1
|
Buchberger DS, Khurana R, Bolen M, Videtic GMM. The Treatment of Patients with Early-Stage Non-Small Cell Lung Cancer Who Are Not Candidates or Decline Surgical Resection: The Role of Radiation and Image-Guided Thermal Ablation. J Clin Med 2024; 13:7777. [PMID: 39768701 PMCID: PMC11727850 DOI: 10.3390/jcm13247777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The standard of care for early-stage NSCLC has historically been surgical resection. Given the association of lung cancer with smoking, a large number of early-stage patients also have active smoking-related medical comorbidities such as COPD precluding surgery. The current approach for treating such inoperable patients is frequently considered to be stereotactic body radiation therapy (SBRT). SBRT (also known as stereotactic ablative radiation therapy or SABR) is a curative modality that precisely delivers very high dose radiation in few (typically <5) sessions. That said, because of their minimal invasiveness and repeatable nature, image-guided thermal ablation therapies such as radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation (CA) have also been used to treat early-stage lung tumors. For those patients deemed to have "high operative risk" (i.e., those who cannot tolerate lobectomy, but are candidates for sublobar resection), the appropriateness of potential alternatives [e.g., SBRT; ablation] to surgery is an active area of investigation. In the absence of completed randomized phase III trials, the approach to comparing outcomes between surgery, SBRT, or ablative therapies by their efficacy or equivalence is complex. An overview of the role of SBRT and other non-surgical modalities in the management of early-stage lung cancer is the subject of the present review.
Collapse
Affiliation(s)
- David S. Buchberger
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Rishabh Khurana
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Michael Bolen
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Gregory M. M. Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
2
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
3
|
Misa J, Knight JA, Pokhrel D. Feasibility of a Single-Fraction Stereotactic Dose of 30 Gy to Solitary Lung Lesions on Halcyon. Cureus 2024; 16:e59535. [PMID: 38826981 PMCID: PMC11144037 DOI: 10.7759/cureus.59535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose We sought to explore the feasibility of using the current co-planar Halcyon ring delivery system (RDS) with a novel multileaf collimator (MLC) aperture shape controller in delivering a single high dose of 30 Gy to solitary lung lesions via stereotactic body radiotherapy (SBRT). Materials and methods Thirteen non-small-cell lung cancer (NSCLC) patients previously treated with a single dose of 30 Gy to lung lesions via SBRT on the TrueBeam (6MV-FFF) using non-coplanar volumetric modulated arc therapy (VMAT) arcs were anonymized and replanned onto the Halcyon RDS (6MV-FFF) following RTOG-0915 single-fraction criteria. The Halcyon plans utilized a novel dynamic conformal arc (DCA)-based MLC-fitting approach before VMAT optimization with a user-defined aperture shape controller option. The clinical TrueBeam and Halcyon plans were compared via their protocol compliance, target conformity, gradient index, and dose to organs-at-risk (OAR). Treatment delivery efficacy and accuracy were assessed through end-to-end quality assurance (QA) tests on Halcyon and independent dose verification via in-house Monte Carlo (MC) second-check validation. Results All Halcyon lung SBRT plans met RTOG-0915 protocol's requirements for target coverage, conformity, and gradient indices, and maximum dose 2 cm away from the target (D2cm) while being statistically insignificant (p > 0.05) when compared to clinical TrueBeam plans. Additionally, Halcyon provided a similar dose to OAR except for the ribs, where Halcyon demonstrated a lower maximum dose (15.22 Gy vs 17.01 Gy, p < 0.001). However, Halcyon plans required a higher total monitor unit (8892 MU vs 7413 MU, p < 0.001), resulting in a higher beam modulation factor (2.96 MU/cGy vs 2.47 MU/cGy, p < 0.001) and an increase in beam-on time by a factor of 2.1 (11.11 min vs 5.3 min, p < 0.005). End-to-end QA measurements demonstrate that Halcyon plans were clinically acceptable with an average gamma passing rate of 99.8% for 2%/2mm criteria and independent MC 2nd checks within ±2.86%. Conclusion Our end-to-end testing and validation study demonstrates that by utilizing a DCA-based MLC aperture shape controller before VMAT optimization, Halcyon can be used for delivering a single dose of lung SBRT treatment. However, future improvements of Halcyon RDS are recommended to allow higher output rates, rotational couch corrections, and an integrated intrafraction motion management system that will further enhance Halcyon's capability for site-specific single dosage of SBRT.
Collapse
Affiliation(s)
- Joshua Misa
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| | - James A Knight
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| | - Damodar Pokhrel
- Department of Radiation Oncology, University of Kentucky, Lexington, USA
| |
Collapse
|
4
|
Liu F, Ververs JD, Farris MK, Blackstock AW, Munley MT. Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:829-838. [PMID: 37734445 DOI: 10.1016/j.ijrobp.2023.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/04/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE A series of radiobiological models were developed to study tumor control probability (TCP) for stereotactic body radiation therapy (SBRT) of early-stage non-small cell lung cancer (NSCLC) per the Hypofractionated Treatment Effects in the Clinic (HyTEC) working group. This study was conducted to further validate 3 representative models with the recent clinical TCP data ranging from conventional radiation therapy to SBRT of early-stage NSCLC and to determine systematic optimal fractionation regimens in 1 to 30 fractions for radiation therapy of early-stage NSCLC that were found to be model-independent. METHODS AND MATERIALS Recent clinical 1-, 2-, 3-, and 5-year actuarial or Kaplan-Meier TCP data of 9808 patients from 56 published papers were collected for radiation therapy of 2 to 4 Gy per fraction and SBRT of early-stage NSCLC. This data set nearly triples the original HyTEC sample, which was used to further validate the HyTEC model parameters determined from a fit to the clinical TCP data. RESULTS TCP data from the expanded data set are well described by the HyTEC models with α/β ratios of about 20 Gy. TCP increases sharply with biologically effective dose and reaches an asymptotic maximal plateau, which allows us to determine optimal fractionation schemes for radiation therapy of early-stage NSCLC. CONCLUSIONS The HyTEC radiobiological models with α/β ratios of about 20 Gy determined from the fits to the clinical TCP data for SBRT of early-stage NSCLC describe the recent TCP data well for both radiation therapy of 2 to 4 Gy per fraction and SBRT dose and fractionation schemes of early-stage NSCLC. A steep dose response exists between TCP and biologically effective dose, and TCP reaches an asymptotic maximum. This feature results in model-independent optimal fractionation regimens determined whenever safe for SBRT and hypofractionated radiation therapy of early-stage NSCLC in 1 to 30 fractions to achieve asymptotic maximal tumor control, and T2 tumors require slightly higher optimal doses than T1 tumors. The proposed optimal fractionation schemes are consistent with clinical practice for SBRT of early-stage NSCLC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina.
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Michael K Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - A William Blackstock
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
5
|
Aoki S, Onishi H, Karube M, Yamamoto N, Yamashita H, Shioyama Y, Matsumoto Y, Matsuo Y, Miyakawa A, Matsushita H, Ishikawa H. Comparative Analysis of Photon Stereotactic Radiotherapy and Carbon-Ion Radiotherapy for Elderly Patients with Stage I Non-Small-Cell Lung Cancer: A Multicenter Retrospective Study. Cancers (Basel) 2023; 15:3633. [PMID: 37509294 PMCID: PMC10377658 DOI: 10.3390/cancers15143633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of an aging society and technological advances have made radiotherapy, especially stereotactic body radiotherapy (SBRT), a common alternative to surgery for elderly patients with early stage non-small-cell lung cancer (NSCLC). Carbon-ion radiotherapy (CIRT) is also an attractive treatment option with potentially lower toxicity for elderly patients with comorbidities. We compared the clinical outcomes of the two modalities using Japanese multicenter data. SBRT (n = 420) and single-fraction CIRT (n = 70) data for patients with stage I NSCLC from 20 centers were retrospectively analyzed. Contiguous patients ≥ 80 years of age were enrolled, and overall survival (OS), disease-specific survival (DSS), local control (LC), and adverse event rates were compared. The median age was 83 years in both groups and the median follow-up periods were 28.5 and 42.7 months for SBRT and CIRT, respectively. The 3-year OS, DSS, and LC rates were 76.0% vs. 72.3% (p = 0.21), 87.5% vs. 81.6% (p = 0.46), and 79.2% vs. 78.2% (p = 0.87), respectively, for the SBRT vs. CIRT groups. Regarding toxicity, 2.9% of the SBRT group developed grade ≥ 3 radiation pneumonitis, whereas none of the CIRT group developed grade ≥ 2 radiation pneumonitis. SBRT and CIRT in elderly patients showed similar survival and LC rates, although CIRT was associated with less severe radiation pneumonitis.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Department of Radiology, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Yamanashi 400-0016, Japan
| | - Masataka Karube
- Department of Radiology, Teikyo University Mizonokuchi Hospital, Kanagawa 213-8507, Japan
| | - Naoyoshi Yamamoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hideomi Yamashita
- Department of Radiology, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | | | - Yasuo Matsumoto
- Department of Radiation Oncology, Niigata Cancer Center Hospital, Niigata 951-8133, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka 577-8502, Japan
| | - Akifumi Miyakawa
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8501, Japan
| | - Haruo Matsushita
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Buchberger DS, Videtic GMM. Stereotactic Body Radiotherapy for the Management of Early-Stage Non-Small-Cell Lung Cancer: A Clinical Overview. JCO Oncol Pract 2023; 19:239-249. [PMID: 36800644 DOI: 10.1200/op.22.00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- David S Buchberger
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
7
|
Xiang L, Ren PR, Li HX, Ye H, Pang HW, Wen QL, Zhang JW, He LJH, Shang CL, Yang BY, Lin SL, Wu JBW. Effect of 3-Dimensional Interstitial High-Dose-Rate Brachytherapy With Regional Metastatic Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non-Small Cell Lung Cancer: 5-Year Follow-up of a Phase 2 Clinical Trial. Int J Radiat Oncol Biol Phys 2023; 115:347-355. [PMID: 35901979 DOI: 10.1016/j.ijrobp.2022.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE We aimed to reveal the 5-year clinical outcomes of 3-dimensional (3D) interstitial high-dose-rate (HDR) brachytherapy with regional metastatic lymph node intensity modulated radiation therapy (IMRT) for locally advanced peripheral non-small cell lung cancer (NSCLC), which has been shown to have low toxicity and improved 2-year survival rates in patients with this disease. METHODS AND MATERIALS In this phase 2, single-arm, open-label clinical trial, 83 patients with locally advanced peripheral NSCLC were enrolled (median follow-up [range], 53.7 [4.3-120.4] months). All eligible patients received 3D interstitial HDR brachytherapy with regional metastatic lymph node IMRT. The primary endpoint was overall survival (OS). Secondary endpoints were local recurrence-free survival, regional recurrence-free survival, progression-free survival, distant metastasis-free survival, toxicities, and quality of life. RESULTS The final analysis included 75 patients (19 [25.3%] females, 56 [74.7%] males; median [range] age, 64 [44-80] years; stage IIIA, 34 [45.3%]; stage IIIB, 41 [54.7%]). At the latest follow-up, 32 (42.7%) patients had survived. The median OS was 38.0 months (5-year OS, 44.5%; 95% confidence interval [CI], 33.8%-58.6%). Local recurrence-free survival, recurrence-free survival, and distant metastasis-free survival at 5 years were 79.2% (95% CI, 68.5%-91.5%), 73.6% (95% CI, 61.5%-88.1%), and 50.3% (95% CI, 38.3%-66.1%), respectively. The dominant failure pattern was distant disease, corresponding to 40% (30 of 75) of patients and 65.2% (30 of 46) of all failures. Two (2.7%) patients developed grade 1 acute pneumonitis. Grade 2 and 3 acute esophagitis occurred in 11 (14.7%) and 4 (5.3%) patients, respectively. No late radiation-related grade ≥2 late adverse events were observed. CONCLUSIONS 3D interstitial HDR brachytherapy with regional metastatic lymph node IMRT for locally advanced peripheral NSCLC shows significant OS and has a low toxicity rate. Additional evaluation in a phase 3 trial is recommended to substantiate these findings.
