, 44.35, p < 0.001), and nitric oxide (NO) (ESWMD: 1.48; 95% CI: 0.31, 2.65, p = 0.013; I2 = 51.7%, p = 0.043). Discussion Probiotics could be considered a strong agent in the reinforcement of antioxidant status and preventing the incidence of chronic diseases.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Taghavi Moghaddam
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fateme Hamedi-Kalajahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Jahandideh
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Ghoreishi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Zarezadeh M, Mahmoudinezhad M, Hosseini B, Khorraminezhad L, Razaghi M, Alvandi E, Saedisomeolia A. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis. Clin Nutr 2023; 42:1330-1358. [PMID: 37418842 DOI: 10.1016/j.clnu.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorders (ASDs) are associated with specific dietary habits, including limited food selection and gastrointestinal problems, resulting in an altered gut microbiota. Autistic patients have an elevated abundance of certain gut bacteria associated with increased oxidative stress in the gastrointestinal tract. Probiotic supplementation has been shown to decrease oxidative stress in a simulated gut model, but the antioxidant effects of probiotics on the oxidative stress of the gut in autistic patients have not been directly studied. However, it is speculated that probiotic supplementation may help decrease oxidative stress in the gastrointestinal tract of autistic patients due to their specific dietary habits altering the microbiota. PubMed, Scopus and Web of Science databases and Google Scholar were searched up to May 2023. This systematic-narrative review aims to present the latest evidence regarding the changes in eating habits of autistic children which may further increase the gut microbiota induced oxidative stress. Additionally, this review will assess the available literature on the effects of probiotic supplementation on oxidative stress parameters.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafshe Hosseini
- Clinical Research and Knowledge Transfer Unit on Childhood Asthma, Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada
| | - Leila Khorraminezhad
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Maryam Razaghi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
15
|
Cao F, Jin L, Gao Y, Ding Y, Wen H, Qian Z, Zhang C, Hong L, Yang H, Zhang J, Tong Z, Wang W, Chen X, Mao Z. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. NATURE NANOTECHNOLOGY 2023; 18:617-627. [PMID: 36973397 DOI: 10.1038/s41565-023-01346-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Inflammatory bowel disease can be caused by the dysfunction of the intestinal mucosal barrier and dysregulation of gut microbiota. Traditional treatments use drugs to manage inflammation with possible probiotic therapy as an adjuvant. However, current standard practices often suffer from metabolic instability, limited targeting and result in unsatisfactory therapeutic outcomes. Here we report on artificial-enzyme-modified Bifidobacterium longum probiotics for reshaping a healthy immune system in inflammatory bowel disease. Probiotics can promote the targeting and retention of the biocompatible artificial enzymes to persistently scavenge elevated reactive oxygen species and alleviate inflammatory factors. The reduced inflammation caused by artificial enzymes improves bacterial viability to rapidly reshape the intestinal barrier functions and restore the gut microbiota. The therapeutic effects are demonstrated in murine and canine models and show superior outcomes to traditional clinical drugs.
Collapse
Affiliation(s)
- Fangfang Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyang Wen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyin Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiaojiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
M.F. Elshaghabee F, A. Abd El-Maksoud A, M. Ambrósio F. de Gouveia G. Recent Development in Antioxidant of Milk and Its Products. Biochemistry 2023. [DOI: 10.5772/intechopen.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Free radicals are produced in humans through natural metabolism or the external environment, such as diet. These free radicals are neutralized by the antioxidant system, whereas enzymes, for example, catalase, superoxide dismutase, and glutathione peroxidase, play an important role in preventing excessive free radicals. Food antioxidants give a good hand in enhancing the human antioxidant system; high consumption of a diet rich in natural antioxidants protects against the risk of diseases such as cardiovascular, cancer, diabetes, and obesity. Milk and its products are popular for a wide range of consumers. Milk contains casein, whey protein, lactoferrin, milk lipid and phospholipids, vitamins, and microelements, for example, selenium (Se), which have antioxidant properties. Furthermore, probiotication of milk either sweet or fermented could enhance the antioxidant capacity of milk. This chapter focuses on presenting recent review data on milk components with antioxidant activity and their health benefits, probiotics as antioxidant agents, and methods for enhancing the antioxidant capacity of dairy products. The key aim of this chapter is to focus on major strategies for enhancing the antioxidant capacity of milk and its products.
