1
|
Abu Taha S, Abu Hejleh T, ElHaddad M, Al-Ibraheem A, Abbasi A, Sumaida A, Bushehri A, Mostafa A, Youssef B, Alotain I, Abu-Gheida I, Aldehaim M, Alghamdi M, Shelan M, Al Dohan M, Al-Hussaini M, Pervez N, Temraz S, Alrashidi S, El-Sheshtawy W, Al-Mandhari Z, Ghatasheh H, Hosni A, Mohamad I. Chemotherapy-free innovations in locally advanced head and neck cancer: a comprehensive review. Front Oncol 2025; 15:1552337. [PMID: 40330829 PMCID: PMC12052741 DOI: 10.3389/fonc.2025.1552337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
The treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC) has traditionally relied on a multimodal approach, combining surgery, radiation therapy (RT), and chemotherapy. While chemotherapy plays a critical role in improving cure rates and functional outcomes, its substantial toxicity remains a major concern, particularly in older patients. These challenges are especially relevant for those who are unfit for chemotherapy or decline conventional concurrent chemoradiotherapy (CCRT), highlighting the need for alternative therapeutic options. Many patients are at high risk for severe side effects, often preventing them from completing the full chemotherapy regimen. This review explores alternative strategies to definitive CCRT of carcinomas of the larynx, hypopharynx and oropharynx, aiming to optimize treatment outcomes while minimizing toxicity. We discuss altered fractionation strategies as a promising alternative to conventional RT, offering a balance between treatment efficacy and quality of life. Additionally, we examine emerging approaches, including the combining of targeted therapies, immunotherapy, hyperthermia, photodynamic therapy and nanoparticle-based treatments with RT, which provide alternative or complementary options to traditional therapies in the management of LA-HNSCC.
Collapse
Affiliation(s)
- Shatha Abu Taha
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Taher Abu Hejleh
- Department of Medical Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Mostafa ElHaddad
- Clinical Oncology Department, Kasr Al-Ainy Center of Clinical Oncology and Nuclear Medicine, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Ahmed Abbasi
- Department of Radiation Oncology, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Ahmad Bushehri
- Department of Radiation Oncology, Kuwait Cancer Control Center, Kuwait, Kuwait
| | - Ahmad Mostafa
- Clinical oncology department, Minia Oncology, Center, Minia, Egypt
| | - Bassem Youssef
- Department of Radiation Oncology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Ibrahim Alotain
- Department of Radiation Oncology, King Fahad Specialist, Dammam, Saudi Arabia
| | - Ibrahim Abu-Gheida
- Department of Radiation Oncology, Burjeel Medical City, Abu Dhabi, United Arab Emirates
| | - Mohammed Aldehaim
- Department of Radiation Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majed Alghamdi
- Radiation Oncology, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region, Jeddah, Saudi Arabia
- Collage of Medicine, King Saud Bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Mohamed Shelan
- Department of Radiation Oncology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Mohammed Al Dohan
- Department of Radiation Oncology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maysa Al-Hussaini
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Nadeem Pervez
- Department of Radiation Oncology, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Shoukri Temraz
- Clinical Oncology Department, Mansoura University hospital, Mansour, Egypt
| | - Saad Alrashidi
- Department of Radiation Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Zahid Al-Mandhari
- Department of Radiation Oncology, Sultan Qaboos Comprehensive Cancer Care and Research Centre, Muscat, Oman
| | - Hamza Ghatasheh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
2
|
Li Y, Ma Y, Wu J, Zhang H, Cai H, Liu X, Li Q. Hypoxia-guided treatment planning for lung cancer with dose painting by numbers. J Appl Clin Med Phys 2025; 26:e14609. [PMID: 39704650 PMCID: PMC11969086 DOI: 10.1002/acm2.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor hypoxia significantly impacts the efficacy of radiotherapy. Recent developments in the technique of dose painting by numbers (DPBN) promise to improve the tumor control probability (TCP) in conventional radiotherapy for hypoxic cancer. The study initially combined the DPBN method with hypoxia-guided dose distribution optimization to overcome hypoxia for lung cancers and evaluated the effectiveness and appropriateness for clinical use of the DPBN plans. 18F-FMISO PET-CT scans from 13 lung cancer patients were retrospectively employed in our study to make hypoxia-guided radiotherapy. In the clinic, TCP and normal tissue complication probability (NTCP) derived from the DPBN plans in comparison to conventional intensity modulated radiation therapy (IMRT) plans were evaluated. Additionally, in order to investigate the improved clinical suitability, the robustness of DPBN plans in response to potential patient positioning errors and radiation resistance variations throughout the treatment course was assessed. The DPBN approach, employing voxelized prescription doses, led to an average increase of 24.47% in TCP, alongside a reduction of 1.83% in NTCP, compared to the conventional radiotherapy treatment plans. Regarding the robustness of the DPBN plans, it was observed that positional uncertainties were limited to 2 mm and radiosensitivity deviations were within 4%. The lung NTCP showed a 0.05% increase when the isocenter was moved by 3 mm in any direction, suggesting that the DPBN plan meets clinical acceptability criteria. Our study has shown that the DPBN technique has significant potential as an innovative approach to enhance the efficacy of radiotherapy for lung cancer with hypoxic regions.
Collapse
Affiliation(s)
- Yazhou Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
- Gansu Provincial HospitalLanzhouChina
| | - Yuanyuan Ma
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jieyan Wu
- Gansu Provincial HospitalLanzhouChina
| | - Hui Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xinguo Liu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Kafkaletos A, Sachpazidis I, Mix M, Carles M, Schäfer H, Rühle A, Nicolay NH, Lazzeroni M, Toma-Dasu I, Grosu AL, Baltas D. Implications of the partial volume effect correction on the spatial quantification of hypoxia based on [ 18F]FMISO PET/CT data. Phys Med 2024; 128:104853. [PMID: 39522364 DOI: 10.1016/j.ejmp.2024.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study evaluates the impact of partial volume effect (PVE) correction on [18F]fluoromisonidazole (FMISO) PET images, focusing on the conversion of standardized uptake values (SUV) to partial oxygen pressure (pO2) and the subsequent determination of hypoxic tumor volume (HTV). METHODS FMISO PET images from 49 head and neck squamous cell carcinoma cases were retrospectively corrected for PVE and converted to pO2. A pO2 threshold of 10 mmHg was used to delineate the HTV (HTVpO2). Comparisons of pO2 distribution and HTVpO2 between corrected and uncorrected images were made, with pO2 distributions evaluated against published polarographic data. HTVpO2 was compared to HTV defined by the conventional tumor-to-muscle ratio (TMR) method (HTVTMR) in terms of volume and topography (DICE coefficient, Hausdorff distance, and center-of-gravity distance) across different TMR cutoff levels. The cutoff level where the segmentation results from both methods were most similar was identified (TMRbest). RESULTS The PVE correction led to decreased minimum pO2, increased HTVpO2 and the identification of more hypoxic cases (HTV > 0). The pO2 distribution demonstrated improved alignment with published polarographic data. At TMRbest 1.6, the center-of-gravity distance between HTVTMR and HTVpO2 demonstrated a low median at 1.5 mm, while the wide range (0.0 to 9.6 mm) indicated high interpatient variability. The shape of HTV exhibited considerable variation with DICE 0.74 (0.03 to 1.00) and Hausdorff distance 8.5 mm (2.0 to 42.8 mm). CONCLUSIONS PVE correction is recommended before converting SUV to pO2 for the spatially resolved quantification of hypoxia.
Collapse
Affiliation(s)
- Athanasios Kafkaletos
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Montserrat Carles
- La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Henning Schäfer
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany; Department of Radiation Oncology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Marta Lazzeroni
- Physics Department, Stockholm University, Sweden; Oncology-Pathology Department, Karolinska Institute, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Physics Department, Stockholm University, Sweden; Oncology-Pathology Department, Karolinska Institute, Stockholm, Sweden
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| |
Collapse
|
4
|
Thompson SJ, McMahon SJ. The clinical potential of mechanistic models of individualized radiosensitivity. Expert Rev Anticancer Ther 2024; 24:1195-1197. [PMID: 39699117 DOI: 10.1080/14737140.2024.2444385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Wray R, Mauguen A, Michaud L, Leithner D, Yeh R, Riaz N, Mirtcheva R, Sherman E, Wong R, Humm J, Lee N, Schöder H. Development of 18F-Fluoromisonidazole Hypoxia PET/CT Diagnostic Interpretation Criteria and Validation of Interreader Reliability, Reproducibility, and Performance. J Nucl Med 2024; 65:1526-1532. [PMID: 39266287 PMCID: PMC11448606 DOI: 10.2967/jnumed.124.267775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with 18F-fluoromisonidazole (18F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret 18F-FMISO hypoxia PET. Methods: We randomly selected 123 patients with human papillomavirus-positive oropharyngeal cancer enrolled in a phase II trial who underwent 123 18F-FDG PET/CT and 134 18F-FMISO PET/CT scans. Four independent nuclear medicine physicians with no 18F-FMISO experience read the scans. Interpretation by a fifth nuclear medicine physician with over 2 decades of 18F-FMISO experience was the reference standard. Performance was evaluated after initial instruction and subsequent dedicated training. Scans were considered positive for hypoxia by visual assessment if 18F-FMISO uptake was greater than floor-of-mouth uptake. Additionally, SUVmax was determined to evaluate whether quantitative assessment using tumor-to-background ratios could be helpful to define hypoxia positivity. Results: Visual assessment produced a mean sensitivity and specificity of 77.3% and 80.9%, with fair interreader agreement (κ = 0.34), after initial instruction. After dedicated training, mean sensitivity and specificity improved to 97.6% and 86.9%, with almost perfect agreement (κ = 0.86). Quantitative assessment with an estimated best SUVmax ratio threshold of more than 1.2 to define hypoxia positivity produced a mean sensitivity and specificity of 56.8% and 95.9%, respectively, with substantial interreader agreement (κ = 0.66), after initial instruction. After dedicated training, mean sensitivity improved to 89.6% whereas mean specificity remained high at 95.3%, with near-perfect interreader agreement (κ = 0.86). Conclusion: Nuclear medicine physicians without 18F-FMISO hypoxia PET reading experience demonstrate much improved interreader agreement with dedicated training using specific interpretation criteria.
