1
|
Mourad FK, Sun H, Youssef M, Mi S, Shu D, Cai Z. Improving the quality of egg yolk granules via cryogenic processing: A comprehensive analysis of structural, physicochemical, and functional properties. Food Chem 2025; 485:144504. [PMID: 40288340 DOI: 10.1016/j.foodchem.2025.144504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Egg yolk granules (EYGs) show great potential in the functional food and pharmaceutical industries, but their limited functionality restricts broader applications. This study investigates the effects of various freezing pretreatments on lyophilized EYGs, comparing prefreezing at -20 °C and - 80 °C, immersion in liquid nitrogen (LN), and grinding in LN. SEM, FTIR, and LF-NMR analyses showed that conventional freezing generated large ice crystals, compromising EYGs' properties. In contrast, LN immersion produced tiny crystals that preserved structural integrity and increased surface area, enhancing drying and molecular interactions. LN-immersed EYGs exhibited improved protein solubility (∼80 %), structural flexibility (∼11 %), surface hydrophobicity, emulsification properties (>20 %), and water distribution compared to freezing at -20 °C. Additional enhancements were observed, including α-helix content (∼19 %), ζ-potential (∼19 %), water/oil-binding capacities (∼11 %), sulfhydryl groups (∼3 %), and tyrosine content (∼20 %). This research demonstrates that rapid freezing effectively preserves EYGs' functional and structural characteristics, expanding their potential for broader industrial applications.
Collapse
Affiliation(s)
- Fayez Khalaf Mourad
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Haoyang Sun
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mahmoud Youssef
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Sijie Mi
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hunan University of Medicine, Huaihua 418000, Hunan, PR China
| | - Dewei Shu
- Zaozhuang Key Laboratory of Egg Nutrition and Health, Zaozhuang Jensur Bio-pharmaceutical Co., Ltd, Shandong 277000, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
2
|
Veselý L, Susrisweta B, Štůsek R, Mužík D, Heger D. Acidification of phosphate buffered saline. Int J Pharm 2025; 676:125593. [PMID: 40233884 DOI: 10.1016/j.ijpharm.2025.125593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
It has been demonstrated that freezing-induced acidity changes have an impact on the structural integrity, degree of aggregation, and chemical stability of frozen food and pharmaceutical products. The stability of the compounds in solutions is maintained by the presence of buffers. However, many buffers are unsuitable for applications involving freezing as this process substantially alters the acidity. In this study, we determine the effect of initial pH, concentration, and cooling rate on the freezing-induced change in acidity of phosphate buffered saline (PBS) in the frozen state via UV-VIS spectroscopy. Furthermore, we examine the impact of individual salts present in PBS and discuss the mechanisms affecting the resulting acidity that we approximate via Hammett acidity function (H2-).
Collapse
Affiliation(s)
- Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Behera Susrisweta
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radim Štůsek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Mužík
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Hung WK, Chandrasekaran S, Zaslaver O, Zhu M, Lam J, Hersch S, Mokarami P, Slavcev RA, Nafissi N. Ministring DNA (msDNA): a novel linear covalently-closed DNA with enhanced stability for gene and cell therapy applications. Sci Rep 2025; 15:15420. [PMID: 40316641 PMCID: PMC12048660 DOI: 10.1038/s41598-025-98730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
The quality and fidelity of DNA vectors used in genetic medicine and gene therapy either as starting material for manufacturing or as therapeutic ingredients play a critical role in determining ultimate clinical success. Ministring DNA (msDNA), is a novel minivector that is a linear covalently-closed (LCC) double-stranded DNA molecule devoid of immunogenic bacterial sequences (e.g., origin of replication, antibiotic resistant cassette). Similar to traditional plasmids, msDNA is manufactured in vivo in E. coli and therefore benefits from the scalability of E. coli -based systems and the ~ 1000-fold enhanced fidelity conferred by the mismatch repair (MMR) mechanism. In this paper, we address the improved stability of msDNA. We show that due to the torsion-free structure, msDNA is more stable to chemical and mechanical stress than conventional plasmid DNA. Moreover, we demonstrate that lyophilization can further improve the long-term stability of msDNA, reducing the need for cold chain storage. Therefore, we propose that msDNA can be a new paradigm for genetic medicine by offering genetic material with lower immunogenicity, reduced risk of insertional mutagenesis, and higher fidelity and stability.
Collapse
Affiliation(s)
- Wai Kuen Hung
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | | | - Olga Zaslaver
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Ming Zhu
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Jamie Lam
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Steven Hersch
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Peyman Mokarami
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener, N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada.
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener, N2G 1C5, Canada.
| |
Collapse
|
4
|
Li Y, Su J, Liu S, Li S, Liu S, Zhang H, Ding Z, Wang Z, Liu M, Zhao Y. Improved stability and biocompatibility of lycopene liposomes with sodium caseinate and PEG coating. Int J Biol Macromol 2025; 311:143685. [PMID: 40316080 DOI: 10.1016/j.ijbiomac.2025.143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
In this study, novel surface-modified lycopene liposomes were prepared for functional food applications, with systematic comparison of their physicochemical characteristics and biological evaluation. In contrast to whey protein isolate/polyethylene glycol layer-by-layer assembled lycopene liposomes (Lips-LYC/WPI) and PEGylated lycopene liposomes (LYC Lips), sodium caseinate/polyethylene glycol layer-by-layer assembled lycopene liposomes (Lips-LYC/SC) exhibited significantly reduced particle size and improved stability. Besides, Lips-LYC/SC highlighted enhanced encapsulation efficiency and minimized lycopene leakage attributed to sodium caseinate modification. DSC and PXRD confirmed effective reduction of lycopene crystallinity through excipient interaction, which was conducive to its water solubility improvement. FT-IR and fluorescence analysis revealed intermolecular hydrogen bonding between lycopene and the excipients. Furthermore, DPPH antioxidant and ROS scavenging experiments showed that the encapsulation of lycopene effectively improved its antioxidant activity. Cytotoxicity test revealed that Lips-LYC/SC had minimal cytotoxicity towards LO2 cells and Caco-2 cells, achieving cell survival rates >90 %, while the cell scratch results confirmed that LYC Lips induced significantly slower migration rates towards these cells. Moreover, Lips-LYC/SC significantly ameliorated metabolic disorders, oxidative stress, and hepatotoxicity in HFD-induced liver injury model. The above results highlighted the strategic advantage of sodium caseinate and PEG co-decorated liposomes, establishing Lips-LYC/SC as a promising delivery platform for the hydrophobic bioactive ingredient.
Collapse
Affiliation(s)
- Yinglan Li
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jianshuo Su
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Shufan Liu
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Shuangfeng Li
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Sisi Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
5
|
Guo W, Peng Z, Ning D, Wu Y, Mao Y, Wang E, Zhang M, Zhang Y, Zhang W, You H, Long Y, Guo F, Mai H. Chitosan microporous foam filled 3D printed polylactic acid-pearl macroporous scaffold: Dual-scale porous structure, biological and mechanical properties. Int J Biol Macromol 2025; 303:140508. [PMID: 39889981 DOI: 10.1016/j.ijbiomac.2025.140508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
A bone scaffold with well-designed porous structure and material composition is essential for bone regeneration as it supports various biological functions. In this study, a dual-scale porous polylactic acid-pearl/chitosan (PLA-P/CS) scaffold was developed by integrating 3D printing and conventional techniques. An interconnected macroporous PLA-P scaffold with pore sizes ranging from 680-800 μm was fabricated using FDM 3D printing. Additionally, a microporous CS foam with pore sizes of 10-200 μm was prepared via freeze-drying within the macropores of the 3D-printed scaffold. The microporous CS foam enhanced the scaffold's hydrophilicity while preserving its favorable mechanical properties. Moreover, the dual-scale porous structure demonstrated improved biomineralization, due to its larger specific surface area and increased nucleation sites, along with the electrostatic adsorption provided by the amino and hydroxyl functional groups of chitosan. Furthermore, cell culture experiments revealed the dual-scale porous structure, and the effects of CS enhanced the cellular response of BMSCs. More importantly, a 12-week in vivo study on rat skull defect repair demonstrated that the dual-scale porous PLA-P/CS scaffold exhibited enhanced bone formation. These findings suggest that designing a graded porous structure and optimizing material composition can effectively enhance biological responses, thereby facilitating bone regeneration.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Ziying Peng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Dan Ning
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yunlei Wu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Mingzhi Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Yong Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Wenjie Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Feng Guo
- Department of Oral Anatomy and Physiology, College of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China.
| | - Huaming Mai
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, GuiLin Medical University, Guilin 541004, China; Department of Oral and Maxillofacial Surgery, College &Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China.
| |
Collapse
|
6
|
Mali A, Nayak NU, van Doesburg J, Fokkink R, van Riessen K, de Kruijf R, Srinivas M. Polymeric (Poly(lactic- co-glycolic acid)) Particles Entrapping Perfluorocarbons Are Stable for a Minimum of Six Years. ACS OMEGA 2025; 10:6768-6779. [PMID: 40028150 PMCID: PMC11865981 DOI: 10.1021/acsomega.4c08663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
Polymeric particles, particularly poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), have gained widespread utility in drug delivery, including their incorporation into established clinical formulations. However, their significance is enhanced when loaded with perfluorocarbons (PFCs). This integration enables precise in vivo imaging and quantification using advanced techniques such as 19F nuclear magnetic resonance (NMR) or magnetic resonance imaging. These PFC-loaded nanoparticles offer substantial biomedical advantages, including quantitative in vivo cell tracking and trackable drug delivery. It is imperative to develop a stable nanoformulation with well-characterized parameters (size, PDI, and PFC content) to facilitate their translation into clinical trials. Another crucial aspect related to their clinical translation is the need for practical storage conditions that are convenient for clinical handling and long-term storage. This study provides compelling evidence of the exceptional long-term stability of PLGA-PFCE (perfluoro-15-crown-5-ether) NPs synthesized via a single-oil-in-water method. When stored at -20 °C, these NPs exhibit remarkable stability for over 6 years. Furthermore, our investigations extend to the behavior of the NPs in powder and suspension forms, demonstrating resilience even after enduring multiple freeze-thaw cycles. Additionally, we explore their stability under various conditions, including water and culture medium, revealing robustness at 4 °C, room temperature (RT), and 37 °C for up to 30 days.