Collapse
|
17
|
Zhang T, Zhang J, Duan L. The Role of Genetically Engineered Probiotics for Treatment of Inflammatory Bowel Disease: A Systematic Review. Nutrients 2023; 15:nu15071566. [PMID: 37049407 PMCID: PMC10097376 DOI: 10.3390/nu15071566] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Many preclinical studies have demonstrated the effectiveness of genetically modified probiotics (gm probiotics) in animal models of inflammatory bowel disease (IBD). OBJECTIVE This systematic review was performed to investigate the role of gm probiotics in treating IBD and to clarify the involved mechanisms. METHODS PubMed, Web of Science, Cochrane Library, and Medline were searched from their inception to 18 September 2022 to identify preclinical and clinical studies exploring the efficacy of gm probiotics in IBD animal models or IBD patients. Two independent researchers extracted data from the included studies, and the data were pooled by the type of study; that is, preclinical or clinical. RESULTS Forty-five preclinical studies were included. In these studies, sodium dextran sulfate and trinitrobenzene sulfonic acid were used to induce colitis. Eleven probiotic species have been genetically modified to produce therapeutic substances, including IL-10, antimicrobial peptides, antioxidant enzymes, and short-chain fatty acids, with potential therapeutic properties against colitis. The results showed generally positive effects of gm probiotics in reducing disease activity and ameliorating intestinal damage in IBD models; however, the efficacy of gm probiotics compared to that of wild-type probiotics in many studies was unclear. The main mechanisms identified include modulation of the diversity and composition of the gut microbiota, production of regulatory metabolites by beneficial bacteria, reduction of the pro- to anti-inflammatory cytokine ratio in colonic tissue and plasma, modulation of oxidative stress activity in the colon, and improvement of intestinal barrier integrity. Moreover, only one clinical trial with 10 patients with Crohn's disease was included, which showed that L. lactis producing IL-10 was safe, and a decrease in disease activity was observed in these patients. CONCLUSIONS Gm probiotics have a certain efficacy in colitis models through several mechanisms. However, given the scarcity of clinical trials, it is important for researchers to pay more attention to gm probiotics that are more effective and safer than wild-type probiotics to facilitate further clinical translation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
18
|
Zhao T, Wang H, Liu Z, Liu Y, Li B, Huang X. Recent Perspective of Lactobacillus in Reducing Oxidative Stress to Prevent Disease. Antioxidants (Basel) 2023; 12:antiox12030769. [PMID: 36979017 PMCID: PMC10044891 DOI: 10.3390/antiox12030769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During oxidative stress, an important factor in the development of many diseases, cellular oxidative and antioxidant activities are imbalanced due to various internal and external factors such as inflammation or diet. The administration of probiotic Lactobacillus strains has been shown to confer a range of antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects in the host. This review focuses on the potential role of oxidative stress in inflammatory bowel diseases (IBD), cancer, and liver-related diseases in the context of preventive and therapeutic effects associated with Lactobacillus. This article reviews studies in cell lines and animal models as well as some clinical population reports that suggest that Lactobacillus could alleviate basic symptoms and related abnormal indicators of IBD, cancers, and liver damage, and covers evidence supporting a role for the Nrf2, NF-κB, and MAPK signaling pathways in the effects of Lactobacillus in alleviating inflammation, oxidative stress, aberrant cell proliferation, and apoptosis. This review also discusses the unmet needs and future directions in probiotic Lactobacillus research including more extensive mechanistic analyses and more clinical trials for Lactobacillus-based treatments.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Haoran Wang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
19
|