Collapse
Affiliation(s)
- Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laure Michaud
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Doris Leithner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosna Mirtcheva
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
6
|
Sommat K, Tong AKT, Ong ALK, Hu J, Sin SY, Lam WWC, Xie W, Khor YM, Lim C, Lim TW, Selvarajan S, Wang F, Tan TWK, Wee JTS, Soong YL, Fong KW, Hennedige T, Hua TC. 18F-FMISO PET-guided dose escalation with multifield optimization intensity-modulated proton therapy in nasopharyngeal carcinoma. Asia Pac J Clin Oncol 2024; 20:611-619. [PMID: 37157884 DOI: 10.1111/ajco.13953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the radiotherapy planning feasibility of dose escalation with intensity-modulated proton therapy (IMPT) to hypoxic tumor regions identified on 18F-Fluoromisonidazole (FMISO) positron emission tomography and computed tomography (PET-CT) in NPC. MATERIALS AND METHODS Nine patients with stages T3-4N0-3M0 NPC underwent 18F-FMISO PET-CT before and during week 3 of radiotherapy. The hypoxic volume (GTVhypo) is automatically generated by applying a subthresholding algorithm within the gross tumor volume (GTV) with a tumor to muscle standardized uptake value (SUV) ratio of 1.3 on the 18F-FMISO PET-CT scan. Two proton plans were generated for each patient, a standard plan to 70 Gy and dose escalation plan with upfront boost followed by standard 70GyE plan. The stereotactic boost was planned with single-field uniform dose optimization using two fields to deliver 10 GyE in two fractions to GTVhypo. The standard plan was generated with IMPT with robust optimization to deliver 70GyE, 60GyE in 33 fractions using simultaneous integrated boost technique. A plan sum was generated for assessment. RESULTS Eight of nine patients showed tumor hypoxia on the baseline 18F-FMISO PET-CT scan. The mean hypoxic tumor volume was 3.9 cm3 (range .9-11.9cm3). The average SUVmax of the hypoxic volume was 2.2 (range 1.44-2.98). All the dose-volume parameters met the planning objectives for target coverage. Dose escalation was not feasible in three of eight patients as the D0.03cc of temporal lobe was greater than 75GyE. CONCLUSIONS The utility of boost to the hypoxic volume before standard course of radiotherapy with IMPT is dosimetrically feasible in selected patients. Clinical trials are warranted to determine the clinical outcomes of this approach.
Collapse
Affiliation(s)
- Kiattisa Sommat
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Aaron Kian Ti Tong
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Ashley Li Kuan Ong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Hu
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Sze Yarn Sin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Wanying Xie
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Yiu Ming Khor
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Cindy Lim
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Tze Wei Lim
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Sathiyamoorthy Selvarajan
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Fuqiang Wang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Terence Wee Kiat Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joseph Tien Seng Wee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yoke Lim Soong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kam Weng Fong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Hennedige
- Division of Oncologic Imaging, National Cancer Centre Singapore, Singapore, Singapore
| | - Thng Choon Hua
- Division of Oncologic Imaging, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
8
|
Tham BZ, Aleman DM, Nordström H, Nygren N, Coolens C. Treatment Planning Methods for Dose Painting by Numbers Treatment in Gamma Knife Radiosurgery. Adv Radiat Oncol 2024; 9:101534. [PMID: 39104874 PMCID: PMC11298584 DOI: 10.1016/j.adro.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Dose painting radiation therapy delivers a nonuniform dose to tumors to account for heterogeneous radiosensitivity. With recent and ongoing development of Gamma Knife machines making large-volume brain tumor treatments more practical, it is increasingly feasible to deliver dose painting treatments. The increased prescription complexity means automated treatment planning is greatly beneficial, and the impact of dose painting on stereotactic radiosurgery (SRS) plan quality has not yet been studied. This research investigates the plan quality achievable for Gamma Knife SRS dose painting treatments when using optimization techniques and automated isocenter placement in treatment planning. Methods and Materials Dose painting prescription functions with varying parameters were applied to convert voxel image intensities to prescriptions for 10 sample cases. To study achievable plan quality and optimization, clinically placed isocenters were used with each dose painting prescription and optimized using a semi-infinite linear programming formulation. To study automated isocenter placement, a grassfire sphere-packing algorithm and a clinically available Leksell gamma plan isocenter fill algorithm were used. Plan quality for each optimized treatment plan was measured with dose painting SRS metrics. Results Optimization can be used to find high quality dose painting plans, and plan quality is affected by the dose painting prescription method. Polynomial function prescriptions show more achievable plan quality than sigmoid function prescriptions even with high mean dose boost. Automated isocenter placement is shown as a feasible method for dose painting SRS treatment, and increasing the number of isocenters improves plan quality. The computational solve time for optimization is within 5 minutes in most cases, which is suitable for clinical planning. Conclusions The impact of dose painting prescription method on achievable plan quality is quantified in this study. Optimization and automated isocenter placement are shown as possible treatment planning methods to obtain high quality plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dionne M. Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Ödén J, Eriksson K, Pavoni B, Crezee H, Kok HP. A Novel Framework for Thermoradiotherapy Treatment Planning. Int J Radiat Oncol Biol Phys 2024; 119:1530-1544. [PMID: 38387812 DOI: 10.1016/j.ijrobp.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Thermoradiotherapy combines radiation therapy with hyperthermia to increase therapeutic effectiveness. Currently, both modalities are optimized separately and in state-of-the-art research the enhanced therapeutic effect is evaluated using equivalent radiation dose in 2-Gy fractions (EQD2). This study proposes a novel thermoradiotherapy treatment planning framework with voxelwise EQD2 radiation therapy optimizing including thermal radiosensitization and direct thermal cytotoxicity. METHODS AND MATERIALS To demonstrate proof-of-concept of the planning framework, 3 strategies consisting of 20 radiation therapy fractions were planned for 4 prostate cancer cases with substantially different temperature distributions: (1) Conventional radiation therapy plan of 60 Gy combined with 4 hyperthermia sessions (RT60 + HT), (2) standalone uniform dose escalation to 68 Gy without hyperthermia (RT68), and (3) uniform target EQD2 that maximizes the tumor control probability (TCP) accounting for voxelwise thermal effects of 4 hyperthermia sessions without increasing normal tissue doses (RTHT + HT). Assessment included dose, EQD2, TCP, and rectal normal tissue complication probability (NTCP), alongside robustness analyses for TCP and NTCP against parameter uncertainties. RESULTS The estimated TCP of around 76% for RT60 without hyperthermia was increased to an average of 85.9% (range, 81.3%-90.5%) for RT60 + HT, 92.5% (92.4%-92.5%) for RT68, and 94.4% (91.7%-96.6%) for RTHT + HT. The corresponding averaged rectal NTCPs were 8.7% (7.9%-10.0%), 14.9% (13.8%-17.1%), and 8.4% (7.5%-9.7%), respectively. RT68 and RTHT + HT exhibited slightly enhanced TCP robustness against parameter uncertainties compared with RT60 + HT, and RT68 presented higher and less robust rectal NTCP values compared with the other planning strategies. CONCLUSIONS This study introduces an innovative thermoradiotherapy planning approach, integrating thermal effects into EQD2-based radiation therapy optimization. Results demonstrate an ability to achieve enhanced and uniform target EQD2 and TCP across various temperature distributions without elevating normal tissue EQD2 or NTCP compared with conventional methods. Although promising for improving clinical outcomes, realizable enhancements depend on accurate tumor- and tissue-specific data and precise quantification of hyperthermic effects, which are seamlessly integrable in the planning framework as they emerge.
Collapse
Affiliation(s)
- Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden.
| | | | | | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Chvetsov AV, Muzi M. Equivalent uniform aerobic dose in radiotherapy for hypoxic tumors. Phys Med Biol 2024; 69:10.1088/1361-6560/ad31c8. [PMID: 38457839 PMCID: PMC11197763 DOI: 10.1088/1361-6560/ad31c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Objective.Equivalent uniform aerobic dose (EUAD) is proposed for comparison of integrated cell survival in tumors with different distributions of hypoxia and radiation dose.Approach.The EUAD assumes that for any non-uniform distributions of radiation dose and oxygen enhancement ratio (OER) within a tumor, there is a uniform distribution of radiation dose under hypothetical aerobic conditions with OER = 1 that produces equal integrated survival of clonogenic cells. This definition of EUAD has several advantages. First, the EUAD allows one to compare survival of clonogenic cells in tumors with intra-tumor and inter-tumor variation of radio sensitivity due to hypoxia because the cell survival is recomputed under the same benchmark oxygen level (OER = 1). Second, the EUAD for homogeneously oxygenated tumors is equal to the concept of equivalent uniform dose.Main results. We computed the EUAD using radiotherapy dose and the OER derived from the18F-Fluoromisonidazole PET (18F-FMISO PET) images of hypoxia in patients with glioblastoma, the most common and aggressive type of primary malignant brain tumor. The18F-FMISO PET images include a distribution of SUV (Standardized Uptake Value); therefore, the SUV is converted to partial oxygen pressure (pO2) and then to the OER. The prognostic value of EUAD in radiotherapy for hypoxic tumors is demonstrated using correlation between EUAD and overall survival (OS) in radiotherapy for glioblastoma. The correction to the EUAD for the absolute hypoxic volume that traceable to the tumor control probability improves the correlation with OS.Significance. While the analysis proposed in this research is based on the18F-FMISO PET images for glioblastoma, the EUAD is a universal radiobiological concept and is not associated with any specific cancer or any specific PET or MRI biomarker of hypoxia. Therefore, this research can be generalized to other cancers, for example stage III lung cancer, and to other hypoxia biomarkers.
Collapse
Affiliation(s)
- Alexei V Chvetsov
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, United States of America
| | - Mark Muzi
- Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, United States of America
| |
Collapse
|
11
|
Hindel S. A Generalized Kinetic Model of Fractional Order Transport Dynamics with Transit Time Heterogeneity in Microvascular Space. Bull Math Biol 2024; 86:26. [PMID: 38300429 DOI: 10.1007/s11538-023-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
The aim of this study is to develop and validate a unifying kinetic model for microvascular transport by introducing an impulse response function that incorporates essential physiological parameters and integrates key features of existing models. This new methodology combines a one-compartment model of fractional order with a model that uses the gamma distribution to describe the distribution of capillary transit times. Central to this model are two primary parameters: [Formula: see text], representing the kurtosis of residue times, and [Formula: see text], signifying the width of the distribution of capillary transit times within a tissue voxel. To validate this proposed model, data from dynamic contrast-enhanced magnetic resonance imaging (DCI-MRI) were employed and the findings were compared with three existing models. Using the Akaike information criterion for model selection, the results demonstrate that the integrative model, especially at elevated blood flow rates, frequently offers superior fits in comparison to constrained models.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiation Therapy, Medical Physics Division, University Hospital Essen, Essen, North Rhine-Westphalia, Germany.