Collapse
Affiliation(s)
- Alvja Mali
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Navya U. Nayak
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Jessie van Doesburg
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Remco Fokkink
- Department
of Agrotechnology and Food Sciences, Physical Chemistry and Soft Matter, Wageningen University, Wageningen 6700 EK, Netherlands
| | - Koen van Riessen
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Robbin de Kruijf
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
- Cenya Imaging
BV, Amsterdam 1052RK,The Netherlands
| | - Mangala Srinivas
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
- Cenya Imaging
BV, Amsterdam 1052RK,The Netherlands
| |
Collapse
|
7
|
Deck LT, Gusev N, Deligianni V, Mazzotti M. Quantifying the effect of particulate impurities on the ice nucleation behavior of pharmaceutical solutions. Int J Pharm 2025; 670:125137. [PMID: 39755345 DOI: 10.1016/j.ijpharm.2024.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior. Samples prepared under particulate-free conditions were found to nucleate at significantly lower temperatures and with more variability than samples of the same composition that were prepared under standard laboratory conditions, i.e., without using any means of lowering particulate counts. In contrast, spiking solutions with silver iodide particles resulted in significantly higher and less variable nucleation temperatures. These findings confirm that the level of particulates has a relevant effect on the rate of ice nucleation under conditions of industrial relevance. We further assessed the nucleation behavior of two biopharmaceuticals, a vaccine based on a viral vector and a mAb, and observed major differences in their nucleation behavior. This emphasizes the importance of measuring the ice nucleation behavior of biopharmaceuticals during process design.
Collapse
Affiliation(s)
- Leif-Thore Deck
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Nikita Gusev
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vasiliki Deligianni
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Košir A, Artusio F, Deck LT, Pisano R, Mazzotti M. The impact of process parameters on the lyophilized porous micro-structure: A case study of dextran. J Pharm Sci 2025; 114:1434-1443. [PMID: 39746611 DOI: 10.1016/j.xphs.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Freeze-drying is used to prolong the shelf life of pharmaceutical formulations stored in vials. To achieve this, formulations are first frozen and then dried, yielding a porous product that can in some cases be stored even at ambient conditions. In this work, the effect of different process parameters on the properties of the porous micro-structure obtained when freeze-drying dextran solutions was studied. To characterize the pore sizes, the samples were imaged with scanning electron microscopy (SEM) and the images were manually analyzed to determine the pore size distribution. To study the robustness of such manual pore characterization methodology, a reliability analysis was carried out, which showed that defining a set of guidelines leads to comparable pore size distributions among multiple participants conducting the analysis. The pore characterization methodology was then applied to products that were freeze-dried under different conditions. Higher dextran concentrations and higher cooling rates were found to lead to predominantly smaller pore sizes and longer primary drying. The conclusions of this work complement the existing literature in demonstrating the robustness of the manual pore size analysis and give valuable insight into the link between the micro-structure formed during the freezing of dextran solutions and the drying performance.
Collapse
Affiliation(s)
- Andraž Košir
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Leif-Thore Deck
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Ling J, Du Y, Wuelfing WP, Buist N, Krishnamachari Y, Xi H, Templeton AC, Su Y. Molecular mechanisms for stabilizing biologics in the solid state. J Pharm Sci 2025; 114:736-765. [PMID: 39617053 DOI: 10.1016/j.xphs.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Protein drugs exhibit challenges of biophysical and biochemical instability due to their structural complexity and rich dynamics. Solid-state biologics aim to enhance stability by increasing molecular rigidity within the formulation matrix, representing a primary category of drug products alongside sterile liquid formulations. Understanding the molecular mechanisms behind the stabilization and destabilization of protein drugs, influenced by formulation composition and drying processes, provides scientific rationale for drug product design. This review aims to elaborate on the two primary models of water-to-sugar substitution and matrix vitrification, respectively, via thermodynamic and kinetic stabilization. It offers an up-to-date review of experimental investigations into these hypotheses, specifically elucidating protein structure and protein-excipient interactions at the molecular level, molecular dynamics across a broad range of motion regimes, and microscopic attributes such as protein-sugar and protein-salt miscibility and microenvironmental acidity, in relevant liquid, frozen, and solid states, using advanced biophysical techniques for solid-state analysis. Moreover, we discuss how these mechanistic understandings facilitate the investigation and prediction of critical stability behaviors and enables the design of solid biological drug products.
Collapse
Affiliation(s)
- Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nicole Buist
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yogita Krishnamachari
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
10
|
Schneid SC, Cohrs M, Lenger JH. Scaling up controlled nucleation in freeze drying: Translating vacuum-induced surface freezing from laboratory to GMP. Eur J Pharm Sci 2025; 204:106968. [PMID: 39579940 DOI: 10.1016/j.ejps.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The freezing step often causes batch inhomogeneity and issues during freeze drying process transfer. The nucleation temperature at which the first ice is formed during freezing differs from vial to vial, and significantly between scales. To solve this issue, Controlled Ice Nucleation techniques can be applied to induce ice nucleation at a defined product temperature across the whole batch. This study describes the application of vacuum-induced surface freezing (VISF) for a therapeutic antibody formulation, including the process transfer from laboratory scale through pilot scale to a GMP line. The VISF method could be successfully implemented on all scales of freeze dryers without equipment adaptation. Some scale-dependent changes in pressure control and degassing were necessary to achieve nucleation in all vials and avoid defects. The resulting lyophilized products were characterized and further analyzed in a stability study. While most critical quality attributes were comparable for product manufactured with and without Controlled Nucleation, the appearance of cakes processed using VISF was much better, which could be linked to different product morphology due to freeze-concentration. The results of this study allow direct comparison of the application of controlled nucleation for an antibody formulation at different scales and confirm the applicability of the technology.
Collapse
Affiliation(s)
- Stefan C Schneid
- Bayer AG, Pharmaceuticals, CMC Drug Product, Friedrich-Ebert-Str. 475, Wuppertal 42117, Germany.
| | - Michaela Cohrs
- Bayer AG, Pharmaceuticals, CMC Drug Product, Friedrich-Ebert-Str. 475, Wuppertal 42117, Germany
| | - Julian H Lenger
- Bayer AG, Pharmaceuticals, CMC Drug Product, Friedrich-Ebert-Str. 475, Wuppertal 42117, Germany
| |
Collapse
|
11
|
Schaal Z, Van Bockstal PJ, Lammens J, Lenger JH, Funke AP, Schneid SC, Svilenov HL, De Beer T. Optimization of continuous spin-freeze-drying: The role of spin-freezing on quality attributes and drying efficiency of a model peptide formulation. Eur J Pharm Sci 2025; 204:106963. [PMID: 39551448 DOI: 10.1016/j.ejps.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Continuous spin-freeze-drying is an innovative pharmaceutical manufacturing approach offering real-time monitoring and control at the individual vial level, unlike conventional batch lyophilization. A central feature of this technology is spin-freezing, which involves rapidly spinning liquid-filled vials under a precisely controlled cold gas flow, resulting in a thin, uniform frozen product layer. Using a model peptide formulation, we investigated the impact of different cooling and crystallization rates on quality attributes (QA) and primary drying duration. Key QAs included monomer content, peptide assay, moisture content, and pore structure. The monomer content, peptide content, and primary drying duration remained consistent across all spin-freezing conditions. However, scanning electron microscopy (SEM) and Karl Fischer titration revealed that freezing parameters significantly influenced pore structure and residual moisture content. Samples with smaller pores displayed lower residual moisture, as larger surface areas facilitate moisture desorption. Variations in freezing parameters also significantly impacted desorption kinetics during secondary drying. Slower crystallization rates led to more cracks and less shrinkage in the cake structure, while faster rates resulted in more uniform, stable cakes. Although specific to the product under study, these findings highlight the crucial role of spin-freezing in enhancing freeze-drying efficiency and product quality of biopharmaceuticals.
Collapse
Affiliation(s)
- Zarah Schaal
- RheaVita, Poortakkerstraat 9C, 9051 Ghent, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | | | | | - Julian H Lenger
- Bayer AG, Pharmaceuticals, CMC Drug Product, Friedrich-Ebert-Str. 475, 42117 Wuppertal, Germany
| | - Adrian P Funke
- Bayer AG, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Stefan C Schneid
- Bayer AG, Pharmaceuticals, CMC Drug Product, Friedrich-Ebert-Str. 475, 42117 Wuppertal, Germany
| | - Hristo L Svilenov
- Ghent University, Laboratory of General Biochemistry and Physical Pharmacy, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- RheaVita, Poortakkerstraat 9C, 9051 Ghent, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Park J, Liu R, Kim AS, Cyr NN, Boehlein SK, Resende MFR, Savin DA, Bailey LS, Sumerlin BS, Hudalla GA. Sweet corn phytoglycogen dendrimers as a lyoprotectant for dry-state protein storage. J Biomed Mater Res A 2024; 112:2026-2041. [PMID: 38856491 DOI: 10.1002/jbm.a.37761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Protein biotherapeutics typically require expensive cold-chain storage to maintain their fold and function. Packaging proteins in the dry state via lyophilization can reduce these cold-chain requirements. However, formulating proteins for lyophilization often requires extensive optimization of excipients that both maintain the protein folded state during freezing and drying (i.e., "cryoprotection" and "lyoprotection"), and form a cake to carry the dehydrated protein. Here we show that sweet corn phytoglycogens, which are glucose dendrimers, can act as both a protein lyoprotectant and a cake-forming agent. Phytoglycogen (PG) dendrimers from 16 different maize sources (PG1-16) were extracted via ethanol precipitation. PG size was generally consistent at ~70-100 nm for all variants, whereas the colloidal stability in water, protein contaminant level, and maximum density of cytocompatibility varied for PG1-16. 10 mg/mL PG1, 2, 9, 13, 15, and 16 maintained the activity of various proteins, including green fluorescent protein, lysozyme, β-galactosidase, and horseradish peroxidase, over a broad range of concentrations, through multiple rounds of lyophilization. PG13 was identified as the lead excipient candidate as it demonstrated narrow dispersity, colloidal stability in phosphate-buffered saline, low protein contaminants, and cytocompatibility up to 10 mg/mL in NIH3T3 cell cultures. All dry protein-PG13 mixtures had a cake-like appearance and all frozen protein-PG13 mixtures had a Tg' of ~ -26°C. The lyoprotection and cake-forming properties of PG13 were density-dependent, requiring a minimum density of 5 mg/mL for maximum activity. Collectively these data establish PG dendrimers as a new class of excipient to formulate proteins in the dry state.