Forooghi Nia F, Rahmati A, Ariamanesh M, Saeidi J, Ghasemi A, Mohtashami M. The Anti-Helicobacter pylori effects of Limosilactobacillus reuteri strain 2892 isolated from Camel milk in C57BL/6 mice. World J Microbiol Biotechnol 2023; 39:119. [PMID: 36918449 DOI: 10.1007/s11274-023-03555-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
Helicobacter pylori infection (H. pylori) is associated with chronic gastritis, peptic ulcers, and gastric cancer. The present study provides information on the protective effects of Limosilactobacillus reuteri strain 2892 (L. reuteri 2892) isolated from camel's milk against H. pylori-induced gastritis in the stomach tissue of animal models. Animal assays revealed that L. reuteri 2892 pretreatment significantly downregulated the virulence factor cagA gene expression. It upregulated the expression level of tight junction molecules [zona occludens (ZO-1), claudin-4] and suppressed metalloproteinase (MMP)-2 and MMP-9 expressions. L. reuteri 2892 exhibited immunomodulatory effects on cytokine profile, as it reduced the serum concentrations of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and INF-γ and increased the anti-inflammatory cytokine, IL-10. In addition, L. reuteri 2892 showed anti-oxidative stress activity by regulating the levels of oxidative stress-associated markers [superoxide dismutase (SOD) and malondialdehyde (MDA)]. Our findings suggest that L. reuteri 2892 attenuates H. pylori-induced gastritis.
Collapse
Affiliation(s)
- Fatemeh Forooghi Nia
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mona Ariamanesh
- Department of Pathology, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran. .,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| |
Collapse
|
20
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Liu Y, Li Z, Li H, Wan S, Tang S. Bacillus pumilus TS1 alleviates Salmonella Enteritidis-induced intestinal injury in broilers. BMC Vet Res 2023; 19:41. [PMID: 36759839 PMCID: PMC9912683 DOI: 10.1186/s12917-023-03598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCβ and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Yin M, Wang N, Wang Q, Xia H, Cheng X, Hu H, Zhang Z, Liu H. Cloning and expression of recombinant human superoxide dismutase 1 (hSOD1) in Bacillus subtilis 1012. Biotechnol Lett 2023; 45:125-135. [PMID: 36469194 DOI: 10.1007/s10529-022-03319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE We aimed to clone and express the human Cu, Zn superoxide dismutase (hSOD1) in Bacillus subtilis 1012. Also, we investigated the expression level of hSOD1 under different induction conditions. RESULT As an essential member of the antioxidant defense system in vivo, hSOD1 has become a therapeutic agent against host diseases, such as oxygen toxicity, acute inflammation, and radiation injury. The recombinant hSOD1 was successfully secreted extracellularly into B. subtilis 1012. The expression conditions were optimized, including inoculum size, different media, temperatures, and inducer concentrations. Finally, the highest level of hSOD1 was produced as a soluble form in Super rich medium by 2% inoculum with 0.2 mM of IPTG at 37 °C after the induction for 24 h. Besides, 20 g/L of lactose also displayed the same inductive effect on hSOD1 expression as that of IPTG (0.2 mM). Finally, the specific activity of purified hSOD1 was determined to be 1625 U/mg in the presence of 800 μM of Cu2+ and 20 μM of Zn2+. CONCLUSIONS We propose that the B. subtilis 1012-hSOD1 strain system has great potential in future industrial applications.
Collapse
Affiliation(s)
- Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Nian Wang
- College of Basic Medical Sciences, Sun YAT-SEN University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
| | - Qiqi Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
23
|
Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem 2023; 238:112023. [PMID: 36270041 PMCID: PMC9888405 DOI: 10.1016/j.jinorgbio.2022.112023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
24
|
Iborra M, Moret I, Busó E, García-Giménez JL, Ricart E, Gisbert JP, Cabré E, Esteve M, Márquez-Mosquera L, García-Planella E, Guardiola J, Pallardó FV, Serena C, Algaba-Chueca F, Domenech E, Nos P, Beltrán B. The Genetic Diversity and Dysfunctionality of Catalase Associated with a Worse Outcome in Crohn's Disease. Int J Mol Sci 2022; 23:ijms232415881. [PMID: 36555526 PMCID: PMC9785615 DOI: 10.3390/ijms232415881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic gut inflammation in Crohn’s disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.