- Faculty of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Rhineland-Palatinate, Germany.
| |
Collapse
|
12
|
Tham BZ, Aleman D, Nordström H, Nygren N, Coolens C. Plan Assessment Metrics for Dose Painting in Stereotactic Radiosurgery. Adv Radiat Oncol 2023; 8:101281. [PMID: 37415903 PMCID: PMC10320410 DOI: 10.1016/j.adro.2023.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose As radiation therapy treatment precision increases with advancements in imaging and radiation delivery, dose painting treatment becomes increasingly feasible, where targets receive a nonuniform radiation dose. The high precision of stereotactic radiosurgery (SRS) makes it a good candidate for dose painting treatments, but no suitable metrics to assess dose painting SRS plans exist. Existing dose painting assessment metrics weigh target overdose and underdose equally but are unsuited for SRS plans, which typically avoid target underdose more. Current SRS metrics also prioritize reducing healthy tissue dose through selectivity and dose fall-off, and these metrics assume single prescriptions. We propose a set of metrics for dose painting SRS that would meet clinical needs and are calculated with nonuniform dose painting prescriptions. Methods and Materials Sample dose painting SRS prescriptions are first created from Gamma Knife SRS cases, apparent diffusion coefficient magnetic resonance images, and various image-to-prescription functions. Treatment plans are found through semi-infinite linear programming optimization and using clinically determined isocenters, then assessed with existing and proposed metrics. Modified versions of SRS metrics are proposed, including coverage, selectivity, conformity, efficiency, and gradient indices. Quality factor, a current dose painting metric, is applied both without changes and with modifications. A new metric, integral dose ratio, is proposed as a measure of target overdose. Results The merits of existing and modified metrics are demonstrated and discussed. A modified conformity index using mean or minimum prescription dose would be suitable for dose painting SRS with integral or maximum boost methods, respectively. Either modified efficiency index is a suitable replacement for the existing gradient index. Conclusions The proposed modified SRS metrics are appropriate measures of plan quality for dose painting SRS plans and have the advantage of giving equal values as the original SRS metrics when applied to single-prescription plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dionne Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Almhagen E, Dasu A, Johansson S, Traneus E, Ahnesjö A. Plan robustness and RBE influence for proton dose painting by numbers for head and neck cancers. Phys Med 2023; 115:103157. [PMID: 37939480 DOI: 10.1016/j.ejmp.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE To investigate the feasibility of dose painting by numbers (DPBN) with respect to robustness for proton therapy for head and neck cancers (HNC), and to study the influence of variable RBE on the TCP and OAR dose burden. METHODS AND MATERIALS Data for 19 patients who have been scanned pretreatment with PET-FDG and subsequently treated with photon therapy were used in the study. A dose response model developed for photon therapy was implemented in a TPS, allowing DPBN plans to be created. Conventional homogeneous dose and DPBN plans were created for each patient, optimized with either fixed RBE = 1.1 or a variable RBE model. Robust optimization was used to create clinically acceptable plans. To estimate the maximum potential loss in TCP due to actual SUV variations from the pre-treatment imaging, we applied a test case with randomized SUV distribution. RESULTS Regardless of the use of variable RBE for optimization or evaluation, a statistically significant increase (p < 0.001) in TCP was found for DPBN plans as compared to homogeneous dose plans. Randomizing the SUV distribution decreased the TCP for all plans. A correlation between TCP increase and variance of the SUV distribution and target volume was also found. CONCLUSION DPBN for protons and HNC is feasible and could lead to a TCP gain. Risks associated with the temporal variation of SUV distributions could be mitigated by imposing minimum doses to targets. The correlation found between TCP increase and SUV variance and target volume may be used for patient selection.
Collapse
Affiliation(s)
- Erik Almhagen
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Alexandru Dasu
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Silvia Johansson
- Divison of Oncology, Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
14
|
Abstract
Hypoxia (oxygen deprivation) occurs in most solid malignancies, albeit with considerable heterogeneity. Hypoxia is associated with an aggressive cancer phenotype by promotion of genomic instability, evasion of anti-cancer therapies including radiotherapy and enhancement of metastatic risk. Therefore, hypoxia results in poor cancer outcomes. Targeting hypoxia to improve cancer outcomes is an attractive therapeutic strategy. Hypoxia-targeted dose painting escalates radiotherapy dose to hypoxic sub-volumes, as quantified and spatially mapped using hypoxia imaging. This therapeutic approach could overcome hypoxia-induced radioresistance and improve patient outcomes without the need for hypoxia-targeted drugs. This article will review the premise and underpinning evidence for personalized hypoxia-targeted dose painting. It will present data on relevant hypoxia imaging biomarkers, highlight the challenges and potential benefit of this approach and provide recommendations for future research priorities in this field. Personalized hypoxia-based radiotherapy de-escalation strategies will also be addressed.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa, Jordan; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Mireștean CC, Iancu RI, Iancu DPT. New horizons in modulating the radio-sensitivity of head and neck cancer - 100 years after Warburg' effect discovery. Front Oncol 2022; 12:908695. [PMID: 36568220 PMCID: PMC9780029 DOI: 10.3389/fonc.2022.908695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor radiation resistance along with chemotherapy resistance is one of the main causes of therapeutic failure of radiotherapy-treated head and neck cancers. 100 years after the discovery of the Warburg effect, a process specific to malignant cells to metabolize glucose especially anaerobically even under normoxia condition, its modulation has become a viable therapeutic target for improving the results of cancer therapies. Improving the radio-sensitivity of head and neck tumors by reversing the Warburg effect can increase the rate of local control and reduce the toxicity associated with irradiation. P53 status can be used as a biomarker in the choice of a single agent strategy (cell respiration inhibition with Metformin) or double inhibition, both of respiration and glycolysis. Targeting of enzymes involved in the Warburg effect, such as Hexokinase-II, are strategies with potential to be applied in clinical practice with radio-sensitizing effect for head and neck squamous cell carcinoma. Even if anti-Warburg therapies tested in clinical trials have been associated with either toxic deaths or a minor clinical benefit, the identification of both potential radio-sensitivity biomarkers and methods of reversing the Warburg effect will play an important role in the radiobiology of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, Craiova, Romania,Department of Surgery, Railways Clinical Hospital, Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Clinical Laboratory, St. Spiridon Emergency Hospital, Iasi, Romania,*Correspondence: Roxana Irina Iancu,
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Radiation Oncology, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
16
|
Hou C, Yin H, Gong G, Wang L, Su Y, Lu J, Yin Y. A novel approach for dose painting radiotherapy of brain metastases guided by mr perfusion images. Front Oncol 2022; 12:828312. [DOI: 10.3389/fonc.2022.828312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
PurposeTo investigate the feasibility and dosimetric index features of dose painting guided by perfusion heterogeneity for brain metastasis (BMs) patients.MethodsA total of 50 patients with single BMs were selected for this study. CT and MR simulation images were obtained, including contrast-enhanced T1-weighted images (T1WI+C) and cerebral blood flow (CBF) maps from 3D-arterial spin labeling (ASL). The gross tumor volume (GTV) was determined by fusion of CT and T1WI+C images. Hypoperfused subvolumes (GTVH) with less than 25% of the maximum CBF value were defined as the dose escalation region. The planning target volume (PTV) and PTVH were calculated from GTV and GTVH respectively. The PTVN was obtained by subtracting PTVH from PTV, and conventional dose was given. Three kinds of radiotherapy plans were designed based on the CBF values. Plan 1 was defined as the conventional plan with an arbitrary prescription dose of 60 Gy for PTV. For dose painting, Plan 2 and Plan 3 escalated the prescription dose for PTVH to 72 Gy based on Plan 1, but Plan 3 removed the maximum dose constraint. Dosimetric indices were compared among the three plans.ResultsThe mean GTV volume was 34.5 (8.4-118.0) cm3, and mean GTVH volume was 17.0 (4.5-58.3) cm3, accounting for 49.3% of GTV. Both conventional plan and dose painting plans achieved 98% target coverage. The conformity index of PTVH were 0.44 (Plan1), 0.64 and 0.72 (Plan 2 and Plan 3, P<0.05). Compared to Plan 1, the D2%, D98% and Dmean values of the PTVH escalated by 20.50%, 19.32%, and 19.60% in Plan 2 and by 24.88%, 17.22% and 19.22% in Plan 3 respectively (P<0.05). In the three plans, the index of achievement value for PTVH was between 1.01 and 1.03 (P<0.05). The dose increment rates of Plan 2 and Plan 3 for each organs at risk (OARs) was controlled at 2.19% - 5.61% compared with Plan 1. The doses received by OARs did not significantly differ among the three plans (P >0.05).ConclusionsBMs are associated with significant heterogeneity, and effective escalation of the dose delivered to target subvolumes can be achieved with dose painting guided by 3D-ASL without extra doses to OARs.
Collapse
|
17
|
Ciammella P, Cozzi S, Botti A, Giaccherini L, Sghedoni R, Orlandi M, Napoli M, Pascarella R, Pisanello A, Russo M, Cavallieri F, Ruggieri MP, Cavuto S, Savoldi L, Iotti C, Iori M. Safety of Inhomogeneous Dose Distribution IMRT for High-Grade Glioma Reirradiation: A Prospective Phase I/II Trial (GLIORAD TRIAL). Cancers (Basel) 2022; 14:cancers14194604. [PMID: 36230525 PMCID: PMC9562035 DOI: 10.3390/cancers14194604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor, and despite advances in imaging techniques and treatment options, the outcome remains poor and recurrence is inevitable. Salvage therapy presents a challenge, and re-irradiation can be a therapeutic option in recurrent GBM. The decision-making process for re-irradiation is a challenge for radiation oncologists due to the expected toxicity of a second course of radiotherapy and the limited radiation tolerance of normal tissue; nevertheless, it is being increasingly used, as several studies have demonstrated its feasibility. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation radiotherapy in recurrent GBM patients after conventional concurrent chemoradiation. Twelve patients were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose range of 30–50 Gy over 5 days using the IMRT (arc VMAT) technique using dose painting planning. The treatment was well tolerated. No toxicities greater than 3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively. Our phase I study demonstrated an acceptable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS. Abstract Glioblastoma multiforme (GBM) is the most aggressive astrocytic primary brain tumor, and concurrent temozolomide (TMZ) and radiotherapy (RT) followed by maintenance of adjuvant TMZ is the current standard of care. Despite advances in imaging techniques and multi-modal treatment options, the median overall survival (OS) remains poor. As an alternative to surgery, re-irradiation (re-RT) can be a therapeutic option in recurrent GBM. Re-irradiation for brain tumors is increasingly used today, and several studies have demonstrated its feasibility. Besides differing techniques, the published data include a wide range of doses, emphasizing that no standard approach exists. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation in recurrent GBM. From 2016 to 2019, 12 patients met the inclusion criteria and were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose of 30 Gy (up to 50 Gy) over 5 days using the IMRT (arc VMAT) technique. A dose painting by numbers (DPBN)/dose escalation plan were performed, and a continuous relation between the voxel intensity of the functional image set and the risk of recurrence in that voxel were used to define target and dose distribution. Re-irradiation was well tolerated in all treated patients. No toxicities greater than G3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively; 3-, 6-, and 12-month OS2 were 92%, 75%, and 42%, respectively; and 3-, 6-, and 12-month PFS2 were 83%, 42%, and 8%, respectively. Our work demonstrated a tolerable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS.