Collapse
Affiliation(s)
- Junha Park
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Alexander S Kim
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Noah N Cyr
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Daniel A Savin
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Laura S Bailey
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Brent S Sumerlin
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Lay-Fortenbery A, Yuan X, Veselý L, Heger D, Shalaev E, Su Y, Munson E. Determination of solid-state acidity of lyophilized trehalose containing citrate, phosphate, and histidine buffers using UV/VIS diffuse reflectance and solid-state NMR spectroscopy. J Pharm Sci 2024; 113:3479-3488. [PMID: 39313152 DOI: 10.1016/j.xphs.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Changes in the protonation state of lyophilized proteins can impact structural integrity, chemical stability, and propensity to aggregate upon reconstitution. When a buffer is chosen, the freezing/drying process may result in dramatic changes in the protonation state of the protein due to ionization shift of the buffer. In order to determine whether protonation shifts are occurring, ionizable probes can be added to the formulation. Optical probes (dyes) have shown dramatic ionization changes in lyophilized products, but it is unclear whether the pH indicator is uniform throughout the matrix and whether the change in the pH indicator actually mirrors drug ionization changes. In solid-state NMR (SSNMR) spectroscopy, the chemical shift of the carbonyl carbon in carboxylic acids is very sensitive to the ionization state of the acid. Therefore, SSNMR can be used to measure ionization changes in a lyophilized matrix by employing a small quantity of an isotopically-labeled carboxylic acid species in the formulation. This paper compares the apparent pH of six trehalose-containing lyophilized buffer systems using SSNMR and UV-Vis diffuse reflectance spectroscopy (UVDRS). Both SSNMR and UVDRS results using two different ionization probes (butyric acid and bromocresol purple, respectively) showed little change in apparent acidity compared to the pre-lyophilized solution in a sodium citrate buffer, but a greater change was observed in potassium phosphate, sodium phosphate, and histidine buffers. While the trends between the two methods were similar, there were differences in the numerical values of equivalent pH (pHeq) observed between the two methods. The potential causes contributing to the differences are discussed.
Collapse
Affiliation(s)
- Ashley Lay-Fortenbery
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40526, USA
| | - Xiaoda Yuan
- Development Sciences, Research and Development, AbbVie Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Lukáš Veselý
- Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 5-A8, Brno 62500, Czech Republic
| | - Dominik Heger
- Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 5-A8, Brno 62500, Czech Republic
| | - Evgenyi Shalaev
- Development Sciences, Research and Development, AbbVie Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40526, USA; Current address: Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Sobral GG, Gomes Neto OC, Lima TC, Carneiro GF. Lyophilization as an alternative for conservation of equine plasma as a source of immunoglobulin G for neonatal foals. J Equine Vet Sci 2024; 141:105139. [PMID: 38964562 DOI: 10.1016/j.jevs.2024.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Providing plasma with immunoglobulins is essential for the health of foals with failure of passive transfer of immunity. The use of lyophilized plasma (LP) offers a simple and affordable option in terms of transportation and storage. This study aimed to measure the concentrations of immunoglobulin G (IgG), total protein (TP), and total solids (TS) in fresh equine plasma before and after lyophilization. Plasma was collected from six healthy male horses. The samples underwent freeze-drying and were reconstituted in deionized water to their original volume. The concentrations of IgG in both fresh and reconstituted LP were determined by simple radial immunodiffusion and TS and TP concentrations measured using refractometry. Results indicated that the IgG concentration in fresh plasma (8.9 ± 3.2 g/L) was not different from LP (7.1 ± 2.2 g/L; P > 0.05). The TP concentration in fresh plasma was 6.6 ± 0.5 g/dL, which decreased to 5.7 ± 0.2 g/dL after lyophilization (P < 0.05). The TS of fresh plasma were 7.5 ± 0.8 %, and also lower in LP 6.3 ± 0.5 % (P < 0.05). The findings revealed that the lyophilization process preserves IgG concentration with small losses in TS and TP upon reconstitution. The research supports the potential of lyophilized equine plasma as a promising treatment option, with future efforts focused on optimizing the product, validating its efficacy and stability through clinical trials, and developing practical packaging solutions for use in the equine industry.
Collapse
Affiliation(s)
- G G Sobral
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - O C Gomes Neto
- Central Monte Verde de Reprodução Equina, Fazenda Japecanga, s/n, Bezerros, PE, 55660-000, Brazil
| | - T C Lima
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - G F Carneiro
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
15
|
Cui TJ, Beugeling M, Kaserer W, van Heugten AJP, Capelle MAH. Improved RSV preF protein vaccine quality and stability by elucidation of supercooling-induced aggregation phenomena. Eur J Pharm Biopharm 2024; 203:114457. [PMID: 39151707 DOI: 10.1016/j.ejpb.2024.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Through a synergistic collaboration of people with varying backgrounds and expertise, the root-cause of respiratory syncytial virus prefusion (preF) protein aggregation during freezing was identified to be supercooling. This issue was addressed through a comprehensive understanding of the product. Leveraging innovative and unconventional methods, apparatus, and approaches, it was effectively determined that key parameters influencing aggregation were the nucleation temperature and the duration of supercooling. Moreover, additional measurements revealed that a transition from the preF to the postfusion conformation occurs upon supercooling, which is likely caused by cold denaturation. The importance of considering freezing conditions is highlighted supporting analytical sampling and envisioning that better understanding of sample handling/freezing process can be applied to a wide range of protein-based products.
Collapse
Affiliation(s)
- Tao Ju Cui
- Janssen Research & Development, LLC, Leiden, the Netherlands
| | - Max Beugeling
- Janssen Research & Development, LLC, Leiden, the Netherlands
| | - Wallace Kaserer
- Janssen Research & Development, LLC, Malvern, PA, United States
| | | | | |
Collapse
|
16
|
Gruber S, Greiner J, Eppink A, Thomik M, Coppens F, Vorhauer-Huget N, Tsotsas E, Foerst P. Pore shape matters - In-situ investigation of freeze-drying kinetics by 4D XCT methods. Food Res Int 2024; 193:114837. [PMID: 39160044 DOI: 10.1016/j.foodres.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Freeze-drying is a commonly employed method in the food industry to extend shelf life of products. However, this process remains time and energy consuming. While higher shelf temperatures accelerate the process, they also pose the risk of product damage. The microstructure of the product, influencing heat and mass transport, is a critical factor. This study aims to understand the impact of 3-dimensional (3D) structural parameters (pore size, shape and orientation) on local primary freeze-drying kinetics. Freeze-drying experiments were conducted with maltodextrin solutions (c1 = 0.05, c2 = 0.15 and c3 = 0.3 w/w) at different shelf temperatures (T1 = -11, T2 = -15 and T3 = -33 °C) with the use of a freeze-drying stage that allows in-situ visualization of the process inside a 4D-X-Ray computed tomography (XCT). The findings show the importance of understanding the microstructure in detail to optimize the sublimation time during the freeze-drying process. It is shown that for longitudinal pores, the orientation is a crucial parameter.
Collapse
Affiliation(s)
- Sebastian Gruber
- Technical University of Munich, School of Life Science, Department of Life Science Engineering, Food Process Engineering, Weihenstephaner Berg 1, 85354 Freising, Germany.
| | - Joshua Greiner
- Technical University of Munich, School of Life Science, Department of Life Science Engineering, Food Process Engineering, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Alexander Eppink
- Technical University of Munich, School of Life Science, Department of Life Science Engineering, Chair of Process Systems Engineering, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | | | | | | | | | - Petra Foerst
- Technical University of Munich, School of Life Science, Department of Life Science Engineering, Food Process Engineering, Weihenstephaner Berg 1, 85354 Freising, Germany
| |
Collapse
|
17
|
Zheng O, Zhang L, Sun Q, Liu S. Basic Theory of Ice Crystallization Based on Water Molecular Structure and Ice Structure. Foods 2024; 13:2773. [PMID: 39272539 PMCID: PMC11395702 DOI: 10.3390/foods13172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Freezing storage is the most common method of food preservation and the formation of ice crystals during freezing has an important impact on food quality. The water molecular structure, mechanism of ice crystal formation, and ice crystal structure are elaborated in the present review. Meanwhile the methods of ice crystal characterization are outlined. It is concluded that the distribution of the water molecule cluster structure during the crystallization process directly affects the formed ice crystals' structure, but the intrinsic relationship needs to be further investigated. The morphology and distribution of ice crystals can be observed by experimental methods while simulation methods provide the possibility to study the molecular structure changes in water and ice crystals. It is hoped that this review will provide more information about ice crystallization and promote the control of ice crystals in frozen foods.