Collapse
Affiliation(s)
- Marisa Iborra
- Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Correspondence:
| | - Inés Moret
- Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Enrique Busó
- Central Unit for Research in Medicine (UCIM), Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Biomedical Research Institute, Spanish Institute of Health Carlos III, Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Center for Biomedical Research Network on Rare Diseases (CIBERER), 46010 Valencia, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clìnic de Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
| | - Javier P. Gisbert
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), CIBEREHD, 28006 Madrid, Spain
| | - Eduard Cabré
- Gastroenterology Department, Hospital Germans Trias i Pujol, CIBEREHD, 08916 Badalona, Spain
| | - Maria Esteve
- Gastroenterology Department, Hospital Universitari Mutua de Terrassa, CIBEREHD, 08221 Barcelona, Spain
| | - Lucía Márquez-Mosquera
- Servei de Digestiu, Hospital del Mar, Barcelona, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Esther García-Planella
- Gastroenterology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jordi Guardiola
- Gastroenterology Department, Hospital Universitari de Bellvitge, Hospital de Llobregat-Barcelona, 08901 Barcelona, Spain
| | - Federico V. Pallardó
- INCLIVA Biomedical Research Institute, Spanish Institute of Health Carlos III, Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Center for Biomedical Research Network on Rare Diseases (CIBERER), 46010 Valencia, Spain
| | - Carolina Serena
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | | | - Eugeni Domenech
- Gastroenterology Department, Hospital Germans Trias i Pujol, CIBEREHD, 08916 Badalona, Spain
| | - Pilar Nos
- Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - Belén Beltrán
- Hospital Vithas Virgen del Consuelo, 46007 Valencia, Spain
| |
Collapse
|
25
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Bogdanova AA, Refeld AG, Kharchenko EY, Chikindas ML. Antimutagenic Activity as a Criterion of Potential Probiotic Properties. Probiotics Antimicrob Proteins 2022; 14:1094-1109. [PMID: 35028920 DOI: 10.1007/s12602-021-09870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.
Collapse
Affiliation(s)
- Evgeniya V Prazdnova
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - Maria S Mazanko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Evolutionary Biomedicine Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Aleksandr G Refeld
- Cell Biophysics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Evgeniya Y Kharchenko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Bryukhanov AL, Klimko AI, Netrusov AI. Antioxidant Properties of Lactic Acid Bacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
29
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
30
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
31
|
Kang S, Lin Z, Xu Y, Park M, Ji GE, Johnston TV, Ku S, Park MS. A recombinant Bifidobacterium bifidum BGN4 strain expressing the streptococcal superoxide dismutase gene ameliorates inflammatory bowel disease. Microb Cell Fact 2022; 21:113. [PMID: 35672695 PMCID: PMC9172062 DOI: 10.1186/s12934-022-01840-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a gastrointestinal disease characterized by diarrhea, rectal bleeding, abdominal pain, and weight loss. Recombinant probiotics producing specific proteins with IBD therapeutic potential are currently considered novel drug substitutes. In this study, a Bifidobacterium bifidum BGN4-SK strain was designed to produce the antioxidant enzymes streptococcal superoxide dismutase (SOD) and lactobacillus catalase (CAT), and a B. bifidum BGN4-pBESIL10 strain was proposed to generate an anti-inflammatory cytokine, human interleukin (IL)-10. In vitro and in vivo efficacy of these genetically modified Bifidobacterium strains were evaluated for colitis amelioration. Results In a lipopolysaccharide (LPS)-stimulated HT-29 cell model, tumor necrosis factor (TNF)-α and IL-8 production was significantly suppressed in the B. bifidum BGN4-SK treatment, followed by B. bifidum BGN4-pBESIL10 treatment, when compared to the LPS-treated control. Synergistic effects on TNF-α suppression were also observed. In a dextran sodium sulphate (DSS)-induced colitis mouse model, B. bifidum BGN4-SK treatment significantly enhanced levels of antioxidant enzymes SOD, glutathione peroxidase (GSH-Px) and CAT, compared to the DSS-only group. B. bifidum BGN4-SK significantly ameliorated the symptoms of DSS-induced colitis, increased the expression of tight junction genes (claudin and ZO-1), and decreased pro-inflammatory cytokines IL-6, IL-1β and TNF-α. Conclusions These findings suggest that B. bifidum BGN4-SK ameliorated DSS-induced colitis by generating antioxidant enzymes, maintaining the epithelial barrier, and decreasing the production of pro-inflammatory cytokines. Although B. bifidum BGN4-pBESIL10 exerted anti-inflammatory effects in vitro, the enhancement of IL-10 production and alleviation of colitis were very limited. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01840-2.
