1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
3
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and current research models of Mendelian tumor predisposition syndromes with ocular involvement. Prog Retin Eye Res 2025; 106:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a Mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 tumor predisposition syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Till K, Borchers A. The Rho GEF Trio functions in contact inhibition of locomotion of neural crest cells by interacting with Ptk7. Development 2025; 152:dev204446. [PMID: 40326503 DOI: 10.1242/dev.204446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Neural crest (NC) cells are highly migratory cells that contribute to a wide range of vertebrate tissues and must respond to a variety of external signals to precisely control directed cell migration. The RhoGEF Trio is particularly well suited to relay signals to the cytoskeleton because it contains two GEF domains that activate Rac1 and RhoA, respectively. Previously, we have shown that Trio is dynamically localized in Xenopus NC cells and required for their migration. However, how its distinct enzymatic functions are spatially controlled remains unclear. Here, we show that Trio is required for contact inhibition of locomotion (CIL), a phenomenon whereby NC cells change their polarity and directionality upon cell-cell contact. At cell-cell contacts, Trio interacts with Ptk7, a regulator of planar cell polarity that we have recently shown to be required for CIL. Our data suggest that Ptk7 inhibits the Rac1 activity of Trio, thereby limiting Trio activity to the activation of RhoA and promoting CIL.
Collapse
Affiliation(s)
- Katharina Till
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| |
Collapse
|
5
|
Nasim S, Baig M, Wylie-Sears J, Vivero M, Smits P, Marrs L, Cheng YS, Alves C, Pinto A, Greene AK, Bischoff J. MAPK Signaling and Angiopoietin-2 Contribute to Endothelial Permeability in Capillary Malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646063. [PMID: 40235979 PMCID: PMC11996404 DOI: 10.1101/2025.03.31.646063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Capillary malformations (CM) are slow-flow vascular abnormalities present at birth and predominantly manifest as cutaneous lesions. In the rare neurocutaneous disorder known as Sturge Weber Syndrome (SWS), individuals exhibit CM not only on the skin but also within the leptomeninges of the brain and the choroid of the eye. >90% of CM are caused by a somatic R183Q mutation in GNAQ, the gene encoding Gαq - a heterotrimeric G-protein subunit. The somatic GNAQ mutation is notably enriched in endothelial cells (ECs) isolated from CM-affected regions. Here we show blood vessels in cutaneous and leptomeningeal SWS lesions exhibit extravascular fibrin indicating a compromised endothelial barrier. Longitudinal MRI of the brain in one SWS patient further suggests vascular permeability. To explore this pathological phenotype, we employed the trans-endothelial electrical resistance (TEER) assay to measure permeability of the EC-EC barrier in vitro . Human EC CRISPR edited to create a GNAQ R183Q allele (EC-R183Q) exhibited a reduced barrier compared to mock edited EC (EC-WT). We sought to identify signaling molecules needed for EC barrier formation. Knockdown of angiopoietin-2 (ANGPT2), known to be significantly increased in EC-R183Q and in CM, partially yet significantly restored the barrier, while an anti-ANGPT2 function blocking antibody did not. We next tested the MEK1,2 inhibitor (Trametinib) because MAPK signaling is increased by GNAQ mutation. MEK1,2 inhibitors partially restored the EC barrier, implicating involvement of MAPK/ERK signaling. The combination of ANGPT2 knockdown and Trametinib significantly restored the EC barrier to near EC-WT levels. The additive impacts of ANGPT knockdown and MEK1,2 inhibition indicate the two operate in separate pathways. In summary, we discovered that GNAQ p.R183Q ECs exhibit compromised endothelial barrier formation, reflecting the compromised EC barrier in CM lesions, and that ANGPT2 knockdown combined with Trametinib effectively restores the EC-EC barrier. NONSTANDARD ABBREVIATIONS AND ACRONYMS NOVELTY AND SIGNIFICANCE What is known?: The mutant Gαq-R183Q in endothelial cells activates phospholipase β3, contributing to increased angiopoietin-2, a pro-angiogenic, proinflammatory molecule that contributes to vascular permeability.Endothelial Gαq-R183Q is sufficient to drive formation of enlarged blood vessels akin to what is observed in CM. ANGPT2 shRNA knockdown prevented the enlarged vessel phenotype in a xenograft model.An EC-specific GNAQ p.R183Q mouse model showed permeability in brain vessels, detected by perfusion of Evans Blue dye, indicating reduced vascular integrity.What New Information Does This Article Contribute?: Reduced vascular integrity in CM is confirmed by Martius Scarlet Blue staining and longitudinal MRI imaging of SWS brain. GNAQ p.R183Q EC form a weaker endothelial barrier in vitro compared to control ECs. The weakened endothelial barrier in the mutant ECscan be rescued by Gαq inhibitor, YM254890, confirming the compromised barrier is a consequence of the mutant Gαq. Titration experiments modeling the mosaic nature of the GNAQ p.R183Q in CMshow that 5- 10% GNAQ p.R183Q EC in the monolayer is sufficient to reduce endothelial barrier formation. Knockdown of ANGPT2 or MEK1,2 inhibition partially restored the endothelial barrier in GNAQ p.R183Q EC. Combining knockdown of ANGPT2 and addition of a MEK inhibitor, Trametinib, restored the endothelial barrier to near what is seen in wild type ECs.What is the translational message?: Sturge Weber Syndrome (SWS) is a neurocutaneous disorder that involves atypical blood vessel overgrowth in the skin, brain and eye. It is associated with facial CM (aka port wine birthmark), leptomeningeal CM in the brain visible with MRI, and glaucoma. Theneurological sequalae involve seizures, cerebral atrophies and calcification, and intellectual disorders. Currently there are no molecularly targeted therapies for non-syndromic CM or SWS. Our study shows the involvement of MAPK pathway and the proinflammatory molecule ANGPT2 in endothelial permeability and suggests a path to target GNAQ p.R183Q driven CM.