Collapse
Affiliation(s)
- Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Li Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
18
|
Bernardini C, Romagnoli N, Casalini I, Turba ME, Spadari A, Forni M, Gentilini F. Freeze-drying protocols and methods of maintaining the in-vitro biological activity of horse platelet lysate. Int J Vet Sci Med 2024; 12:71-80. [PMID: 39119550 PMCID: PMC11308971 DOI: 10.1080/23144599.2024.2380586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Platelet lysate, derived from platelets, are valuable biological products rich in bioactive molecules. Their use promotes tissue healing and modulates inflammation. However, maintaining the stability and bioactivity of platelet lysate is challenging since they degrade rapidly at room temperature. This study focused on the possibility to confer enhanced stability to freeze-dried equine platelet lysate as an alternative to platelet-rich plasma (PRP). Platelet lysate (PL) was derived from PRP and freeze-dried either as such or using various adjuvants. Primary cell cultures of porcine Vascular Wall-Mesenchymal Stem Cells were treated with different PL formulations, and cell viability was assessed using an MTT assay. Overall, the addition of PL significantly improved cell viability as compared to controls without growth factor supplementation or with foetal bovine serum. Notably, the freeze-drying process maintained the effectiveness of the PL for at least a week. Furthermore, the study revealed that varying the horse as the source of PL could yield varying effects on cell viability. Detailed freeze-drying protocols were established, including freezing, primary drying and secondary drying phases, and the type of adjuvant. This study demonstrated the potential of freeze-dried equine PL as a viable alternative to PRP and highlighted the importance of precise freeze-drying protocols and adjuvants for standardization. Equine PL showed promise for medical treatment in horses, offering advantages such as extended shelf life, ease of handling, and reduced transportation costs, with the potential for broadened therapeutic usage.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Isabelle Casalini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | | | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| |
Collapse
|
19
|
Giannachi C, Allen E, Egan G, Vucen S, Crean A. Colyophilized Sugar-Polymer Dispersions for Enhanced Processing and Storage Stability. Mol Pharm 2024; 21:3017-3026. [PMID: 38758116 DOI: 10.1021/acs.molpharmaceut.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.
Collapse
Affiliation(s)
- Claudia Giannachi
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Evin Allen
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Gráinne Egan
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Abina Crean
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
20
|
Wu CL, Liao JS, Wang JM, Qi JR. Gelation behavior and mechanism of low methoxyl pectin in the presence of erythritol and sucrose: The role of co-solutes. Int J Biol Macromol 2024; 271:132261. [PMID: 38744367 DOI: 10.1016/j.ijbiomac.2024.132261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Co-solutes such as sucrose and sugar alcohol play a significant part in low methoxyl pectin (LMP) gelation. To explore their gelation mechanism, we investigated the gelation behavior of LMP in the presence of erythritol and sucrose with Ca2+. Results revealed that the introduction of erythritol and sucrose improved the hardness of the gels, fixed more free water, accelerated the rate of gel structuring, and enhanced the gel strength. FT-IR confirmed the reinforced hydrogen bonding and hydrophobic forces between the pectin chains after introducing co-solutes. And it could be observed clearly by SEM that the cross-linking density of gel network enhanced with co-solutes. Furthermore, gel disruption experiments suggested the presence of ionic interaction, hydrogen bonding, and hydrophobic forces in LMP gels. Finally, we concluded that the egg-box regions cross-linked only by LMP and Ca2+ were too weak to form a stable gel network structure. Adding co-solutes could increase the amount of cross-linking between pectin chains and enlarge the cross-linking zones, which favored the formation of a dense gel network by more hydrogen bonding and hydrophobic forces. Sucrose gels had superior physicochemical properties and microstructure than erythritol gels due to sucrose's excellent hydration capacity and chemical structure characteristics.
Collapse
Affiliation(s)
- Chun-Lin Wu
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd., Guangzhou 510640, PR China
| | - Jin-Mei Wang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
21
|
Pisano R, Semeraro J, Artusio F, Barresi AA. Insights into Thermal Interactions in Frozen Pharmaceutical Vials: Effects on Ice Nucleation Times and Inhibition. Pharm Res 2024; 41:1285-1297. [PMID: 38769275 PMCID: PMC11530499 DOI: 10.1007/s11095-024-03713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE This study investigates the thermal interactions between adjacent vials during freezing and assesses their impact on nucleation times. METHODS Various loading configurations were analyzed to understand their impact on nucleation times. Configurations involving direct contact between vials and freeze-dryer shelves were studied, along with setups using empty vials between filled ones. Additionally, non-conventional loading configurations and glycol-filled vials were tested. The analysis includes 2R and 20R vials, which are commonly utilized in the freezing and lyophilization of drug products, along with two different fill depths, 1 and 1.4 cm. RESULTS The investigation revealed that configurations with direct contact between vials and freeze-dryer shelves led to substantial thermal interactions, resulting in delayed nucleation in adjacent vials and affecting the temperature at which nucleation takes place in a complex way. In another setup, empty vials were placed between filled vials, significantly reducing thermal interactions. Further tests with non-conventional configurations and glycol-filled vials confirmed the presence of thermal interactions with a minimal inhibitory effect. CONCLUSIONS These findings carry significant implications for the pharmaceutical industry, highlighting the role of thermal interactions among vials during freezing and their impact on the temperature at which ice nucleation occurs.
Collapse
Affiliation(s)
- Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, IT10129, Turin, Italy.
| | - Jessica Semeraro
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, IT10129, Turin, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, IT10129, Turin, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, IT10129, Turin, Italy
| |
Collapse
|
22
|
Deck LT, Shardt N, El-Bakouri I, Isenrich FN, Marcolli C, deMello AJ, Mazzotti M. Monitoring Aqueous Sucrose Solutions Using Droplet Microfluidics: Ice Nucleation, Growth, Glass Transition, and Melting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6304-6316. [PMID: 38494636 DOI: 10.1021/acs.langmuir.3c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Freezing and freeze-drying processes are commonly used to extend the shelf life of drug products and to ensure their safety and efficacy upon use. When designing a freezing process, it is beneficial to characterize multiple physicochemical properties of the formulation, such as nucleation rate, crystal growth rate, temperature and concentration of the maximally freeze-concentrated solution, and melting point. Differential scanning calorimetry has predominantly been used in this context but does have practical limitations and is unable to quantify the kinetics of crystal growth and nucleation. In this work, we introduce a microfluidic technique capable of quantifying the properties of interest and use it to investigate aqueous sucrose solutions of varying concentration. Three freeze-thaw cycles were performed on droplets with 75-μm diameters at cooling and warming rates of 1 °C/min. During each cycle, the visual appearance of the droplets was optically monitored as they experienced nucleation, crystal growth, formation of the maximally freeze-concentrated solution, and melting. Nucleation and crystal growth manifested as increases in droplet brightness during the cooling phase. Heating was associated with a further increase as the temperature associated with the maximally freeze-concentrated solution was approached. Heating beyond the melting point corresponded to a decrease in brightness. Comparison with the literature confirmed the accuracy of the new technique while offering new visual data on the maximally freeze-concentrated solution. Thus, the microfluidic technique presented here may serve as a complement to differential scanning calorimetry in the context of freezing and freeze-drying. In the future, it could be applied to a plethora of mixtures that undergo such processing, whether in pharmaceutics, food production, or beyond.
Collapse
Affiliation(s)
- Leif-Thore Deck
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Nadia Shardt
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Imad El-Bakouri
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Florin N Isenrich
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8092, Switzerland
| | - Claudia Marcolli
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8092, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
23
|
Veselý L, Závacká K, Štůsek R, Olbert M, Neděla V, Shalaev E, Heger D. Impact of secondary ice in a frozen NaCl freeze-concentrated solution on the extent of methylene blue aggregation. Int J Pharm 2024; 650:123691. [PMID: 38072147 DOI: 10.1016/j.ijpharm.2023.123691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Freezing and lyophilization have been utilized for decades to stabilize pharmaceutical and food products. Freezing a solution that contains dissolved salt and/or organic matter produces pure primary ice crystal grains separated by freeze-concentrated solutions (FCS). The microscopic size of the primary ice crystals depends on the cooling conditions and the concentration of the solutes. It is generally accepted that primary ice crystals size influences the rate of sublimation and also can impact physico-chemical behaviour of the species in the FCS. This article, however, presents a case where the secondary ice formed inside the FCS plays a critical role. We microscoped the structures of ice-cast FCS with an environmental scanning electron microscope and applied the aggregation-sensitive spectroscopic probe methylene blue to determine how the microstructure affects the molecular arrangement. We show that slow cooling at -50 °C produces large salt crystals with a small specific surface, resulting in a high degree of molecular aggregation within the FCS. In contrast, fast liquid nitrogen cooling yields an ultrafine structure of salt crystals having a large specific surface area and, therefore, inducing smaller aggregation. The study highlights a critical role of secondary ice in solute aggregation and introduces methylene blue as a molecular probe to investigate freezing behaviour of aqueous systems with crystalline solute.
Collapse
Affiliation(s)
- Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamila Závacká
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radim Štůsek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Olbert
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
24
|
Vanbillemont B, Greiner AL, Ehrl V, Menzen T, Friess W, Hawe A. A model-based optimization strategy to achieve fast and robust freeze-drying cycles. Int J Pharm X 2023; 5:100180. [PMID: 37125084 PMCID: PMC10133743 DOI: 10.1016/j.ijpx.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023] Open
Abstract
Freeze-drying is a time and cost-intensive process. The primary drying phase is the main target in a process optimization exercise. Biopharmaceuticals require an amorphous matrix for stabilization, which may collapse during primary drying if the critical temperature of the formulation is exceeded. The risk of product collapse should be minimized during a process optimization to accomplish a robust process, while achieving an economical process time. Mechanistic models facilitate the search for an optimal primary drying protocol. We propose a novel two-stage shelf temperature optimization approach to maximize sublimation during the primary drying phase, without risking product collapse. The approach includes experiments to obtain high-resolution variability data of process parameters such as the heat transfer coefficient, vial dimensions and dried layer resistance. These process parameters variability data are incorporated into an uncertainty analysis to estimate the risk of failure of the protocol. This optimization approach enables to identify primary drying protocols that are faster and more robust than a classical approach. The methodology was experimentally verified using two formulations which allow for either aggressive or conservative freeze-drying of biopharmaceuticals.