Collapse
|
32
|
Sałański P, Kowalczyk M, Bardowski JK, Szczepankowska AK. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front Microbiol 2022; 13:822912. [PMID: 35694291 PMCID: PMC9174673 DOI: 10.3389/fmicb.2022.822912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential—they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.
Collapse
|
33
|
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis. Biomolecules 2022; 12:biom12050729. [PMID: 35625655 PMCID: PMC9139160 DOI: 10.3390/biom12050729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Collapse
|
34
|
Zhang X, Guo X, Li F, Usman S, Zhang Y, Ding Z. Antioxidant, Flavonoid, α-tocopherol, β-carotene, Fatty Acids, and Fermentation Profiles of Alfalfa Silage Inoculated With Novel Lactiplantibacillus Plantarum and Pediococcus acidilactici Strains With High-antioxidant Activity. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:3464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Ygor Marinho
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
36
|
Huynh U, Qiao M, King J, Trinh B, Valdez J, Haq M, Zastrow ML. Differential Effects of Transition Metals on Growth and Metal Uptake for Two Distinct Lactobacillus Species. Microbiol Spectr 2022; 10:e0100621. [PMID: 35080431 PMCID: PMC8791193 DOI: 10.1128/spectrum.01006-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Muxin Qiao
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - John King
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Brittany Trinh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Juventino Valdez
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Marium Haq
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
37
|
Biswas P, Pal S, Das M, Dam S. Microbe-Induced Oxidative Stress in Cancer Development and Efficacy of Probiotics as Therapeutics in Preventing Its Onset and Progression. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:3513-3542. [DOI: 10.1007/978-981-16-5422-0_159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Chemoprevention with a tea from hawthorn ( Crataegus oxyacantha) leaves and flowers attenuates colitis in rats by reducing inflammation and oxidative stress. FOOD CHEMISTRY-X 2021; 12:100139. [PMID: 34712949 PMCID: PMC8531563 DOI: 10.1016/j.fochx.2021.100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
A tea from the leaves and flowers of hawthorn is rich in flavonoids, especially vitexin-2-O-rhamnoside. Mesalamine and hawthorn tea have positive healing effects in rats with colitis. Hawthorn tea reduces the length and area of the brownish necrotic lesions. Hawthorn tea diminishes the levels of the inflammatory markers MPO and IL-1β. Hawthorn tea regulates the activity of the oxidative stress enzymes CAT and GR. The purpose of the study was to determine the effects of a tea from the leaves and flowers of Crataegus oxyacantha in rats with colitis. Colitis was induced by administration of 2,4,6-trinitrobenzene sulfonic acid. Hawthorn tea (HT) (100 mg/kg) was given via gavage for 21 days and the mesalamine drug (100 mg/kg) was administrated during the period of disease onset. HT was rich in total phenolic compounds (16.5%), flavonoids (1.8%), and proanthocyanidins (1.5%); vitexin-2-O-rhamnoside was the main compound detected. Mesalamine and the HT diminished the length of the lesions formed in the colon, in addition to reducing the levels of myeloperoxidase and interleukin-1β. Mesalamine was able to significantly reverse the body weight loss, while HT improved the activity of glutathione reductase and catalase. Histological scoring was not changed by the interventions, but it was highly correlated with the necrotic area. HT given at 100 mg/kg can be effective against colitis.