Collapse
|
6
|
Banimohammad M, Khalafi P, Gholamin D, Bangaleh Z, Akhtar N, Solomon AD, Prabhakar PK, Sanami S, Prakash A, Pazoki-Toroudi H. Exploring recent advances in signaling pathways and hallmarks of uveal melanoma: a comprehensive review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002306. [PMID: 40177537 PMCID: PMC11964777 DOI: 10.37349/etat.2025.1002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The purpose of this review was to provide a comprehensive review of the latest insights on the pathogenesis of uveal melanoma (UM) and its intracellular pathways. This article covers the epidemiology of UM, racial predispositions, cytogenetic and chromosomal alterations, gene mutations, key defective pathways, and their underlying mechanisms, as well as the application of hallmarks of cancer to UM. A key knowledge gap remains in identifying the most effective targeted therapy and determining the central pathway linking multiple signaling networks. UM is a malignant tumor arising from uveal melanocytes, predominantly affecting the choroid, with both genetic and epigenetic contributors. Key cytogenetic alterations include monosomy 3, chromosome 6p gain, chromosome 1p loss, and chromosome 8q gain. The most important UM-related signaling pathways are RAS/MAPK, PI3K/Akt/mTOR, Hippo-YAP, retinoblastoma (Rb), and p53 pathways. In the RAS/MAPK pathway, GNAQ/GNA11 mutations occur which account for more than 80% of UM cases. The PI3K/Akt/mTOR pathway promotes cyclin D1 overexpression and MDM2 upregulation, leading to p53 pathway inhibition. GNAQ/GNA11 mutations activate YAP via the Trio-RhoGTPase/RhoA/Rac1 signaling circuit in the Hippo-YAP pathway. Rb pathway dysregulation results from cyclin D1 overexpression or cyclin-dependent kinase inhibitor (CDKI) inactivation. In the p53 pathway, UM is characterized by p53 mutations, MDM2 overexpression, and Bcl-2 deregulation. Eventually, the ARF-MDM2 axis serves as a critical link between the RAS and p53 pathways. Hallmarks of cancer, such as evasion of growth suppression and self-sufficiency in growth signals, are also evident in UM. Genetic and epigenetic alterations, including NSB1, MDM2 and CCND1 amplification, and BAP1 mutations, play pivotal roles in UM pathobiology. Thus, UM exhibits a multifactorial pathology. By consolidating key mechanisms underlying UM pathogenesis, this review provides a comprehensive perspective on the involved pathways, offering insights that may facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Majid Banimohammad
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parsa Khalafi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Danial Gholamin
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zahra Bangaleh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pranav Kumar Prabhakar
- School of Allied Medical Sciences, Lovely Professional University, Phagwara 144411, India
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, India
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
7
|
Yang F, Zhou Y, Zhang Y, Wei W, Huang F, Yang D, Zhang Y, Zhang R, Xia X, Chen Q, Jiang Y, Feng X. PDLIM3 Regulates Migration and Invasion of Head and Neck Squamous Cell Carcinoma via YAP-Mediated Epithelial-Mesenchymal Transition. Int J Mol Sci 2025; 26:3147. [PMID: 40243891 PMCID: PMC11988593 DOI: 10.3390/ijms26073147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Despite significant progress in characterizing the omics landscape of head and neck squamous cell carcinoma (HNSCC), the development of precision therapies remains limited. One key factor contributing to this challenge is the marked molecular heterogeneity of HNSCC. Further investigation of molecular profiles within HNSCC may facilitate the improvement in more effective precision treatments. Here, we focus on the dysregulation of PDZ and LIM domain protein 3 (PDLIM3) in HNSCC. The expression levels of PDLIM3 were analyzed using public datasets to assess its potential role in tumor progression. We found that PDLIM3 was downregulated in pan-cancer and HNSCC. The prognostic significance of PDLIM3 was evaluated through tissue microarray, and the downregulation of PDLIM3 was correlated with poor HNSCC prognosis. Investigating the implications of PDLIM3 for tumor metastatic ability in vitro, we found that PDLIM3 suppressed the migration and invasion of HNSCC, accompanied by partially impeding the process of epithelial-mesenchymal transition (EMT). Furthermore, PDLIM3 inhibited the transcriptional activity of Yes-associated protein (YAP), suggesting that YAP may be involved in the PDLIM3-mediated suppression of HNSCC metastatic ability. Our findings identify a potential signaling axis wherein PDLIM3 regulates YAP-EMT, thereby influencing tumor metastatic ability, and suggest the potential role of PDLIM3 as a tumor suppressor and prognostic biomarker for HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (F.Y.); (Y.Z.); (Y.Z.); (W.W.); (F.H.); (D.Y.); (Y.Z.); (R.Z.); (X.X.); (Q.C.)
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (F.Y.); (Y.Z.); (Y.Z.); (W.W.); (F.H.); (D.Y.); (Y.Z.); (R.Z.); (X.X.); (Q.C.)
| |
Collapse
|
8
|
Dwyer MB, Luo J, Todd TD, Blumer KJ, Tall GG, Wedegaertner PB. The guanine nucleotide exchange factor Ric-8A regulates the sensitivity of constitutively active Gαq to the inhibitor YM-254890. J Biol Chem 2025; 301:108426. [PMID: 40118458 PMCID: PMC12033907 DOI: 10.1016/j.jbc.2025.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025] Open
Abstract
Heterotrimeric G proteins are stimulated under normal circumstances by G protein-coupled receptors to promote downstream intracellular signaling. Mutations can occur in αq at glutamine 209 (Q209) that cause constitutive, G protein-coupled receptor independent signaling due to disruption of GTPase activity. Specifically, Q209L/P mutations are oncogenic drivers of uveal melanoma. YM-254890 (YM) has been shown to selectively inhibit both WT and constitutively active (CA) αqQ209L/P by preventing the release of GDP and exchange for GTP, thereby halting downstream signaling. Because αqQL/P are thought to be primarily GTP-bound and GTPase deficient, the current mechanistic understanding of YM inhibition needs further investigation to clarify how a GDP-dissociation inhibitor could potently inhibit these oncogenic mutants. Here, we expand on the current knowledge of CA αq cellular regulation by demonstrating a direct role for the αq chaperone and guanine nucleotide exchange factor Ric-8A in YM sensitivity. Through signaling assays in RIC-8A KO cells, we found that myristoylated αqQL/P mutants (αqAG-QL/P), previously demonstrated to be YM-resistant, became YM-sensitive, and this was reversed by reintroduction of Ric-8A. Additionally, αqQL demonstrated increased YM sensitivity in the absence of Ric-8A, which was directly altered by the reintroduction of Ric-8A. Pull-down and BRET assays with the RGS-homology domain of GRK2, which can only bind activated αq, further demonstrated that Ric-8A expression enhances activation of αq, its ability to bind effectors, and therefore its ability to signal. With the understanding of YM acting as a GDP-dissociation inhibitor, we propose that Ric-8A hinders YM inhibitory effects by promoting GTP-bound, activated αqQL/P.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tyson D Todd
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
10
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
El Masri R, Iannuzzo A, Kuentz P, Tacine R, Vincent M, Barbarot S, Morice-Picard F, Boralevi F, Oillarburu N, Mazereeuw-Hautier J, Duffourd Y, Faivre L, Sorlin A, Vabres P, Delon J. A postzygotic GNA13 variant upregulates the RHOA/ROCK pathway and alters melanocyte function in a mosaic skin hypopigmentation syndrome. Nat Commun 2025; 16:1751. [PMID: 39966435 PMCID: PMC11836271 DOI: 10.1038/s41467-025-56995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The genetic bases of mosaic pigmentation disorders have increasingly been identified, but these conditions remain poorly characterised, and their pathophysiology is unclear. Here, we report in four unrelated patients that a recurrent postzygotic mutation in GNA13 is responsible for a recognizable syndrome with hypomelanosis of Ito associated with developmental anomalies. GNA13 encodes Gα13, a subunit of αβγ heterotrimeric G proteins coupled to specific transmembrane receptors known as G-protein coupled receptors. In-depth functional investigations revealed that this R200K mutation provides a gain of function to Gα13. Mechanistically, we show that this variant hyperactivates the RHOA/ROCK signalling pathway that consequently increases actin polymerisation and myosin light chains phosphorylation, and promotes melanocytes rounding. Our results also indicate that R200K Gα13 hyperactivates the YAP signalling pathway. All these changes appear to affect cell migration and adhesion but not the proliferation. Our results suggest that hypopigmentation can result from a defect in melanosome transfer to keratinocytes due to cell shape alterations. These findings highlight the interaction between heterotrimeric G proteins and the RHOA pathway, and their role in melanocyte function.