Collapse
Affiliation(s)
- Brecht Vanbillemont
- Coriolis Pharma Research GmbH, Martinsried 82152, Germany
- Corresponding author.
| | | | - Vanessa Ehrl
- Coriolis Pharma Research GmbH, Martinsried 82152, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Martinsried 82152, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich 81377, Germany
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Martinsried 82152, Germany
| |
Collapse
|
25
|
Korang-Yeboah M, Ako-Adounvo AM, Hengst L, Dong X, Zhang S, Ma L, Connor TO, Ashraf M. Root Cause Analysis of An Inverse Relationship Between The Ice Nucleation Temperature, Process Efficiency And Quality of A Lyophilized Product. J Pharm Sci 2023; 112:3035-3044. [PMID: 37648156 DOI: 10.1016/j.xphs.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The aim of this study was to probe an unexpected relationship between the ice nucleation temperature (TIN), process efficiency and product attributes in a controlled ice nucleation (CIN) lyophilization process. An amorphous product was lyophilized with (CIN-5 °C, CIN-7 °C or CIN-10 °C) or without (NOCIN) control of ice nucleation. Process parameters and product attributes were monitored and compared using a series of advanced in-line and off-line process analytical technology (PAT) tools. Unexpectedly, an indirect relationship was observed between TIN and primary drying efficiency for the CIN processes. Further, the CIN-5 °C process was associated with higher product resistance to mass flow than corresponding CIN-7 °C and CIN-10 °C processes. Surprisingly, the air voids in some NOCIN products were larger than CIN-5 °C products but comparable to CIN-7 °C. Heat flux analysis revealed an indirect relationship between TIN and the minimum hold time required to complete solidification. The heat flux analysis also revealed all products underwent complete solidification prior to primary drying. The order of homogeneity in water activity of the products was CIN-5 °C ≥NOCIN>CIN-7 °C. The higher homogeneity in water activity of CIN-5 °C than corresponding CIN-7 °C processes indicated that the lower process efficiency of CIN-5 °C could not be attributed to unsuccessful induction of ice nucleation during CIN-5 °C. High resolution micro-CT imaging and Artificial Intelligence Image analysis revealed cake wall deformation in CIN-7 °C and NOCIN products but not in CIN-5 °C. In addition, NOCIN products had bimodal distribution in air voids with median size range of 4-5 µm and 151.9-309 µm, respectively, hence the lower process efficiency of NOCIN despite the higher D90. Thus, the observed relationship between TIN and process efficiency may be attributed to microstructural changes post freezing. This hypothesis was corroborated by visible macroscopic cake collapse in NOCIN products but not in CIN products after lyophilization at a higher shelf temperature. In conclusion, the advantages of controlling the ice nucleation temperature of a lyophilization process may only be attained through a robust process design that takes into consideration the primary and secondary drying process parameters. Further, combined use of advanced in-line and off-line PAT tools for process and product characterization may hasten the at scale adoption of advance techniques such as CIN.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Ann-Marie Ako-Adounvo
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Leanna Hengst
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Xiangyi Dong
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Shawn Zhang
- DigiM Solution LLC, 500 West Cummings Park, Woburn, MA 01801, USA
| | - Lisa Ma
- DigiM Solution LLC, 500 West Cummings Park, Woburn, MA 01801, USA
| | - Thomas O' Connor
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| |
Collapse
|
26
|
Kim S, Park S, Fesenmeier DJ, Won YY. Excipient-free lyophilization of block copolymer micelles for potential lung surfactant therapy applications. Int J Pharm 2023; 646:123476. [PMID: 37805148 DOI: 10.1016/j.ijpharm.2023.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Polymer lung surfactant (PLS) is a polyethylene glycol (PEG)-brushed block copolymer micelle designed for pulmonary surfactant replacement therapy. Saccharides (e.g., sucrose and (2-hydroxypropyl)-β-cyclodextrin) and water-soluble polymers (e.g., PEG), common excipients for lyophilization, were found to severely impair the surface activity of lyophilized PLS. To investigate the feasibility of excipient-free lyophilization of PLS, we studied the effects of both PLS material parameters and lyophilization operating parameters on the redispersibility and surface availability of reconstituted PLS, all without relying on excipients. We found that the redispersibility was improved by three factors; a faster cooling rate during the freezing stage reduced freezing stress; a higher PEG grafting density enhanced dissipating effects; and the absence of hydrophobic endgroups in the PEG block further prevented micelle aggregation. Consequently, the surface availability of PLS increased, enabling the micelle monolayer at the air/water interface to achieve a surface tension below 10 mN/m, which is a key pharmaceutical function of PLS. Moreover, the lyophilized micelles in powder form could be easily dispersed on water surfaces without the need for reconstitution, which opens up the possibility of inhalation delivery, a more patient-friendly administration method compared to instillation. The successful excipient-free lyophilization unlocks the potential of PLS for addressing acute respiratory distress syndrome (ARDS) and other pulmonary dysfunctions.
Collapse
Affiliation(s)
- Seyoung Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States; Department of Polymer Science and Engineering, Dankook University, Yongin, Gyeonggi 16890, Republic of Korea
| | - Sungwan Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Daniel J Fesenmeier
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States; Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
27
|
Coussot G, Le Postollec A, Delbecq S, Dobrijevic M. Freeze-drying of few microliters of antibody formulations to implement 384-wells homogeneous instant assays. Anal Chim Acta 2023; 1277:341660. [PMID: 37604613 DOI: 10.1016/j.aca.2023.341660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Enzyme-linked immunosorbent assay protocols have traditionally complex workflows with several intensive wash steps. Analytical tools with both shorter time-to-result and hands-on-time using smaller sample and assays reagents volumes are now investigated. In this context, fluorescence resonance energy transfer (FRET)-based assays are emerging as one of the most promising analytical tools in high-throughput screening (HTS). These immunoassays allow fast quantification of antigens at the nano-gram level in a final assay volume of only a few μL. We used a homogeneous time-resolved FRET (called HTRF) assay to develop a freeze-dried screening and ready-to-use format with only one rehydration step called "instant assay". To assure optimal performance of the developed homogeneous instant assay, we investigated the critical quality attributes by studying the functionality and stability of the critical reagents and fluorophores. The cyclic adenosine 3'-5'-monophosphate (cAMP) was selected as the antigen target. We tested various formulations (with different buffers, sugars, bulking reagents, surfactants and co-solvants) combined with a slow freezing and the use of an aluminium plate holder during the freeze-drying of few microliter of bioreagents. The optimized freeze-drying procedure permits to preserve more than 70% of Ab recognition properties. The developed off-the-shelf homogeneous FRET immunoassay allows direct and fast quantification of cAMP at a nanogram level.
Collapse
Affiliation(s)
- G Coussot
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, 34090, Montpellier, France.
| | - A Le Postollec
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| | - S Delbecq
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090, Montpellier, France
| | - M Dobrijevic
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| |
Collapse
|
28
|
Carfagna M, Rosa M, Hawe A, Frieß W. Lyophilization cycle design for highly concentrated protein formulations supported by micro freeze-dryer and heat flux sensor. Int J Pharm 2023; 643:123285. [PMID: 37532010 DOI: 10.1016/j.ijpharm.2023.123285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High-concentration protein formulations (HCPFs) represent a common strategy and freeze-drying can mitigate the stability challenges of HCPFs. In general, an in-depth characterization of the lyophilization process is essential to not impair the product quality by inappropriate process parameters. The aim of this study was to create a primary drying design space for lyophilized HCPFs by utilizing the heat flux sensor (HFS) integrated in a MicroFD with a minimum number of cycles and product vials. All the necessary data to obtain the design space were determined starting from only two lyophilization cycles, each holding 19 vials. The vial heat transfer coefficient (Kv) was determined by the HFS and compared to gravimetric values. The results indicate a consistant offset between the HFS and the gravimetry based values for annealed samples with higher protein content. This work highlights a possibility of integrating new technologies, the HFS and the MicroFD to generate a design space for lyophilization of HCPFs, which enables to implement a QbD approach at minimal material and time investment.
Collapse
Affiliation(s)
- Marco Carfagna
- Coriolis Pharma Research GmbH, Fraunhoferstrasse 18 b, 82152 Martinsried, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstrasse 5, Ludwig-Maximilians-Universitaet München, D-81377 Munich, Germany
| | - Monica Rosa
- Coriolis Pharma Research GmbH, Fraunhoferstrasse 18 b, 82152 Martinsried, Germany
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstrasse 18 b, 82152 Martinsried, Germany.
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstrasse 5, Ludwig-Maximilians-Universitaet München, D-81377 Munich, Germany
| |
Collapse
|
29
|
Susrisweta B, Veselý L, Štůsek R, Hauptmann A, Loerting T, Heger D. Investigating freezing-induced acidity changes in citrate buffers. Int J Pharm 2023; 643:123211. [PMID: 37422143 DOI: 10.1016/j.ijpharm.2023.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.