Collapse
Key Words
- CAT, Catalase
- CD, Crohn’s disease
- Colon
- Crataegus oxyacantha
- DAD, Diode array detection
- DAI, Disease Activity Index
- DSS, Dextran sodium sulfate
- ELISA, Enzyme-linked immunosorbent assay
- ESI, Electrospray ionization
- FID, Flame ionization detector
- FRAP, Ferric reducing antioxidant power
- GC, Gas chromatograph
- GPx, glutathione peroxidase
- GR, Glutathione reductase
- GSH, Glutathione
- HT, Hawthorn tea
- IBD, Inflammatory bowel disease
- IL-1β, Interleukin-1beta
- Inflammatory bowel diseases
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- MS, Mass spectrometry
- ORAC, Oxygen-radical absorbing capacity
- Polyphenol
- SCFA, Short-chain fatty acid
- SOD, Superoxide dismutase
- TFC, Total flavonoids content
- TNBS, 2,4,6-trinitrobenzene sulfonic acid
- TNF-α, Tumor necrosis factor-alpha
- TPC, Total polyphenols content
- TPOC, Total proanthocyanidin oligomers content
- UC, Ulcerative colitis
- UHPLC, Ultra-high-performance liquid chromatography
- Vitexin-2-O-rhamnoside
Collapse
|
39
|
Scarpellini E, Rinninella E, Basilico M, Colomier E, Rasetti C, Larussa T, Santori P, Abenavoli L. From Pre- and Probiotics to Post-Biotics: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:37. [PMID: 35010297 PMCID: PMC8750841 DOI: 10.3390/ijerph19010037] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS gut microbiota (GM) is a complex ecosystem containing bacteria, viruses, fungi, and yeasts. It has several functions in the human body ranging from immunomodulation to metabolic. GM derangement is called dysbiosis and is involved in several host diseases. Pre-, probiotics, and symbiotics (PRE-PRO-SYMB) have been extensively developed and studied for GM re-modulation. Herein, we review the literature data regarding the new concept of postbiotics, starting from PRE-PRO-SYMB. METHODS we conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the following keywords and acronyms and their associations: gut microbiota, prebiotics, probiotics, symbiotic, and postbiotics. RESULTS postbiotics account for PRO components and metabolic products able to beneficially affect host health and GM. The deeper the knowledge about them, the greater their possible uses: the prevention and treatment of atopic, respiratory tract, and inflammatory bowel diseases. CONCLUSIONS better knowledge about postbiotics can be useful for the prevention and treatment of several human body diseases, alone or as an add-on to PRE-PRO-SYMB.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
- TARGID, KU Leuven, 3000 Leuven, Belgium
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Martina Basilico
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | | | - Carlo Rasetti
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Tiziana Larussa
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Pierangelo Santori
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
40
|
Kaur S, Thukral SK, Kaur P, Samota MK. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
42
|
Ghavami A, Khorvash F, Khalesi S, Heidari Z, Askari G. The effects of synbiotic supplementation on oxidative stress and clinical symptoms in women with migraine: A double‐blind, placebo‐controlled, randomized trial. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Bhuyan AA, Akbar Bhuiyan A, Memon AM, Zhang B, Alam J, He QG. The in vitro antiviral activity of Lacticaseibacillus casei MCJ protein-based metabolites on bovine viral diarrhea virus. Anim Biotechnol 2021; 34:340-349. [PMID: 34495814 DOI: 10.1080/10495398.2021.1967964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a ubiquitous immunosuppressive etiological agent which is economically important for a wide host range in the livestock industry. Lactobacillus spp. has widely been using in the field of management and treatment of gastro-enteric disease for both humans and animals. The ability of Lacticaseibacillus casei MCJ protein-based metabolized to suppress BVDV infection in Madin-Darby Bovine Kidney cell line was demonstrated in this study. The protein-based metabolites were extracted from the cultured L. casei to obtain the safest and beneficial form of the probiotic bacteria. It is revealed that LPM have no cytotoxic effect and the cell viability remain more than 80% even after the cells are treated with 3000 µg/mL of LPM. The results of the plaque formation assay showed that LPM can reduce the viral infection rate. To know the mechanism of LPM for anti-BVDV activity, MDBK cells were exposed to LPM before, after and co-incubation of virus infection. The co-treatment of LPM with BVDV revealed the best results. The results suggest that the LPM has a potential anti-BVDV activity which could be a prospective candidate for the prevention and control of BVDV infection in an animal.