Collapse
Affiliation(s)
- Rana El Masri
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alberto Iannuzzo
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Paul Kuentz
- UFR des Sciences de Santé, Inserm - Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Rachida Tacine
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marie Vincent
- Unité de Génétique clinique, Service de génétique médicale, CHU de Nantes - Hôpital Mère-Enfant, Nantes, France
| | - Sébastien Barbarot
- Nantes Université, Department of Dermatology, CHU Nantes, INRAE, UMR 1280, PhAN, Nantes, France
| | - Fanny Morice-Picard
- MAGEC Reference Centre for Rare Genetic Skin Diseases, Paediatric Dermatology Unit, Department of Dermatology, CHU de Bordeaux - GH Pellegrin, Bordeaux, France
| | - Franck Boralevi
- MAGEC Reference Centre for Rare Genetic Skin Diseases, Paediatric Dermatology Unit, Department of Dermatology, CHU de Bordeaux - GH Pellegrin, Bordeaux, France
| | - Naia Oillarburu
- Service de dermatologie, CHU de Toulouse - Hôpital Larrey, Toulouse, France
| | | | - Yannis Duffourd
- UFR des Sciences de Santé, Inserm - Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
- CHU Dijon, Unité Fonctionnelle "Innovation diagnostique dans les maladies rares", FHU-TRANSLAD & Institut GIMI, Dijon, France
| | - Laurence Faivre
- UFR des Sciences de Santé, Inserm - Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
- CHU Dijon, Centre de Génétique et Centres de référence Anomalies du Développement et Déficience Intellectuelle, FHU-TRANSLAD & Institut GIMI, Dijon, France
| | - Arthur Sorlin
- UFR des Sciences de Santé, Inserm - Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
- MAGEC Reference Centre for Rare Genetic Skin Diseases and Paediatric Dermatology Unit, Department of Paediatrics, University Hospital Dijon-Bourgogne, FHU-TRANSLAD & Institut GIMI, Dijon, France
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), 1 Rue Louis Rech, Dudelange, Luxembourg
| | - Pierre Vabres
- UFR des Sciences de Santé, Inserm - Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France.
- MAGEC Reference Centre for Rare Genetic Skin Diseases and Paediatric Dermatology Unit, Department of Paediatrics, University Hospital Dijon-Bourgogne, FHU-TRANSLAD & Institut GIMI, Dijon, France.
- Rare Disease Collaborative Network (RDCN) Adult Mosaic Disorders Clinic, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Jérôme Delon
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
12
|
Longakit AN, Urtatiz O, Luty A, Zhang C, Hess C, Yoo A, Bourget H, Van Raamsdonk CD. Loss of NF1 Accelerates Uveal and Intradermal Melanoma Tumorigenesis, and Oncogenic GNAQ Transforms Schwann Cells. CANCER RESEARCH COMMUNICATIONS 2025; 5:209-225. [PMID: 39804140 PMCID: PMC11788999 DOI: 10.1158/2767-9764.crc-24-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
SIGNIFICANCE These results indicate that NF1 loss in intradermal and uveal melanomas is a potentially significant finding. They emphasize the importance of neurofibromin in cAMP signaling. They show for the first time that oncogenic GNAQ can transform Schwann cells in mice. The Plp1-creERT transgene with tamoxifen given at 5 weeks may be a particularly good strategy for modeling cutaneous neurofibroma and plexiform neurofibroma.
Collapse
Affiliation(s)
- Anne Nathalie Longakit
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Amy Luty
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Christina Zhang
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Chloe Hess
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Alyssa Yoo
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Hannah Bourget
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Catherine D. Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Kadamb R, Anton ML, Purwin TJ, Seeneevassen L, Chua V, Waltrich F, Teh JLF, Nieto MA, Sato T, Terai M, Roman SR, De Koning L, Zheng D, Aplin AE, Aguirre-Ghiso JA. Lineage commitment pathways epigenetically oppose oncogenic Gαq/11-YAP1 signaling in dormant disseminated uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583565. [PMID: 38496663 PMCID: PMC10942354 DOI: 10.1101/2024.03.05.583565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Uveal melanoma (UM) can remain in clinical dormancy for decades only to later produce lethal metastases. Using Gαq/11 mut /BAP1 wt UM xenograft models and human metastatic samples, we identified NR2F1 as a key inducer of UM disseminated cancer cell (DCC) dormancy. Dormant UM DCCs upregulate NR2F1, neural crest genes and, along with suppression of proliferation programs, NR2F1 silences YAP1/TEAD1 transcription by altering histone H3 activation marks. YAP1 can reciprocally repress NR2F1, but inhibiting Gαq/11 signaling or activating NR2F1 can arrest UM growth. NR2F1 knockout led to dormant DCC awakening and liver metastatic growth. NR2F1 and YAP1 inverse expression was confirmed in human livers carrying UM solitary, small DCC clusters as well as large metastases. Intriguingly, RNA-seq and Cut&Run analysis revealed that NR2F1 short-circuits oncogene signaling by repressing multiple G-protein signaling components. Our work provides previously unrecognized mechanistic insight into UM DCC dormancy and potential pathways for interception. Statement of significance NR2F1 epigenetically suppresses genes associated with G-protein signaling, cell cycle, and YAP1/TEAD1 pathways, inducing dormancy in uveal melanoma (UM) disseminated cancer cells. This study unveils novel markers for UM dormancy and reactivation, positioning NR2F1 as a promising target for intercepting residual and UM metastatic disease.