Collapse
Affiliation(s)
- Li Xiang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Pei-Rong Ren
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Xia Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hua Ye
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao-Wen Pang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Lian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Wen Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Jia He He
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chang-Ling Shang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Yang Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing-Bo Wu Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Videtic GMM, Reddy CA, Woody NM, Stephans KL. Local Control With Single-Fraction Lung Stereotactic Body Radiotherapy is not influenced by Non-Small Cell Lung Cancer Histologic Subtype. Clin Lung Cancer 2022; 23:e428-e434. [PMID: 35750570 DOI: 10.1016/j.cllc.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION/BACKGROUND For early stage medically inoperable lung cancer treated with fractionated stereotactic body radiotherapy (SBRT), higher local failure is associated with squamous carcinoma (SqC) compared to adenocarcinoma (AC). This study explored whether histology influences single-fraction SBRT local control. MATERIALS AND METHODS We surveyed our prospective data registry from 12/2009 to 12/2019 for SF-SBRT cases with biopsy-proven AC or SqC only. Outcomes of interest included local (LF), nodal (NF), distant (DF) failure rates and overall survival (OS), as well as treatment-related toxicity. RESULTS For the 10-year interval surveyed, 113 patients met study criteria. There was no association between histology and dose received (34 Gy or 30 Gy). Median follow up was 22.9 months. Patient characteristics were balanced between histologic cohorts. Median tumor size was 1.9 cm. Comparing total AC vs. SqC cohorts, 2-year LF rates (%) were 7.3 vs. 9.6, respectively (P = .9805). In %, 2-year LF, NF, DF and OS rates for AC for 30 Gy and 34 Gy, respectively, were 10.8 vs. 6.4; 10.5 vs. 16.2; 15.8 vs. 13.0; 77.9 vs.71.2 (all P = non-significant). In %, 2-year LF, NF, DF, and OS rates for SqC for 30 Gy and 34 Gy, respectively, were 11.8 vs. 8.1; 5.9 vs. 18.0; 23.5 vs. 9.7; 70.6 vs. 77.1 (all P = non-significant). When considering toxicities, there were no grade 4/5 toxicities and no significant differences in any other toxicity rate by histology or dose. CONCLUSION SF-SBRT local control was not associated with histology, unlike fractionated schedules. This novel finding adds to the evolving understanding of this treatment schedule.
Collapse
Affiliation(s)
- Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Chandana A Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Neil M Woody
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
9
|
Palacios MA, Verheijen S, Schneiders FL, Bohoudi O, Slotman BJ, Lagerwaard FJ, Senan S. Same-day consultation, simulation and lung Stereotactic Ablative Radiotherapy delivery on a Magnetic Resonance-linac. Phys Imaging Radiat Oncol 2022; 24:76-81. [PMID: 36217429 PMCID: PMC9547277 DOI: 10.1016/j.phro.2022.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
A same-day consultation and lung SABR workflow was introduced, and experience in 10 patients reported. A detailed simulation procedure and the use of real-time cine magnetic resonance imaging enabled accurate treatment delivery. All patients reported satisfaction with the procedure, which improved patient convenience. On average, at least 94.4% (5th percentile) of the GTV was always located inside the PTV during beam-on. System-latency for triggering a beam-off event comprised 5.3% of the delivery time. Background and Purpose Magnetic resonance-guided radiotherapy (MRgRT) with real-time intra-fraction tumor motion monitoring allows for high precision Stereotactic Ablative Radiotherapy (SABR). This study aimed to investigate the clinical feasibility, patient satisfaction and delivery accuracy of single-fraction MR-guided SABR in a single day (one-stop-shop, OSS). Methods and Materials Ten patients with small lung tumors eligible for single fraction treatments were included. The OSS procedure consisted of consultation, treatment simulation, treatment planning and delivery. Following SABR delivery, patients completed a reported experience measure (PREM) questionnaire. Prescribed doses ranged 28–34 Gy. Median GTV was 2.2 cm3 (range 1.3–22.9 cm3). A gating boundary of 3 mm, and PTV margin of 5 mm around the GTV, were used with auto-beam delivery control. Accuracy of SABR delivery was studied by analyzing delivered MR-cines reconstructed from machine log files. Results All 10 patients completed the OSS procedure in a single day, and all reported satisfaction with the process. Median time for the treatment planning step and the whole procedure were 2.8 h and 6.6 h, respectively. With optimization of the procedure, treatment could be completed in half a day. During beam-on, the 3 mm tracking boundary encompassed between 78.0 and 100 % of the GTV across all patients, with corresponding PTV values being 94.4–100 % (5th-95th percentiles). On average, system-latency for triggering a beam-off event comprised 5.3 % of the delivery time. Latency reduced GTV coverage by an average of −0.3 %. Duty-cycles during treatment delivery ranged from 26.1 to 64.7 %. Conclusions An OSS procedure with MR-guided SABR for lung cancer led to good patient satisfaction. Gated treatment delivery was highly accurate with little impact of system-latency.
Collapse
|
10
|
Yamamoto T, Katagiri Y, Tsukita Y, Matsushita H, Umezawa R, Katsuta Y, Kadoya N, Takahashi N, Suzuki Y, Takeda K, Kishida K, Omata S, Miyauchi E, Saito R, Jingu K. Stereotactic Radiosurgery for Lung Cancer with a Risk-Adapted Strategy Using the Volumetric Modulated Arc Therapy Technique: A Single Arm Phase II Study. Cancers (Basel) 2022; 14:cancers14163993. [PMID: 36010985 PMCID: PMC9406332 DOI: 10.3390/cancers14163993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Stereotactic radiosurgery (SRS) for lung cancer has an attractive schedule. In this study, we focused on the efficacy of SRS, and the primary endpoint of this study was the 3-year local recurrence rate. The results showed that the 3-year local recurrence rate was 5.3% (95% confidence interval: 0.3–22.2%), and this rate was less than the expected rate. Good results were obtained in this study and this regimen of SRS is a candidate for a future phase III trial. Abstract Purpose: A phase II study carried out to assess the efficacy of a risk-adapted strategy of stereotactic radiosurgery (SRS) for lung cancer. The primary endpoint was 3-year local recurrence, and the secondary endpoints were overall survival (OS), disease-free survival (DFS), rate of start of systemic therapy or best supportive care (SST-BSC), and toxicity. Materials and Methods: Eligible patients fulfilled the following criteria: performance status of 2 or less, forced expiratory volume in 1 s of 700 mL or more, and tumor not located in central or attached to the chest wall. Twenty-eight Gy was prescribed for primary lung cancers with diameters of 3 cm or less and 30 Gy was prescribed for primary lung cancers with diameters of 3.1–5.0 cm or solitary metastatic lung cancer diameters of 5 cm or less. Results: Twenty-one patients were analyzed. The patients included 7 patients with adenocarcinoma, 2 patients with squamous cell carcinoma, 1 patient with metastasis, and 11 patients with clinical diagnosis. The median tumor diameter was 1.9 cm. SRS was prescribed at 28 Gy for 18 tumors and 30 Gy for 3 tumors. During the median follow-up period of 38.9 months for survivors, 1 patient had local recurrence, 7 patients had regional or distant metastasis, and 5 patients died. The 3-year local recurrence, SST-BSC, DFS, and OS rates were 5.3% (95% confidence interval [CI]: 0.3–22.2%), 20.1% (95% CI: 6.0–40.2%), 59.2% (95% CI: 34.4–77.3%), and 78.2% (95% CI: 51.4–91.3%), respectively. The 95% CI upper value of local recurrence was lower than the null local recurrence probability. There was no severe toxicity, and grade 2 radiation pneumonitis occurred in 1 patient. Conclusions: Patients who received SRS for lung cancer had a low rate of 3-year local recurrence and tolerable toxicity.
Collapse
Affiliation(s)
- Takaya Yamamoto
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
- Correspondence: ; Tel.: +81-22-717-7312; Fax: +81-22-717-7316
| | - Yu Katagiri
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Haruo Matsushita
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Rei Umezawa
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Yoshiyuki Katsuta
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Yu Suzuki
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Kazuya Takeda
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Keita Kishida
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - So Omata
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
11
|
Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:5179-5194. [PMID: 35892979 PMCID: PMC9332210 DOI: 10.3390/curroncol29080410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this multi-centric work was to investigate the relationship between radiomic features extracted from pre-treatment computed tomography (CT), positron emission tomography (PET) imaging, and clinical outcomes for stereotactic body radiation therapy (SBRT) in early-stage non-small cell lung cancer (NSCLC). One-hundred and seventeen patients who received SBRT for early-stage NSCLC were retrospectively identified from seven Italian centers. The tumor was identified on pre-treatment free-breathing CT and PET images, from which we extracted 3004 quantitative radiomic features. The primary outcome was 24-month progression-free-survival (PFS) based on cancer recurrence (local/non-local) following SBRT. A harmonization technique was proposed for CT features considering lesion and contralateral healthy lung tissues using the LASSO algorithm as a feature selector. Models with harmonized CT features (B models) demonstrated better performances compared to the ones using only original CT features (C models). A linear support vector machine (SVM) with harmonized CT and PET features (A1 model) showed an area under the curve (AUC) of 0.77 (0.63–0.85) for predicting the primary outcome in an external validation cohort. The addition of clinical features did not enhance the model performance. This study provided the basis for validating our novel CT data harmonization strategy, involving delta radiomics. The harmonized radiomic models demonstrated the capability to properly predict patient prognosis.
Collapse
|
12
|
Fernández C, Navarro-Martin A, Bobo A, Cabrera-Rodriguez J, Calvo P, Chicas-Sett R, Luna J, Rodríguez de Dios N, Couñago F. Single-fraction stereotactic ablative body radiation therapy for primary and metastasic lung tumor: A new paradigm? World J Clin Oncol 2022; 13:101-115. [PMID: 35316929 PMCID: PMC8894272 DOI: 10.5306/wjco.v13.i2.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer (NSCLC) and pulmonary metastasis. Several fractionation schemes have proven to be safe and effective, including the single fraction (SF) scheme. SF is an option cost-effectiveness, more convenience and comfortable for the patient and flexible in terms of its management combined with systemic treatments. The outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic has driven this not new but underutilized paradigm, recommending this option to minimize patients' visits to hospital. SF SABR already has a long experience, strong evidence and sufficient maturity to reliably evaluate outcomes in peripheral primary NSCLC and there are promising outcomes in pulmonary metastases, making it a valid treatment option; although its use in central locations, synchronous and recurrencies tumors requires more prospective safety and efficacy studies. The SABR radiobiology study, together with the combination with systemic therapies, (targeted therapies and immunotherapy) is a direction of research in both advanced disease and early stages whose future includes SF.
Collapse
Affiliation(s)
- Castalia Fernández
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Institut Catalá d’Oncologia, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Andrea Bobo
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | | | - Patricia Calvo
- Department of Radiation Oncology, Hospitalario Clínico Universitario de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Javier Luna
- Department of Radiation Oncology, Hospital Fundación Jiménez Díaz, Madrid 28040, Spain
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28223, Spain
- Department of Medicine, School of Biomedical Sciences, Universidad Europea, Madrid 28223, Spain
| |
Collapse
|
13
|
Tu W, Feng Y, Lai Q, Wang J, Yuan W, Yang J, Jiang S, Wu A, Cheng S, Shao J, Li J, Jiang Z, Tang H, Shi Y, Zhang S. Metabolic Profiling Implicates a Critical Role of Cyclooxygenase-2-Mediated Arachidonic Acid Metabolism in Radiation-Induced Esophageal Injury in Rats. Radiat Res 2022; 197:480-490. [PMID: 35172004 DOI: 10.1667/rade-20-00240.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Radiation-induced esophageal injury (RIEL) is a major dose-limiting complication of radiotherapy, especially for esophageal and thoracic cancers. RIEL is a multi-factorial and multi-step process, which is regulated by a complex network of DNA, RNA, protein and metabolite. However, it is unclear which esophageal metabolites are altered by ionizing radiation and how these changes affect RIEL progression. In this work, we established a rat model of RIEL with 0-40 Gy X-ray irradiation. Esophageal irradiation using ≥25 Gy induced significant changes to rats, such as body weight, food intake, water intake and esophageal structure. The metabolic changes and related pathways of rat esophageal metabolites were investigated by liquid chromatography-mass spectrometry (LC-MS). One hundred eighty metabolites showed an up-regulation in a dose-dependent manner (35 Gy ≥ 25 Gy > controls), and 199 metabolites were downregulated with increasing radiation dose (35 Gy ≤ 25 Gy < controls). The KEGG analysis showed that ionizing radiation seriously disrupted multiple metabolic pathways, and arachidonic acid metabolism was the most significantly enriched pathway. 20 metabolites were dysregulated in arachidonic acid metabolism, including up-regulation of five prostaglandins (PGA2, PGJ2, PGD2, PGH2, and PGI2) in 25 or 35 Gy groups. Cyclooxygenase-2 (COX-2), the key enzyme in catalyzing the biosynthesis of prostaglandins from arachidonic acid, was highly expressed in the esophagus of irradiated rats. Additionally, receiver operating characteristic (ROC) curve analysis revealed that PGJ2 may serve as a promising tissue biomarker for RIEL diagnosis. Taken together, these findings indicate that ionizing radiation induces esophageal metabolic alterations, which advance our understanding of the pathophysiology of RIEL from the perspective of metabolism.