Collapse
Affiliation(s)
- Anjuman Ara Bhuyan
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Institute of Biotechnology, Savar, Bangladesh
| | - Ali Akbar Bhuiyan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jahangir Alam
- National Institute of Biotechnology, Savar, Bangladesh
| | - Qi-Gai He
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
44
|
Murphy K, O'Donovan AN, Caplice NM, Ross RP, Stanton C. Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites 2021; 11:metabo11080493. [PMID: 34436434 PMCID: PMC8401482 DOI: 10.3390/metabo11080493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Aoife N O'Donovan
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| | - Noel M Caplice
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| |
Collapse
|
45
|
Effects of the Cistanche tubulosa Aqueous Extract on the Gut Microbiota of Mice with Intestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4936970. [PMID: 34335809 PMCID: PMC8294959 DOI: 10.1155/2021/4936970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Disorders of the gut microbiota are associated with many diseases. The aqueous extract from Cistanche tubulosa (CT), a traditional Chinese herbal formula, has been reported to play a role in protecting the human intestine. However, little is known about its effects on the gut microbiota. The present study was carried out to determine whether the CT aqueous extract can modulate the gut microbiome in mice with intestinal disorders. We found that the damaged intestinal morphology resulting from treatment with cefixime could be rescued using the CT aqueous extract. The comparison of microbial diversity between mice treated with the CT extract and control mice also indicated that the disorder in the microbiome community of model groups could be restored by treatment with high and medium concentrations of the CT aqueous extract. Treatment with cefixime led to a significant decrease in lactic acid bacteria; however, the supplementation of the CT aqueous extract recovered the growth of these lactic acid bacteria. Furthermore, the CT aqueous extract was able to moderate the dramatic changes in the metabolic pathways of the gut microbiome induced by cefixime. These findings provided an insight into the beneficial effects of the CT aqueous extract on gut microbiota, and they also provided an important reference for the development of related drugs in the future.
Collapse
|
46
|
Rocks T, West M, Hockey M, Aslam H, Lane M, Loughman A, Jacka FN, Ruusunen A. Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110201. [PMID: 33307114 DOI: 10.1016/j.pnpbp.2020.110201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Anorexia nervosa is a serious psychiatric disorder with high morbidity and mortality rate. Evidence for the optimal psychopharmacological approach to managing the disorder remains limited, with nutritional treatment, focused on weight restoration through the consumption of high energy diet, regarded as one of the fundamental steps in treatment. The human gut microbiome is increasingly recognised for its proposed role in gastrointestinal, metabolic, immune and mental health, all of which may be compromised in individuals with anorexia nervosa. Dietary intake plays an important role in shaping gut microbiota composition, whilst the use of fermented foods, foods with potential psychobiotic properties that deliver live bacteria, bacterial metabolites, prebiotics and energy, have been discussed to a lesser extent. However, fermented foods are of increasing interest due to their potential capacity to affect gut microbiota composition, provide beneficial bacterial metabolites, and confer beneficial outcomes to host health. This review provides an overview of the role of the gut microbiota in relation to the disease pathology in anorexia nervosa and especially focuses on the therapeutic potential of fermented foods, proposed here as a recommended addition to the current nutritional treatment protocols warranting further investigation.