Collapse
|
14
|
Xuan W, Song D, Hou J, Meng X. Regulation of Hippo-YAP1/TAZ pathway in metabolic dysfunction-associated steatotic liver disease. Front Pharmacol 2025; 16:1505117. [PMID: 39917623 PMCID: PMC11798981 DOI: 10.3389/fphar.2025.1505117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disease worldwide, but effective treatments are still lacking. Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation, and glutaminolysis are found to induce liver senescence and ferroptosis, which are hot topics in the research of MASLD. Recent studies have shown that Hippo-YAP1/TAZ pathway is involved in the regulations of metabolism disorders, senescence, ferroptosis, inflammation, and fibrosis in MASLD, but their complex connections and contrast roles are also reported. In addition, therapeutics based on the Hippo-YAP1/TAZ pathway hold promising for MASLD treatment. In this review, we highlight the regulation and molecular mechanism of the Hippo-YAP1/TAZ pathway in MASLD and summarize potential therapeutic strategies for MASLD by regulating Hippo-YAP1/TAZ pathway.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jianghua Hou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Tocci P, Caprara V, Roman C, Sestito R, Rosanò L, Bagnato A. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer. Biosci Rep 2024; 44:BSR20241320. [PMID: 39495612 DOI: 10.1042/bsr20241320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restores YAP phosphorylation. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halts the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome 00185, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
16
|
Tucci FA, Pennisi R, Rigiracciolo DC, Filippone MG, Bonfanti R, Romeo F, Freddi S, Guerrera E, Soriani C, Rodighiero S, Gunby RH, Jodice G, Sanguedolce F, Renne G, Fusco N, Di Fiore PP, Pruneri G, Bertalot G, Musi G, Vago G, Tosoni D, Pece S. Loss of NUMB drives aggressive bladder cancer via a RHOA/ROCK/YAP signaling axis. Nat Commun 2024; 15:10378. [PMID: 39627202 PMCID: PMC11615365 DOI: 10.1038/s41467-024-54246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in bladder cancer (BCa) treatment have been hampered by the lack of predictive biomarkers and targeted therapies. Here, we demonstrate that loss of the tumor suppressor NUMB promotes aggressive bladder tumorigenesis and worsens disease outcomes. Retrospective cohort studies show that NUMB-loss correlates with poor prognosis in post-cystectomy muscle-invasive BCa patients and increased risk of muscle invasion progression in non-muscle invasive BCa patients. In mouse models, targeted Numb ablation induces spontaneous tumorigenesis and sensitizes the urothelium to carcinogenic insults, accelerating tumor onset and progression. Integrative transcriptomic and functional analyses in mouse and human BCa models reveal that upregulation of YAP transcriptional activity via a RHOA/ROCK-dependent pathway is a hallmark of NUMB-deficient BCa. Pharmacological or genetic inhibition of this molecular pathway selectively inhibits proliferation and invasion of NUMB-deficient BCa cells in 3D-Matrigel organoids. Thus, NUMB-loss could serve as a biomarker for identifying high-risk patients who may benefit from targeted anti-RHOA/ROCK/YAP therapies.
Collapse
Grants
- IG 23049 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG 23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MIUR-PRIN2017 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- MIUR/PRIN2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 5x1000 funds Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente Ministero della Salute (Ministry of Health, Italy)
- RF-2016-02361540 Ministero della Salute (Ministry of Health, Italy)
- RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- F A Tucci
- European Institute of Oncology IRCCS, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - R Pennisi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - D C Rigiracciolo
- European Institute of Oncology IRCCS, Milan, Italy
- IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - M G Filippone
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - R Bonfanti
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Romeo
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - S Freddi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - E Guerrera
- European Institute of Oncology IRCCS, Milan, Italy
| | - C Soriani
- European Institute of Oncology IRCCS, Milan, Italy
| | - S Rodighiero
- European Institute of Oncology IRCCS, Milan, Italy
| | - R H Gunby
- European Institute of Oncology IRCCS, Milan, Italy
| | - G Jodice
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Sanguedolce
- Department of Pathology, University of Foggia, Foggia, Italy
| | - G Renne
- European Institute of Oncology IRCCS, Milan, Italy
| | - N Fusco
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - P P Di Fiore
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pruneri
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Bertalot
- Department of Anatomy and Pathological Histology, APSS, Trento, Italy
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
| | - G Musi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Vago
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - D Tosoni
- European Institute of Oncology IRCCS, Milan, Italy.
| | - S Pece
- European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Ouyang S, Shi S, Ding W, Ge Y, Su Y, Mo J, Peng K, Zhang Q, Liu G, Xiao W, Yue P, Lu J, Wang Y, Xiong X, Zhang X. Neuropeptide Precursor VGF Promotes Liver Metastatic Colonization of Gαq Mutant Uveal Melanoma by Facilitating Tumor Microenvironment via Paracrine Loops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407967. [PMID: 39422674 PMCID: PMC11633529 DOI: 10.1002/advs.202407967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Uveal melanoma (UM), the predominant primary ocular malignancy, often progresses to liver metastasis with limited therapeutic options. The interplay of the tumor microenvironment, encompassing secreted soluble factors, plays a crucial role in facilitating liver metastasis. In this study, the role is elucidated of the neural growth factor-inducible gene (VGF), a secreted neuropeptide precursor, in Gαq mutant UM. Employing a multiomics approach, encompassing transcriptomic and secretomic analyses, the intricate involvement of VGF in UM progression is unveiled. VGF is upregulated in Gαq mutant UM cells and associated with poor prognosis of UM patients. Targeting VGF significantly suppressed the growth of UM in vitro and in vivo. Further evidence shows that VGF is regulated by Gαq through MAPK/CREB pathway. Mechanistically, CREB modulates VGF expression by directly binding to consensus DNA response elements in the promoters of the VGF gene. Combined inhibition of Gαq and MEK remarkably reduces tumor burden in the UM xenograft model. Notably, VGF triggers liver metastatic colonization of UM and activates the fibrosis of hepatic stellate cells (HSCs), creating a favorable microenvironment, through an autocrine and paracrine loop. Furthermore, VGF directly binds to TGFBR2 and regulates TGF-β-SMAD signaling pathway, thereby regulating genes associated with endothelial-mesenchymal transition (EMT) to promote metastasis. Taken together, these findings identify VGF as a pivotal driver in the progression and metastasis of Gαq mutant UM and confers a promising therapeutic target and strategy for UM patients.