Collapse
Affiliation(s)
- Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-3297317608
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lucia Giaccherini
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marco Russo
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Paola Ruggieri
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Silvio Cavuto
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luisa Savoldi
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
18
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
19
|
Welz S, Paulsen F, Pfannenberg C, Reimold M, Reischl G, Nikolaou K, La Fougère C, Alber M, Belka C, Zips D, Thorwarth D. Dose escalation to hypoxic subvolumes in head and neck cancer: A randomized phase II study using dynamic [ 18F]FMISO PET/CT. Radiother Oncol 2022; 171:30-36. [PMID: 35395276 DOI: 10.1016/j.radonc.2022.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia is a major cause of resistance to radiochemotherapy in locally advanced head-and-neck cancer (LASCCHN). We present results of a randomized phase II trial on hypoxia dose escalation (DE) in LASCCHN based on dynamic [18F]FMISO (dynFMISO) positron emission tomography (PET). The purpose was to confirm the prognostic value of hypoxia PET and assess feasibility, toxicity and efficacy of hypoxia-DE. MATERIALS AND METHODS Patients with LASCCHN underwent baseline dynFMISO PET/CT. Hypoxic volumes (HV) were derived from dynFMISO data. Patients with hypoxic tumors (HV>0) were randomized into standard radiotherapy (ST: 70Gy/35fx) or dose escalation (DE: 77Gy/35fx) to the HV. Patients with non-hypoxic tumors were treated with ST. After a minimum follow-up of 2 years, feasibility, acute/late toxicity and local control (LC) were analyzed. RESULTS The study was closed prematurely due to slow accrual. Between 2009 and 2017, 53 patients were enrolled, 39 (74%) had hypoxic tumors and were randomized into ST or DE. For non-hypoxic patients, 100% 5-year LC was observed compared to 74% in patients with hypoxic tumors (p=0.039). The difference in 5-year LC between DE (16/19) and ST (10/17) was 25%, p=0.150. No relevant differences related to acute and late toxicities between the groups were observed. CONCLUSION This study confirmed the prognostic value of hypoxia PET in LASCCHN for LC. Outcome after hypoxia DE appears promising and may support the concept of DE. Slow accrual and premature closure may partly be due to a high complexity of the study setup which needs to be considered for future multicenter trials.
Collapse
Affiliation(s)
- Stefan Welz
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christina Pfannenberg
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christian La Fougère
- Department of Nuclear Medicine, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Alber
- Section for Medical Physics, Department of Radiation Oncology, Heidelberg University, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Germany; Department of Radiation Oncology, LMU Munich, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), partner site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Pang Y, Wang H, Li H. Medical Imaging Biomarker Discovery and Integration Towards AI-Based Personalized Radiotherapy. Front Oncol 2022; 11:764665. [PMID: 35111666 PMCID: PMC8801459 DOI: 10.3389/fonc.2021.764665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intensity-modulated radiation therapy (IMRT) has been used for high-accurate physical dose distribution sculpture and employed to modulate different dose levels into Gross Tumor Volume (GTV), Clinical Target Volume (CTV) and Planning Target Volume (PTV). GTV, CTV and PTV can be prescribed at different dose levels, however, there is an emphasis that their dose distributions need to be uniform, despite the fact that most types of tumour are heterogeneous. With traditional radiomics and artificial intelligence (AI) techniques, we can identify biological target volume from functional images against conventional GTV derived from anatomical imaging. Functional imaging, such as multi parameter MRI and PET can be used to implement dose painting, which allows us to achieve dose escalation by increasing doses in certain areas that are therapy-resistant in the GTV and reducing doses in less aggressive areas. In this review, we firstly discuss several quantitative functional imaging techniques including PET-CT and multi-parameter MRI. Furthermore, theoretical and experimental comparisons for dose painting by contours (DPBC) and dose painting by numbers (DPBN), along with outcome analysis after dose painting are provided. The state-of-the-art AI-based biomarker diagnosis techniques is reviewed. Finally, we conclude major challenges and future directions in AI-based biomarkers to improve cancer diagnosis and radiotherapy treatment.
Collapse
Affiliation(s)
- Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hui Wang
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - He Li
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
The value of plasma hypoxia markers for predicting imaging-based hypoxia in patients with head-and-neck cancers undergoing definitive chemoradiation. Clin Transl Radiat Oncol 2022; 33:120-127. [PMID: 35243023 PMCID: PMC8881198 DOI: 10.1016/j.ctro.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Higher osteopontin plasma levels correlate with more hypoxic tumors at baseline. Increased baseline osteopontin levels are associated with residual tumor hypoxia. Absent early hypoxia response is linked with higher VEGF and CTGF levels in week 5. Plasma hypoxic markers may serve as biomarkers favoring radiotherapy personalization. Background Methods Results Conclusion
Collapse
|
22
|
Evensen ME, Furre T, Malinen E, Løndalen AM, Dale E. Mucosa-sparing dose painting of head and neck cancer. Acta Oncol 2022; 61:141-145. [PMID: 34991431 DOI: 10.1080/0284186x.2021.2022200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Torbjørn Furre
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Papoutsis I, Skjei Knudtsen I, Peter Skaug Sande E, Louni Rekstad B, Öllers M, van Elmpt W, Røthe Arnesen M, Malinen E. Positron emission tomography guided dose painting by numbers of lung cancer: Alanine dosimetry in an anthropomorphic phantom. Phys Imaging Radiat Oncol 2022; 21:101-107. [PMID: 35243040 PMCID: PMC8885607 DOI: 10.1016/j.phro.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/27/2022] Open
Abstract
DPBN was delivered to a phantom based on the anatomy of a lung cancer patient examined by FDG PET/CT prior to radiotherapy. Alanine dosimetry showed that DPBN can be delivered with high accuracy to the tumour in the anthropomorphic phantom. For regions outside the tumour, high correspondence between planned and delivered doses were also found. Positioning errors can lead to large deviations and potentially sub-optimal tumor doses. Background and purpose Dose painting by numbers (DPBN) require a high degree of dose modulation to fulfill the image-based voxel wise dose prescription. The aim of this study was to assess the dosimetric accuracy of 18F-fluoro-2-deoxy-glucose positron emission tomography(18F-FDG-PET)-based DPBN in an anthropomorphic lung phantom using alanine dosimetry. Materials and methods A linear dose prescription based on 18F-FDG-PET image intensities within the gross tumor volume (GTV) of a lung cancer patient was employed. One DPBN scheme with low dose modulation (Scheme A; minimum/maximum fraction dose to the GTV 2.92/4.26 Gy) and one with a high modulation (Scheme B; 2.81/4.52 Gy) were generated. The plans were transferred to a computed tomograpy (CT) scan of a thorax phantom based on CT images of the patient. Using volumetric modulated arc therapy (VMAT), DPBN was delivered to the phantom with embedded alanine dosimeters. A plan was also delivered to an intentionally misaligned phantom. Absorbed doses at various points in the phantom were measured by alanine dosimetry. Results A pointwise comparison between GTV doses from prescription, treatment plan calculation and VMAT delivery showed high correspondence, with a mean and maximum dose difference of <0.1 Gy and 0.3 Gy, respectively. No difference was found in dosimetric accuracy between scheme A and B. The misalignment caused deviations up to 1 Gy between prescription and delivery. Conclusion DPBN can be delivered with high accuracy, showing that the treatment may be applied correctly from a dosimetric perspective. Still, misalignment may cause considerable dosimetric erros, indicating the need for patient immobilization and monitoring.
Collapse
|
25
|
Rühle A, Wiedenmann N, Fennell JT, Mix M, Ruf J, Stoian R, Thomsen AR, Vaupel P, Baltas D, Grosu AL, Nicolay NH. Interleukin-6 as surrogate marker for imaging-based hypoxia dynamics in patients with head-and-neck cancers undergoing definitive chemoradiation-results from a prospective pilot trial. Eur J Nucl Med Mol Imaging 2021; 49:1650-1660. [PMID: 34773163 PMCID: PMC8940848 DOI: 10.1007/s00259-021-05602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Purpose Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. Methods Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson’s correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. Results Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). Conclusion Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. Trial registration The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05602-x.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jamina T Fennell
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raluca Stoian
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Wright P, Arnesen MR, Lønne PI, Suilamo S, Silvoniemi A, Dale E, Minn H, Malinen E. Repeatability of hypoxia dose painting by numbers based on EF5-PET in head and neck cancer. Acta Oncol 2021; 60:1386-1391. [PMID: 34184605 DOI: 10.1080/0284186x.2021.1944663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hypoxia dose painting is a radiotherapy technique to increase the dose to hypoxic regions of the tumour. Still, the clinical effect relies on the reproducibility of the hypoxic region shown in the medical image. 18F-EF5 is a hypoxia tracer for positron emission tomography (PET), and this study investigated the repeatability of 18F-EF5-based dose painting by numbers (DPBN) in head and neck cancer (HNC). MATERIALS AND METHODS Eight HNC patients undergoing two 18F-EF5-PET/CT sessions (A and B) before radiotherapy were included. A linear conversion of PET signal intensity to radiotherapy dose prescription was employed and DPBN treatment plans were created using the image basis acquired at each PET/CT session. Also, plan A was recalculated on the image basis for session B. Voxel-by-voxel Pearson's correlation and quality factor were calculated to assess the DPBN plan quality and repeatability. RESULTS The mean (SD) correlation coefficient between DPBN prescription and plan was 0.92 (0.02) and 0.93 (0.02) for sessions A and B, respectively, with corresponding quality factors of 0.02 (0.002) and 0.02 (0.003), respectively. The mean correlation between dose prescriptions at day A and B was 0.72 (0.13), and 0.77 (0.12) for the corresponding plans. A mean correlation of 0.80 (0.08) was found between plan A, recalculated on image basis B, and plan B. CONCLUSION Hypoxia DPBN planning based on 18F-EF5-PET/CT showed high repeatability. This illustrates that 18F-EF5-PET provides a robust target for dose painting.