Collapse
Affiliation(s)
- Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yahui Feng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Qian Lai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Jinlong Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Weijun Yuan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Jingxuan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Sheng Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Ailing Wu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Shuanghua Cheng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Zhiqiang Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Hui Tang
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhong Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Videtic GMM, Reddy CA, Woody NM, Stephans KL. Ten-Year Experience in Implementing Single-Fraction Lung SBRT for Medically Inoperable Early-Stage Lung Cancer. Int J Radiat Oncol Biol Phys 2021; 111:436-442. [PMID: 34048817 DOI: 10.1016/j.ijrobp.2021.05.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To review 10 years of using single-fraction lung stereotactic body radiation therapy (SF-SBRT) for medically inoperable peripheral early-stage lung cancer. METHODS AND MATERIALS An institutional review board-approved prospective lung SBRT data registry was surveyed until the end of December 2019 for all patients receiving SF-SBRT with minimum 6-month follow-up. Doses used were either 34 Gy or 30 Gy. Outcomes of interest included rates of local failure and overall survival (OS), as well as treatment-related toxicity graded per Common Terminology Criteria for Adverse Events version 3.0. RESULTS A total of 229 patients met the study criteria. Patient characteristics included female sex (55%); median age, 74.6 years (range, 47-94); and median Karnofsky Performance Status 80 (range, 50-100). Tumor characteristics included median diameter, 1.6 cm (range, 0.7-4.1); median positron emission tomography standardized uptake value maximum 6.1 (range, 0.8-24.3); and 63.6% of patients biopsied. SF-SBRT dose was 34 Gy in 72.1% cases and 30 Gy in 27.9%, with patient and tumor characteristics balanced between cohorts. Overall median follow-up times for 30 Gy and 34 Gy were 36.7 and 17.2 months, respectively (P < .0001). At analysis, 55.9% patients were alive. Two (0.9%) patients developed grade 3 toxicities, and none had grade 4/5 toxicities. Grades 1 to 2 pneumonitis and chest wall toxicity were seen in 7% and 12.7% patients, respectively. Median overall survival was 44.1 months. Rates of 2-year local, nodal, and distant failure were 7.3%, 9.4%, and 12.2%, respectively. There were no significant differences in outcomes by dose. CONCLUSIONS This is the largest institutional series to date reporting on SF-SBRT outcomes for medically inoperable peripheral early-stage lung cancer and the first to report on a decade's experience in implementing this schedule. Outcomes from this analysis are comparable to published results from 2 randomized trials and validate the use of this schedule in routine practice. In the absence of phase 3 trials, this study should encourage increased use of SF-SBRT for inoperable tumors.
Collapse
Affiliation(s)
- Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Chandana A Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Neil M Woody
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Remmerts de Vries IF, Dahele M, Mostafavi H, Slotman B, Verbakel W. Markerless 3D tumor tracking during single-fraction free-breathing 10MV flattening-filter-free stereotactic lung radiotherapy. Radiother Oncol 2021; 164:6-12. [PMID: 34506828 DOI: 10.1016/j.radonc.2021.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Positional verification during single fraction lung SBRT could increase confidence and reduce the chance of geographic miss. As planar 2DkV imaging during VMAT irradiation is already available on current linear accelerators, markerless tracking based on these images could offer widely available and low-cost verification. We evaluated treatment delivery data and template matching and triangulation for 3D-positional verification during free-breathing, single fraction (34 Gy), 10 MV flattening-filter-free VMAT lung SBRT. METHODS AND MATERIALS Tumor tracking based on kV imaging at 7 frames/second was performed during irradiation in 6 consecutive patients (7 lesions). Tumor characteristics, tracking ability, comparison of tracking displacements with CBCT-based shifts, tumor position relative to the PTV margin, and treatment times are reported. RESULTS For all 7 lesions combined, 3D tumor position could be determined for, on average, 71% (51-84%) of the total irradiation time. Visually estimated tracked and automated match +/- manually-corrected CBCT-derived displacements generally agreed within 1 mm. During the tracked period, the longitudinal, lateral and vertical position of the tumor was within a 5 mm/3 mm PTV margin 95.5/85.3% of the time. The PTV was derived from the ITV including all tumor motion. The total time from first set-up imaging to end of the last arc was 18.3-31.4 min (mean = 23.4, SD = 4.1). CONCLUSION 3D positional verification during irradiation of small lung targets with limited motion, was feasible. However, tumor position could not be determined for on average 29% of the time. Improvements are needed. Margin reduction may be feasible. Imaging and delivery of a single 34 Gy fraction was fast.
Collapse
Affiliation(s)
- I F Remmerts de Vries
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Ben Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Wilko Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Mou B, Hyde D, Araujo C, Bartha L, Bergman A, Liu M. Implementation of Single-Fraction Lung Stereotactic Ablative Radiotherapy in a Multicenter Provincial Cancer Program During the COVID-19 Pandemic. Cureus 2021; 13:e15598. [PMID: 34277219 PMCID: PMC8270065 DOI: 10.7759/cureus.15598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background During the novel coronavirus disease 2019 (COVID-19) pandemic, cancer centers considered shortened courses of radiotherapy to minimize the risk of infectious exposure of patients and staff members. Amidst a pandemic, the process of implementing new treatment approaches can be particularly challenging in larger institutions with multiple treatment centers. We describe the implementation of single-fraction (SF) lung stereotactic ablative radiotherapy (SABR) in a multicenter provincial cancer program. Materials and Methods British Columbia, Canada has a provincial cancer program with six geographically distributed radiotherapy centers serving a population of 5.1 million, over 944,735 square kilometers. In March 2020, provincial mitigation strategies were developed in case of reduced access to radiotherapy due to the COVID-19 pandemic. SF lung SABR was identified by the provincial lung radiation oncology group as a mitigation measure supported by high-quality randomized evidence that could provide comparable outcomes and toxicity to existing fractionated SABR protocols. A working group consisting of radiation oncologists and medical physicists reviewed the medical literature and drafted consensus guidelines that were reviewed by a group of center representatives as a component of provincial lung radiotherapy mitigation strategic planning. Individual centers were encouraged to implement SF lung SABR as their resources and staffing would allow. Centers were then surveyed about barriers to implementation. Results On March 24, 2020, a working group was created and consensus guidelines for SF lung SABR were drafted. The final version was approved and distributed by the working group on March 26, 2020. The provincial lung radiotherapy mitigation strategy group adopted the guidelines for implementation on April 1, 2020. Implementation was completed at the first center on April 27, 2020. Barriers to implementation were identified at five of six centers. Two centers in regions with disproportionately high COVID-19 cases described inadequate staffing as a barrier to implementation. One center encountered delays due to pre-scheduled commissioning of new treatment techniques. Three centers cited competing priorities as reasons for delay. As of May 2021, two centers had active SF lung SABR programs in place, three centers were in the process of implementation, and one center had no immediate plans for implementation due to ongoing resource issues. Conclusion SF lung SABR was adopted by a provincial cancer program within weeks of conception through rapid communication during the development of COVID-19 pandemic mitigation strategies for radiotherapy. Although consensus guidelines were written and approved in an expedited timeframe, the completion of implementation by individual centers was variable due to differences in resource allocation and staffing among the centers. Strong organizational structures and early identification of potential barriers may improve the efficiency of implementing new treatment initiatives in large multicenter radiotherapy programs.
Collapse
Affiliation(s)
- Benjamin Mou
- Radiation Oncology, BC Cancer Kelowna, Kelowna, CAN
| | - Derek Hyde
- Medical Physics, BC Cancer Kelowna, Kelowna, CAN
| | | | - Leigh Bartha
- Radiation Therapy, BC Cancer Kelowna, Kelowna, CAN
| | | | - Mitchell Liu
- Radiation Oncology, BC Cancer Vancouver, Vancouver, CAN
| |
Collapse
|
17
|
Lee P, Loo BW, Biswas T, Ding GX, El Naqa IM, Jackson A, Kong FM, LaCouture T, Miften M, Solberg T, Tome WA, Tai A, Yorke E, Li XA. Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2021; 110:160-171. [PMID: 30954520 PMCID: PMC9446070 DOI: 10.1016/j.ijrobp.2019.03.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Numerous dose and fractionation schedules have been used to treat medically inoperable stage I non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy. We evaluated published experiences with SBRT to determine local control (LC) rates as a function of SBRT dose. METHODS AND MATERIALS One hundred sixty published articles reporting LC rates after SBRT for stage I NSCLC were identified. Quality of the series was assessed by evaluating the number of patients in the study, homogeneity of the dose regimen, length of follow-up time, and reporting of LC. Clinical data including 1, 2, 3, and 5-year tumor control probabilities for stages T1, T2, and combined T1 and T2 as a function of the biological effective dose were fitted to the linear quadratic, universal survival curve, and regrowth models. RESULTS Forty-six studies met inclusion criteria. As measured by the goodness of fit χ2/ndf, with ndf as the number of degrees of freedom, none of the models were ideal fits for the data. Of the 3 models, the regrowth model provides the best fit to the clinical data. For the regrowth model, the fitting yielded an α-to-β ratio of approximately 25 Gy for T1 tumors, 19 Gy for T2 tumors, and 21 Gy for T1 and T2 combined. To achieve the maximal LC rate, the predicted physical dose schemes when prescribed at the periphery of the planning target volume are 43 ± 1 Gy in 3 fractions, 47 ± 1 Gy in 4 fractions, and 50 ± 1 Gy in 5 fractions for combined T1 and T2 tumors. CONCLUSIONS Early-stage NSCLC is radioresponsive when treated with SBRT or stereotactic ablative radiation therapy. A steep dose-response relationship exists with high rates of durable LC when physical doses of 43-50 Gy are delivered in 3 to 5 fractions.
Collapse
Affiliation(s)
- Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Issam M El Naqa
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Jackson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Feng-Ming Kong
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Tamara LaCouture
- Department of Radiation Oncology, Jefferson Health New Jersey, Sewell, New Jersey
| | - Moyed Miften
- Department of Radiation Oncology, Colorado University School of Medicine, Aurora, Colorado
| | - Timothy Solberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen Yorke
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Alongi F, Nicosia L, Figlia V, De Sanctis V, Mazzola R, Giaj-Levra N, Reverberi C, Valeriani M, Osti MF. A multi-institutional analysis of fractionated versus single-fraction stereotactic body radiotherapy (SBRT) in the treatment of primary lung tumors: a comparison between two antipodal fractionations. Clin Transl Oncol 2021; 23:2133-2140. [PMID: 33840047 DOI: 10.1007/s12094-021-02619-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Stereotactic body radiotherapy (SBRT) is a consolidate treatment for inoperable early-stage lung tumors, usually delivered in single or multi-fraction regimens. We aimed to compare these two approaches in terms of local effectiveness, safety and survival. MATERIALS AND METHODS Patients affected by medically inoperable early-stage lung tumor were treated at two Institutions with two different schedules: 70 Gy in ten fractions (TF) (BED10: 119 Gy) or 30 Gy in single fraction (SF) (BED10: 120 Gy). RESULTS 73 patients were treated with SBRT delivered with two biological equivalent schedules: SF (44) and TF (29). The median follow-up was 34 months (range 3-81 months). Three-year Overall survival (OS) was 57.9%, 3-year cancer-specific survival (CSS) was 77.2%, with no difference between treatment groups. Three-year progression-free survival (LPFS) was 88.9% and did not differs between SF and TF. Overall, four cases (5.4%) of acute grade ≥ 3 pneumonitis occurred. No differences in acute and late toxicity between the two groups were detected. CONCLUSION SF and TF seems to be equally safe and effective in the treatment of primary inoperable lung tumors especially for smaller lesion. The SF may be preferentially offered to reduce patient access to hospital with no negative impact on tumor control and survival.