Collapse
Affiliation(s)
- Shumin Ouyang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shuo Shi
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Wen Ding
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yang Ge
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yingxue Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Jianshan Mo
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Keren Peng
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Qiyi Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Guopin Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Wei Xiao
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Peibin Yue
- Department of MedicineDivision of Hematology‐Oncologyand Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao999078China
| | - Yandong Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xiaofeng Xiong
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiaolei Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
18
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Han H, Huang Z, Xu C, Seo G, An J, Yang B, Liu Y, Lan T, Yan J, Ren S, Xu Y, Xiao D, Yan JK, Ahn C, Fishman DA, Meng Z, Guan KL, Qi R, Luo R, Wang W. Functional annotation of the Hippo pathway somatic mutations in human cancers. Nat Commun 2024; 15:10106. [PMID: 39572544 PMCID: PMC11582751 DOI: 10.1038/s41467-024-54480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The Hippo pathway is commonly altered in cancer initiation and progression; however, exactly how this pathway becomes dysregulated to promote human cancer development remains unclear. Here we analyze the Hippo somatic mutations in the human cancer genome and functionally annotate their roles in targeting the Hippo pathway. We identify a total of 85 loss-of-function (LOF) missense mutations for Hippo pathway genes and elucidate their underlying mechanisms. Interestingly, we reveal zinc-finger domain as an integral structure for MOB1 function, whose LOF mutations in head and neck cancer promote tumor growth. Moreover, the schwannoma/meningioma-derived NF2 LOF mutations not only inhibit its tumor suppressive function in the Hippo pathway, but also gain an oncogenic role for NF2 by activating the VANGL-JNK pathway. Collectively, our study not only offers a rich somatic mutation resource for investigating the Hippo pathway in human cancers, but also provides a molecular basis for Hippo-based cancer therapy.
Collapse
Affiliation(s)
- Han Han
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Zhen Huang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, USA
| | - Congsheng Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jeongmin An
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yuhan Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Tian Lan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jiachen Yan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shanshan Ren
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yue Xu
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Di Xiao
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jonathan K Yan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Claire Ahn
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
20
|
Dong J, Xu Y, Yu D, Zhang X, Wang A, Lv L, Li Z. Gq/G11 oncogenic mutations promote PD-L1 expression and suppress tumor immunity. Eur J Cell Biol 2024; 103:151467. [PMID: 39550833 DOI: 10.1016/j.ejcb.2024.151467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
Uveal melanoma (UM) is the predominant form of eye cancer. The genes GNAQ and GNA11, encoding Gq and G11 respectively, are most frequently mutated in UM and are considered the major drivers of UM carcinogenesis by activating YAP. However, the mechanisms by which metastatic UM evades the immune system remain poorly understood. In this study, we found that oncogenic mutations of Gq/G11 promoted YAP and PD-L1 expression, modifying the tumor microenvironment and promoting immune evasion of UM. Consistently, the levels of GNAQ/GNA11 and YAP positively correlated to PD-L1 expression in UM patients. Furthermore, silencing YAP or treating with its inhibitor, Verteporfin, attenuated PD-L1 expression induced by Gq/G11 mutations, thereby enhancing T cell activation and T cell-mediated cytotoxicity. Collectively, this study reveals a potential role of Gq/G11 mutations on immune evasion of UM, a new mechanism of Gq/11 mutations-induced tumorigenesis, highlighting Gq/G11 and YAP as potential immunotherapeutic targets and suggesting Verteporfin as an adjuvant for immunotherapy of UM patients with GNAQ or GNA11 mutations.
Collapse
Affiliation(s)
- Jingyan Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China; Shanxi Eye Hospital, Taiyuan 030001, China
| | - Yue Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Dawei Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Xiaoling Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Anqi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China.
| |
Collapse
|
21
|
Jones I, Arias-Garcia M, Pascual-Vargas P, Beykou M, Dent L, Chaudhuri TP, Roumeliotis T, Choudhary J, Sero J, Bakal C. YAP activation is robust to dilution. Mol Omics 2024; 20:554-569. [PMID: 39282972 PMCID: PMC11403994 DOI: 10.1039/d4mo00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The concentration of many transcription factors exhibits high cell-to-cell variability due to differences in synthesis, degradation, and cell size. Whether the functions of these factors are robust to fluctuations in concentration, and how this may be achieved, is poorly understood. Across two independent panels of breast cancer cells, we show that the average whole cell concentration of YAP decreases as a function of cell area. However, the nuclear concentration distribution remains constant across cells grouped by size, across a 4-8 fold size range, implying unperturbed nuclear translocation despite the falling cell wide concentration. Both the whole cell and nuclear concentration was higher in cells with more DNA and CycA/PCNA expression suggesting periodic synthesis of YAP across the cell cycle offsets dilution due to cell growth and/or cell spreading. The cell area - YAP scaling relationship extended to melanoma and RPE cells. Integrative analysis of imaging and phospho-proteomic data showed the average nuclear YAP concentration across cell lines was predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear transport processes. Validating the idea that RAS/MAPK and cell cycle regulate YAP translocation, chemical inhibition of MEK or CDK4/6 increased the average nuclear YAP concentration. Together, this study provides an example case, where cytoplasmic dilution of a protein, for example through cell growth, does not limit a cognate cellular function. Here, that same proteins translocation into the nucleus.
Collapse
Affiliation(s)
- Ian Jones
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Melina Beykou
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Lucas Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Tara Pal Chaudhuri
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Julia Sero
- Institute for Mathematical Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
22
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. PLoS Pathog 2024; 20:e1012341. [PMID: 39446925 PMCID: PMC11563402 DOI: 10.1371/journal.ppat.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in three B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
25
|
Wang Y, Stoess C, Holzmann G, Mogler C, Stupakov P, Altmayr F, Schulze S, Wang B, Steffani M, Friess H, Hüser N, Holzmann B, Hartmann D, Laschinger M. Signalling of the neuropeptide calcitonin gene-related peptide (CGRP) through RAMP1 promotes liver fibrosis via TGFβ1/Smad2 and YAP pathways. Exp Cell Res 2024; 442:114193. [PMID: 39103072 DOI: 10.1016/j.yexcr.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The liver is innervated by primary sensory nerve fibres releasing the neuropeptide calcitonin gene-related peptide (CGRP). Elevated plasma levels of CGRP have been found in patients with liver fibrosis or cirrhosis. We hypothesised that signalling of CGRP and its receptors might regulate liver fibrosis and propose a novel potential target for the treatment. In this study, hepatic expression of CGRP and its receptor component, the receptor activity-modifying protein 1 (RAMP1), was dramatically increased in diseased livers of patients. In a murine liver fibrosis model, deficiency of RAMP1 resulted in attenuated fibrogenesis characterized by less collagen deposition and decreased activity of hepatic stellate cells (HSC). Mechanistically, activity of the TGFβ1 signalling core component Smad2 was severely impaired in the absence of RAMP1, and Yes-associated protein (YAP) activity was found to be diminished in RAMP1-deficient liver parenchyma. In vitro, stimulation of the HSC line LX-2 cells with CGRP induces TGFβ1 production and downstream signalling as well as HSC activation documented by increased α-SMA expression and collagen synthesis. We further demonstrate in LX-2 cells that CGRP promotes YAP activation and its nuclear translocation subsequent to TGFβ1/Smad2 signals. These data support a promotive effect of CGRP signalling in liver fibrosis via stimulation of TGFβ1/Smad2 and YAP activity.