Collapse
Affiliation(s)
- Pauliina Wright
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | | | - Per-Ivar Lønne
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Sami Suilamo
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Antti Silvoniemi
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital, Turku PET Centre, University of Turku, Turku, Finland
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku PET Centre, University of Turku, Turku, Finland
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Köthe A, Bizzocchi N, Safai S, Lomax AJ, Weber DC, Fattori G. Investigating the potential of proton therapy for hypoxia-targeted dose escalation in non-small cell lung cancer. Radiat Oncol 2021; 16:199. [PMID: 34635135 PMCID: PMC8507157 DOI: 10.1186/s13014-021-01914-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypoxia is known to be prevalent in solid tumors such as non-small cell lung cancer (NSCLC) and reportedly correlates with poor prognostic clinical outcome. PET imaging can provide in-vivo hypoxia measurements to support targeted radiotherapy treatment planning. We explore the potential of proton therapy in performing patient-specific dose escalation and compare it with photon volumetric modulated arc therapy (VMAT). METHODS Dose escalation has been calibrated to the patient specific tumor response of ten stage IIb-IIIb NSCLC patients by combining HX4-PET imaging and radiobiological modelling of oxygen enhancement ratio (OER) to target variable tumor hypoxia. In a dose-escalation-by-contour approach, escalated dose levels were simulated to the most hypoxic region of the primary target and its effectiveness in improving loco-regional tumor control was assessed. Furthermore, the impact on normal tissue of proton treatments including dose escalation was evaluated in comparison to the normal tissue complication probability (NTCP) of conventional VMAT plans. RESULTS Ignoring regions of tumor hypoxia can cause overestimation of TCP values by up to 10%, which can effectively be recovered on average to within 0.9% of the nominal TCP, using patient-specific dose escalations of up to 22% of the prescribed dose to PET defined hypoxic regions. Despite such dose escalations, the use of protons could also simultaneously reduce mean doses to the heart (- 14.3 GyRBE), lung (- 8.3 GyRBE), esophagus (- 6.9 GyRBE) and spinal cord (- 3.8 Gy) compared to non-escalated VMAT plans. These reductions are predicted to lead to clinically relevant decreases in NTCP for radiation-induced pneumonitis (- 11.3%), high grade heart toxicity (- 7.4%) and esophagitis (- 7.5%). CONCLUSIONS This study suggests that the administration of proton therapy for dose escalation to patient specific regions of tumor hypoxia in the treatment of NSCLC can mitigate TCP reduction due to hypoxia-induced radio resistance, while simultaneously reducing NTCP levels even when compared to non-escalated treatments delivered with state-of-the-art photon techniques.
Collapse
Affiliation(s)
- Andreas Köthe
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland. .,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland.
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Radiation Oncology Department, Inselspital Universitätsspital Bern, Bern, Switzerland.,Radiation Oncology Department, University Hospital of Zurich, Zurich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|
28
|
Elamir AM, Stanescu T, Shessel A, Tadic T, Yeung I, Letourneau D, Kim J, Lukovic J, Dawson LA, Wong R, Barry A, Brierley J, Gallinger S, Knox J, O'Kane G, Dhani N, Hosni A, Taylor E. Simulated dose painting of hypoxic sub-volumes in pancreatic cancer stereotactic body radiotherapy. Phys Med Biol 2021; 66. [PMID: 34438383 DOI: 10.1088/1361-6560/ac215c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.
Collapse
Affiliation(s)
- Ahmed M Elamir
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jelena Lukovic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rebecca Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - James Brierley
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Grainne O'Kane
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Neesha Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Wang YF, Tadimalla S, Hayden AJ, Holloway L, Haworth A. Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment. J Med Imaging Radiat Oncol 2021; 65:612-626. [PMID: 34060219 DOI: 10.1111/1754-9485.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy J Hayden
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, New South Wales, Australia
- Faculty of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Petit SF, Breedveld S, Unkelbach J, den Hertog D, Balvert M. Robust dose-painting-by-numbers vs. nonselective dose escalation for non-small cell lung cancer patients. Med Phys 2021; 48:3096-3108. [PMID: 33721350 PMCID: PMC8411426 DOI: 10.1002/mp.14840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Theoretical studies have shown that dose‐painting‐by‐numbers (DPBN) could lead to large gains in tumor control probability (TCP) compared to conventional dose distributions. However, these gains may vary considerably among patients due to (a) variations in the overall radiosensitivity of the tumor, (b) variations in the 3D distribution of intra‐tumor radiosensitivity within the tumor in combination with patient anatomy, (c) uncertainties of the 3D radiosensitivity maps, (d) geometrical uncertainties, and (e) temporal changes in radiosensitivity. The goal of this study was to investigate how much of the theoretical gains of DPBN remain when accounting for these factors. DPBN was compared to both a homogeneous reference dose distribution and to nonselective dose escalation (NSDE), that uses the same dose constraints as DPBN, but does not require 3D radiosensitivity maps. Methods A fully automated DPBN treatment planning strategy was developed and implemented in our in‐house developed treatment planning system (TPS) that is robust to uncertainties in radiosensitivity and patient positioning. The method optimized the expected TCP based on 3D maps of intra‐tumor radiosensitivity, while accounting for normal tissue constraints, uncertainties in radiosensitivity, and setup uncertainties. Based on FDG‐PETCT scans of 12 non‐small cell lung cancer (NSCLC) patients, data of 324 virtual patients were created synthetically with large variations in the aforementioned parameters. DPBN was compared to both a uniform dose distribution of 60 Gy, and NSDE. In total, 360 DPBN and 24 NSDE treatment plans were optimized. Results The average gain in TCP over all patients and radiosensitivity maps of DPBN was 0.54 ± 0.20 (range 0–0.97) compared to the 60 Gy uniform reference dose distribution, but only 0.03 ± 0.03 (range 0–0.22) compared to NSDE. The gains varied per patient depending on the radiosensitivity of the entire tumor and the 3D radiosensitivity maps. Uncertainty in radiosensitivity led to a considerable loss in TCP gain, which could be recovered almost completely by accounting for the uncertainty directly in the optimization. Conclusions Our results suggest that the gains of DPBN can be considerable compared to a 60 Gy uniform reference dose distribution, but small compared to NSDE for most patients. Using the robust DPBN treatment planning system developed in this work, the optimal DPBN treatment plan could be derived for any patient for whom 3D intra‐tumor radiosensitivity maps are known, and can be used to select patients that might benefit from DPBN. NSDE could be an effective strategy to increase TCP without requiring biological information of the tumor.
Collapse
Affiliation(s)
- Steven F Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Dick den Hertog
- Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands
| | - Marleen Balvert
- Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
31
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
32
|
Shirvani SM, Huntzinger CJ, Melcher T, Olcott PD, Voronenko Y, Bartlett-Roberto J, Mazin S. Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br J Radiol 2021; 94:20200873. [PMID: 33112685 PMCID: PMC7774706 DOI: 10.1259/bjr.20200873] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
The emerging biological understanding of metastatic cancer and proof-of-concept clinical trials suggest that debulking all gross disease holds great promise for improving patient outcomes. However, ablation of multiple targets with conventional external beam radiotherapy systems is burdensome, which limits investigation and utilization of complete metastatic ablation in the majority of patients with advanced disease. To overcome this logistical hurdle, technical innovation is necessary. Biology-guided radiotherapy (BgRT) is a new external beam radiotherapy delivery modality combining positron emission tomography-computed tomography (PET-CT) with a 6 MV linear accelerator. The key innovation is continuous response of the linear accelerator to outgoing tumor PET emissions with beamlets of radiotherapy at subsecond latency. This allows the deposited dose to track tumors in real time. Multiple new hardware and algorithmic advances further facilitate this low-latency feedback process. By transforming tumors into their own fiducials after intravenous injection of a radiotracer, BgRT has the potential to enable complete metastatic ablation in a manner efficient for a single patient and scalable to entire populations with metastatic disease. Future trends may further enhance the utility of BgRT in the clinic as this technology dovetails with other innovations in radiotherapy, including novel dose painting and fractionation schemes, radiomics, and new radiotracers.
Collapse
|
33
|
Pigorsch SU, Kampfer S, Oechsner M, Mayinger MC, Mozes P, Devecka M, Kessel KK, Combs SE, Wilkens JJ. Report on planning comparison of VMAT, IMRT and helical tomotherapy for the ESCALOX-trial pre-study. Radiat Oncol 2020; 15:253. [PMID: 33138837 PMCID: PMC7607845 DOI: 10.1186/s13014-020-01693-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background The ESCALOX trial was designed as a multicenter, randomized prospective dose escalation study for head and neck cancer. Therefore, feasibility of treatment planning via different treatment planning systems (TPS) and radiotherapy (RT) techniques is essential. We hypothesized the comparability of dose distributions for simultaneous integrated boost (SIB) volumes respecting the constraints by different TPS and RT techniques. Methods CT data sets of the first six patients (all male, mean age: 61.3 years) of the pre-study (up to 77 Gy) were used for comparison of IMRT, VMAT, and helical tomotherapy (HT). Oropharynx was the primary tumor location. Normalization of the three step SIB (77 Gy, 70 Gy, 56 Gy) was D95% = 77 Gy. Coverage (CVF), healthy tissue conformity index (HTCI), conformation number (CN), and dose homogeneity (HI) were compared for PTVs and conformation index (COIN) for parotids. Results All RT techniques achieved good coverage. For SIB77Gy, CVF was best for IMRT and VMAT, HT achieved highest CN followed by VMAT and IMRT. HT reached good HTCI value, and HI compared to both other techniques. For SIB70Gy, CVF was best by IMRT. HTCI favored HT, consequently CN as well. HI was slightly better for HT. For SIB56Gy, CVF resulted comparably. Conformity favors VMAT as seen by HTCI and CN. Dmean of ipsilateral and contralateral parotids favor HT. Conclusion Different TPS for dose escalation reliably achieved high plan quality. Despite the very good results of HT planning for coverage, conformity, and homogeneity, the TPS also achieved acceptable results for IMRT and VMAT. Trial registration ClinicalTrials.gov Identifier: NCT 01212354, EudraCT-No.: 2010-021139-15. ARO: ARO 14-01
Collapse
Affiliation(s)
- Steffi U Pigorsch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael C Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, Zurich, Switzerland
| | - Petra Mozes
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michal Devecka
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Kerstin K Kessel
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany.,Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine, Klinikum Rechts Der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
34
|
Thureau S, Briens A, Decazes P, Castelli J, Barateau A, Garcia R, Thariat J, de Crevoisier R. PET and MRI guided adaptive radiotherapy: Rational, feasibility and benefit. Cancer Radiother 2020; 24:635-644. [PMID: 32859466 DOI: 10.1016/j.canrad.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Adaptive radiotherapy (ART) corresponds to various replanning strategies aiming to correct for anatomical variations occurring during the course of radiotherapy. The goal of the article was to report the rational, feasibility and benefit of using PET and/or MRI to guide this ART strategy in various tumor localizations. The anatomical modifications defined by scanner taking into account tumour mobility and volume variation are not always sufficient to optimise treatment. The contribution of functional imaging by PET or the precision of soft tissue by MRI makes it possible to consider optimized ART. Today, the most important data for both PET and MRI are for lung, head and neck, cervical and prostate cancers. PET and MRI guided ART appears feasible and safe, however in a very limited clinical experience. Phase I/II studies should be therefore performed, before proposing cost-effectiveness comparisons in randomized trials and before using the approach in routine practice.