Collapse
Affiliation(s)
- F Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
- University of Brescia, Brescia, Italy
| | - L Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy.
| | - V Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - V De Sanctis
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - R Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - N Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - C Reverberi
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - M Valeriani
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - M F Osti
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
19
|
Chuong MD, Kotecha R, Mehta MP, Adamson S, Romaguera T, Hall MD, Alvarez D, Gutierrez AN, Mishra V, De Zarraga F, Mittauer KE. Case report of visual biofeedback-driven, magnetic resonance-guided single-fraction SABR in breath hold for early stage non-small-cell lung cancer. Med Dosim 2021; 46:247-252. [PMID: 33648822 DOI: 10.1016/j.meddos.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Stereotactic ablative body radiation therapy (SABR) is a well-established alternative to surgery for early stage non-small-cell lung cancer (NSCLC). While SABR is typically delivered in 3 to 5 fractions, randomized trials have shown single-fraction SABR to be a reasonable alternative. We present the case of a 66-year-old male with history of cholangiocarcinoma who was subsequently diagnosed with peripheral early stage NSCLC and treated in mid-inspiration breath hold (BH) to 34 Gy in 1 fraction on a magnetic resonance (MR)-guided linear accelerator, with treatment delivery completed in 17 minutes. Visual biofeedback was utilized to maximize patient compliance with appropriate depth of inspiration BH and improve overall treatment delivery time efficiency. The benefits of single- vs multifraction SABR and unique advantages of MR guidance that are particularly well-suited for single-fraction SABR are reviewed.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sonia Adamson
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA
| | - Tino Romaguera
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Diane Alvarez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Vivek Mishra
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fernando De Zarraga
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL 33176, USA
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
20
|
Ouyang Z, Schoenhagen P, Wazni O, Tchou P, Saliba WI, Suh JH, Xia P. Analysis of cardiac motion without respiratory motion for cardiac stereotactic body radiation therapy. J Appl Clin Med Phys 2020; 21:48-55. [PMID: 32918386 PMCID: PMC7592981 DOI: 10.1002/acm2.13002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose/objective(s) To study the heart motion using cardiac gated computed tomographies (CGCT) to provide guidance on treatment planning margins during cardiac stereotactic body radiation therapy (SBRT). Materials/methods Ten patients were selected for this study, who received CGCT scans that were acquired with intravenous contrast under a voluntary breath‐hold using a dual source CT scanner. For each patient, CGCT images were reconstructed in multiple phases (10%–90%) of the cardiac cycle and the left ventricle (LV), right ventricle (RV), ascending aorta (AAo), ostia of the right coronary artery (O‐RCA), left coronary artery (O‐LCA), and left anterior descending artery (LAD) were contoured at each phase. For these contours, the centroid displacements from their corresponding average positions were measured at each phase in the superior–inferior (SI), medial–lateral (ML), and anterior–posterior (AP). The average volumes as well as the maximum to minimum ratios were analyzed for the LV and RV. Results For the six contoured substructures, more than 90% of the measured displacements were <5 mm. For these patients, the average volumes ranged from 191.25 to 429.51 cc for LV and from 91.76 to 286.88 cc for RV. For each patient, the ratios of maximum to minimum volumes within a cardiac cycle ranged from 1.15 to 1.54 for LV and from 1.34 to 1.84 for RV. Conclusion Based on this study, cardiac motion is variable depending on the specific substructure of the heart but is mostly within 5 mm. Depending on the location (central or peripheral) of the treatment target and treatment purposes, the treatment planning margins for targets and risk volumes should be adjusted accordingly. In the future, we will further assess heart motion and its dosimetric impact.
Collapse
Affiliation(s)
- Zi Ouyang
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Schoenhagen
- Department of Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Oussama Wazni
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Tchou
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Walid I Saliba
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Arrieta O, Cardona AF, Lara-Mejía L, Heredia D, Barrón F, Zatarain-Barrón ZL, Lozano F, de Lima VC, Maldonado F, Corona-Cruz F, Ramos M, Cabrera L, Martin C, Corrales L, Cuello M, Arroyo-Hernández M, Aman E, Bacon L, Baez R, Benitez S, Botero A, Burotto M, Caglevic C, Ferraris G, Freitas H, Kaen DL, Lamot S, Lyons G, Mas L, Mata A, Mathias C, Muñoz A, Patane AK, Oblitas G, Pino L, Raez LE, Remon J, Rojas L, Rolfo C, Ruiz-Patiño A, Samtani S, Viola L, Viteri S, Rosell R. Recommendations for detection, prioritization, and treatment of thoracic oncology patients during the COVID-19 pandemic: the THOCOoP cooperative group. Crit Rev Oncol Hematol 2020; 153:103033. [PMID: 32650215 PMCID: PMC7305738 DOI: 10.1016/j.critrevonc.2020.103033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
The world currently faces a pandemic due to SARS-CoV-2. Relevant information has emerged regarding the higher risk of poor outcomes in lung cancer patients. As such, lung cancer patients must be prioritized in terms of prevention, detection and treatment. On May 7th, 45 experts in thoracic cancers from 11 different countries were invited to participate. A core panel of experts regarding thoracic oncology care amidst the pandemic gathered virtually, and a total of 60 initial recommendations were drafted based on available evidence, 2 questions were deleted due to conflicting evidence. By May 16th, 44 experts had agreed to participate, and voted on each of the 58 recommendation using a Delphi panel on a live voting event. Consensus was reached regarding the recommendations (>66 % strongly agree/agree) for 56 questions. Strong consensus (>80 % strongly agree/agree) was reached for 44 questions. Patients with lung cancer represent a particularly vulnerable population during this time. Special care must be taken to maintain treatment while avoiding exposure.
Collapse
Affiliation(s)
- Oscar Arrieta
- Instituto Nacional de Cancerología, Mexico City, Mexico.
| | - Andrés F Cardona
- Thoracic Oncology Clinic, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | | | - David Heredia
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | | | | | | | - Maritza Ramos
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Luis Cabrera
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Claudio Martin
- Thoracic Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina; Hospital Maria Ferrer, Buenos Aires, Argentina
| | - Luis Corrales
- Oncology Department, Hospital San Juan de Dios, San José Costa Rica, Costa Rica; Oncología Médica, Centro de Investigación y Manejo del Cáncer (CIMCA), San José, Costa Rica
| | - Mauricio Cuello
- Department of Oncology, Hospital de Clínicas, Universidad de la República - UDELAR, Montevideo, Uruguay
| | | | - Enrique Aman
- Clinical Oncology Unit, Swiss Medical Group, Buenos Aires, Argentina
| | - Ludwing Bacon
- Centro de Oncología, Hospital Vivián Pellas, Nicaragua
| | - Renata Baez
- National Institute for Respiratory Diseases, Mexico City, Mexico
| | - Sergio Benitez
- Coordinador de la sección Oncología, asociación Argentina de Medicina Respiratoria, Argentina
| | | | - Mauricio Burotto
- Clínica Universidad de los Andes, Centro de Estudios Clínicos Bradford Hill, Chile
| | - Christian Caglevic
- Departamento de Investigación del Cáncer- Fundación Arturo López Pérez, Santiago, Chile
| | - Gustavo Ferraris
- Centro Médico Dean Funes, Radioterapia Oncológica, Córdoba, Argentina
| | - Helano Freitas
- Departamento de Oncologia Clínica - A C Camargo Cancer Center, São Paulo, Brazil
| | | | - Sebastián Lamot
- CONCIENCIA, Instituto Oncohematológico de la Patagonia, Chile
| | - Gustavo Lyons
- Department of Thoracic Surgery, Hospital Británico, Buenos Aires, Argentina
| | - Luis Mas
- Medical Oncology Department, National Institute for Neoplastic Diseases - INEN, Lima, Peru
| | - Andrea Mata
- Hospital La Católica Goicoechea, San José, Costa Rica
| | | | | | - Ana Karina Patane
- Hospital de Rehabilitacion Respiratoria María Ferrer, Buenos Aires, Argentina
| | | | - Luis Pino
- Medical Oncology Group, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Luis E Raez
- Thoracic Oncology Program Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL, United States
| | - Jordi Remon
- Medical Oncology Department, Centro Integral Oncología Clara Campal Bacelona, HM-Delfos, Barcelona, Spain
| | - Leonardo Rojas
- Medical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | | | - Suraj Samtani
- Medical Oncology Department, Clínica Bradford Hill, Santiago, Chile
| | - Lucia Viola
- Fundación neumológica colombiana, Bogotá, Colombia
| | - Santiago Viteri
- Instituto Oncológico Dr. Rosell. Centro Médico Teknon. Grupo QuironSalud. Barcelona, España
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
22
|
Ng SS, Ning MS, Lee P, McMahon RA, Siva S, Chuong MD. Single-Fraction Stereotactic Body Radiation Therapy: A Paradigm During the Coronavirus Disease 2019 (COVID-19) Pandemic and Beyond? Adv Radiat Oncol 2020; 5:761-773. [PMID: 32775790 PMCID: PMC7406732 DOI: 10.1016/j.adro.2020.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Owing to the coronavirus disease 2019 (COVID-19) pandemic, radiation oncology departments have adopted various strategies to deliver radiation therapy safely and efficiently while minimizing the risk of severe acute respiratory syndrome coronavirus-2 transmission among patients and health care providers. One practical strategy is to deliver stereotactic body radiation therapy (SBRT) in a single fraction, which has been well established for treating bone metastases, although it has been infrequently used for other extracranial sites. METHODS AND MATERIALS A PubMed search of published articles in English related to single-fraction SBRT was performed. A critical review was performed of the articles that described clinical outcomes of single-fraction SBRT for treatment of primary extracranial cancers and oligometastatic extraspinal disease. RESULTS Single-fraction SBRT for peripheral early-stage non-small cell lung cancer is supported by randomized data and is strongly endorsed during the COVID-19 pandemic by the European Society for Radiotherapy and Oncology-American Society for Radiation Oncology practice guidelines. Prospective and retrospective studies supporting a single-fraction regimen are limited, although outcomes are promising for renal cell carcinoma, liver metastases, and adrenal metastases. Data are immature for primary prostate cancer and demonstrate excess late toxicity in primary pancreatic cancer. CONCLUSIONS Single-fraction SBRT should be strongly considered for peripheral early-stage non-small cell lung cancer during the COVID-19 pandemic to mitigate the potentially severe consequences of severe acute respiratory syndrome coronavirus-2 transmission. Although single-fraction SBRT is promising for the definitive treatment of other primary or oligometastatic cancers, multi-fraction SBRT should be the preferred regimen owing to the need for additional prospective evaluation to determine long-term efficacy and safety.
Collapse
Affiliation(s)
- Sylvia S.W. Ng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Percy Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan A. McMahon
- Department of Radiation Oncology, Peter MacCallum Cancer Center, University of Melbourne, Victoria, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Center, University of Melbourne, Victoria, Australia
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
23
|
Visak J, McGarry RC, Pokhrel D. Clinical evaluation of photon optimizer (PO) MLC algorithm for stereotactic, single-dose of VMAT lung SBRT. Med Dosim 2020; 45:321-326. [PMID: 32444208 DOI: 10.1016/j.meddos.2020.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Recently implemented photon optimizer (PO) MLC optimization algorithm is mandatory for RapidPlan modeling in Eclipse. This report quantifies and compares the dosimetry and treatment delivery parameters of PO vs its predecessor progressive resolution optimizer (PRO) algorithm for a single-dose of volumetric modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT). Clinical SBRT treatment plans for 12 early-stage non-small-cell lung cancer patients receiving 30 Gy in 1 fraction using PRO-VMAT were re-optimized using the PO-VMAT MLC algorithm with identical planning parameters and objectives. Average planning target volume derived from the 4D CT scans was 13.6 ± 12.0 cc (range: 4.3 to 41.1 cc) Patients were treated with 6 MV flattening filter free beam using Acuros-based calculations and 2.5 mm calculation grid-size (CGS). Both treatment plans were normalized to receive same target coverage and identical CGS to isolate effects of MLC positioning optimizers. Original PRO and re-optimized PO plans were compared via RTOG-0915 protocol compliance criteria for target conformity, gradient indices, dose to organs at risks and delivery efficiency. Additionally, PO-VMAT plans with a 1.25 mm CGS were evaluated. Both plans met RTOG protocol requirements. Conformity indices showed no statistical difference between PO 2.5 mm CGS and PRO 2.5 mm CGS plans. Gradient index (p = 0.03), maximum dose to 2 cm away from planning target volume in any direction (D2cm) (p < 0.05), and gradient distance (p < 0.05) presented statistically significant differences for both plans with 2.5 mm CGS. Some organs at risks showed statistically significant differences for both plans calculated with 2.5 mm CGS; however, no clinically significant dose differences were observed between the plans. Beam modulation factor was statistically significant for both PO 1.25 mm CGS (p = 0.001) and PO 2.5 mm CGS (p < 0.001) compared to clinical PRO 2.5 mm CGS plans. PO-VMAT plans provided decreased beam-on time by an average of 0.2 ± 0.1 minutes (up to 1.0 minutes) with PO 2.5 mm and 1.2 ± 0.39 minutes (maximum up to 3.22 minutes) with PO 1.25 mm plans compared to PRO 2.5 mm plans. PO-VMAT single-dose of VMAT lung SBRT plans showed slightly increased intermediate-dose spillage but boasted overall similar plan quality with less beam modulation and hence shorter beam-on time. However, PO 1.25 mm CGS had less intermediate-dose spillage and analogous plan quality compared to clinical PRO-VMAT plans with no additional cost of plan optimization. Further investigation into peripheral targets with PO-MLC algorithm is warranted. This study indicates that PO 1.25 mm CGS plans can be used for RapidPlan modeling for a single dose of lung SBRT patients. PO-MLC 1.25 mm algorithm is recommended for future clinical single-dose lung SBRT plan optimization.