Collapse
Affiliation(s)
- Behera Susrisweta
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radim Štůsek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
30
|
Kim SY, Jo MJ, Yoon MS, Jin CE, Shin YB, Lee JM, Shin HJ, Oh JG, Cho JM, Kim H, Park H, Choi YW, Park CW, Kim JS, Shin DH. Gemcitabine and rapamycin-loaded mixed polymeric thermogel for metastatic pancreatic cancer therapy. J Control Release 2023; 360:796-809. [PMID: 37437850 DOI: 10.1016/j.jconrel.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death and has a poor 5-year overall survival. The superior therapeutic benefits of combination or co-administration of drugs as intraperitoneal chemotherapy have increased interest in developing strategies to deliver chemotherapeutic agents to patients safely. In this study, we prepared a gel comprising the thermosensitive poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer and gemcitabine (GEM), which is currently used as the primary chemotherapy for PDAC and rapamycin (RAPA), a mammalian TOR (mTOR) inhibitor, to deliver the drug through intraperitoneal injection. We performed in vitro cytotoxicity experiments to verify the synergistic effects of the two drugs at different molar ratios and characterized the physicochemical properties of the GEM, RAPA, and GEM/RAPA-loaded thermosensitive PLGA-PEG-PLGA gels, hereafter referred to as (g(G), g(R), and g(GR)), respectively. The g(GR) comprising PLGA-PEG-PLGA polymer (25% w/v) and GEM and RAPA at a molar ratio of 11:1 showed synergism and was optimized. An in vitro cytotoxicity assay was performed by treating Panc-1-luc2 tumor spheroids with g(G), g(R), or g(GR). The g(GR) treatment group showed a 2.75-fold higher inhibition rate than the non-treated (NT) and vehicle-treated groups. Furthermore, in vivo drug release assay in mice by intraperitoneal injection of g(G), g(R), or g(GR) showed a more rapid release rate of GEM than RAPA, similar to the in vitro release pattern. The drugs in the gel were released faster in vivo than in vitro and degraded in 48 h. In addition, g(GR) showed the highest anti-tumor efficacy with no toxicity to mice. These results provide evidence for the safety and efficacy of g(GR) for intraperitoneal drug delivery. This study will assist in developing and clinically administering topical anti-cancer formulations.
Collapse
Affiliation(s)
- Seo Yeon Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chae Eun Jin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae Min Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hee Ji Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Joon Gyo Oh
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Jae Min Cho
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Hyunjun Kim
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Hyunjin Park
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Yong-Won Choi
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
31
|
Bjelošević Žiberna M, Ahlin Grabnar P. Application of Quality by Design Principles to the Development of Oral Lyophilizates Containing Olanzapine. Pharmaceutics 2023; 15:1967. [PMID: 37514153 PMCID: PMC10384631 DOI: 10.3390/pharmaceutics15071967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Oral lyophilizates are intended for application to the oral cavity or for dispersing in water. The purposes of this research were: (i) to set up the quality by design approach in the development of oral lyophilizates for drug incorporation; and (ii) to evaluate the established approach by comparing its outcomes with experimentally obtained results. Within the knowledge space, properties about drugs, excipients, and the lyophilization process were acquired, followed by the determination of critical quality attributes via risk identification. Risks were assessed by failure mode and effective analysis, which recognized critical material attributes, i.e., type, concentration, particle size, solubility of drug and excipients, while as main critical process parameters, cooling rate, shelf temperature, and chamber pressure during drying were pointed out. Additionally, design space was established using the Minitab® 17 software and valued with an 88.69% coefficient of determination. A detailed comparison between the model and experimental results revealed that the proposed optimal compositions match in the total concentration of excipients (6%, w/w) in the pre-lyophilized liquid formulation, among which mannitol predominates. On the other hand, a discrepancy regarding the presence of gelatin was detected. The conclusion was that the set model represents a suitable onset toward optimization of drug-based oral lyophilizates development, preventing unnecessary investment of time and resources.
Collapse
Affiliation(s)
| | - Pegi Ahlin Grabnar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, Purohit A, Welsby PJ, Harashima H, Yu‐Wai‐Man C, Tagalakis AD. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery. Adv Healthc Mater 2023; 12:e2203022. [PMID: 36906918 PMCID: PMC11468535 DOI: 10.1002/adhm.202203022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/16/2023] [Indexed: 03/13/2023]
Abstract
Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated. The medium-term stability of the nanoparticles was evaluated by monitoring their physicochemical characteristics, entrapment and transfection efficiency, every two weeks over one month. It is demonstrated, that the use of cryoprotectants protects nanoparticles against loss of function and degradation in all storage conditions. Moreover, it is shown that the addition of sucrose enables all nanoparticles to remain stable and maintain their efficacy for up to a month when stored at -80 °C, regardless of cargo or type of nanoparticle. DNA-loaded nanoparticles also remain stable in a wider variety of storage conditions than mRNA-loaded ones. Importantly, these novel LNPs show increased GFP expression that can signify their future use in gene therapies, beyond the established role of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
| | | | - Elisha McNulty
- Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Kai X. Thong
- Faculty of Life Sciences & MedicineKing's College LondonLondonSE1 7EHUK
| | - Yusuke Sato
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | - Aleksandr Mironov
- Electron Microscopy Core Facility (RRID: SCR_021147)Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Atul Purohit
- Oncology Drug Discovery & Women's Health GroupDepartment of MetabolismDigestion & ReproductionImperial College LondonLondonW12 0HSUK
| | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | | | | |
Collapse
|
33
|
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals (Basel) 2023; 16:843. [PMID: 37375789 DOI: 10.3390/ph16060843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, oncolytic viruses (OVs) have emerged as an effective means of treating cancer. OVs have multiple oncotherapeutic functions including specifically infecting and lysing tumor cells, initiating immune cell death, attacking and destroying tumor angiogenesis and triggering a broad bystander effect. Oncolytic viruses have been used in clinical trials and clinical treatment as drugs for cancer therapy, and as a result, oncolytic viruses are required to have long-term storage stability for clinical use. In the clinical application of oncolytic viruses, formulation design plays a decisive role in the stability of the virus. Therefore, this paper reviews the degradation factors and their degradation mechanisms (pH, thermal stress, freeze-thaw damage, surface adsorption, oxidation, etc.) faced by oncolytic viruses during storage, and it discusses how to rationally add excipients for the degradation mechanisms to achieve the purpose of maintaining the long-term stability of oncolytic viral activity. Finally, the formulation strategies for the long-term formulation stability of oncolytic viruses are discussed in terms of buffers, permeation agents, cryoprotectants, surfactants, free radical scavengers, and bulking agent based on virus degradation mechanisms.
Collapse
Affiliation(s)
- Lina Pan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
34
|
Sonje J, Thakral S, Krueger S, Suryanarayanan R. Enabling Efficient Design of Biological Formulations Through Advanced Characterization. Pharm Res 2023; 40:1459-1477. [PMID: 36959413 DOI: 10.1007/s11095-023-03495-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.
Collapse
Affiliation(s)
- Jayesh Sonje
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA
- BioTherapeutics, Pharmaceutical Sciences, Pfizer Inc., 1 Burtt Road, Andover, USA
| | - Seema Thakral
- Boehringer Ingelheim Pharmaceuticals, Inc, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
Luo WC, Zhang W, Kim R, Chong H, Patel SM, Bogner RH, Lu X. Impact of Controlled Ice Nucleation and Lyoprotectants on Nanoparticle Stability during Freeze-drying and upon Storage. Int J Pharm 2023:123084. [PMID: 37245738 DOI: 10.1016/j.ijpharm.2023.123084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
The freezing step of the lyophilization process can impact nanoparticle stability due to increased particle concentration in the freeze-concentrate. Controlled ice nucleation is a technique to achieve uniform ice crystal formation between vials in the same batch and has attracted increasing attention in pharmaceutical industry. We investigated the impact of controlled ice nucleation on three types of nanoparticles: solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNs), and liposomes. Freezing conditions with different ice nucleation temperatures or freezing rates were employed for freeze-drying all formulations. Both in-process stability and storage stability up to 6 months of all formulations were assessed. Compared with spontaneous ice nucleation, controlled ice nucleation did not cause significant differences in residual moisture and particle size of freeze-dried nanoparticles. The residence time in the freeze-concentrate was a more critical factor influencing the stability of nanoparticles than the ice nucleation temperature. Liposomes freeze-dried with sucrose showed particle size increase during storage regardless of freezing conditions. By replacing sucrose with trehalose, or adding trehalose as a second lyoprotectant, both the physical and chemical stability of freeze-dried liposomes improved. Trehalose was a preferable lyoprotectant than sucrose to better maintain the long-term stability of freeze-dried nanoparticles at room temperature or 40°C.
Collapse
Affiliation(s)
- Wei-Chung Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - William Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Heather Chong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Sajal M Patel
- Dosage Form Design & Development, Biopharmaceutical Development, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA
| | - Robin H Bogner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
36
|
Kharatyan T, Igawa S, Gopireddy SR, Ogawa T, Kodama T, Scherließ R, Urbanetz NA. Impact of Post-Freeze Annealing on Shrinkage of Sucrose and Trehalose Lyophilisates. Int J Pharm 2023; 641:123051. [PMID: 37196881 DOI: 10.1016/j.ijpharm.2023.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Freeze-drying of pharmaceuticals produces lyophilisates with properties that depend on both the formulation and the process. Characterisation of the lyophilisate in terms of appearance is necessary not only to produce a visually appealing product, but also to gain insight into the freeze-drying process. The present study investigates the impact of post-freeze annealing on the volume of lyophilisates. For this purpose, sucrose and trehalose solutions were freeze-dried with different annealing conditions and the resulting lyophilisates were analysed with a 3D structured light scanner. The external structure of the lyophilisates was found to be dependent on the bulk materials as well as the choice of vials, while the volume was influenced by the annealing time and temperature. Additionally, differential scanning calorimetry was used to determine glass transition temperatures of frozen samples. As a novelty, the volumes of the lyophilisates and their corresponding glass transition temperatures were compared. This resulted in a correlation supporting the theory that the shrinkage of lyophilisates depends on the amount of residual water in the freeze-concentrated amorphous phase before drying. Understanding the volume change of lyophilisates, in combination with material properties such as glass transition temperature, forms the basis for relating physicochemical properties to process parameters in lyophilisation.
Collapse
Affiliation(s)
- Tigran Kharatyan
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen an der Ilm, Germany.
| | - Shunya Igawa
- Formulation Technology Research Laboratories, Daiichi Sankyo Co. Ltd., Hiratsuka 254-0014, Japan.
| | - Srikanth R Gopireddy
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen an der Ilm, Germany.
| | - Toru Ogawa
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen an der Ilm, Germany.
| | - Tatsuhiro Kodama
- Formulation Technology Research Laboratories, Daiichi Sankyo Co. Ltd., Hiratsuka 254-0014, Japan.