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, QuantIF EA 4108, université de Rouen, 76000 Rouen, France.
| | - A Briens
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France
| | - P Decazes
- Département de médecine nucléaire, center Henri-Becquerel, QuantIF EA 4108, université de Rouen, Rouen, France
| | - J Castelli
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - A Barateau
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - R Garcia
- Service de physique médicale, institut Sainte-Catherine, 84918 Avignon, France
| | - J Thariat
- Department of radiation oncology, centre François-Baclesse, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie université, 14000 Caen, France; ARCHADE Research Community, 14000 Caen, France
| | - R de Crevoisier
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| |
Collapse
|
35
|
Rühle A, Grosu AL, Wiedenmann N, Mix M, Stoian R, Niedermann G, Baltas D, Werner M, Weber WA, Kayser G, Nicolay NH. Hypoxia dynamics on FMISO-PET in combination with PD-1/PD-L1 expression has an impact on the clinical outcome of patients with Head-and-neck Squamous Cell Carcinoma undergoing Chemoradiation. Am J Cancer Res 2020; 10:9395-9406. [PMID: 32802199 PMCID: PMC7415814 DOI: 10.7150/thno.48392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated hypoxia influences the radiation response of head-and-neck cancer (HNSCC) patients, and a lack of early hypoxia resolution during treatment considerably deteriorates outcomes. As the detrimental effects of hypoxia are partly related to the induction of an immunosuppressive microenvironment, we investigated the interaction between tumor hypoxia dynamics and the PD-1/PD-L1 axis in HNSCC patients undergoing chemoradiation and its relevance for patient outcomes in a prospective trial. Methods: 49 patients treated with definitive chemoradiation for locally advanced HNSCC were enrolled in this trial and received longitudinal hypoxia PET imaging using fluorine-18 misonidazole ([18F]FMISO) at weeks 0, 2 and 5 during treatment. Pre-therapeutic tumor biopsies were immunohistochemically analyzed regarding the PD-1/PD-L1 expression both on immune cells and on tumor cells, and potential correlations between the PD-1/PD-L1 axis and tumor hypoxia dynamics during chemoradiation were assessed using Spearman's rank correlations. Hypoxia dynamics during treatment were quantified by subtracting the standardized uptake value (SUV) index at baseline from the SUV values at weeks 2 or 5, whereby SUV index was defined as ratio of maximum tumor [18F]FMISO SUV to mean SUV in the contralateral sternocleidomastoid muscle (i.e. tumor-to-muscle ratio). The impact of the PD-1/PD-L1 expression alone and in combination with persistent tumor hypoxia on locoregional control (LRC), progression-free survival (PFS) and overall survival (OS) was examined using log-rank tests and Cox proportional hazards models. Results: Neither PD-L1 nor PD-1 expression levels on tumor-infiltrating immune cells influenced LRC (HR = 0.734; p = 0.480 for PD-L1, HR = 0.991; p = 0.989 for PD-1), PFS (HR = 0.813; p = 0.597 for PD-L1, HR = 0.796; p = 0.713 for PD-1) or OS (HR = 0.698; p = 0.405 for PD-L1, HR = 0.315; p = 0.265 for PD-1). However, patients with no hypoxia resolution between weeks 0 and 2 and PD-L1 expression on tumor cells, quantified by a tumor proportional score (TPS) of at least 1%, showed significantly worse LRC (HR = 3.374, p = 0.022) and a trend towards reduced PFS (HR = 2.752, p = 0.052). In the multivariate Cox regression analysis, the combination of absent tumor hypoxia resolution and high tumoral PD-L1 expression remained a significant prognosticator for impaired LRC (HR = 3.374, p = 0.022). On the other side, tumoral PD-L1 expression did not compromise the outcomes of patients whose tumor-associated hypoxia declined between week 0 and 2 during chemoradiation (LRC: HR = 1.186, p = 0.772, PFS: HR = 0.846, p = 0.766). Conclusion: In this exploratory analysis, we showed for the first time that patients with both persistent tumor-associated hypoxia during treatment and PD-L1 expression on tumor cells exhibited a worse outcome, while the tumor cells' PD-L1 expression did not influence the outcomes of patients with early tumor hypoxia resolution. While the results have to be validated in an independent cohort, these findings form a foundation to investigate the combination of hypoxic modification and immune checkpoint inhibitors for the unfavorable subgroup, moving forward towards personalized radiation oncology treatment.
Collapse
|
36
|
Her EJ, Haworth A, Reynolds HM, Sun Y, Kennedy A, Panettieri V, Bangert M, Williams S, Ebert MA. Voxel-level biological optimisation of prostate IMRT using patient-specific tumour location and clonogen density derived from mpMRI. Radiat Oncol 2020; 15:172. [PMID: 32660504 PMCID: PMC7805066 DOI: 10.1186/s13014-020-01568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS This study aimed to develop a framework for optimising prostate intensity-modulated radiotherapy (IMRT) based on patient-specific tumour biology, derived from multiparametric MRI (mpMRI). The framework included a probabilistic treatment planning technique in the effort to yield dose distributions with an improved expected treatment outcome compared with uniform-dose planning approaches. METHODS IMRT plans were generated for five prostate cancer patients using two inverse planning methods: uniform-dose to the planning target volume and probabilistic biological optimisation for clinical target volume tumour control probability (TCP) maximisation. Patient-specific tumour location and clonogen density information were derived from mpMRI and geometric uncertainties were incorporated in the TCP calculation. Potential reduction in dose to sensitive structures was assessed by comparing dose metrics of uniform-dose plans with biologically-optimised plans of an equivalent level of expected tumour control. RESULTS The planning study demonstrated biological optimisation has the potential to reduce expected normal tissue toxicity without sacrificing local control by shaping the dose distribution to the spatial distribution of tumour characteristics. On average, biologically-optimised plans achieved 38.6% (p-value: < 0.01) and 51.2% (p-value: < 0.01) reduction in expected rectum and bladder equivalent uniform dose, respectively, when compared with uniform-dose planning. CONCLUSIONS It was concluded that varying the dose distribution within the prostate to take account for each patient's clonogen distribution was feasible. Lower doses to normal structures compared to uniform-dose plans was possible whilst providing robust plans against geometric uncertainties. Further validation in a larger cohort is warranted along with considerations for adaptive therapy and limiting urethral dose.
Collapse
Affiliation(s)
- E J Her
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia.
| | - A Haworth
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - H M Reynolds
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Y Sun
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - A Kennedy
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - V Panettieri
- Alfred Health Radiation Oncology, Melbourne, Australia
| | - M Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - S Williams
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia.,Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia.,5D Clinics, Perth, Australia
| |
Collapse
|
37
|
Shukla M, Forghani R, Agarwal M. Patient-Centric Head and Neck Cancer Radiation Therapy: Role of Advanced Imaging. Neuroimaging Clin N Am 2020; 30:341-357. [PMID: 32600635 DOI: 10.1016/j.nic.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The traditional 'one-size-fits-all' approach to H&N cancer therapy is archaic. Advanced imaging can identify radioresistant areas by using biomarkers that detect tumor hypoxia, hypercellularity etc. Highly conformal radiotherapy can target resistant areas with precision. The critical information that can be gleaned about tumor biology from these advanced imaging modalities facilitates individualized radiotherapy. The tumor imaging world is pushing its boundaries. Molecular imaging can now detect protein expression and genotypic variations across tumors that can be exploited for tailoring treatment. The exploding field of radiomics and radiogenomics extracts quantitative, biologic and genetic information and further expands the scope of personalized therapy.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Radiation Oncology, Froedtert and Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Mohit Agarwal
- Department of Radiology, Section of Neuroradiology, Froedtert and Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Wiedenmann N, Grosu AL, Büchert M, Rischke HC, Ruf J, Bielak L, Majerus L, Rühle A, Bamberg F, Baltas D, Hennig J, Mix M, Bock M, Nicolay NH. The utility of multiparametric MRI to characterize hypoxic tumor subvolumes in comparison to FMISO PET/CT. Consequences for diagnosis and chemoradiation treatment planning in head and neck cancer. Radiother Oncol 2020; 150:128-135. [PMID: 32544609 DOI: 10.1016/j.radonc.2020.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxia is an essential metabolic marker that determines chemo- and radiation resistance in head-and-neck squamous cell carcinoma (HNSCC) patients. Our exploratory analysis aimed to identify multiparametric MRI (mpMRI) parameters linked to hypoxia that might be used as surrogate for [18F]FMISO-PET in diagnosis and chemoradiation treatment (CRT) of HNSCC. MATERIALS AND METHODS 21 patients undergoing definitive CRT for HNSCC were prospectively imaged with serial [18F]FMISO-PET and 3 Tesla mpMRI for T1- and T2-weighted and dynamic contrast-enhanced perfusion and diffusion-weighted measurements (ktrans, ve, kep, ADC) in weeks 0, 2 and 5 and FDG-PET in week 0. [18F]FMISO-PET-derived hypoxic subvolumes (HSV) and complementary non-hypoxic subvolumes (nonHSV) were created for tumor and lymph nodes and projected on the mpMRI scans after PET/MRI co-registration. MpMRI and [18F]FMISO-PET parameters within HSVs and nonHSVs were statistically compared. RESULTS FMISO-PET-based HSVs of the primary tumors on MRI were characterized by lower ADC at all time points (p = 0.012 at baseline; p = 0.015 in week 2) and reduced interstitial space volume fraction ve and perfusion ktrans at baseline (p = 0.006, p = 0.047) compared to nonHSVs. Hypoxic lymph nodes were characterized by significantly lower ADC values at baseline (p = 0.039), but not at later time points and a reduction in ktrans-based perfusion at week 2 (p = 0.018). CONCLUSION MpMRI parameters differ significantly between hypoxic and non-hypoxic tumor regions, defined on FMISO-PET/CT as gold standard and might represent surrogate markers for tumor hypoxia. These findings suggest that mpMRI may be useful in the future as a surrogate modality for hypoxia imaging in order to personalize CRT.
Collapse
Affiliation(s)
- Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Büchert
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans C Rischke
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bielak
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liette Majerus
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Bock
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
39
|
[ 18F]-HX4 PET/CT hypoxia in patients with squamous cell carcinoma of the head and neck treated with chemoradiotherapy: Prognostic results from two prospective trials. Clin Transl Radiat Oncol 2020; 23:9-15. [PMID: 32368624 PMCID: PMC7184102 DOI: 10.1016/j.ctro.2020.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The presence of hypoxia in head-and-neck squamous cell carcinoma is a negative prognostic factor. PET imaging with [18F] HX4 can be used to visualize hypoxia, but it is currently unknown how this correlates with prognosis. We investigated the prognostic value of [18F] HX4 PET imaging in patients treated with definitive radio(chemo)therapy (RTx). Materials and methods We analyzed 34 patients included in two prospective clinical trials (NCT01347281, NCT01504815). Static [18F] HX4 PET-CT images were collected, both pre-treatment (median 4 days before start RTx, range 1-16), as well as during RTx (median 13 days after start RTx, range 3-17 days). Static uptake at both time points (n = 33 pretreatment, n = 28 during RTx) and measured changes in hypoxic fraction (HF) and hypoxic volume (HV) (n = 27 with 2 time points) were analyzed. Univariate cox analyses were done for local progression free survival (PFS) and overall survival (OS) at both timepoints. Change in uptake was analyzed by comparing outcome with Kaplan-Meier curves and log-rank test between patients with increased and decreased/stable hypoxia, similarly between patients with and without residual hypoxia (rHV = ratio week 2/baseline HV with cutoff 0.2). Voxelwise Spearman correlation coefficients were calculated between normalized [18F] HX4 PET uptake at baseline and week 2. Results Analyses of static images showed no prognostic value for [18F] HX4 uptake. Analysis of dynamic changes showed that both OS and local PFS were significantly shorter (log-rank P < 0.05) in patients with an increase in HV during RTx and OS was significantly shorter in patients with rHV, with no correlation to HPV-status. The voxel-based correlation to evaluate spatial distribution yielded a median Spearman correlation coefficient of 0.45 (range 0.11-0.65). Conclusion The change of [18F] HX4 uptake measured on [18F] HX4 PET early during treatment can be considered for implementation in predictive models. With these models patients with a worse prognosis can be selected for treatment intensification.