Collapse
Affiliation(s)
- Justin Visak
- Department of Radiation Medicine, University of Kentucky, Lexington, KY
| | - Ronald C McGarry
- Department of Radiation Medicine, University of Kentucky, Lexington, KY
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, KY.
| |
Collapse
|
24
|
Ijsseldijk MA, Shoni M, Siegert C, Wiering B, van Engelenburg AKC, Tsai TC, Ten Broek RPG, Lebenthal A. Oncologic Outcomes of Surgery Versus SBRT for Non-Small-Cell Lung Carcinoma: A Systematic Review and Meta-analysis. Clin Lung Cancer 2020; 22:e235-e292. [PMID: 32912754 DOI: 10.1016/j.cllc.2020.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The optimal treatment of stage I non-small-cell lung carcinoma is subject to debate. The aim of this study was to compare overall survival and oncologic outcomes of lobar resection (LR), sublobar resection (SR), and stereotactic body radiotherapy (SBRT). METHODS A systematic review and meta-analysis of oncologic outcomes of propensity matched comparative and noncomparative cohort studies was performed. Outcomes of interest were overall survival and disease-free survival. The inverse variance method and the random-effects method for meta-analysis were utilized to assess the pooled estimates. RESULTS A total of 100 studies with patients treated for clinical stage I non-small-cell lung carcinoma were included. Long-term overall and disease-free survival after LR was superior over SBRT in all comparisons, and for most comparisons, SR was superior to SBRT. Noncomparative studies showed superior long-term overall and disease-free survival for both LR and SR over SBRT. Although the papers were heterogeneous and of low quality, results remained essentially the same throughout a large number of stratifications and sensitivity analyses. CONCLUSION Results of this systematic review and meta-analysis showed that LR has superior outcomes compared to SBRT for cI non-small-cell lung carcinoma. New trials are underway evaluating long-term results of SBRT in potentially operable patients.
Collapse
Affiliation(s)
- Michiel A Ijsseldijk
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Melina Shoni
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Charles Siegert
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA
| | - Bastiaan Wiering
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands
| | | | - Thomas C Tsai
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Richard P G Ten Broek
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Abraham Lebenthal
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Pokhrel D, Visak J, Sanford L. A novel and clinically useful dynamic conformal arc (DCA)-based VMAT planning technique for lung SBRT. J Appl Clin Med Phys 2020; 21:29-38. [PMID: 32306530 PMCID: PMC7386176 DOI: 10.1002/acm2.12878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Volumetric modulated arc therapy (VMAT) is gaining popularity for stereotactic treatment of lung lesions for medically inoperable patients. Due to multiple beamlets in delivery of highly modulated VMAT plans, there are dose delivery uncertainties associated with small‐field dosimetry error and interplay effects with small lesions. We describe and compare a clinically useful dynamic conformal arc (DCA)‐based VMAT (d‐VMAT) technique for lung SBRT using flattening filter free (FFF) beams to minimize these effects. Materials and Methods Ten solitary early‐stage I‐II non‐small‐cell lung cancer (NSCLC) patients were treated with a single dose of 30 Gy using 3–6 non‐coplanar VMAT arcs (clinical VMAT) with 6X‐FFF beams in our clinic. These clinically treated plans were re‐optimized using a novel d‐VMAT planning technique. For comparison, d‐VMAT plans were recalculated using DCA with user‐controlled field aperture shape before VMAT optimization. Identical beam geometry, dose calculation algorithm, grid size, and planning objectives were used. The clinical VMAT and d‐VMAT plans were compared via RTOG‐0915 protocol compliances for conformity, gradient indices, and dose to organs at risk (OAR). Additionally, treatment delivery efficiency and accuracy were recorded. Results All plans met RTOG‐0915 requirements. Comparing with clinical VMAT, d‐VMAT plans gave similar target coverage with better target conformity, tighter radiosurgical dose distribution with lower gradient indices, and dose to OAR. Lower total number of monitor units and small beam modulation factor reduced beam‐on time by 1.75 min (P < 0.001), on average (maximum up to 2.52 min). Beam delivery accuracy was improved by 2%, on average (P < 0.05) and maximum up to 6% in some cases for d‐VMAT plans. Conclusion This simple d‐VMAT technique provided excellent plan quality, reduced intermediate dose‐spillage, and dose to OAR while providing faster treatment delivery by significantly reducing beam‐on time. This novel treatment planning approach will improve patient compliance along with potentially reducing intrafraction motion error. Moreover, with less MLC modulation through the target, d‐VMAT could potentially minimize small‐field dosimetry errors and MLC interplay effects. If available, d‐VMAT planning approach is recommended for future clinical lung SBRT plan optimization.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA.,Department of Radiation Medicine, University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - Justin Visak
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Lana Sanford
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Pokhrel D, Halfman M, Sanford L. A simple, yet novel hybrid-dynamic conformal arc therapy planning via flattening filter-free beam for lung stereotactic body radiotherapy. J Appl Clin Med Phys 2020; 21:83-92. [PMID: 32243704 PMCID: PMC7324700 DOI: 10.1002/acm2.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Due to multiple beamlets in the delivery of highly modulated volumetric arc therapy (VMAT) plans, dose delivery uncertainties associated with small‐field dosimetry and interplay effects can be concerns in the treatment of mobile lung lesions using a single‐dose of stereotactic body radiotherapy (SBRT). Herein, we describe and compare a simple, yet clinically useful, hybrid 3D‐dynamic conformal arc (h‐DCA) planning technique using flattening filter‐free (FFF) beams to minimize these effects. Materials and Methods Fifteen consecutive solitary early‐stage I‐II non‐small‐cell lung cancer (NSCLC) patients who underwent a single‐dose of 30 Gy using 3–6 non‐coplanar VMAT arcs with 6X‐FFF beams in our clinic. These patients’ plans were re‐planned using a non‐coplanar hybrid technique with 2–3 differentially‐weighted partial dynamic conformal arcs (DCA) plus 4–6 static beams. About 60–70% of the total beam weight was given to the DCA and the rest was distributed among the static beams to maximize the tumor coverage and spare the organs‐at‐risk (OAR). The clinical VMAT and h‐DCA plans were compared via RTOG‐0915 protocol for conformity and dose to OAR. Additionally, delivery efficiency, accuracy, and overall h‐DCA planning time were recorded. Results All plans met RTOG‐0915 requirements. Comparison with clinical VMAT plans h‐DAC gave better target coverage with a higher dose to the tumor and exhibited statistically insignificance differences in gradient index, D2cm, gradient distance and OAR doses with the exception of maximal dose to skin (P = 0.015). For h‐DCA plans, higher values of tumor heterogeneity and tumor maximum, minimum and mean doses were observed and were 10%, 2.8, 1.0, and 2.0 Gy, on average, respectively, compared to the clinical VMAT plans. Average beam on time was reduced by a factor of 1.51. Overall treatment planning time for h‐DCA was about an hour. Conclusion Due to no beam modulation through the target, h‐DCA plans avoid small‐field dosimetry and MLC interplay effects and resulting in enhanced target coverage by improving tumor dose (characteristic of FFF‐beam). The h‐DCA simplifies treatment planning and beam on time significantly compared to clinical VMAT plans. Additionally, h‐DCA allows for the real time target verification and eliminates patient‐specific VMAT quality assurance; potentially offering cost‐effective, same or next day SBRT treatments. Moreover, this technique can be easily adopted to other disease sites and small clinics with less extensive physics or machine support.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Matthew Halfman
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Lana Sanford
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Kron T, Thorwarth D. Single-fraction magnetic resonance guided stereotactic radiotherapy - A game changer? Phys Imaging Radiat Oncol 2020; 14:95-96. [PMID: 32566765 PMCID: PMC7297147 DOI: 10.1016/j.phro.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
28
|
Simcock R, Thomas TV, Estes C, Filippi AR, Katz MA, Pereira IJ, Saeed H. COVID-19: Global radiation oncology's targeted response for pandemic preparedness. Clin Transl Radiat Oncol 2020; 22:55-68. [PMID: 32274425 PMCID: PMC7102593 DOI: 10.1016/j.ctro.2020.03.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
As the global COVID-19 pandemic escalates there is a need within radiation oncology to work to support our patients in the best way possible. Measures are required to reduce infection spread between patients and within the workforce. Departments need contingency planning to create capacity and continue essential treatments despite a reduced workforce. The #radonc community held an urgent online journal club on Twitter in March 2020 to discuss these issues and create some consensus on crucial next steps. There were 121 global contributors. This document summarises these discussions around themes of infection prevention, rationalisation of workload and working practice in the presence of infection.