Collapse
Affiliation(s)
- Yang Wang
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; Department of Hepato-Pancreato-Biliary Center, Zhongda Hospital, Southeast University School of Medicine, Dingjia Road 87, 210009, Nanjing, China
| | - Christian Stoess
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Gabriela Holzmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Carolin Mogler
- Technical University of Munich, TUM School of Medicine and Health, Institute of Pathology, Trogerstr. 18, 81675, Munich, Germany
| | - Pavel Stupakov
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Felicitas Altmayr
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sarah Schulze
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Baocai Wang
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; University Hospital of Tübingen, Department of General, Visceral and Transplantation Surgery, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; The M3 Research Center, Eberhard Karls University, Otfried-Müller-Str. 37, 72076 Tübingen, Germany
| | - Marcella Steffani
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Norbert Hüser
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Holzmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Hartmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; University Hospital of Tübingen, Department of General, Visceral and Transplantation Surgery, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; The M3 Research Center, Eberhard Karls University, Otfried-Müller-Str. 37, 72076 Tübingen, Germany
| | - Melanie Laschinger
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
26
|
Yang X, Liu Z, Wang X, Tian W, Zhao T, Yang Q, Li W, Yang L, Yang H, Jia Y. Anti-cancer effects of nitazoxanide in epithelial ovarian cancer in-vitro and in-vivo. Chem Biol Interact 2024; 400:111176. [PMID: 39084502 DOI: 10.1016/j.cbi.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xiangqun Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Zhenyan Liu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Xin Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenda Tian
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Yunnan, 678400, PR China
| | - Qiaoling Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenliang Li
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| |
Collapse
|
27
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
28
|
KAŠTELAN SNJEŽANA, PAVIČIĆ ANADIDOVIĆ, PAŠALIĆ DARIA, NIKUŠEVA-MARTIĆ TAMARA, ČANOVIĆ SAMIR, KOVAČEVIĆ PETRA, KONJEVODA SUZANA. Biological characteristics and clinical management of uveal and conjunctival melanoma. Oncol Res 2024; 32:1265-1285. [PMID: 39055896 PMCID: PMC11267116 DOI: 10.32604/or.2024.048437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 07/28/2024] Open
Abstract
Uveal and conjunctival melanomas are relatively rare tumors; nonetheless, they pose a significant risk of mortality for a large number of affected individuals. The pathogenesis of melanoma at different sites is very similar, however, the prognosis for patients with ocular melanoma remains unfavourable, primarily due to its distinctive genetic profile and tumor microenvironment. Regardless of considerable advances in understanding the genetic characteristics and biological behaviour, the treatment of uveal and conjunctival melanoma remains a formidable challenge. To enhance the prospect of success, collaborative efforts involving medical professionals and researchers in the fields of ocular biology and oncology are essential. Current data show a lack of well-designed randomized clinical trials and limited benefits in current forms of treatment for these tumors. Despite advancements in the development of effective melanoma therapeutic strategies, all current treatments for uveal melanoma (UM) and conjunctival melanoma (CoM) remain unsatisfactory, resulting in a poor long-term prognosis. Ongoing trials offer hope for positive outcomes in advanced and metastatic tumors. A more comprehensive understanding of the genetic and molecular abnormalities involved in the development and progression of ocular melanomas opens the way for the development of personalized therapy, with various potential therapeutic targets currently under consideration. Increased comprehension of the molecular pathogenesis of UM and CoM and their specificities may aid in the development of new and more effective systemic therapeutic agents, with the hope of improving the prognosis for patients with metastatic disease.
Collapse
Affiliation(s)
- SNJEŽANA KAŠTELAN
- School of Medicine, University of Zagreb, Zagreb, 10000, Croatia
- Department of Ophthalmology, Clinical Hospital Dubrava, Zagreb, 10000, Croatia
| | | | - DARIA PAŠALIĆ
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - TAMARA NIKUŠEVA-MARTIĆ
- Department of Biology and Genetics, School of Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - SAMIR ČANOVIĆ
- Department of Ophthalmology, Zadar General Hospital, Zadar, 23000, Croatia
- Department of Health Studies, University of Zadar, Zadar, 23000, Croatia
| | - PETRA KOVAČEVIĆ
- School of Medicine, University of Zagreb, Zagreb, 10000, Croatia
- School of Medicine, University of Split, Split, 21000, Croatia
| | - SUZANA KONJEVODA
- Department of Ophthalmology, Zadar General Hospital, Zadar, 23000, Croatia
- Department of Health Studies, University of Zadar, Zadar, 23000, Croatia
| |
Collapse
|
29
|
Trogdon M, Abbott K, Arang N, Lande K, Kaur N, Tong M, Bakhoum M, Gutkind JS, Stites EC. Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation. NPJ Syst Biol Appl 2024; 10:75. [PMID: 39013872 PMCID: PMC11252164 DOI: 10.1038/s41540-024-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT2R was impaired at activating the FAK/YAP/TAZ pathway relative to Gαq/11. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.
Collapse
Affiliation(s)
- Michael Trogdon
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Pfizer, La Jolla, CA, 92037, USA
| | - Kodye Abbott
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kathryn Lande
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Melinda Tong
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathieu Bakhoum
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward C Stites
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Leask A, Nguyen J, Naik A, Chitturi P, Riser BL. The role of yes activated protein (YAP) in melanoma metastasis. iScience 2024; 27:109864. [PMID: 38770136 PMCID: PMC11103372 DOI: 10.1016/j.isci.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hippo was first identified in a genetic screen as a protein that suppressed proliferation and cell growth. Subsequently, it was shown that hippo acted in a so-called canonical cascade to suppress Yorkie, the Drosophila equivalent of Yes-activated protein (YAP), a mechanosensitive transcriptional cofactor that enhances the activity of the TEAD family of transcription factors. YAP promotes fibrosis, activation of cancer-associated fibroblasts, angiogenesis and cancer cell invasion. YAP activates the expression of the matricellular proteins CCN1 (cyr61) and CCN2 (ctgf), themselves mediators of fibrogenesis and oncogenesis, and coordination of matrix deposition and angiogenesis. This review discusses how therapeutically targeting YAP through YAP inhibitors verteporfin and celastrol and its downstream mediators CCN1 and CCN2 might be useful in treating melanoma.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Bruce L. Riser
- Department of Physiology & Biophysics, Center for Cancer Cell Biology, Immunology & Infection, Rosalind Franklin University, 3333 N. Green Bay Road, Chicago, IL 60064, USA
- BLR Bio, LLC, Kenosha, WI 53140, USA
| |
Collapse
|
31
|
Jiang L, Zhou Y, Tang S, Yang D, Zhang Y, Zhang J, Yang F, Zhou T, Xia X, Chen Q, Jiang L, Jiang Y, Feng X. Nociceptive adenosine A 2A receptor on trigeminal nerves orchestrates CGRP release to regulate the progression of oral squamous cell carcinoma. Int J Oral Sci 2024; 16:46. [PMID: 38886342 PMCID: PMC11183250 DOI: 10.1038/s41368-024-00308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/20/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.