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany.
| | - Nora A Urbanetz
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen an der Ilm, Germany.
| |
Collapse
|
37
|
Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Int J Pharm 2023; 635:122717. [PMID: 36781084 DOI: 10.1016/j.ijpharm.2023.122717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
In this work, the effect of cryoprotectant type and concentration and freeze-drying process parameters were evaluated to determine an optimal freeze-drying process for celecoxib-loaded solid lipid nanoparticles. Different cryoprotectants were tested at different weight ratios (cryoprotectant:lipid). Trehalose, maltose, and sucrose at a 1:1 wt ratio were selected for further use in optimizing the freeze-drying process through experimental designs to accurately define the freezing, primary, and secondary drying conditions of the freeze-drying process. The optimal freeze-dried solid lipid nanoparticles were subjected to a 6-month stability study at either 4 °C or 25 °C/60% RH, resulting in significant growth when the nanoparticles were stored at 25 °C/60% RH. The best results were obtained with trehalose as a cryoprotectant and storage at 4 °C. Furthermore, the in vitro release data showed a significantly different release profile before and after optimization of the freeze-drying process, suggesting that the optimization of the freeze-drying process affected the quality of the freeze-dried cake. In conclusion, a successful lyophilization process was obtained due to rational cooperation between a good formulation and optimal conditions in the freezing and drying steps. This yielded an acceptable non-collapsed freeze-dried cake with good redispersibility, minimal changes in physicochemical properties, and long-term stability at 4 °C.
Collapse
|
38
|
Lu X, Kulkarni SS, Dong H, Tang Y, Yi L, Gupta S. Freezing process influences cake appearance of a lyophilized amorphous protein formulation with low solid content and high fill configuration. Int J Pharm 2023; 636:122803. [PMID: 36894041 DOI: 10.1016/j.ijpharm.2023.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Low solid content and high fill drug product configuration pose special challenges for achieving elegant cake appearance after lyophilization. In this study, such a configuration for a protein formulation required lyophilization within a narrow primary drying operating space to obtain elegant cakes. Freezing process optimization was explored as a solution. A Design of Experiment (DoE) approach was used to evaluate the effect of shelf cooling rate, annealing temperature, and their interaction on cake appearance. The slope of product resistance (Rp) vs. dried layer thickness (Ldry) was used as the quantitative response because elegant cake appearance correlated with a lower initial Rp and positive slope. As the Rp vs. Ldry slope can be experimentally established within the first 1/6th of the total primary drying duration, partial lyophilization runs were executed, allowing for rapid screening. The DoE model revealed that a slow cooling rate (≤0.3 °C/min) and high annealing temperature (≥-10 °C) resulted in a better cake appearance. Furthermore, X-ray micro-computed tomography showed that elegant cakes exhibited uniform porous structure and larger pores, while inelegant cakes showed dense top layers with smaller pores. With the optimized freezing process, the primary drying operating space was broadened with improved cake appearance and batch homogeneity.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Drug Product Development, CMC Biologics, AbbVie, 1000 Gateway Blvd, South San Francisco, CA 94080, United States.
| | - Shreya S Kulkarni
- Drug Product Development, CMC Biologics, AbbVie, 1000 Gateway Blvd, South San Francisco, CA 94080, United States
| | - Hanmin Dong
- Drug Product Development, CMC Biologics, AbbVie, 1000 Gateway Blvd, South San Francisco, CA 94080, United States
| | - Yongan Tang
- Physical Analytical Chemistry, Development Science, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Li Yi
- Drug Product Development, CMC Biologics, AbbVie, 1000 Gateway Blvd, South San Francisco, CA 94080, United States
| | - Supriya Gupta
- Drug Product Development, CMC Biologics, AbbVie, 1000 Gateway Blvd, South San Francisco, CA 94080, United States
| |
Collapse
|
39
|
Sousa JPM, Stratakis E, Mano J, Marques PAAP. Anisotropic 3D scaffolds for spinal cord guided repair: Current concepts. BIOMATERIALS ADVANCES 2023; 148:213353. [PMID: 36848743 DOI: 10.1016/j.bioadv.2023.213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal; Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece; CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João Mano
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
40
|
Jakubek ZJ, Chen S, Zaifman J, Tam YYC, Zou S. Lipid Nanoparticle and Liposome Reference Materials: Assessment of Size Homogeneity and Long-Term -70 °C and 4 °C Storage Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2509-2519. [PMID: 36748988 PMCID: PMC9948293 DOI: 10.1021/acs.langmuir.2c02657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
With recent advances and anticipated proliferation of lipid nanoparticle (LNP)-delivered vaccines and therapeutics, there is a need for the availability of internationally recognized reference materials of LNP systems. Accordingly, we developed six LNP and liposome (anionic, neutral, and cationic each) candidate reference material formulations and thoroughly characterized by dynamic light scattering their particle hydrodynamic size (Z-avr) and polydispersity. We also evaluated the particle size homogeneity and long-term -70 °C and 4 °C storage stability using multiple large sets of randomly selected vials for each formulation. The formulations stored at -70 °C remained stable and homogeneous for a minimum of 9 months. The Z-avr relative combined uncertainty and the long-term variability were both <1.3% for liposome formulations and anionic LNPs, (3.9% and 1.7%) for neutral LNPs, and (6.7% and 4.4%) for cationic LNPs. An inadvertent few-hour-long storage temperature increase to -35 °C due to a freezer malfunction resulted in a small change of the size and size distribution of anionic liposomes and LNPs but, unexpectedly, a larger size increase of the neutral and cationic liposomes (≤5%) and LNPs (≤25%). The mean Z-avr values of the LNPs stored at 4 °C appeared to slowly increase with t1/3, where t is the storage time, and the Z-avr between-vial heterogeneity and mean polydispersity index values appeared to decrease; no change was observed for liposomes. The size and size distribution evolution of LNPs stored at 4 °C was attributed to an incomplete equilibration of the formulations following the addition of sucrose prior to the initial freezing. Such a process of size increase and size distribution narrowing has not been previously discussed nor observed in the context of LNPs.
Collapse
Affiliation(s)
- Zygmunt J. Jakubek
- Metrology
Research Center, National Research Council
Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Sam Chen
- Integrated
Nanotherapeutics Inc., 205-4475 Wayburne Drive, Burnaby, British Columbia V5G 4X4, Canada
| | - Josh Zaifman
- Integrated
Nanotherapeutics Inc., 205-4475 Wayburne Drive, Burnaby, British Columbia V5G 4X4, Canada
| | - Yuen Yi C. Tam
- Integrated
Nanotherapeutics Inc., 205-4475 Wayburne Drive, Burnaby, British Columbia V5G 4X4, Canada
| | - Shan Zou
- Metrology
Research Center, National Research Council
Canada, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
41
|
Pisano R, Artusio F, Adami M, Barresi AA, Fissore D, Frare MC, Zanetti F, Zunino G. Freeze-Drying of Pharmaceuticals in Vials Nested in a Rack System-Part I: Freezing Behaviour. Pharmaceutics 2023; 15:pharmaceutics15020635. [PMID: 36839958 PMCID: PMC9960346 DOI: 10.3390/pharmaceutics15020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The distribution of biopharmaceuticals often requires either ultra-cold conditions or lyophilisation. In both cases, the drug product is frozen and, thus, exposed to similar stress conditions, which can be detrimental to its quality. However, these stresses can be inhibited or mitigated by a suitable formulation and/or an appropriate freezing design. This paper addresses how the key freezing parameters, i.e., ice nucleation temperature and cooling rate, impact the freezing behaviour of a sucrose-based formulation. The analysis included two loading configurations, vials directly resting on the shelf and nested in a rack system. The loading configuration affected the product freezing rate and the ice nucleation temperature distribution, resulting in larger ice crystals in the case of vials nested in a rack system. SEM micrographs and specific surface area measurements confirmed the different product morphology. Eventually, the different product morphology impacted the bioactivity recovery of lactate dehydrogenase.
Collapse
Affiliation(s)
- Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
- Correspondence:
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
| | | | - Antonello A. Barresi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
| | - Davide Fissore
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
| | | | | | - Gabriele Zunino
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
| |
Collapse
|
42
|
Minatovicz B, Sansare S, Mehta T, Bogner RH, Chaudhuri B. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase. J Pharm Sci 2023; 112:482-491. [PMID: 36162492 DOI: 10.1016/j.xphs.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Although bulk biotherapeutics are often frozen during fill finish and shipping to improve their stability, they can undergo degradation leading to losses in biological activity during sub-optimal freeze-thaw (F/T) process. Except for a few small-scale studies, the relative contribution of various F/T stresses to the instability of proteins has not been addressed. Thus, the objective of this study was to determine the individual contributions of freeze-concentration, ice surface area, and processing time to protein destabilization at a practical manufacturing-scale. Lactate dehydrogenase (LDH) in histidine buffer solutions were frozen in 1L containers. The frozen solutions were sliced into representative samples and assessed for the ice specific surface area (SSA) and extent of solutes freeze-concentration. For the first time to our knowledge, ice SSA was measured in dried samples from large-volume protein solutions using volumetric nitrogen adsorption isotherms. SSA measurements of the freeze-dried cakes showed that the ice surface area increased with an increase in the freezing rate. The ice SSA was also impacted by the position of the sample within the container: samples closer to the active cooled surface of the container exhibited smaller ice surface area compared to ice-cored samples from the center of the bottle. The freeze-concentrate composition was determined by measuring LDH concentration in the ice-cored samples. The protein distributed more evenly throughout the frozen solution after fast freezing which also correlated with enhanced protein stability compared to slow freezing conditions. Overall, better protein stability parameters correlated with higher ice SSA and lower freeze-concentration extent which was achieved at a faster freezing rate. Thus, extended residence time of the protein at the freeze-concentrated microenvironment is the critical destabilizing factor during freezing of LDH in bulk histidine buffer system. This study expands the understanding of the relative contributions of freezing stresses which, coupled with the knowledge of cryoprotection mechanisms, is imperative to the development of optimized processes and formulations aiming stable frozen protein solutions.