Collapse
Affiliation(s)
| | | | | | - Andrea R Filippi
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
29
|
Pokhrel D, Sanford L, Dhanireddy B, Molloy J, Randall M, McGarry RC. Flattening filter free VMAT for a stereotactic, single-dose of 30 Gy to lung lesion in a 15-min treatment slot. J Appl Clin Med Phys 2020; 21:6-12. [PMID: 32039544 PMCID: PMC7170282 DOI: 10.1002/acm2.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Cone‐beam CT‐guided single dose of lung stereotactic body radiotherapy (SBRT) treatment with a flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a safe and highly effective treatment modality for selective small lung lesions. Four‐dimensional (4D) CT‐based treatment plans were generated using advanced AcurosXB algorithm for heterogeneity corrections. 6X‐FFF beam produced highly conformal radiosurgical dose distribution to the target and reduced lung SBRT fraction duration to less than 10 min for a single dose of 30 Gy, significantly improving patient comfort and clinic workflow. Early follow‐up CT imaging results (mean, 8 months) show high local control rates (100%) with no acute lung or rib toxicity. Longer clinical follow‐up in a larger patient cohort managed in this fashion is underway to further validate this treatment approach.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Lana Sanford
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Bhaswanth Dhanireddy
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Janelle Molloy
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Marcus Randall
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
Pokhrel D, Halfman M, Sanford L. FFF-VMAT for SBRT of lung lesions: Improves dose coverage at tumor-lung interface compared to flattened beams. J Appl Clin Med Phys 2019; 21:26-35. [PMID: 31859456 PMCID: PMC6964748 DOI: 10.1002/acm2.12764] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose To quantify the differences in dosimetry as a function of ipsilateral lung density and treatment delivery parameters for stereotactic, single dose of volumetric modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) delivered with 6X flattening filter free (6X‐FFF) beams compared to traditional flattened 6X (6X‐FF) beams. Materials/methods Thirteen consecutive early stage I–II non‐small‐cell‐lung cancer (NSCLC) patients were treated with highly conformal noncoplanar VMAT SBRT plans (3–6 partial arcs) using 6X‐FFF beam and advanced Acuros‐based dose calculations to a prescription dose of 30 Gy in one fraction to the tumor margin. These clinical cases included relatively smaller tumor (island tumors) sizes (2.0–4.2 cm diameters) and varying average ipsilateral lung densities between 0.14 g/cc and 0.34 g/cc. Treatment plans were reoptimized with 6X‐FF beams for identical beam/arc geometries and planning objectives. For same target coverage, the organs‐at‐risk (OAR) dose metrics as a function of ipsilateral lung density were compared between 6X‐FFF and 6X‐FF plans. Moreover, monitor units (MU), beam modulation factor (MF) and beam‐on time (BOT) were evaluated. Results Both plans met the RTOG‐0915 protocol compliance. The ipsilateral lung density and the tumor location heavily influenced the treatment plans with 6X‐FFF and 6X‐FF beams, showing differences up to 12% for the gradient indices. For similar target coverage, 6X‐FFF beams showed better target conformity, lower intermediate dose‐spillage, and lower dose to the OAR. Additionally, BOT was reduced by a factor of 2.3 with 6X‐FFF beams compared to 6X‐FF beams. Conclusion While prescribing dose to the tumor periphery, 6X‐FFF VMAT plans for stereotactic single‐dose lung SBRT provided similar target coverage with better dose conformity, superior intermediate dose‐spillage (improved dose coverage at tumor interface), and improved OAR sparing compared to traditional 6X‐FF beams and significantly reduced treatment time. The ipsilateral lung density and tumor location considerably affected dose distributions requiring special attention for clinical SBRT plan optimization on a per‐patient basis. Clinical follow up of these patients for tumor local‐control rate and treatment‐related toxicities is in progress.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Matthew Halfman
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| | - Lana Sanford
- Department of Radiation Medicine, Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Long term results of single high dose Stereotactic Body Radiotherapy in the treatment of primary lung tumors. Sci Rep 2019; 9:15498. [PMID: 31664125 PMCID: PMC6820864 DOI: 10.1038/s41598-019-51900-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) is a standard treatment for inoperable early-stage NSCLC, with local control rates comparable to surgical series. Promising results have been achieved utilizing a high single-dose schedule. The aim of our study was to evaluate long-term local control and toxicity in a series of patients treated with SBRT delivered in a single dose of 30 Gy. 44 patients affected by early stage NSCLC were treated with SBRT delivered in a single dose of 30 Gy. Survival and prognostic factors were retrospectively evaluated. Median follow-up was 34 months (range 3-81). Three- and 5-year local progression-free survival (LPFS) were 87.8% and 87.8% respectively (median 30 months; range 6-81 months), 3- and 5-year OS and CSS were 64.9% and 36.9%, 80.9% and 65.5%, respectively. Two (4.6%) cases of grade 3 pneumonitis occurred. At the univariate analysis lesion diameter ≤ 25 mm was predictive of better 5-year LPFS (95.8% versus 56.3%; p = 0.003) and 5-year PFS (69.8% versus 27.8%; p = 0.002). The results of our study indicated a high local control, survival and tolerability after a long-term follow-up with the use of SBRT 30 Gy single dose. Further prospective studies could better define the role of this regimen.
Collapse
|
32
|
Dalwadi S, Teh BS, Bernicker E, Butler EB, Farach AM. Community-based Disparities in the Treatment and Outcomes of Early-stage Non-small-cell Carcinoma. Cureus 2019; 11:e5889. [PMID: 31772859 PMCID: PMC6837260 DOI: 10.7759/cureus.5889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Lung cancer is the most common malignancy in men and women combined. It is also the leading cause of cancer-related deaths in the US. The objective of this study is to report the treatment and survival outcomes for early-stage non-small-cell lung carcinoma (NSCLC) when stratified by urban versus rural geography. Methods A dataset of 62,213 patients, all aged 60 years or above, with stage-1 NSCLC, who underwent treatment from 2004 to 2012 was retrieved from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute (NCI). Patients were divided into metropolitan, urban, or rural (in descending order of population density) based on their location of cancer treatment using the US Rural-Urban Continuum Code Definitions for 2003. Patient characteristics were compared using the chi-square test, and survival statistics were calculated using the Kaplan-Meier estimator. Results Rural or urban stage-1 NSCLC patients are more likely to be white, young, male, poor, and uninsured or Medicaid-dependent. They generally have squamous histology and receive radiation therapy when compared to metropolitan counterparts [probability value (p): <0.0001]. Median overall survival was shorter for rural and urban patients than metropolitan patients (41, 41, and 52 months respectively; p: <0.0001). Conclusion Tertiary care centers in metropolitan areas continue to demonstrate superior outcomes in the treatment of stage-1 NSCLC. This is presumably due to the existing disparities in patient access to care. Rural and urban stage-1 NSCLC patients (who tend to be younger, poorer, and more likely to be treated with radiation than surgery) are likely to be disproportionately impacted by changes in health policy.
Collapse
Affiliation(s)
| | - Bin S Teh
- Radiation Oncology, Houston Methodist Hospital, Houston, USA
| | - Eric Bernicker
- Internal Medicine, Houston Methodist Hospital, Houston, USA
| | - E Brian Butler
- Radiation Oncology, Houston Methodist Hospital, Houston, USA
| | - Andrew M Farach
- Radiation Oncology, Houston Methodist Hospital, Houston, USA
| |
Collapse
|
33
|
Lu JY, Lin Z, Lin PX, Huang BT. Comparison of Three Radiobiological Models in Stereotactic Body Radiotherapy for Non-Small Cell Lung Cancer. J Cancer 2019; 10:4655-4661. [PMID: 31528230 PMCID: PMC6746137 DOI: 10.7150/jca.33001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/06/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: The applicability of the linear quadratic (LQ) model to local control (LC) modeling after hypofractionated radiotherapy to treat lung cancer is highly debated. To date, the differences in predicted outcomes between the LQ model and other radiobiological models, which are characterized by additional dose modification beyond a certain transitional dose (dT), have not been well established. This study aims to compare the outcomes predicted by the LQ model with those predicted by two other radiobiological models in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC). Methods: Computer tomography (CT) simulation data sets for 20 patients diagnosed with stage Ⅰ primary NSCLC were included in this study. Three radiobiological models, including the LQ, the universal survival curve (USC) and the modified linear quadratic and linear (mLQL) model were employed to predict the tumor control probability (TCP) data. First, the dT values for the USC and mLQL models were determined. Then, the biologically effective dose (BED) and the predicted TCP values from the LQ model were compared with those calculated from the USC and mLQL models. Results: The dT values from the USC model were 29.6 Gy, 33.8 Gy and 44.5 Gy, whereas the values were 90.2 Gy, 84.0 Gy and 57.3 Gy for the mLQL model for 1-year, 2-year and 3-year TCP prediction. The remarkable higher dT values obtained from the mLQL model revealed the same dose-response relationship as the LQ model in the low- and high-dose ranges. We also found that TCP prediction from the LQ and USC models differed by less than 3%, although the BED values for the two models were significantly different. Conclusion: Radiobiological analysis reveals small differences between the models and suggested that the LQ model is applicable for modeling LC using SBRT to treat lung cancer, even when an extremely high fractional dose is used.
Collapse
Affiliation(s)
- Jia-Yang Lu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong, China
| | - Zhu Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong, China
| | - Pei-Xian Lin
- Department of Nosocomial Infection Management, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Bao-Tian Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong, China
- ✉ Corresponding author: Bao-Tian Huang, Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong, China. E-mail: ; Tel: +86-754-88537731
| |
Collapse
|
34
|
Manyam BV, Videtic GMM, Verdecchia K, Reddy CA, Woody NM, Stephans KL. Effect of Tumor Location and Dosimetric Predictors for Chest Wall Toxicity in Single-Fraction Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Pract Radiat Oncol 2018; 9:e187-e195. [PMID: 30529796 DOI: 10.1016/j.prro.2018.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Dosimetric parameters to limit chest wall toxicity (CWT) are not well defined in single-fraction (SF) stereotactic body radiation therapy (SBRT) phase 2 trials. We sought to determine the relationship of tumor location and dosimetric parameters with CWT for SF-SBRT. METHODS AND MATERIALS From a prospective registry of 1462 patients, we identified patients treated with 30 Gy or 34 Gy. Gross tumor volume was measured as abutting, ≤1 cm, 1 to 2 cm, or >2 cm from the chest wall. CWT was prospectively graded according to Common Terminology Criteria for Adverse Events version 3.0, with grade 2 requiring medical therapy, grade 3 requiring procedural intervention, and grade 4 being disabling pain. Grade 1 CWT or radiographic rib fracture was not included. Logistic regression analysis was used to identify the parameters associated with CWT and calculate the probability of CWT with dose. RESULTS This study included 146 lesions. The median follow-up time was 23.8 months. The 5-year local control, distant metastasis, and overall survival rates were 91.8%, 19.2%, and 28.7%, respectively. Grade 2 to 4 CWT was 30.6% for lesions abutting the chest wall, 8.2% for ≤1 cm from the chest wall, 3.8% for 1 to 2 cm from the chest wall, and 5.7% for >2 cm from the chest wall. Grade ≥3 CWT was 1.4%. Tumor abutment (odds ratio [OR]: 6.5; P = .0005), body mass index (OR: 1.1; P = .02), rib D1cc (OR: 1.01/Gy; P = .03), chest wall D1cc (OR: 1.08/Gy; P = .03), and chest wall D5cc (OR: 1.10/Gy; P = .01) were significant predictors for CWT on univariate analysis. Tumor abutment was significant for CWT (OR: 7.5; P = .007) on multivariate analysis. The probability of CWT was 15% with chest wall D5cc at 27.2 Gy and rib D1cc at 30.2 Gy. CONCLUSIONS The rate of CWT with SF-SBRT is similar to the rates published for fractionated SBRT, with most CWT being low grade. Tumor location relative to the chest wall is not a contraindication to SF-SBRT, but the rates increase significantly with abutment. Rib D1cc and chest wall D1cc and D5cc may be used as predictors of CWT.
Collapse
Affiliation(s)
- Bindu V Manyam
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio.
| | | | - Kyle Verdecchia
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Chandana A Reddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Neil M Woody
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Kevin L Stephans
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
35
|
Sebastian NT, Xu-Welliver M, Williams TM. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC): contemporary insights and advances. J Thorac Dis 2018; 10:S2451-S2464. [PMID: 30206491 PMCID: PMC6123192 DOI: 10.21037/jtd.2018.04.52] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
The standard-of-care treatment for early-stage non-small cell lung cancer (NSCLC) continues to be surgery in the form of lobectomy or pneumonectomy. Stereotactic body radiation therapy (SBRT) has evolved as a viable alternative to surgery for medically inoperable patients, achieving excellent local control (LC) with relatively minimal toxicity in standard-risk patients. Nevertheless, the maturation of SBRT has fostered debate regarding its use, technique, dose, and fractionation, particularly in the context of patient- and disease-specific characteristics such as tumor size and location. This review will cover the recent trends and future directions of SBRT as it becomes an increasingly individualized modality in the treatment of early-stage NSCLC.
Collapse
Affiliation(s)
- Nikhil T Sebastian
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, OH, USA
| | - Meng Xu-Welliver
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, OH, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, OH, USA
| |
Collapse
|
36
|
Zhu S, Lightsey JL, Hoppe BS, Okunieff P, Gopalan PK, Kaye FJ, Morris CG, Yeung AR. Stereotactic Ablative Body Radiotherapy for Primary Non-Small-Cell Lung Cancer: Achieving Local Control with a Lower Biologically Effective Dose. Cancer Invest 2018; 36:289-295. [PMID: 30040495 DOI: 10.1080/07357907.2018.1479415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We conducted a retrospective study of stereotactic ablative radiotherapy (SABR) for 94 patients with non-small-cell lung cancer at our institution. The patients were treated with either 50 Gy in five treatments or 48 Gy in four treatments, corresponding to biologically effective doses (BED) of 100 Gy or 105.6 Gy, respectively. The results demonstrate that, with relatively low BEDs, we can achieve excellent local control with minimal toxicity.