Collapse
Grants
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- Fundamental Research Funds for the Central Universities (YJ201987); Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207); Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110); CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
- Fundamental Research Funds for the Central Universities (YJ201987), Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207), Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110), and CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
Collapse
Affiliation(s)
- Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598975. [PMID: 38915538 PMCID: PMC11195279 DOI: 10.1101/2024.06.14.598975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| |
Collapse
|
33
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
34
|
Haderk F, Chou YT, Cech L, Fernández-Méndez C, Yu J, Olivas V, Meraz IM, Barbosa Rabago D, Kerr DL, Gomez C, Allegakoen DV, Guan J, Shah KN, Herrington KA, Gbenedio OM, Nanjo S, Majidi M, Tamaki W, Pourmoghadam YK, Rotow JK, McCoach CE, Riess JW, Gutkind JS, Tang TT, Post L, Huang B, Santisteban P, Goodarzi H, Bandyopadhyay S, Kuo CJ, Roose JP, Wu W, Blakely CM, Roth JA, Bivona TG. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat Commun 2024; 15:3741. [PMID: 38702301 PMCID: PMC11068778 DOI: 10.1038/s41467-024-47423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2024] [Indexed: 05/06/2024] Open
Abstract
Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.
Collapse
Affiliation(s)
- Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yu-Ting Chou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científícas (CSIC) y Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Johnny Yu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dora Barbosa Rabago
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David V Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Khyati N Shah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kari A Herrington
- Center for Advanced Light Microscopy, University of California, San Francisco, San Francisco, CA, USA
| | | | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yashar K Pourmoghadam
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline E McCoach
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Tracy T Tang
- Vivace Therapeutics, Inc., 1500 Fashion Island Blvd., Suite 102, San Mateo, CA, USA
| | - Leonard Post
- Vivace Therapeutics, Inc., 1500 Fashion Island Blvd., Suite 102, San Mateo, CA, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científícas (CSIC) y Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Sourav Bandyopadhyay
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Păsărică MA, Curcă PF, Dragosloveanu CDM, Grigorescu AC, Nisipașu CI. Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics (Basel) 2024; 14:958. [PMID: 38732371 PMCID: PMC11083017 DOI: 10.3390/diagnostics14090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Uveal melanoma (UM) is a common malignant intraocular tumor that presents with significant genetic differences to cutaneous melanoma and has a high genetic burden in terms of prognosis. (2) Methods: A systematic literature search of several repositories on uveal melanoma diagnosis, prognosis, molecular analysis, and treatment was conducted. (3) Results: Recent genetic understanding of oncogene-initiation mutations in GNAQ, GNA11, PLCB4, and CYSLTR2 and secondary progression drivers of BAP1 inactivation and SF3B1 and EIF1AX mutations offers an appealing explanation to the high prognostic impact of adding genetic profiling to clinical UM classification. Genetic information could help better explain peculiarities in uveal melanoma, such as the low long-term survival despite effective primary tumor treatment, the overwhelming propensity to metastasize to the liver, and possibly therapeutic behaviors. (4) Conclusions: Understanding of uveal melanoma has improved step-by-step from histopathology to clinical classification to more recent genetic understanding of oncogenic initiation and progression.
Collapse
Affiliation(s)
- Mihai Adrian Păsărică
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Paul Filip Curcă
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | | | - Cosmin Ionuț Nisipașu
- Department of Dental Medicine I, Implant-Prosthetic Therapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
36
|
Ritsvall O, Albinsson S. Emerging role of YAP/TAZ in vascular mechanotransduction and disease. Microcirculation 2024; 31:e12838. [PMID: 38011540 DOI: 10.1111/micc.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.
Collapse
Affiliation(s)
- Olivia Ritsvall
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Hammill AM, Boscolo E. Capillary malformations. J Clin Invest 2024; 134:e172842. [PMID: 38618955 PMCID: PMC11014659 DOI: 10.1172/jci172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide-binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Lin S, He X, Wang Y, Chen Y, Lin A. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ Sci B 2024; 25:280-292. [PMID: 38584091 PMCID: PMC11009445 DOI: 10.1631/jzus.b2300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024]
Abstract
Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.
Collapse
Affiliation(s)
- Siyi Lin
- College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyu He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310058, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
39
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
40
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity 2024; 10:35. [PMID: 38514677 PMCID: PMC10957960 DOI: 10.1038/s41526-024-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583164. [PMID: 38464311 PMCID: PMC10925314 DOI: 10.1101/2024.03.03.583164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
43
|
Li Y, Zhu T, Yang J, Zhang Q, Xu S, Ge S, Jia R, Zhang J, Fan X. EHMT2 promotes tumorigenesis in GNAQ/11-mutant uveal melanoma via ARHGAP29-mediated RhoA pathway. Acta Pharm Sin B 2024; 14:1187-1203. [PMID: 38486999 PMCID: PMC10935147 DOI: 10.1016/j.apsb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 03/17/2024] Open
Abstract
Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| |
Collapse
|
44
|
Abstract
ABSTRACT Uveal melanoma (UM), arising from intraocular melanocytes, poses a complex clinical challenge with a substantial risk of distant metastasis, often to the liver. Molecular profiling, encompassing genetic, cytogenetic, gene expression, and immunological subsets, plays a pivotal role in determining prognoses. The evolving landscape includes promising systemic treatments, such as tebentafusp, a novel immune-modulating bispecific fusion protein, and targeted therapies. Combined regional and systemic approaches, including immune checkpoint inhibitors and innovative liver-directed therapy, are also under investigation. Although recent progress has improved outcomes, ongoing research aims to address the unique challenges of UM and develop effective therapies, particularly for HLA-A*02:01-negative patients who represent a significant unmet medical need. This review comprehensively discusses the molecular characteristics of UM, risk stratification methods, and the current and future spectrum of regional and systemic therapeutic modalities.