Collapse
Affiliation(s)
- Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia.
| | - Madeline West
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Meghan Hockey
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Hajara Aslam
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, VIC, Australia; Black Dog Institute, NSW, Australia; James Cook University, QLD; Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
47
|
Antioxidant and Anti-Inflammatory Properties of Recombinant Bifidobacterium bifidum BGN4 Expressing Antioxidant Enzymes. Microorganisms 2021; 9:microorganisms9030595. [PMID: 33805797 PMCID: PMC7998161 DOI: 10.3390/microorganisms9030595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Bifidobacterium bifidum BGN4-SK (BGN4-SK), a recombinant strain which was constructed from B. bifidum BGN4 (BGN4) to produce superoxide dismutase (SOD) and catalase, was analyzed to determine its antioxidant and anti-inflammatory properties in vitro. Culture conditions were determined to maximize the SOD and catalase activities of BGN4-SK. The viability, intracellular radical oxygen species (ROS) levels, intracellular antioxidant enzyme activities, and pro-inflammatory cytokine levels were determined to evaluate the antioxidant and anti-inflammatory activities of BGN4-SK in human intestinal epithelial cells (HT-29) and murine macrophage cells (RAW 264.7). Antioxidant enzymes (SOD and catalase) were produced at the highest levels when BGN4-SK was cultured for 24 h in a medium containing 500 μM MnSO4 and 30 μM hematin, with glucose as the carbon source. The viability and intracellular antioxidant enzyme activities of H2O2-stimulated HT-29 treated with BGN4-SK were significantly higher (p < 0.05) than those of cells treated with BGN4. The intracellular ROS levels of H2O2-stimulated HT-29 cells treated with BGN4-SK were significantly lower (p < 0.05) than those of cells treated with BGN4. BGN4-SK more significantly suppressed the production of interleukin (IL)-6 (p < 0.05), tumor necrosis factor-α (p < 0.01), and IL-8 (p < 0.05) in lipopolysaccharide (LPS)-stimulated HT-29 and LPS-stimulated RAW 264.7 cells compared to BGN4. These results suggest that BGN4-SK may have enhanced antioxidant activities against oxidative stress in H2O2-stimulated HT-29 cells and enhanced anti-inflammatory activities in LPS-stimulated HT-29 and RAW 264.7 cells.
Collapse
|
48
|
Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021; 26:molecules26041142. [PMID: 33672774 PMCID: PMC7924645 DOI: 10.3390/molecules26041142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Sanjeet Mehariya
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| |
Collapse
|
49
|
Chorawala MR, Chauhan S, Patel R, Shah G. Cell Wall Contents of Probiotics (Lactobacillus species) Protect Against Lipopolysaccharide (LPS)-Induced Murine Colitis by Limiting Immuno-inflammation and Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:1005-1017. [PMID: 33544362 DOI: 10.1007/s12602-020-09738-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Currently, there are no effective therapeutic agents to limit intestinal mucosal damage associated with inflammatory bowel disease (IBD). Based on several clinical studies, probiotics have emerged as a possible novel therapeutic strategy for IBD; however, their possible mechanisms are still poorly understood. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the protective effects of cell wall contents of three Lactobacillus species in lipopolysaccharide (LPS)-induced colitis rats. LPS-sensitized rats were rendered colitic by colonic instillation of LPS (500 µg/rat) for 14 consecutive days. Concurrently, cell wall contents isolated from 106 CFU of L. casei (LC), L. acidophilus (LA), and L. rhamnosus (LA) was given subcutaneously for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight, and histological analysis. Colonic inflammatory markers (myeloperoxidase activity, C-reactive protein, and pro-inflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione, and nitric oxide) were also assayed. Cell wall contents of LC, LA, and LR significantly ameliorated the severity of colitis by reducing body weight loss and diarrhea and bleeding incidence, improving food intake, colon weight/length, spleen weight, and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted anti-oxidant molecule. In conclusion, cell wall contents of LC, LA, and LR attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Sweta Chauhan
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Rakesh Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
50
|
Irrazabal T, Thakur BK, Croitoru K, Martin A. Preventing Colitis-Associated Colon Cancer With Antioxidants: A Systematic Review. Cell Mol Gastroenterol Hepatol 2021; 11:1177-1197. [PMID: 33418102 PMCID: PMC7907812 DOI: 10.1016/j.jcmgh.2020.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers.
Collapse
Affiliation(s)
| | - Bhupesh K Thakur
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Department of Medicine, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|