Collapse
Affiliation(s)
- Simeng Zhu
- a Department of Radiation Oncology , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Judith L Lightsey
- a Department of Radiation Oncology , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Bradford S Hoppe
- a Department of Radiation Oncology , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Paul Okunieff
- a Department of Radiation Oncology , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Priya K Gopalan
- b Department of Medicine , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Frederic J Kaye
- b Department of Medicine , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Christopher G Morris
- b Department of Medicine , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Anamaria R Yeung
- a Department of Radiation Oncology , University of Florida College of Medicine , Gainesville , Florida , USA
| |
Collapse
|
37
|
Osti MF, Agolli L, Valeriani M, Reverberi C, Bracci S, Marinelli L, De Sanctis V, Cortesi E, Martelli M, De Dominicis C, Minniti G, Nicosia L. 30 Gy single dose stereotactic body radiation therapy (SBRT): Report on outcome in a large series of patients with lung oligometastatic disease. Lung Cancer 2018; 122:165-170. [PMID: 30032826 DOI: 10.1016/j.lungcan.2018.06.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the local control (LC) and long term adverse effects in a series of patients with lung metastases who received 30 Gy in single dose with stereotactic technique. MATERIALS AND METHODS Between December 2008 and April 2016, a total of 166 lung metastases in 129 patients affected by oligometastatic disease were treated at our Institution with stereotactic body radiotherapy (SBRT). Mainly, the primary tumors were non small-cell lung cancer and colorectal cancer (45.2% and 28.8%, respectively). Prognostic factors were also assessed. RESULTS The median follow-up was 38 months. Local progression occurred in 24 (14.4%) lesions in 21 patients. Intra-thoracic progression (new lung lesions or thoracic lymph node metastases) occurred in 59 (45.7%) patients. Forty-five (34.8%) patients had distant progression after a median time of 14 months. The 3- and 5-years local relapse-free survival (LPFS) were 80.1% and 79.2% (median not reached), respectively. One-hundred forty-eight patients were evaluated for late toxicity (follow-up >6 months): 51 (34.4%) patients had grade ≤2 fibrosis, 11 (7.4%) patients experienced grade 3 fibrosis. Two (1.3%) cases of rib fracture occurred. One case of toxic death (grade 5) has been reported. Median OS was 39 months. At the univariate analysis, lesion diameter ≤18 mm correlated significantly with a longer LPFS (p = 0.001). At the multivariate analysis, lesion diameter <18 mm was predictive for longer LPFS (p = 0.006). Also, oligometastases from primary colorectal cancer was a significant predictive factor for worse LPFS (p = 0.041) and progression-free survival (p = 0.04). CONCLUSIONS To our knowledge, the current study represents the largest series on the use of SBRT 30 Gy single dose for lung metastases. Our results confirm the effectiveness and safety of this schedule administered in selected oligometastatic patients. Further prospective series could better validate these results.
Collapse
Affiliation(s)
- M F Osti
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - L Agolli
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - M Valeriani
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - C Reverberi
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - S Bracci
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - L Marinelli
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - V De Sanctis
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - E Cortesi
- Department of Radiology, Oncology and Human Pathology, Policlinico Umberto I "Sapienza" University of Rome, Italy
| | - M Martelli
- Thoracic Surgery Unit, Carlo Forlanini Hospital, Rome, Italy
| | - C De Dominicis
- Department of Radiology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - G Minniti
- Department of Neurological Sciences, IRCCS Neuromed, Via Atinense, Pozzilli, IS, Italy; UPMC San Pietro FBF, Radiotherapy Center, Rome, Italy.
| | - L Nicosia
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy.
| |
Collapse
|
38
|
Ma SJ, Serra LM, Syed YA, Hermann GM, Gomez-Suescun JA, Singh AK. Comparison of Single- and Three-fraction Schedules of Stereotactic Body Radiation Therapy for Peripheral Early-stage Non-Small-cell Lung Cancer. Clin Lung Cancer 2018; 19:e235-e240. [PMID: 29153897 PMCID: PMC6961954 DOI: 10.1016/j.cllc.2017.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND To compare the clinical outcomes of patients with early-stage non-small-cell lung cancer (NSCLC) who had undergone either single-fraction (SF) or three-fraction (TF) stereotactic body radiation therapy (SBRT) at a single institution during over 8-year period. PATIENTS AND METHODS Patients with peripherally located early-stage NSCLC who had undergone SBRT from February 2007 to November 2015 were included in the present study. SBRT was delivered without heterogeneity correction. Data were retrospectively reviewed and collected in an institutional review board-approved database. R software (version 3.3.2) was used for statistical analysis. RESULTS Of 159 total lung tumors, 65 lesions received 30 Gy (median, 30 Gy) in 1 fraction, and 94 lesions received 48 to 60 Gy (median, 60 Gy) in 3 fractions. Patients with a Karnofsky performance status < 80 were more common in the SF-SBRT cohort (P = .050). After a median follow-up of 22.2 and 26.2 months for the SF-SBRT and TF-SBRT cohorts, respectively (P = .29), no statistically significant difference was found in overall survival (P = .86), progression-free survival (P = .95), local failure (P = .95), nodal failure (P = .91), and distant failure (P = .49) at 24 months. At 1 and 2 years, the overall survival rates were 86.1% and 63.2% for the SF-SBRT cohort and 80.8% and 61.6% for the TF-SBRT cohort, respectively. At 1 and 2 years, the local control rates were 95.1% and 87.8% for the SF-SBRT cohort and 92.7% and 86.2% for the TF-SBRT cohort, respectively. Both regimens were well tolerated. CONCLUSION Despite more patients with poor performance status in the SF-SBRT cohort, the SF- and TF-SBRT regimens showed no differences in clinical outcomes. SF-SBRT is now our standard approach.
Collapse
Affiliation(s)
- Sung Jun Ma
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Lucas M Serra
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Yusef A Syed
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Gregory M Hermann
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Jorge A Gomez-Suescun
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Anurag K Singh
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY.
| |
Collapse
|
39
|
Ruggieri R, Stavrev P, Naccarato S, Stavreva N, Alongi F, Nahum AE. Optimal dose and fraction number in SBRT of lung tumours: A radiobiological analysis. Phys Med 2017; 44:188-195. [DOI: 10.1016/j.ejmp.2016.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
|
40
|
Stephans KL, Woody NM, Reddy CA, Varley M, Magnelli A, Zhuang T, Qi P, Videtic GMM. Tumor Control and Toxicity for Common Stereotactic Body Radiation Therapy Dose-Fractionation Regimens in Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2017; 100:462-469. [PMID: 29353658 DOI: 10.1016/j.ijrobp.2017.10.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE To examine the impact of stereotactic body radiation therapy (SBRT) dose on outcomes in early-stage non-small cell lung cancer in a large single-institution series. METHODS AND MATERIALS We reviewed 600 patients treated from 2003 to 2012 for early-stage non-small cell lung cancer. The SBRT dose was at physician discretion on the basis of tumor size and location. Peripheral tumors were treated to 60 Gy in 3 fractions (homogeneous planning), 48-50 Gy in 4-5 fractions, or 30-34 Gy in 1 fraction. Central tumors were treated to 50 Gy in 5 fractions, 60 Gy in 8 fractions, or 50 Gy in 10 fractions. Patient, tumor, and treatment factors were assessed for their impact on patterns of failure, toxicity, and survival. RESULTS An SBRT dose of 54-60 Gy in 3 fractions was associated with a statistically significant lower rate of local failure (LF) (4.3% at 2 years) compared with 30-34 Gy in 1 fraction (21%), 48-50 Gy in 4-5 fractions (15.5%), and 50-60 Gy in 8-10 fractions (13.3%). Lower pre-SBRT hemoglobin and higher positron emission tomography standardized uptake value were also associated with LF. Nodal failure, distant failure, and overall survival were similar between fractionation groups. Pulmonary toxicity (crude rate, any grade) was slightly higher for 3 fractions (5.0%) compared with 1 (3.2%) or 4-5 fractions (3.8%). Chest wall toxicity was also higher for 3 (23.7%) compared with 1 (8.6%) or 4-5 (7.7%) fraction regimens. CONCLUSIONS Although higher biologically equivalent dose SBRT (150-180 Gy10) may be associated with slightly lower LF, it was also associated with mildly increased toxicity and no difference in other patterns of failure or overall survival.
Collapse
Affiliation(s)
- Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio.
| | - Neil M Woody
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Chandana A Reddy
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Matthew Varley
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Anthony Magnelli
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Tingliang Zhuang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Peng Qi
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
41
|
Holmes JA, Zagar TM, Chen RC. Adoption of Stereotactic Body Radiotherapy for Stage IA Non-Small Cell Lung Cancer Across the United States. JNCI Cancer Spectr 2017; 1:pkx003. [PMID: 31360829 PMCID: PMC6649706 DOI: 10.1093/jncics/pkx003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) is a treatment option for stage I non-small cell lung cancer (NSCLC), providing a potentially curative therapy for patients who are nonsurgical candidates. This study describes the adoption of SBRT vs other treatment options across the United States, as well as commonly used dose-fractionation regimens. METHODS We analyzed patients in the National Cancer Data Base. A total of 107 233 stage IA NSCLC patients diagnosed from 2008 to 2013 were included. We described the proportions of patients who received different surgical and radiation treatment options by year. A multivariable model was constructed to assess factors associated with patients receiving SBRT. In patients who received SBRT, we described the proportion of patients who received common dose/fractionation regimens. RESULTS Use of SBRT increased from 6.7% to 16.3% from 2008 to 2013, with a corresponding decrease in lobectomy/pneumonectomy (49.5% to 43.7%). The rates of wedge resection, conventional radiotherapy, and no treatment remained relatively constant. Adoption of SBRT was lowest in small community centers (8.6% of patients by 2013). On multivariable analysis, older age and treatment at larger centers were associated with higher SBRT receipt, and black race and higher comorbidity were associated with lower SBRT receipt. There was statistically significant geographic variation. Common SBRT schemes were 10 Gy × 5 (19%), 18-20 Gy × 3 (31%), and 12 Gy × 4 (16%). CONCLUSIONS SBRT adoption has been modest over time and has not substantially replaced less curative treatments. Lack of access to this technology in smaller cancer centers may have partly contributed to the slow adoption.
Collapse
Affiliation(s)
- Jordan A. Holmes
- Affiliations of authors: Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC (JAH, TMZ, RCC); University of North Carolina-Lineberger Comprehensive Cancer Center, Chapel Hill, NC (RCC); Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC)
| | - Timothy M. Zagar
- Affiliations of authors: Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC (JAH, TMZ, RCC); University of North Carolina-Lineberger Comprehensive Cancer Center, Chapel Hill, NC (RCC); Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC)
| | - Ronald C. Chen
- Affiliations of authors: Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC (JAH, TMZ, RCC); University of North Carolina-Lineberger Comprehensive Cancer Center, Chapel Hill, NC (RCC); Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC)
| |
Collapse
|
42
|
Ma SJ, Syed YA, Rivers CI, Gomez Suescun JA, Singh AK. Comparison of single- and five-fraction schedules of stereotactic body radiation therapy for central lung tumours: a single institution experience. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017; 16:148-154. [PMID: 30713468 PMCID: PMC6358274 DOI: 10.1017/s1460396917000061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stereotactic body radiation therapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer who are medically inoperable or decline surgery. Here we compare the outcome of patients with centrally located lung tumours who underwent either single fraction (SF)- or five-fraction (FF-) SBRT at a single institution over 5 years. METHODS Between January 2009 and October 2014, patients with centrally located lung tumours who underwent SBRT were included in this study. Data were retrospectively collected using an institutional review board-approved database. For analysis, the Kaplan-Meier method and competing risks method were used. RESULTS In total, 11 patients received 26-30 Gy in 1 fraction, whereas 31 patients received 50-60 Gy (median 55 Gy) in 5 fractions. After a median follow-up of 12 months for SF-SBRT and 17 months for FF-SBRT groups (p = 0.64), 1-year overall survival rates were 82 and 87%, respectively. SF- and FF-SBRT groups showed no significant difference in grade 3+ toxicity (p = 0·28). The only grade 4 toxicity (n = 1) was reported in the SF-SBRT group. All toxicities occurred >12 months after the SBRT. CONCLUSIONS SF- and FF-SBRT have comparable overall survival. SF-SBRT may have some utility for patients unable to have multi-fraction SBRT.