Collapse
Affiliation(s)
- Bruna Minatovicz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT, 06269, USA
| | - Sameera Sansare
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT, 06269, USA
| | - Tanu Mehta
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT, 06269, USA
| | - Robin H Bogner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT, 06269, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT, 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
43
|
Characterizing and measuring the ice nucleation kinetics of aqueous solutions in vials. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Megoura M, Ispas-Szabo P, Mateescu MA. Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights. Molecules 2023; 28:molecules28030992. [PMID: 36770661 PMCID: PMC9921882 DOI: 10.3390/molecules28030992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and -20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders.
Collapse
|
45
|
Sang Y, Wang J, Zhang Y, Gao H, Ge S, Feng H, Zhang Y, Ren F, Wen P, Wang R. Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S. Microorganisms 2023; 11:181. [PMID: 36677474 DOI: 10.3390/microorganisms11010181if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 07/26/2024] Open
Abstract
Maintaining optimum temperature during freeze-drying is crucial to ensuring the viability of strains. In this study, we evaluated the effect of pre-freezing, sublimation and desorption temperatures on the viability of Bifidobacterium longum BB68S (BB68S). Moreover, we examined the water content, water activity, enzyme activities, and scanning electron microscope of BB68S to explore mechanisms underpinning the effect of temperature on viability. Our analyses revealed the highest survival rates of BB68S collected after pre-freezing and sublimation drying at -40 °C (94.9 ± 2.2%) and -10 °C (65.4 ± 3.8%), respectively. Additionally, response surface methodology demonstrated that the optimum conditions for freeze-drying of BB68S were pre-freezing temperature at -45.52 °C and sublimation temperature at -6.58 °C, and the verification test showed that survival rates of BB68S could reach 69.2 ± 3.8%. Most of the vitality loss occurred during the sublimation drying phase. Further studies showed that different sublimation temperatures affected water content and activity, β-galactosidase, lactate dehydrogenase, Na+-K+-ATP and Ca2+-Mg2+-ATP activities. In conclusion, the temperature during freeze-drying, especially sublimation temperature, is a key factor affecting the survival rate of BB68S, and the vitality loss during freeze-drying process might be due to compromised cell membrane integrity and permeability.
Collapse
Affiliation(s)
- Yue Sang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yongxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Haihong Feng
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fazheng Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
46
|
Sang Y, Wang J, Zhang Y, Gao H, Ge S, Feng H, Zhang Y, Ren F, Wen P, Wang R. Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S. Microorganisms 2023; 11:181. [PMID: 36677474 PMCID: PMC9864634 DOI: 10.3390/microorganisms11010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Maintaining optimum temperature during freeze-drying is crucial to ensuring the viability of strains. In this study, we evaluated the effect of pre-freezing, sublimation and desorption temperatures on the viability of Bifidobacterium longum BB68S (BB68S). Moreover, we examined the water content, water activity, enzyme activities, and scanning electron microscope of BB68S to explore mechanisms underpinning the effect of temperature on viability. Our analyses revealed the highest survival rates of BB68S collected after pre-freezing and sublimation drying at -40 °C (94.9 ± 2.2%) and -10 °C (65.4 ± 3.8%), respectively. Additionally, response surface methodology demonstrated that the optimum conditions for freeze-drying of BB68S were pre-freezing temperature at -45.52 °C and sublimation temperature at -6.58 °C, and the verification test showed that survival rates of BB68S could reach 69.2 ± 3.8%. Most of the vitality loss occurred during the sublimation drying phase. Further studies showed that different sublimation temperatures affected water content and activity, β-galactosidase, lactate dehydrogenase, Na+-K+-ATP and Ca2+-Mg2+-ATP activities. In conclusion, the temperature during freeze-drying, especially sublimation temperature, is a key factor affecting the survival rate of BB68S, and the vitality loss during freeze-drying process might be due to compromised cell membrane integrity and permeability.
Collapse
Affiliation(s)
- Yue Sang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yongxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Haihong Feng
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fazheng Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
47
|
In-Process Vapor Composition Monitoring in Application to Lyophilization of Ammonium Salt Formulations. J Pharm Sci 2023; 112:264-271. [PMID: 36270539 DOI: 10.1016/j.xphs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Quality control is of critical importance in manufacturing of lyophilized drug product, which is accomplished by monitoring the process parameters. The residual gas analyzer has emerged as a useful tool in determination of endpoint for primary and secondary drying in lyophilization process as well as leak detection in vacuum systems. This study presents the application of in situ RGA to quantify outgassing rates of species released from aqueous inorganic and organic ammonium salt formulations throughout the freeze-drying process. The determination of ammonia outgassing conditions aids in ensuring product quality where ammonia release is an indication for loss of co-solvent or degradation of active pharmaceutical ingredients (APIs). Data analysis methods are developed to determine ammonia presence under various process conditions. In-situ real time monitoring of vapor dynamics enables RGA to be used as a tool to characterize counter-ion loss throughout the freeze-drying cycle.
Collapse
|
48
|
Akdag Y. Nanoparticle-containing lyophilized dry powder inhaler formulations optimized using central composite design with improved aerodynamic parameters and redispersibility. Pharm Dev Technol 2023; 28:124-137. [PMID: 36602194 DOI: 10.1080/10837450.2023.2166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives: The aim of this study was to improve the aerodynamic behavior and redispersibility of a lyophilized dry powder inhaler (DPI) formulation containing nanoparticles.Methods: Paclitaxel (PTX)-human serum albumin (HSA) nanoparticles were used as a model, and DPIs containing the nanoparticles were produced by lyophilization using different carriers and carrier ratios. A central composite design was employed to optimize the formulation. L-leucine and mannitol were chosen as independent variables, and mass median aerodynamic diameter (MMAD), emitted fraction, fine particle fraction (FPF), nanoparticle size, polydispersity index (PDI), zeta potential were selected as dependent variables.Results: The water content of DPIs was less than 5% for all DPIs. The cytotoxicity of the DPIs, determined using A549 cells, was due to PTX alone. Particle sizes of 204.3 ± 1.65 nm and 94.3-1353.0 nm were obtained before and after lyophilization, respectively. The developed method resulted in a reduction in the MMAD from 8.148 µm to 5.274 µm, an increase in the FPF from 17.63% to 33.60%, and an increase in the emitted fraction from 77.68% to 97.03%. The physico-chemical characteristics of the optimized formulation were also assessed.Conclusions: In conclusion, this study demonstrates that lyophilization can be used to produce nanoparticle-containing DPI formulations with improved redispersibility and aerodynamic properties.
Collapse
Affiliation(s)
- Yagmur Akdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
49
|
Ó'Fágáin C, Colliton K. Storage and Lyophilization of Pure Proteins. Methods Mol Biol 2023; 2699:421-475. [PMID: 37647008 DOI: 10.1007/978-1-0716-3362-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter outlines empirical procedures for the storage of pure proteins with preservation of high levels of biological activity. It describes simple and workable means of preventing microbial contamination and proteolytic degradation and the use of various types of stabilizing additives. It sets out the principles of lyophilization (a complex process comprising freezing, primary drying, and secondary drying stages, otherwise known as freeze-drying). There follows a general procedure for the use of lyophilizer apparatus with emphasis on best practice and on pitfalls to avoid. The use of modulated differential scanning calorimetry to measure the glass transition temperature, a key parameter in the design and successful operation of lyophilization processes, is described. This chapter concludes with brief summaries of interesting recent work in the field.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Keith Colliton
- Pfizer Ireland Pharmaceuticals, Grange Castle Business Park, Dublin, Ireland
| |
Collapse
|
50
|
Long-Circulating and Fusogenic Liposomes Loaded with Paclitaxel and Doxorubicin: Effect of Excipient, Freezing, and Freeze-Drying on Quality Attributes. Pharmaceutics 2022; 15:pharmaceutics15010086. [PMID: 36678715 PMCID: PMC9866235 DOI: 10.3390/pharmaceutics15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Liposomes can increase plasma half-life, enhance targeting, and diminish the side-effects of loaded drugs. On the downside, physical and chemical instabilities of dispersions often result in a reduced lifespan, which limits their availability on the market. Solid formulations obtained by freeze-drying can immobilize vesicles and provide extended shelf life. For both processes, the choice of excipients and process parameters are crucial to protect the carrier layers against tension caused by freezing and/or dehydration. The aim of this work is to evaluate the influence of freezing and drying parameters, besides excipient choice, to obtain solid long-circulating and fusogenic liposomes (LCFL-PTX/DXR) co-encapsulating paclitaxel (PTX) and doxorubicin (DXR) at a synergistic ratio (1:10). METHODS LCFL-PTX/DXR was evaluated by freeze-drying microscopy (glass transition, Tg'), differential scanning calorimetry (collapse temperature, Tc), freeze-thawing and freeze-drying processes. Freeze-dried samples were evaluated by thermogravimetry (residual moisture) and the resuspended liposomes were characterized in terms of size, polydispersity index (PI), zeta potential (ZP), and drug content. Liposomes morphology was evaluated by cryomicroscopy. RESULTS Trehalose protected PTX cargo upon freeze-thawing and more than 80% of the original DXR retention. The formulations with trehalose resulted in a cake with 5-7% of moisture content (200-240 nm); 44-60% of PTX retention, and 25-35% of DXR retention, with the variations caused by cryoprotector concentration and process changes. CONCLUSIONS Trehalose protected liposome integrity, maintaining PTX retention and most of DXR upon freeze-thawing. Freeze-drying reduced the retention of both drugs inside all liposomes, whereas formulation with trehalose presented minor losses. Therefore, this frozen formulation is an alternative product option, with no need for manipulation before use.
Collapse
|