Collapse
Affiliation(s)
| | | | - Craig E Devoe
- From the Northwell Health Cancer Institute, New Hyde Park
| |
Collapse
|
45
|
Kanai R, Norton E, Stern P, Hynes RO, Lamar JM. Identification of a Gene Signature That Predicts Dependence upon YAP/TAZ-TEAD. Cancers (Basel) 2024; 16:852. [PMID: 38473214 PMCID: PMC10930532 DOI: 10.3390/cancers16050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Targeted therapies are effective cancer treatments when accompanied by accurate diagnostic tests that can help identify patients that will respond to those therapies. The YAP/TAZ-TEAD axis is activated and plays a causal role in several cancer types, and TEAD inhibitors are currently in early-phase clinical trials in cancer patients. However, a lack of a reliable way to identify tumors with YAP/TAZ-TEAD activation for most cancer types makes it difficult to determine which tumors will be susceptible to TEAD inhibitors. Here, we used a combination of RNA-seq and bioinformatic analysis of metastatic melanoma cells to develop a YAP/TAZ gene signature. We found that the genes in this signature are TEAD-dependent in several melanoma cell lines, and that their expression strongly correlates with YAP/TAZ activation in human melanomas. Using DepMap dependency data, we found that this YAP/TAZ signature was predictive of melanoma cell dependence upon YAP/TAZ or TEADs. Importantly, this was not limited to melanoma because this signature was also predictive when tested on a panel of over 1000 cancer cell lines representing numerous distinct cancer types. Our results suggest that YAP/TAZ gene signatures like ours may be effective tools to predict tumor cell dependence upon YAP/TAZ-TEAD, and thus potentially provide a means to identify patients likely to benefit from TEAD inhibitors.
Collapse
Affiliation(s)
- Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| | - Emily Norton
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| | - Patrick Stern
- Koch Institute for Integrative Cancer Research, at Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Richard O. Hynes
- Department of Biology, Koch Institute for Integrative Cancer Research, and Howard Hughes Medical Institute, at Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| |
Collapse
|
46
|
Jessen M, Gertzmann D, Liss F, Zenk F, Bähner L, Schöffler V, Schulte C, Maric HM, Ade CP, von Eyss B, Gaubatz S. Inhibition of the YAP-MMB interaction and targeting NEK2 as potential therapeutic strategies for YAP-driven cancers. Oncogene 2024; 43:578-593. [PMID: 38182898 PMCID: PMC10873197 DOI: 10.1038/s41388-023-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.
Collapse
Affiliation(s)
- Marco Jessen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany
| | - Dörthe Gertzmann
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Liss
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Zenk
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Laura Bähner
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Victoria Schöffler
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Clemens Schulte
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany.
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany.
| |
Collapse
|
47
|
Sorrentino FS, De Rosa F, Di Terlizzi P, Toneatto G, Gabai A, Finocchio L, Salati C, Spadea L, Zeppieri M. Uveal melanoma: Recent advances in immunotherapy. World J Clin Oncol 2024; 15:23-31. [PMID: 38292657 PMCID: PMC10823941 DOI: 10.5306/wjco.v15.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular cancer in adults. The incidence in Europe and the United States is 6-7 per million population per year. Although most primary UMs can be successfully treated and locally controlled by irradiation therapy or local tumor resection, up to 50% of UM patients develop metastases that usually involve the liver and are fatal within 1 year. To date, chemotherapy and targeted treatments only obtain minimal responses in patients with metastatic UM, which is still characterized by poor prognosis. No standard therapeutic approaches for its prevention or treatment have been established. The application of immunotherapy agents, such as immune checkpoint inhibitors that are effective in cutaneous melanoma, has shown limited effects in the treatment of ocular disease. This is due to UM's distinct genetics, natural history, and complex interaction with the immune system. Unlike cutaneous melanomas characterized mainly by BRAF or NRAS mutations, UMs are usually triggered by a mutation in GNAQ or GNA11. As a result, more effective immunotherapeutic approaches, such as cancer vaccines, adoptive cell transfer, and other new molecules are currently being studied. In this review, we examine novel immunotherapeutic strategies in clinical and preclinical studies and highlight the latest insight in immunotherapy and the development of tailored treatment of UM.
Collapse
Affiliation(s)
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Giacomo Toneatto
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
48
|
Saakyan SV, Sklyarova NV, Tsygankov AY, Alikhanova VR, Loginov VI, Burdenny AM. [Circumscribed choroidal hemangioma and non-pigmented choroidal melanoma: clinical, instrumental and molecular genetic features]. Vestn Oftalmol 2024; 140:5-13. [PMID: 38742493 DOI: 10.17116/oftalma20241400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Circumscribed choroidal hemangioma (CCH) and early non-pigmented choroidal melanoma (CM) have similar clinical, ultrasound and morphometric features, which in some cases makes their differential diagnosis difficult. There are few studies in the literature devoted to a comparative analysis of the molecular genetic features of CCH and non-pigmented CM, and the results of those studies are contradictory. PURPOSE This study attempts to develop a method of non-invasive molecular genetic differential diagnostics of CCH and non-pigmented CM. MATERIAL AND METHODS Based on the results of clinical and instrumental examination methods, 60 patients (60 eyes) with CCH (n=30) and non-pigmented CM (n=30) were included in this prospective study. The control group consisted of 30 individuals without intraocular tumors. Mutations in the GNAQ/GNA11 genes were determined by real-time PCR using the analysis of genomic circulating tumor DNA isolated from peripheral blood plasma. The average follow-up period was 12.1±1.8 months. RESULTS The study revealed a significant association of mutations in exons 4 and 5 of the GNAQ/GNA11 genes with the presence of non-pigmented CM (27/30; 90%). These mutations were not detected in the group of patients with CCH. Mutations in exons 4 and 5 of the GNAQ/GNA11 genes were also not detected in the control group of healthy individuals. CONCLUSION This study proposes a method of non-invasive and low-cost differential diagnostics based on molecular genetic analysis and detection of mutations in exons 4 and 5 of the GNAQ and GNA11 genes, which are specific for CM (90%).
Collapse
Affiliation(s)
- S V Saakyan
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
- Russian University of Medicine (ROSUNIMED), Moscow, Russia
| | - N V Sklyarova
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - A Yu Tsygankov
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
- Russian University of Medicine (ROSUNIMED), Moscow, Russia
| | - V R Alikhanova
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - V I Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A M Burdenny
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
49
|
Zhou W, Lim A, Edderkaoui M, Osipov A, Wu H, Wang Q, Pandol S. Role of YAP Signaling in Regulation of Programmed Cell Death and Drug Resistance in Cancer. Int J Biol Sci 2024; 20:15-28. [PMID: 38164167 PMCID: PMC10750275 DOI: 10.7150/ijbs.83586] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
50
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|