Collapse
|
40
|
Her EJ, Haworth A, Rowshanfarzad P, Ebert MA. Progress towards Patient-Specific, Spatially-Continuous Radiobiological Dose Prescription and Planning in Prostate Cancer IMRT: An Overview. Cancers (Basel) 2020; 12:E854. [PMID: 32244821 PMCID: PMC7226478 DOI: 10.3390/cancers12040854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 01/30/2023] Open
Abstract
Advances in imaging have enabled the identification of prostate cancer foci with an initial application to focal dose escalation, with subvolumes created with image intensity thresholds. Through quantitative imaging techniques, correlations between image parameters and tumour characteristics have been identified. Mathematical functions are typically used to relate image parameters to prescription dose to improve the clinical relevance of the resulting dose distribution. However, these relationships have remained speculative or invalidated. In contrast, the use of radiobiological models during treatment planning optimisation, termed biological optimisation, has the advantage of directly considering the biological effect of the resulting dose distribution. This has led to an increased interest in the accurate derivation of radiobiological parameters from quantitative imaging to inform the models. This article reviews the progress in treatment planning using image-informed tumour biology, from focal dose escalation to the current trend of individualised biological treatment planning using image-derived radiobiological parameters, with the focus on prostate intensity-modulated radiotherapy (IMRT).
Collapse
Affiliation(s)
- Emily Jungmin Her
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
| | - Annette Haworth
- Institute of Medical Physics, University of Sydney, Camperdown, NSW 2050, Australia
| | - Pejman Rowshanfarzad
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
| | - Martin A. Ebert
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
| |
Collapse
|
41
|
Paredes-Cisneros I, Karger CP, Caprile P, Nolte D, Espinoza I, Gago-Arias A. Simulation of hypoxia PET-tracer uptake in tumours: Dependence of clinical uptake-values on transport parameters and arterial input function. Phys Med 2020; 70:109-117. [PMID: 32006939 DOI: 10.1016/j.ejmp.2020.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/27/2022] Open
Abstract
Poor radiotherapy outcome is in many cases related to hypoxia, due to the increased radioresistance of hypoxic tumour cells. Positron emission tomography may be used to non-invasively assess the oxygenation status of the tumour using hypoxia-specific radiotracers. Quantification and interpretation of these images remains challenging, since radiotracer binding and oxygen tension are not uniquely related. Computer simulation is a useful tool to improve the understanding of tracer dynamics and its relation to clinical uptake parameters currently used to quantify hypoxia. In this study, a model for simulating oxygen and radiotracer distribution in tumours was implemented to analyse the impact of physiological transport parameters and of the arterial input function (AIF) on: oxygenation histograms, time-activity curves, tracer binding and clinical uptake-values (tissue-to-blood ratio, TBR, and a composed hypoxia-perfusion metric, FHP). Results were obtained for parallel and orthogonal vessel architectures and for vascular fractions (VFs) of 1% and 3%. The most sensitive parameters were the AIF and the maximum binding rate (Kmax). TBR allowed discriminating VF for different AIF, and FHP for different Kmax, but neither TBR nor FHP were unbiased in all cases. Biases may especially occur in the comparison of TBR- or FHP-values between different tumours, where the relation between measured and actual AIF may vary. Thus, these parameters represent only surrogates rather than absolute measurements of hypoxia in tumours.
Collapse
Affiliation(s)
- Isabela Paredes-Cisneros
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany.
| | - Christian P Karger
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Paola Caprile
- Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile
| | - David Nolte
- Universidad de Chile, Center for Mathematical Modeling, Santiago, Chile; University of Groningen, Johann Bernoulli Institute, Groningen, The Netherlands
| | - Ignacio Espinoza
- Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile
| | - Araceli Gago-Arias
- Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile; Instituto de Investigación Sanitaria de Santiago (IDIS), Group of Medical Physics and Biomathematics, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Rezaee L. Optimization of treatment planning for hypoxic tumours and re-modulation of radiation intensity in heavy-ion radiotherapy. Rep Pract Oncol Radiother 2020; 25:68-78. [PMID: 31889925 DOI: 10.1016/j.rpor.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Aim The purpose of this study is to optimize treatment planning in carbon ion radiotherapy, taking into account the effect of tumour hypoxia. Background In conventional hadron therapy, the goal is to create a homogenous dose in the tumour area and, thus, achieve a uniform cell survival level. Since the induction of a specific damage to cells is directly influenced by the level of hypoxia in the tissue, the varying oxygen pressure in the different regions of hypoxic tumours would disrupt the uniformity of the cell survival level. Materials and methods Using the Geant4 Monte Carlo Code, the physical dose profile and dose-averaged linear energy transfer were calculated in the tumour. Then, the oxygen enhancement ratio in different areas of the tumour were compared with different pressures. Results Modulations of radiation intensities as well as energies of ion beams were calculated, both considering and disregarding the effect of hypoxia, and the required dose profiles were compared with each other. Cell survival levels were also compared between the two methods. An equation was obtained for re-modulating the beams in the presence of hypoxia, and radiation weighting factors were extracted for the beam intensities. Conclusion The results show that taking the effect of hypoxia into account would cause the reduction of average doses delivered to the tumour tissues up to 1.54 times. In this regard, the required dose is reduced by 1.63 times in the healthy tissues before the tumour. This will result in an effective protection of healthy tissues around the tumour.
Collapse
Affiliation(s)
- Ladan Rezaee
- Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
43
|
Broglie MA, Dulguerov P, Henke G, Siano M, Putora PM, Simon C, Zwahlen D, Huber GF, Ballerini G, Beffa L, Giger R, Rothschild S, Negri SV, Elicin O. A Review of Controversial Issues in the Management of Head and Neck Cancer: A Swiss Multidisciplinary and Multi-Institutional Patterns of Care Study-Part 4 (Biomarkers). Front Oncol 2019; 9:1128. [PMID: 31709188 PMCID: PMC6822019 DOI: 10.3389/fonc.2019.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The Head and Neck Cancer Working Group of Swiss Group for Clinical Cancer Research (SAKK) has investigated the level of consensus (LOC) and discrepancy in everyday practice of diagnosis and treatment in head and neck cancer. Materials and Methods: An online survey was iteratively generated with 10 Swiss university and teaching hospitals. LOC below 50% was defined as no agreement, while higher LOC were arbitrarily categorized as low (51-74%), moderate (75-84%), and high (≥85%). Results: Any LOC was achieved in 62% of topics (n = 60). High, moderate, and low LOC were found in 18, 20, and 23%, respectively. Regarding Head and Neck Surgery, Radiation Oncology, Medical Oncology, and biomarkers, LOC was achieved in 50, 57, 83, and 43%, respectively. Conclusions: Consensus on clinical topics is rather low for surgeons and radiation oncologists. The questions discussed might highlight discrepancies, stimulate standardization of practice, and prioritize topics for future clinical research.
Collapse
Affiliation(s)
- Martina A Broglie
- Department of Otorhinolaryngology, Head and Neck Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pavel Dulguerov
- Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Guido Henke
- Department of Radiation Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marco Siano
- Department of Medical Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Medical Oncology, Hôpital Riviera-Chablais, Vevey, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Simon
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Zwahlen
- Department of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland.,Department of Radiation Oncology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Gerhard F Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giorgio Ballerini
- Department of Radiation Oncology, Clinica Luganese SA, Lugano, Switzerland
| | - Lorenza Beffa
- Department of Radiation Oncology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Roland Giger
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sacha Rothschild
- Department of Medical Oncology, University Hospital of Basel, Basel, Switzerland
| | - Sandro V Negri
- Department of Otorhinolaryngology, Lindenhofspital, Bern, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Alongi P, Laudicella R, Desideri I, Chiaravalloti A, Borghetti P, Quartuccio N, Fiore M, Evangelista L, Marino L, Caobelli F, Tuscano C, Mapelli P, Lancellotta V, Annunziata S, Ricci M, Ciurlia E, Fiorentino A. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 1. Crit Rev Oncol Hematol 2019; 140:74-79. [PMID: 30795884 DOI: 10.1016/j.critrevonc.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Functional and molecular imaging, including positron emission tomography with computed tomography imaging (PET/CT) is increasing for radiotherapy (RT) definition of the target volume. This expert review summarizes existing data of functional imaging modalities and RT management, in terms of target volume delineation, for the following anatomical districts: brain (for primary and secondary tumors), head/neck and lung. MATERIALS AND METHODS A collection of available published data was made, by PubMed a search. Only original articles were carefully and critically revised. RESULTS For primary and secondary brain tumors, amino acid PET radiotracers could be useful to identify microscopic residual areas and to differ between recurrence and treatment-related alterations in case of re-irradiation. As for head and neck neoplasms may benefit from precise PET/CT-based target delineation, due to the major capability to identify high-risk RT areas. In primary and secondary lung cancer, PET/CT could be useful both to delimit a tumor and collapsed lungs and as a predictive parameter of treatment response. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Nevertheless, several uncertainties remain on the standard method to properly assess the target volume definition including PET information for primary and secondary brain tumors.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu. Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina. Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Strada Prov. 127 Km 4, 70021, Acquaviva delle Fonti, Bari, Italy.