Collapse
Affiliation(s)
- Sung Jun Ma
- Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yusef A. Syed
- Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Charlotte I. Rivers
- Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jorge A. Gomez Suescun
- Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anurag K. Singh
- Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
43
|
Chi A, Chen H, Wen S, Yan H, Liao Z. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiother Oncol 2017; 123:346-354. [PMID: 28545956 DOI: 10.1016/j.radonc.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess hypo-fractionated particle beam therapy (PBT)'s efficacy relative to that of photon stereotactic body radiotherapy (SBRT) for early stage (ES) non-small cell lung cancer (NSCLC). METHODS Eligible studies were identified through extensive searches of the PubMed, Medline, Google-scholar, and Cochrane library databases from 2000 to 2016. Original English publications of ES NSCLC were included. A meta-analysis was performed to compare the survival outcome, toxicity profile, and patterns of failure following each treatment. RESULTS 72 SBRT studies and 9 hypo-fractionated PBT studies (mostly single-arm) were included. PBT was associated with improved overall survival (OS; p=0.005) and progression-free survival (PFS; p=0.01) in the univariate meta-analysis. The OS benefit did not reach its statistical significance after inclusion of operability into the final multivariate meta-analysis (p=0.11); while the 3-year local control (LC) still favored PBT (p=0.03). CONCLUSION Although hypo-fractionated PBT may lead to additional clinical benefit when compared with photon SBRT, no statistically significant survival benefit from PBT over SBRT was observed in the treatment of ES NSCLC in this hypothesis-generating meta-analysis after adjusting for potential confounding variables.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, China
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA.
| | - Haijuan Yan
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
44
|
Falkson CB, Vella ET, Yu E, El-Mallah M, Mackenzie R, Ellis PM, Ung YC. Radiotherapy With Curative Intent in Patients With Early-stage, Medically Inoperable, Non–Small-cell Lung Cancer: A Systematic Review. Clin Lung Cancer 2017; 18:105-121.e5. [DOI: 10.1016/j.cllc.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
|
45
|
Dang TM, Peters MJ, Hickey B, Semciw A. Efficacy of flattening-filter-free beam in stereotactic body radiation therapy planning and treatment: A systematic review with meta-analysis. J Med Imaging Radiat Oncol 2017; 61:379-387. [DOI: 10.1111/1754-9485.12583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Thu M Dang
- Radiation Oncology Mater Centre; South Brisbane Queensland Australia
| | - Mitchell J Peters
- Radiation Oncology Mater Centre; South Brisbane Queensland Australia
| | - Brigid Hickey
- Radiation Oncology Mater Centre; South Brisbane Queensland Australia
| | - Adam Semciw
- School of Health and Rehabilitation Sciences; The University of Queensland; St Lucia Queensland Australia
| |
Collapse
|
46
|
Abstract
Stereotactic body radiation therapy (SBRT) has had a profound impact on the treatment paradigm for medically inoperable patients with stage I non-small cell lung cancer. Local control and survival outcomes from prospective collaborative trials using SBRT have been highly favorable in this challenging patient population. Further study in medically operable patients is ongoing; however, randomized trials to help answer this question have terminated early because of poor accrual. Available prospective and retrospective data are discussed for the use of SBRT with regard to the medically inoperable and operable patient populations, as well as considerations for fractionation, dose, and toxicity.
Collapse
|
47
|
Yamamoto N, Miyamoto T, Nakajima M, Karube M, Hayashi K, Tsuji H, Tsujii H, Kamada T, Fujisawa T. A Dose Escalation Clinical Trial of Single-Fraction Carbon Ion Radiotherapy for Peripheral Stage I Non-Small Cell Lung Cancer. J Thorac Oncol 2016; 12:673-680. [PMID: 28007628 DOI: 10.1016/j.jtho.2016.12.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/13/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Our objective was to report initial results of a dose escalation trial of single-fraction carbon ion radiotherapy for peripheral stage I NSCLC. METHODS Between April 2003 and February 2012, a total of 218 patients were treated. The total dose was raised from 28 to 50 Gy (relative biological effectiveness [RBE]). There were 157 male and 61 female patients, with a median age of 75 years. Of the tumors, 123 were stage T1 and 95 were stage T2. A total of 134 patients (61.5%) were medically inoperable. By histological type, there were 146 adenocarcinomas, 68 squamous cell carcinomas, three large cell carcinomas, and one mucoepidermoid carcinoma. RESULTS The median follow-up was 57.8 months (range 1.6-160.7). The overall survival rate at 5 years was 49.4%. The local control (LC) rate was 72.7%. A statistically significant difference in LC rate (p = 0.0001, log-rank test) was seen between patients receiving 36 Gy (RBE) or more and those receiving less than 36 Gy (RBE). In 20 patients irradiated with 48 to 50 Gy (RBE), the LC rate at 5 years was 95.0%, the overall survival rate was 69.2%, and the progression-free survival rate was 60.0% (median follow-up was 58.6 months). With dose escalation, LC tended to improve. As for adverse lung and skin reactions, there were no patients with grade 3 or higher reactions, and less than 2% had a grade 2 reaction. Regarding chest wall pain, only one patient had grade 3 late toxicity. CONCLUSIONS We have reported the outcome of a dose escalation study of single-fraction carbon ion radiotherapy for stage I NSCLC, showing the feasibility of obtaining excellent results comparable to those with previous fractionated regimens.
Collapse
Affiliation(s)
| | | | - Mio Nakajima
- National Institute of Radiological Sciences, Chiba, Japan
| | | | | | - Hiroshi Tsuji
- National Institute of Radiological Sciences, Chiba, Japan
| | | | - Tadashi Kamada
- National Institute of Radiological Sciences, Chiba, Japan
| | - Takehiko Fujisawa
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| |
Collapse
|
48
|
Block AM, Patel R, Surucu M, Harkenrider MM, Roeske JC. Evaluation of a template-based algorithm for markerless lung tumour localization on single- and dual-energy kilovoltage images. Br J Radiol 2016; 89:20160648. [PMID: 27730838 PMCID: PMC5604930 DOI: 10.1259/bjr.20160648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate a template-based matching algorithm on single-energy (SE) and dual-energy (DE) radiographs for markerless localization of lung tumours. METHODS A total of 74 images from 17 patients with Stages IA-IV lung cancer were considered. At the time of radiotherapy treatment, gated end-expiration SE radiographs were obtained at 60 and 120 kVp at different gantry angles (33° anterior and 41° oblique), from which soft-tissue-enhanced DE images were created. A template-based matching algorithm was used to localize individual tumours on both SE and DE radiographs. Tumour centroid co-ordinates obtained from the template-matching software on both SE and DE images were compared with co-ordinates defined by physicians. RESULTS The template-based matching algorithm was able to successfully localize the gross tumor volume within 5 mm on 70% (52/74) of the SE images vs 91% (66/74) of the DE images (p < 0.01). The mean vector differences between the co-ordinates of the template matched by the algorithm and the co-ordinates of the physician-defined ground truth were 3.2 ± 2.8 mm for SE images vs 2.3 ± 1.7 mm for DE images (p = 0.03). CONCLUSION Template-based matching on DE images was more accurate and precise than using SE images. Advances in knowledge: This represents, to the authors' knowledge, the largest study evaluating template matching on clinical SE and DE images, considering not only anterior gantry angles but also oblique angles, suggesting a novel lung tumour matching technique using DE subtraction that is reliable, accurate and precise.
Collapse
Affiliation(s)
- Alec M Block
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Rakesh Patel
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Murat Surucu
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - John C Roeske
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
49
|
Agolli L, Bracci S, Nicosia L, Valeriani M, De Sanctis V, Osti MF. Lung Metastases Treated With Stereotactic Ablative Radiation Therapy in Oligometastatic Colorectal Cancer Patients: Outcomes and Prognostic Factors After Long-Term Follow-Up. Clin Colorectal Cancer 2016; 16:58-64. [PMID: 27522627 DOI: 10.1016/j.clcc.2016.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND We evaluated a series of oligometastatic colorectal cancer (CRC) patients treated with stereotactic ablative body radiotherapy (SABR) delivered in all active lung metastases. PATIENTS AND METHODS Forty-four patients with 69 lung metastases were treated with SABR. Eleven patients presented with other sites of metastases before stereotactic body radiotherapy (SBRT), even though they had controlled/cured systemic disease. RESULTS The median follow-up was 36 months. The median overall survival (OS) was 38 months and 2 years, 3-year OS rates were 67.7% and 50.8%, respectively. The median progression-free survival (PFS) was 10 months and 2 years, 3-year PFS rates were 20.3% and 16.2%, respectively. Local recurrence occurred in 16 patients (36%).The first site of failure was local only in 22%, distant only in 35%, and local and distant in 14% of the patients. The 1-year, 2-year, and 3-year local PFS (LPFS) were 68.8%, 60.2%, and 54.2%, respectively. No Grade ≥ 3 toxicities were recorded in the univariate analysis; multiple lung metastases and synchronous oligometastatic disease were significantly associated with worse PFS (P = .04, and P < .001, respectively) and worse metastases-free survival (MFS; P = .04, and P < .001, respectively). The type of response was identified as a significant prognostic factor for OS (P = .014), PFS (P = .006), and LPFS (P < .001). In multivariate analysis single lung metastases treated with SBRT was associated with better MFS (P = .015). Metachronous oligometastatic disease and type of response were associated with significantly better PFS. CONCLUSION Stereotactic body radiotherapy is a valid therapy in the treatment of lung metastases for oligometastatic CRC patients presenting long survival. The rate of local control remains lower compared with other primaries. Further prospective cohorts would better evaluate effective fractionation for patients with oligometastatic CRC.
Collapse
Affiliation(s)
- Linda Agolli
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Stefano Bracci
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Luca Nicosia
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Maurizio Valeriani
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Vitaliana De Sanctis
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Mattia Falchetto Osti
- Institute of Radiation Oncology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
50
|
Xia P, Kotecha R, Sharma N, Andrews M, Stephans KL, Oberti C, Lin S, Wazni O, Tchou P, Saliba WI, Suh J. A Treatment Planning Study of Stereotactic Body Radiotherapy for Atrial Fibrillation. Cureus 2016; 8:e678. [PMID: 27563504 PMCID: PMC4985047 DOI: 10.7759/cureus.678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose: To explore the feasibility of using stereotactic body radiotherapy (SBRT) to irradiate the antra of the four pulmonary veins while protecting nearby critical organs, such as the esophagus. Materials and Methods: Twenty patients who underwent radiofrequency catheter ablation for atrial fibrillation were selected. For each patient, the antra of the four pulmonary veins were identified as the target volumes on a pre-catheterization contrast or non-contrast CT scan. On each CT scan, the esophagus, trachea, heart, and total lung were delineated and the esophagus was identified as the critical organ. For each patient, three treatment plans were designed with 0, 2, and 5 mm planning margins around the targets while avoiding overlap with a planning organ at risk volume (PRV) generated by a 2 mm expansion of the esophagus. Using three non-coplanar volumetric modulated arcs (VMAT), 60 plans were created to deliver a prescription dose of 50 Gy in five fractions, following the SBRT dose regimen for central lung tumors. With greater than 97% of the planning target volumes (PTV) receiving the prescription doses, we examined dosimetry to 0.03 cc and 5 cc of the esophagus PRV volume as well as other contoured structures. Results: The average PTV-0 mm, PTV-2 mm, and PTV-5 mm volumes were 3.05 ± 1.90 cc, 14.70 ± 5.00 cc, and 40.85 ± 10.20 cc, respectively. With three non-coplanar VMAT arcs, the average conformality indices (ratio of prescription isodose volume to the PTV volume) for the PTV-0 mm, PTV-2 mm and PTV-5 mm were 4.81 ± 2.0, 1.71 ± 0.19, and 1.23 ± 0.08, respectively. Assuming patients were treated under breath-hold with 2 mm planning margins to account for cardiac motion, all plans met esophageal PRV maximum dose limits < 50 Gy to 0.03 cc and 16 plans (80%) met < 27.5 Gy to 5 cc of the esophageal PRVs. For PTV-5 mm plans, 18 plans met the maximum dose limit < 50 Gy to 0.03 cc and only two plans met the maximum dose limit < 27.5 Gy to 5 cc of the esophageal PRV. Conclusions: The anatomical relationship between the antra of the four pulmonary veins and the esophagus varies from patient to patient. Adding 2 mm planning margins and a 2 mm PRV to the esophagus can meet the dose constraints developed for SBRT central lung tumors. Future studies are needed to validate the safety and efficacy of the planning dose, tolerance dose to normal cardiac tissue, and adequate planning margins.
Collapse
Affiliation(s)
- Ping Xia
- Department of Radiation Oncology, Cleveland Clinic
| | | | | | | | | | - Carlos Oberti
- Department of Cardiovascular Medicine, Cleveland Clinic
| | - Sara Lin
- Department of Radiation Oncology, Cleveland Clinic
| | - Oussama Wazni
- Department of Cardiovascular Medicine, Cleveland Clinic
| | | | | | | |
Collapse
|