| |
Collapse
|
45
|
Fares J, Kanojia D, Rashidi A, Ahmed AU, Balyasnikova IV, Lesniak MS. Diagnostic Clinical Trials in Breast Cancer Brain Metastases: Barriers and Innovations. Clin Breast Cancer 2019; 19:383-391. [PMID: 31262686 DOI: 10.1016/j.clbc.2019.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Optimal treatment of breast cancer brain metastases (BCBM) is often hampered by limitations in diagnostic abilities. Developing innovative tools for BCBM diagnosis is vital for early detection and effective treatment. In this study we explored the advances in trial for the diagnosis of BCBM, with review of the literature. On May 8, 2019, we searched ClinicalTrials.gov for interventional and diagnostic clinical trials involving BCBM, without limiting for date or location. Information on trial characteristics, experimental interventions, results, and publications were collected and analyzed. In addition, a systematic review of the literature was conducted to explore published studies related to BCBM diagnosis. Only 9 diagnostic trials explored BCBM. Of these, 1 trial was withdrawn because of low accrual numbers. Three trials were completed; however, none had published results. Modalities in trial for BCBM diagnosis entailed magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), PET-CT, nanobodies, and circulating tumor cells (CTCs), along with a collection of novel tracers and imaging biomarkers. MRI continues to be the diagnostic modality of choice, whereas CT is best suited for acute settings. Advances in PET and PET-CT allow the collection of metabolic and functional information related to BCBM. CTC characterization can help reflect on the molecular foundations of BCBM, whereas cell-free DNA offers new genetic material for further exploration in trials. The integration of machine learning in BCBM diagnosis seems inevitable as we continue to aim for rapid and accurate detection and better patient outcomes.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
46
|
Thorwarth D, Welz S, Mönnich D, Pfannenberg C, Nikolaou K, Reimold M, La Fougère C, Reischl G, Mauz PS, Paulsen F, Alber M, Belka C, Zips D. Prospective Evaluation of a Tumor Control Probability Model Based on Dynamic 18F-FMISO PET for Head and Neck Cancer Radiotherapy. J Nucl Med 2019; 60:1698-1704. [PMID: 31076504 DOI: 10.2967/jnumed.119.227744] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022] Open
Abstract
Our purpose was to evaluate an imaging parameter-response relationship between the extent of tumor hypoxia quantified by dynamic 18F-fluoromisonidazole (18F-FMISO) PET/CT and the risk of relapse after radiotherapy in patients with head and neck cancer. Methods: Before a prospective cohort of 25 head and neck cancer patients started radiotherapy, they were examined with dynamic 18F-FMISO PET/CT 0-240 min after tracer injection. 18F-FMISO image parameters, including a hypoxia metric, M FMISO , derived from pharmacokinetic modeling of dynamic 18F-FMISO and maximum tumor-to-muscle ratio (TMRmax) at 4 h after injection, gross tumor volume (GTV), relative hypoxic volume based on M FMISO , and a logistic regression model combining GTV and TMRmax, were assessed and compared with a previous training cohort (n = 15). Dynamic 18F-FMISO was used to validate a tumor control probability model based on M FMISO The prognostic potential with respect to local control of all potential parameters was validated using the concordance index for univariate Cox regression models determined from the training cohort, in addition to Kaplan-Meier analysis including the log-rank test. Results: The tumor control probability model was confirmed, indicating that dynamic 18F-FMISO allows stratification of patients into different risk groups according to radiotherapy outcome. In this study, M FMISO was the only parameter that was confirmed as prognostic in the independent validation cohort (concordance index, 0.71; P = 0.004). All other investigated parameters, such as TMRmax, GTV, relative hypoxic volume, and the combination of GTV and TMRmax, were not able to stratify patient groups according to outcome in this validation cohort (P = not statistically significant). Conclusion: In this study, the relationship between M FMISO and the risk of relapse was prospectively validated. The data support further evaluation and external validation of dynamic 18F-FMISO PET/CT as a promising method for patient stratification and hypoxia-based radiotherapy personalization, including dose painting.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany .,German Cancer Consortium, Tübingen, Germany, and German Cancer Research Center, Heidelberg, Germany
| | - Stefan Welz
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Christina Pfannenberg
- Diagnostic and Interventional Radiology, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University of Tübingen, Tübingen, Germany
| | | | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, University of Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Alber
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.,Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany; and
| | - Claus Belka
- German Cancer Consortium, Tübingen, Germany, and German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, LMU Munich, München, Germany
| | - Daniel Zips
- German Cancer Consortium, Tübingen, Germany, and German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer 2019; 120:779-790. [PMID: 30911090 PMCID: PMC6474267 DOI: 10.1038/s41416-019-0412-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Imaging has an essential role in the planning and delivery of radiotherapy. Recent advances in imaging have led to the development of advanced radiotherapy techniques—including image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy and proton beam therapy. The optimal use of imaging might enable higher doses of radiation to be delivered to the tumour, while sparing normal surrounding tissues. In this article, we review how the integration of existing and novel forms of computed tomography, magnetic resonance imaging and positron emission tomography have transformed tumour delineation in the radiotherapy planning process, and how these advances have the potential to allow a more individualised approach to the cancer therapy. Recent data suggest that imaging biomarkers that assess underlying tumour heterogeneity can identify areas within a tumour that are at higher risk of radio-resistance, and therefore potentially allow for biologically focussed dose escalation. The rapidly evolving concept of adaptive radiotherapy, including artificial intelligence, requires imaging during treatment to be used to modify radiotherapy on a daily basis. These advances have the potential to improve clinical outcomes and reduce radiation-related long-term toxicities. We outline how recent technological advances in both imaging and radiotherapy delivery can be combined to shape the future of precision radiation oncology.
Collapse
Affiliation(s)
- Laura Beaton
- Cancer Institute, University College London, London, UK
| | - Steve Bandula
- Cancer Institute, University College London, London, UK.,NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK
| | - Mark N Gaze
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK
| | - Ricky A Sharma
- Cancer Institute, University College London, London, UK. .,NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
48
|
Repeat FMISO-PET imaging weakly correlates with hypoxia-associated gene expressions for locally advanced HNSCC treated by primary radiochemotherapy. Radiother Oncol 2019; 135:43-50. [PMID: 31015169 DOI: 10.1016/j.radonc.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoxia is an important factor of tumour resistance to radiotherapy, chemotherapy and potentially immunotherapy. It can be measured e.g. by positron emission tomography (PET) imaging or hypoxia-associated gene expressions from tumour biopsies. Here we correlate [18F]fluoromisonidazole (FMISO)-PET/CT imaging with hypoxia-associated gene expressions on a cohort of 50 head and neck squamous cell carcinoma (HNSCC) patients and compare their prognostic value for response to radiochemotherapy (RCTx). METHODS FMISO-PET/CT images of 50 HNSCC patients were acquired at four time-points before and during RCTx. For 42 of these patients, hypoxia-associated gene expressions were evaluated by nanoString technology based on a biopsy obtained before any treatment. The FMISO-PET parameters tumour-to-background ratio and hypoxic volume were correlated to the expressions of 58 hypoxia-associated genes using the Spearman correlation coefficient ρ. Three hypoxia-associated gene signatures were compared regarding their correlation with the FMISO-PET parameters using their median expression. In addition, the correlation with tumour volume was analysed. The impact of both hypoxia measurement methods on loco-regional tumour control (LRC) and overall survival (OS) was assessed by Cox regression. RESULTS The median expression of hypoxia-associated genes was weakly correlated to hypoxia measured by FMISO-PET imaging (ρ ≤ 0.43), with higher correlations to imaging after weeks 1 and 2 of treatment (p < 0.001). Moderate correlations were obtained between FMISO-PET imaging and tumour volume (ρ ≤ 0.69). Prognostic models for LRC and OS based on the FMISO-PET parameters could not be improved by including hypoxia classifiers. CONCLUSION We observed low correlations between hypoxia FMISO-PET parameters and expressions of hypoxia-associated genes. Since FMISO-PET showed a superior patient stratification, it may be the preferred biomarker over hypoxia-associated genes for stratifying patients with locally advanced HNSCC treated by primary RCTx.
Collapse
|
49
|
Kroenke M, Hirata K, Gafita A, Watanabe S, Okamoto S, Magota K, Shiga T, Kuge Y, Tamaki N. Voxel based comparison and texture analysis of 18F-FDG and 18F-FMISO PET of patients with head-and-neck cancer. PLoS One 2019; 14:e0213111. [PMID: 30818360 PMCID: PMC6394953 DOI: 10.1371/journal.pone.0213111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hypoxia can induce radiation resistance and is an independent prognostic marker for outcome in head and neck cancer. As 18F-FMISO (FMISO), a hypoxia tracer for PET, is far less common than 18F-FDG (FDG) and two separate PET scans result in doubled cost and radiation exposure to the patient, we aimed to predict hypoxia from FDG PET with new techniques of voxel based analysis and texture analysis. Methods Thirty-eight patients with head-and-neck cancer underwent consecutive FDG and FMISO PET scans before any treatment. ROIs enclosing the primary cancer were compared in a voxel-by-voxel manner between FDG and FMISO PET. Tumour hypoxia was defined as the volume with a tumour-to-muscle ratio (TMR) > 1.25 in the FMISO PET and hypermetabolic volume was defined as >50% SUVmax in the FDG PET. The concordance rate was defined as percentage of voxels within the tumour which were both hypermetabolic and hypoxic. 38 different texture analysis (TA) parameters were computed based on the ROIs and correlated with presence of hypoxia. Results Within the hypoxic tumour regions, the FDG uptake was twice as high as in the non-hypoxic tumour regions (SUVmean 10.9 vs. 5.4; p<0.001). A moderate correlation between FDG and FMISO uptake was found by a voxel-by-voxel comparison (r = 0.664 p<0.001). The average concordance rate was 25% (± 22%). Entropy was the TA parameter showing the highest correlation with hypoxia (r = 0.524 p<0.001). Conclusion FDG uptake was higher in hypoxic tumour regions than in non-hypoxic regions as expected by tumour biology. A moderate correlation between FDG and FMISO PET was found by voxel-based analysis. TA yielded similar results in FDG and FMISO PET. However, it may not be possible to predict tumour hypoxia even with the help of texture analysis.
Collapse
Affiliation(s)
- Markus Kroenke
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Andrei Gafita
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Shiro Watanabe
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Shozo Okamoto
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Keiichi Magota
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, of Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine of Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
Sokol O, Krämer M, Hild S, Durante M, Scifoni E. Kill painting of hypoxic tumors with multiple ion beams. Phys Med Biol 2019; 64:045008. [PMID: 30641490 DOI: 10.1088/1361-6560/aafe40] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report on a novel method for simultaneous biological optimization of treatment plans for hypoxic tumors using multiple ion species. Our previously introduced kill painting approach, where the overall cell killing is optimized on biologically heterogeneous targets, was expanded with the capability of handling different ion beams simultaneously. The current version (MIBO) of the research treatment planning system TRiP98 has now been augmented to handle 3D (voxel-by-voxel) target oxygenation data. We present a case of idealized geometries where this method can identify optimal combinations leading to an improved peak-to-entrance effective dose ratio. This is achieved by the redistribution of particle fluences, when the heavier ions are preferentially forwarded to hypoxic target areas, while the lighter ions deliver the remaining dose to its normoxic regions. Finally, we present an in silico skull base chordoma patient case study with a combination of 4He and 16O beams, demonstrating specific indications for its potential clinical application. In this particular case, the mean dose, received by the brainstem, was reduced by 3%-5% and by 10%-12% as compared to the pure 4He and 16O plans, respectively. The new method allows a full biological optimization of different ion beams, exploiting the capabilities of actively scanned ion beams of modern particle therapy centers. The possible experimental verification of the present approach at ion beam facilities disposing of fast ion switch is presented and discussed.
Collapse
Affiliation(s)
- O Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | | | | | | | | |
Collapse
|